1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
85     Visit(GE->getResultExpr());
86   }
87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
88 
89   // l-values.
90   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
91   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
92   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
93   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
94   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
95   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
96     EmitAggLoadOfLValue(E);
97   }
98   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitPredefinedExpr(const PredefinedExpr *E) {
102     EmitAggLoadOfLValue(E);
103   }
104 
105   // Operators.
106   void VisitCastExpr(CastExpr *E);
107   void VisitCallExpr(const CallExpr *E);
108   void VisitStmtExpr(const StmtExpr *E);
109   void VisitBinaryOperator(const BinaryOperator *BO);
110   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
111   void VisitBinAssign(const BinaryOperator *E);
112   void VisitBinComma(const BinaryOperator *E);
113 
114   void VisitObjCMessageExpr(ObjCMessageExpr *E);
115   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
119 
120   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
121   void VisitChooseExpr(const ChooseExpr *CE);
122   void VisitInitListExpr(InitListExpr *E);
123   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
124   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
125     Visit(DAE->getExpr());
126   }
127   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
128   void VisitCXXConstructExpr(const CXXConstructExpr *E);
129   void VisitExprWithCleanups(ExprWithCleanups *E);
130   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
131   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132 
133   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
134 
135   void VisitVAArgExpr(VAArgExpr *E);
136 
137   void EmitInitializationToLValue(Expr *E, LValue Address);
138   void EmitNullInitializationToLValue(LValue Address);
139   //  case Expr::ChooseExprClass:
140   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
141 };
142 }  // end anonymous namespace.
143 
144 //===----------------------------------------------------------------------===//
145 //                                Utilities
146 //===----------------------------------------------------------------------===//
147 
148 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
149 /// represents a value lvalue, this method emits the address of the lvalue,
150 /// then loads the result into DestPtr.
151 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
152   LValue LV = CGF.EmitLValue(E);
153   EmitFinalDestCopy(E, LV);
154 }
155 
156 /// \brief True if the given aggregate type requires special GC API calls.
157 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
158   // Only record types have members that might require garbage collection.
159   const RecordType *RecordTy = T->getAs<RecordType>();
160   if (!RecordTy) return false;
161 
162   // Don't mess with non-trivial C++ types.
163   RecordDecl *Record = RecordTy->getDecl();
164   if (isa<CXXRecordDecl>(Record) &&
165       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
166        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
167     return false;
168 
169   // Check whether the type has an object member.
170   return Record->hasObjectMember();
171 }
172 
173 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
174 ///
175 /// The idea is that you do something like this:
176 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
177 ///   EmitGCMove(E, Result);
178 /// If GC doesn't interfere, this will cause the result to be emitted
179 /// directly into the return value slot.  If GC does interfere, a final
180 /// move will be performed.
181 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
182   if (Dest.requiresGCollection()) {
183     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
184     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
185     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
186     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
187                                                     Src.getAggregateAddr(),
188                                                     SizeVal);
189   }
190 }
191 
192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
194   assert(Src.isAggregate() && "value must be aggregate value!");
195 
196   // If Dest is ignored, then we're evaluating an aggregate expression
197   // in a context (like an expression statement) that doesn't care
198   // about the result.  C says that an lvalue-to-rvalue conversion is
199   // performed in these cases; C++ says that it is not.  In either
200   // case, we don't actually need to do anything unless the value is
201   // volatile.
202   if (Dest.isIgnored()) {
203     if (!Src.isVolatileQualified() ||
204         CGF.CGM.getLangOptions().CPlusPlus ||
205         (IgnoreResult && Ignore))
206       return;
207 
208     // If the source is volatile, we must read from it; to do that, we need
209     // some place to put it.
210     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
211   }
212 
213   if (Dest.requiresGCollection()) {
214     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
215     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
216     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
217     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
218                                                       Dest.getAddr(),
219                                                       Src.getAggregateAddr(),
220                                                       SizeVal);
221     return;
222   }
223   // If the result of the assignment is used, copy the LHS there also.
