1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile(), IsResultUnused);
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59   void EnsureDest(QualType T) {
60     if (!Dest.isIgnored()) return;
61     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
62   }
63 
64 public:
65   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
66     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
67     IsResultUnused(IsResultUnused) { }
68 
69   //===--------------------------------------------------------------------===//
70   //                               Utilities
71   //===--------------------------------------------------------------------===//
72 
73   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
74   /// represents a value lvalue, this method emits the address of the lvalue,
75   /// then loads the result into DestPtr.
76   void EmitAggLoadOfLValue(const Expr *E);
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   void EmitFinalDestCopy(QualType type, const LValue &src);
80   void EmitFinalDestCopy(QualType type, RValue src,
81                          CharUnits srcAlignment = CharUnits::Zero());
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
164   void VisitChooseExpr(const ChooseExpr *CE);
165   void VisitInitListExpr(InitListExpr *E);
166   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
167   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
168     Visit(DAE->getExpr());
169   }
170   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
171     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
172     Visit(DIE->getExpr());
173   }
174   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
175   void VisitCXXConstructExpr(const CXXConstructExpr *E);
176   void VisitLambdaExpr(LambdaExpr *E);
177   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
178   void VisitExprWithCleanups(ExprWithCleanups *E);
179   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
180   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
181   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
182   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
183 
184   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
185     if (E->isGLValue()) {
186       LValue LV = CGF.EmitPseudoObjectLValue(E);
187       return EmitFinalDestCopy(E->getType(), LV);
188     }
189 
190     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
191   }
192 
193   void VisitVAArgExpr(VAArgExpr *E);
194 
195   void EmitInitializationToLValue(Expr *E, LValue Address);
196   void EmitNullInitializationToLValue(LValue Address);
197   //  case Expr::ChooseExprClass:
198   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
199   void VisitAtomicExpr(AtomicExpr *E) {
200     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
201   }
202 };
203 }  // end anonymous namespace.
204 
205 //===----------------------------------------------------------------------===//
206 //                                Utilities
207 //===----------------------------------------------------------------------===//
208 
209 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
210 /// represents a value lvalue, this method emits the address of the lvalue,
211 /// then loads the result into DestPtr.
212 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
213   LValue LV = CGF.EmitLValue(E);
214 
215   // If the type of the l-value is atomic, then do an atomic load.
216   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
217     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
218     return;
219   }
220 
221   EmitFinalDestCopy(E->getType(), LV);
222 }
223 
224 /// \brief True if the given aggregate type requires special GC API calls.
225 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
226   // Only record types have members that might require garbage collection.
227   const RecordType *RecordTy = T->getAs<RecordType>();
228   if (!RecordTy) return false;
229 
230   // Don't mess with non-trivial C++ types.
231   RecordDecl *Record = RecordTy->getDecl();
232   if (isa<CXXRecordDecl>(Record) &&
233       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
234        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
235     return false;
236 
237   // Check whether the type has an object member.
238   return Record->hasObjectMember();
239 }
240 
241 /// \brief Perform the final move to DestPtr if for some reason
242 /// getReturnValueSlot() didn't use it directly.
243 ///
244 /// The idea is that you do something like this:
245 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
246 ///   EmitMoveFromReturnSlot(E, Result);
247 ///
248 /// If nothing interferes, this will cause the result to be emitted
249 /// directly into the return value slot.  Otherwise, a final move
250 /// will be performed.
251 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
252   if (shouldUseDestForReturnSlot()) {
253     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
254     // The possibility of undef rvalues complicates that a lot,
255     // though, so we can't really assert.
256     return;
257   }
258 
259   // Otherwise, copy from there to the destination.
260   assert(Dest.getAddr() != src.getAggregateAddr());
261   std::pair<CharUnits, CharUnits> typeInfo =
262     CGF.getContext().getTypeInfoInChars(E->getType());
263   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
264 }
265 
266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
268                                        CharUnits srcAlign) {
269   assert(src.isAggregate() && "value must be aggregate value!");
270   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
271   EmitFinalDestCopy(type, srcLV);
272 }
273 
274 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
275 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
276   // If Dest is ignored, then we're evaluating an aggregate expression
277   // in a context that doesn't care about the result.  Note that loads
278   // from volatile l-values force the existence of a non-ignored
279   // destination.
280   if (Dest.isIgnored())
281     return;
282 
283   AggValueSlot srcAgg =
284     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
285                             needsGC(type), AggValueSlot::IsAliased);
286   EmitCopy(type, Dest, srcAgg);
287 }
288 
289 /// Perform a copy from the source into the destination.