224   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
225   // from the source as well, as we can't eliminate it if either operand
226   // is volatile, unless copy has volatile for both source and destination..
227   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
228                         Dest.isVolatile()|Src.isVolatileQualified());
229 }
230 
231 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
232 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
233   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
234 
235   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
236                                             Src.isVolatileQualified()),
237                     Ignore);
238 }
239 
240 //===----------------------------------------------------------------------===//
241 //                            Visitor Methods
242 //===----------------------------------------------------------------------===//
243 
244 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
245   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
246 }
247 
248 void
249 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
250   if (E->getType().isPODType(CGF.getContext())) {
251     // For a POD type, just emit a load of the lvalue + a copy, because our
252     // compound literal might alias the destination.
253     // FIXME: This is a band-aid; the real problem appears to be in our handling
254     // of assignments, where we store directly into the LHS without checking
255     // whether anything in the RHS aliases.
256     EmitAggLoadOfLValue(E);
257     return;
258   }
259 
260   AggValueSlot Slot = EnsureSlot(E->getType());
261   CGF.EmitAggExpr(E->getInitializer(), Slot);
262 }
263 
264 
265 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
266   switch (E->getCastKind()) {
267   case CK_Dynamic: {
268     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
269     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
270     // FIXME: Do we also need to handle property references here?
271     if (LV.isSimple())
272       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
273     else
274       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
275 
276     if (!Dest.isIgnored())
277       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
278     break;
279   }
280 
281   case CK_ToUnion: {
282     if (Dest.isIgnored()) break;
283 
284     // GCC union extension
285     QualType Ty = E->getSubExpr()->getType();
286     QualType PtrTy = CGF.getContext().getPointerType(Ty);
287     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
288                                                  CGF.ConvertType(PtrTy));
289     EmitInitializationToLValue(E->getSubExpr(),
290                                CGF.MakeAddrLValue(CastPtr, Ty));
291     break;
292   }
293 
294   case CK_DerivedToBase:
295   case CK_BaseToDerived:
296   case CK_UncheckedDerivedToBase: {
297     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
298                 "should have been unpacked before we got here");
299     break;
300   }
301 
302   case CK_GetObjCProperty: {
303     LValue LV = CGF.EmitLValue(E->getSubExpr());
304     assert(LV.isPropertyRef());
305     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
306     EmitGCMove(E, RV);
307     break;
308   }
309 
310   case CK_LValueToRValue: // hope for downstream optimization
311   case CK_NoOp:
312   case CK_UserDefinedConversion:
313   case CK_ConstructorConversion:
314     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
315                                                    E->getType()) &&
316            "Implicit cast types must be compatible");
317     Visit(E->getSubExpr());
318     break;
319 
320   case CK_LValueBitCast:
321     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
322     break;
323 
324   case CK_Dependent:
325   case CK_BitCast:
326   case CK_ArrayToPointerDecay:
327   case CK_FunctionToPointerDecay:
328   case CK_NullToPointer:
329   case CK_NullToMemberPointer:
330   case CK_BaseToDerivedMemberPointer:
331   case CK_DerivedToBaseMemberPointer:
332   case CK_MemberPointerToBoolean:
333   case CK_IntegralToPointer:
334   case CK_PointerToIntegral:
335   case CK_PointerToBoolean:
336   case CK_ToVoid:
337   case CK_VectorSplat:
338   case CK_IntegralCast:
339   case CK_IntegralToBoolean:
340   case CK_IntegralToFloating:
341   case CK_FloatingToIntegral:
342   case CK_FloatingToBoolean:
343   case CK_FloatingCast:
344   case CK_AnyPointerToObjCPointerCast:
345   case CK_AnyPointerToBlockPointerCast:
346   case CK_ObjCObjectLValueCast:
347   case CK_FloatingRealToComplex:
348   case CK_FloatingComplexToReal:
349   case CK_FloatingComplexToBoolean:
350   case CK_FloatingComplexCast:
351   case CK_FloatingComplexToIntegralComplex:
352   case CK_IntegralRealToComplex:
353   case CK_IntegralComplexToReal:
354   case CK_IntegralComplexToBoolean:
355   case CK_IntegralComplexCast:
356   case CK_IntegralComplexToFloatingComplex:
357   case CK_ObjCProduceObject:
358   case CK_ObjCConsumeObject:
359     llvm_unreachable("cast kind invalid for aggregate types");
360   }
361 }
362 
363 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
364   if (E->getCallReturnType()->isReferenceType()) {
365     EmitAggLoadOfLValue(E);
366     return;
367   }
368 
369   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
370   EmitGCMove(E, RV);
371 }
372 
373 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
374   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
375   EmitGCMove(E, RV);
376 }
377 
378 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
379   llvm_unreachable("direct property access not surrounded by "
380                    "lvalue-to-rvalue cast");
381 }
382 
383 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
384   CGF.EmitIgnoredExpr(E->getLHS());
385   Visit(E->getRHS());
386 }
387 
388 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
389   CodeGenFunction::StmtExprEvaluation eval(CGF);
390   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
391 }
392 
393 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
394   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
395     VisitPointerToDataMemberBinaryOperator(E);
396   else
397     CGF.ErrorUnsupported(E, "aggregate binary expression");
398 }
399 
400 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
401                                                     const BinaryOperator *E) {
402   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
403   EmitFinalDestCopy(E, LV);
404 }
405 
406 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
407   // For an assignment to work, the value on the right has
408   // to be compatible with the value on the left.
409   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
410                                                  E->getRHS()->getType())
411          && "Invalid assignment");
412 
413   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
414     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
415       if (VD->hasAttr<BlocksAttr>() &&
416           E->getRHS()->HasSideEffects(CGF.getContext())) {
417         // When __block variable on LHS, the RHS must be evaluated first
418         // as it may change the 'forwarding' field via call to Block_copy.
419         LValue RHS = CGF.EmitLValue(E->getRHS());
420         LValue LHS = CGF.EmitLValue(E->getLHS());
421         bool GCollection = false;
422         if (CGF.getContext().getLangOptions().getGCMode())
423           GCollection = TypeRequiresGCollection(E->getLHS()->getType());
424         Dest = AggValueSlot::forLValue(LHS, true, GCollection);
425         EmitFinalDestCopy(E, RHS, true);
426         return;
427       }
428 
429   LValue LHS = CGF.EmitLValue(E->getLHS());
430 
431   // We have to special case property setters, otherwise we must have
432   // a simple lvalue (no aggregates inside vectors, bitfields).
433   if (LHS.isPropertyRef()) {
434     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
435     QualType ArgType = RE->getSetterArgType();
436     RValue Src;
437     if (ArgType->isReferenceType())
438       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
439     else {
440       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
441       CGF.EmitAggExpr(E->getRHS(), Slot);
442       Src = Slot.asRValue();
443     }
444     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
445   } else {
446     bool GCollection = false;
447     if (CGF.getContext().getLangOptions().getGCMode())
448       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
449 
450     // Codegen the RHS so that it stores directly into the LHS.
451     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
452                                                    GCollection);
453     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
454     EmitFinalDestCopy(E, LHS, true);
455   }
456 }
457 
458 void AggExprEmitter::
459 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
460   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
461   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
462   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
463 
464   // Bind the common expression if necessary.
465   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
466 
467   CodeGenFunction::ConditionalEvaluation eval(CGF);
468   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
469 
470   // Save whether the destination's lifetime is externally managed.
471   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
472 
473   eval.begin(CGF);
474   CGF.EmitBlock(LHSBlock);
475   Visit(E->getTrueExpr());
476   eval.end(CGF);
477 
478   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
479   CGF.Builder.CreateBr(ContBlock);
480 
481   // If the result of an agg expression is unused, then the emission
482   // of the LHS might need to create a destination slot.  That's fine
483   // with us, and we can safely emit the RHS into the same slot, but
484   // we shouldn't claim that its lifetime is externally managed.
485   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
486 
487   eval.begin(CGF);
488   CGF.EmitBlock(RHSBlock);
489   Visit(E->getFalseExpr());
490   eval.end(CGF);
491 
492   CGF.EmitBlock(ContBlock);
493 }
494 
495 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
496   Visit(CE->getChosenSubExpr(CGF.getContext()));
497 }
498 
499 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
500   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
501   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
502 
503   if (!ArgPtr) {
504     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
505     return;
506   }
507 
508   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
509 }
510 
511 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
512   // Ensure that we have a slot, but if we already do, remember
513   // whether its lifetime was externally managed.
514   bool WasManaged = Dest.isLifetimeExternallyManaged();
515   Dest = EnsureSlot(E->getType());
516   Dest.setLifetimeExternallyManaged();
517 
518   Visit(E->getSubExpr());
519 
520   // Set up the temporary's destructor if its lifetime wasn't already
521   // being managed.
522   if (!WasManaged)
523     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
524 }
525 
526 void
527 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
528   AggValueSlot Slot = EnsureSlot(E->getType());
529   CGF.EmitCXXConstructExpr(E, Slot);
530 }
531 
532 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
533   CGF.EmitExprWithCleanups(E, Dest);
534 }
535 
536 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
537   QualType T = E->getType();
538   AggValueSlot Slot = EnsureSlot(T);
539   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
540 }
541 
542 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
543   QualType T = E->getType();
544   AggValueSlot Slot = EnsureSlot(T);
545   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
546 }
547 
548 /// isSimpleZero - If emitting this value will obviously just cause a store of
549 /// zero to memory, return true.  This can return false if uncertain, so it just
550 /// handles simple cases.
551 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
552   E = E->IgnoreParens();
553 
554   // 0
555   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
556     return IL->getValue() == 0;
557   // +0.0
558   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
559     return FL->getValue().isPosZero();
560   // int()
561   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
562       CGF.getTypes().isZeroInitializable(E->getType()))
563     return true;
564   // (int*)0 - Null pointer expressions.
565   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
566     return ICE->getCastKind() == CK_NullToPointer;
567   // '\0'
568   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
569     return CL->getValue() == 0;
570 
571   // Otherwise, hard case: conservatively return false.
572   return false;
573 }
574 
575 
576 void
577 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
578   QualType type = LV.getType();
579   // FIXME: Ignore result?
580   // FIXME: Are initializers affected by volatile?
581   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
582     // Storing "i32 0" to a zero'd memory location is a noop.
583   } else if (isa<ImplicitValueInitExpr>(E)) {
584     EmitNullInitializationToLValue(LV);
585   } else if (type->isReferenceType()) {
586     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
587     CGF.EmitStoreThroughLValue(RV, LV, type);
588   } else if (type->isAnyComplexType()) {
589     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
590   } else if (CGF.hasAggregateLLVMType(type)) {
591     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false,
592                                                Dest.isZeroed()));
593   } else if (LV.isSimple()) {
594     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
595   } else {
596     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, type);
597   }
598 }
599 
600 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
601   QualType type = lv.getType();
602 
603   // If the destination slot is already zeroed out before the aggregate is
604   // copied into it, we don't have to emit any zeros here.
605   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
606     return;
607 
608   if (!CGF.hasAggregateLLVMType(type)) {
609     // For non-aggregates, we can store zero
610     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
611     CGF.EmitStoreThroughLValue(RValue::get(null), lv, type);
612   } else {
613     // There's a potential optimization opportunity in combining
614     // memsets; that would be easy for arrays, but relatively
615     // difficult for structures with the current code.
616     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
617   }
618 }
619 
620 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
621 #if 0
622   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
623   // (Length of globals? Chunks of zeroed-out space?).
624   //
625   // If we can, prefer a copy from a global; this is a lot less code for long
626   // globals, and it's easier for the current optimizers to analyze.
627   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
628     llvm::GlobalVariable* GV =
629     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
630                              llvm::GlobalValue::InternalLinkage, C, "");
631     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
632     return;
633   }
634 #endif
635   if (E->hadArrayRangeDesignator())
636     CGF.ErrorUnsupported(E, "GNU array range designator extension");
637 
638   llvm::Value *DestPtr = Dest.getAddr();
639 
640   // Handle initialization of an array.
641   if (E->getType()->isArrayType()) {
642     const llvm::PointerType *APType =
643       cast<llvm::PointerType>(DestPtr->getType());
644     const llvm::ArrayType *AType =
645       cast<llvm::ArrayType>(APType->getElementType());
646 
647     uint64_t NumInitElements = E->getNumInits();
648 
649     if (E->getNumInits() > 0) {
650       QualType T1 = E->getType();
651       QualType T2 = E->getInit(0)->getType();
652       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
653         EmitAggLoadOfLValue(E->getInit(0));
654         return;
655       }
656     }
657 
658     uint64_t NumArrayElements = AType->getNumElements();
659     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
660     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
661     ElementType = CGF.getContext().getQualifiedType(ElementType,
662                                                     Dest.getQualifiers());
663 
664     bool hasNonTrivialCXXConstructor = false;
665     if (CGF.getContext().getLangOptions().CPlusPlus)
666       if (const RecordType *RT = CGF.getContext()
667                         .getBaseElementType(ElementType)->getAs<RecordType>()) {
668         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
669         hasNonTrivialCXXConstructor = !RD->hasTrivialDefaultConstructor();
670       }
671 
672     for (uint64_t i = 0; i != NumArrayElements; ++i) {
673       // If we're done emitting initializers and the destination is known-zeroed
674       // then we're done.
675       if (i == NumInitElements &&
676           Dest.isZeroed() &&
677           CGF.getTypes().isZeroInitializable(ElementType) &&
678           !hasNonTrivialCXXConstructor)
679         break;
680 
681       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
682       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
683 
684       if (i < NumInitElements)
685         EmitInitializationToLValue(E->getInit(i), LV);
686       else if (Expr *filler = E->getArrayFiller())
687         EmitInitializationToLValue(filler, LV);
688       else
689         EmitNullInitializationToLValue(LV);
690 
691       // If the GEP didn't get used because of a dead zero init or something
692       // else, clean it up for -O0 builds and general tidiness.
693       if (llvm::GetElementPtrInst *GEP =
694             dyn_cast<llvm::GetElementPtrInst>(NextVal))
695         if (GEP->use_empty())
696           GEP->eraseFromParent();
697     }
698     return;
699   }
700 
701   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
702 
703   // Do struct initialization; this code just sets each individual member
704   // to the approprate value.  This makes bitfield support automatic;
705   // the disadvantage is that the generated code is more difficult for
706   // the optimizer, especially with bitfields.
707   unsigned NumInitElements = E->getNumInits();
708   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
709 
710   if (E->getType()->isUnionType()) {
711     // Only initialize one field of a union. The field itself is
712     // specified by the initializer list.
713     if (!E->getInitializedFieldInUnion()) {
714       // Empty union; we have nothing to do.
715 
716 #ifndef NDEBUG
717       // Make sure that it's really an empty and not a failure of
718       // semantic analysis.
719       for (RecordDecl::field_iterator Field = SD->field_begin(),
720                                    FieldEnd = SD->field_end();
721            Field != FieldEnd; ++Field)
722         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
723 #endif
724       return;
725     }
726 
727     // FIXME: volatility
728     FieldDecl *Field = E->getInitializedFieldInUnion();
729 
730     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
731     if (NumInitElements) {
732       // Store the initializer into the field
733       EmitInitializationToLValue(E->getInit(0), FieldLoc);
734     } else {
735       // Default-initialize to null.
736       EmitNullInitializationToLValue(FieldLoc);
737     }
738 
739     return;
740   }
741 
742   // Here we iterate over the fields; this makes it simpler to both
743   // default-initialize fields and skip over unnamed fields.
744   unsigned CurInitVal = 0;
745   for (RecordDecl::field_iterator Field = SD->field_begin(),
746                                FieldEnd = SD->field_end();
747        Field != FieldEnd; ++Field) {
748     // We're done once we hit the flexible array member
749     if (Field->getType()->isIncompleteArrayType())
750       break;
751 
752     if (Field->isUnnamedBitfield())
753       continue;
754 
755     // Don't emit GEP before a noop store of zero.
756     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
757         CGF.getTypes().isZeroInitializable(E->getType()))
758       break;
759 
760     // FIXME: volatility
761     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
762     // We never generate write-barries for initialized fields.
763     FieldLoc.setNonGC(true);
764 
765     if (CurInitVal < NumInitElements) {
766       // Store the initializer into the field.
767       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
768     } else {
769       // We're out of initalizers; default-initialize to null
770       EmitNullInitializationToLValue(FieldLoc);
771     }
772 
773     // If the GEP didn't get used because of a dead zero init or something
774     // else, clean it up for -O0 builds and general tidiness.
775     if (FieldLoc.isSimple())
776       if (llvm::GetElementPtrInst *GEP =
777             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
778         if (GEP->use_empty())
779           GEP->eraseFromParent();
780   }
781 }
782 
783 //===----------------------------------------------------------------------===//
784 //                        Entry Points into this File
785 //===----------------------------------------------------------------------===//
786 
787 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
788 /// non-zero bytes that will be stored when outputting the initializer for the
789 /// specified initializer expression.
790 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
791   E = E->IgnoreParens();
792 
793   // 0 and 0.0 won't require any non-zero stores!
794   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
795 
796   // If this is an initlist expr, sum up the size of sizes of the (present)
797   // elements.  If this is something weird, assume the whole thing is non-zero.
798   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
799   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
800     return CGF.getContext().getTypeSizeInChars(E->getType());
801 
802   // InitListExprs for structs have to be handled carefully.  If there are
803   // reference members, we need to consider the size of the reference, not the
804   // referencee.  InitListExprs for unions and arrays can't have references.
805   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
806     if (!RT->isUnionType()) {
807       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
808       CharUnits NumNonZeroBytes = CharUnits::Zero();
809 
810       unsigned ILEElement = 0;
811       for (RecordDecl::field_iterator Field = SD->field_begin(),
812            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
813         // We're done once we hit the flexible array member or run out of
814         // InitListExpr elements.
815         if (Field->getType()->isIncompleteArrayType() ||
816             ILEElement == ILE->getNumInits())
817           break;
818         if (Field->isUnnamedBitfield())
819           continue;
820 
821         const Expr *E = ILE->getInit(ILEElement++);
822 
823         // Reference values are always non-null and have the width of a pointer.
824         if (Field->getType()->isReferenceType())
825           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
826               CGF.getContext().Target.getPointerWidth(0));
827         else
828           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
829       }
830 
831       return NumNonZeroBytes;
832     }
833   }
834 
835 
836   CharUnits NumNonZeroBytes = CharUnits::Zero();
837   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
838     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
839   return NumNonZeroBytes;
840 }
841 
842 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
843 /// zeros in it, emit a memset and avoid storing the individual zeros.
844 ///
845 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
846                                      CodeGenFunction &CGF) {
847   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
848   // volatile stores.
849   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
850 
851   // C++ objects with a user-declared constructor don't need zero'ing.
852   if (CGF.getContext().getLangOptions().CPlusPlus)
853     if (const RecordType *RT = CGF.getContext()
854                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
855       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
856       if (RD->hasUserDeclaredConstructor())
857         return;
858     }
859 
860   // If the type is 16-bytes or smaller, prefer individual stores over memset.
861   std::pair<CharUnits, CharUnits> TypeInfo =
862     CGF.getContext().getTypeInfoInChars(E->getType());
863   if (TypeInfo.first <= CharUnits::fromQuantity(16))
864     return;
865 
866   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
867   // we prefer to emit memset + individual stores for the rest.
868   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
869   if (NumNonZeroBytes*4 > TypeInfo.first)
870     return;
871 
872   // Okay, it seems like a good idea to use an initial memset, emit the call.
873   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
874   CharUnits Align = TypeInfo.second;
875 
876   llvm::Value *Loc = Slot.getAddr();
877   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
878 
879   Loc = CGF.Builder.CreateBitCast(Loc, BP);
880   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
881                            Align.getQuantity(), false);
882 
883   // Tell the AggExprEmitter that the slot is known zero.
884   Slot.setZeroed();
885 }
886 
887 
888 
889 
890 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
891 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
892 /// the value of the aggregate expression is not needed.  If VolatileDest is
893 /// true, DestPtr cannot be 0.
894 ///
895 /// \param IsInitializer - true if this evaluation is initializing an
896 /// object whose lifetime is already being managed.
897 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
898                                   bool IgnoreResult) {
899   assert(E && hasAggregateLLVMType(E->getType()) &&
900          "Invalid aggregate expression to emit");
901   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
902          "slot has bits but no address");
903 
904   // Optimize the slot if possible.
905   CheckAggExprForMemSetUse(Slot, E, *this);
906 
907   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
908 }
909 
910 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
911   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
912   llvm::Value *Temp = CreateMemTemp(E->getType());
913   LValue LV = MakeAddrLValue(Temp, E->getType());
914   EmitAggExpr(E, AggValueSlot::forLValue(LV, false));
915   return LV;
916 }
917 
918 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
919                                         llvm::Value *SrcPtr, QualType Ty,
920                                         bool isVolatile) {
921   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
922 
923   if (getContext().getLangOptions().CPlusPlus) {
924     if (const RecordType *RT = Ty->getAs<RecordType>()) {
925       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
926       assert((Record->hasTrivialCopyConstructor() ||
927               Record->hasTrivialCopyAssignment()) &&
928              "Trying to aggregate-copy a type without a trivial copy "
929              "constructor or assignment operator");
930       // Ignore empty classes in C++.
931       if (Record->isEmpty())
932         return;
933     }
934   }
935 
936   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
937   // C99 6.5.16.1p3, which states "If the value being stored in an object is
938   // read from another object that overlaps in anyway the storage of the first
939   // object, then the overlap shall be exact and the two objects shall have
940   // qualified or unqualified versions of a compatible type."
941   //
942   // memcpy is not defined if the source and destination pointers are exactly
943   // equal, but other compilers do this optimization, and almost every memcpy
944   // implementation handles this case safely.  If there is a libc that does not
945   // safely handle this, we can add a target hook.
946 
947   // Get size and alignment info for this aggregate.
948   std::pair<CharUnits, CharUnits> TypeInfo =
949     getContext().getTypeInfoInChars(Ty);
950 
951   // FIXME: Handle variable sized types.
952 
953   // FIXME: If we have a volatile struct, the optimizer can remove what might
954   // appear to be `extra' memory ops:
955   //
956   // volatile struct { int i; } a, b;
957   //
958   // int main() {
959   //   a = b;
960   //   a = b;
961   // }
962   //
963   // we need to use a different call here.  We use isVolatile to indicate when
964   // either the source or the destination is volatile.
965 
966   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
967   const llvm::Type *DBP =
968     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
969   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
970 
971   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
972   const llvm::Type *SBP =
973     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
974   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
975 
976   // Don't do any of the memmove_collectable tests if GC isn't set.
977   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
978     // fall through
979   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
980     RecordDecl *Record = RecordTy->getDecl();
981     if (Record->hasObjectMember()) {
982       CharUnits size = TypeInfo.first;
983       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
984       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
985       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
986                                                     SizeVal);
987       return;
988     }
989   } else if (Ty->isArrayType()) {
990     QualType BaseType = getContext().getBaseElementType(Ty);
991     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
992       if (RecordTy->getDecl()->hasObjectMember()) {
993         CharUnits size = TypeInfo.first;
994         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
995         llvm::Value *SizeVal =
996           llvm::ConstantInt::get(SizeTy, size.getQuantity());
997         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
998                                                       SizeVal);
999         return;
1000       }
1001     }
1002   }
1003 
1004   Builder.CreateMemCpy(DestPtr, SrcPtr,
1005                        llvm::ConstantInt::get(IntPtrTy,
1006                                               TypeInfo.first.getQuantity()),
1007                        TypeInfo.second.getQuantity(), isVolatile);
1008 }
1009