290 ///
291 /// \param type - the type of the aggregate being copied; qualifiers are
292 ///   ignored
293 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
294                               const AggValueSlot &src) {
295   if (dest.requiresGCollection()) {
296     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
297     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
298     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
299                                                       dest.getAddr(),
300                                                       src.getAddr(),
301                                                       size);
302     return;
303   }
304 
305   // If the result of the assignment is used, copy the LHS there also.
306   // It's volatile if either side is.  Use the minimum alignment of
307   // the two sides.
308   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
309                         dest.isVolatile() || src.isVolatile(),
310                         std::min(dest.getAlignment(), src.getAlignment()));
311 }
312 
313 /// \brief Emit the initializer for a std::initializer_list initialized with a
314 /// real initializer list.
315 void
316 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
317   // Emit an array containing the elements.  The array is externally destructed
318   // if the std::initializer_list object is.
319   ASTContext &Ctx = CGF.getContext();
320   LValue Array = CGF.EmitLValue(E->getSubExpr());
321   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
322   llvm::Value *ArrayPtr = Array.getAddress();
323 
324   const ConstantArrayType *ArrayType =
325       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
326   assert(ArrayType && "std::initializer_list constructed from non-array");
327 
328   // FIXME: Perform the checks on the field types in SemaInit.
329   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
330   RecordDecl::field_iterator Field = Record->field_begin();
331   if (Field == Record->field_end()) {
332     CGF.ErrorUnsupported(E, "weird std::initializer_list");
333     return;
334   }
335 
336   // Start pointer.
337   if (!Field->getType()->isPointerType() ||
338       !Ctx.hasSameType(Field->getType()->getPointeeType(),
339                        ArrayType->getElementType())) {
340     CGF.ErrorUnsupported(E, "weird std::initializer_list");
341     return;
342   }
343 
344   AggValueSlot Dest = EnsureSlot(E->getType());
345   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
346                                      Dest.getAlignment());
347   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
348   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
349   llvm::Value *IdxStart[] = { Zero, Zero };
350   llvm::Value *ArrayStart =
351       Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
352   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
353   ++Field;
354 
355   if (Field == Record->field_end()) {
356     CGF.ErrorUnsupported(E, "weird std::initializer_list");
357     return;
358   }
359 
360   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
361   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
362   if (Field->getType()->isPointerType() &&
363       Ctx.hasSameType(Field->getType()->getPointeeType(),
364                       ArrayType->getElementType())) {
365     // End pointer.
366     llvm::Value *IdxEnd[] = { Zero, Size };
367     llvm::Value *ArrayEnd =
368         Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
369     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
370   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
371     // Length.
372     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
373   } else {
374     CGF.ErrorUnsupported(E, "weird std::initializer_list");
375     return;
376   }
377 }
378 
379 /// \brief Determine if E is a trivial array filler, that is, one that is
380 /// equivalent to zero-initialization.
381 static bool isTrivialFiller(Expr *E) {
382   if (!E)
383     return true;
384 
385   if (isa<ImplicitValueInitExpr>(E))
386     return true;
387 
388   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
389     if (ILE->getNumInits())
390       return false;
391     return isTrivialFiller(ILE->getArrayFiller());
392   }
393 
394   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
395     return Cons->getConstructor()->isDefaultConstructor() &&
396            Cons->getConstructor()->isTrivial();
397 
398   // FIXME: Are there other cases where we can avoid emitting an initializer?
399   return false;
400 }
401 
402 /// \brief Emit initialization of an array from an initializer list.
403 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
404                                    QualType elementType, InitListExpr *E) {
405   uint64_t NumInitElements = E->getNumInits();
406 
407   uint64_t NumArrayElements = AType->getNumElements();
408   assert(NumInitElements <= NumArrayElements);
409 
410   // DestPtr is an array*.  Construct an elementType* by drilling
411   // down a level.
412   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
413   llvm::Value *indices[] = { zero, zero };
414   llvm::Value *begin =
415     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
416 
417   // Exception safety requires us to destroy all the
418   // already-constructed members if an initializer throws.
419   // For that, we'll need an EH cleanup.
420   QualType::DestructionKind dtorKind = elementType.isDestructedType();
421   llvm::AllocaInst *endOfInit = nullptr;
422   EHScopeStack::stable_iterator cleanup;
423   llvm::Instruction *cleanupDominator = nullptr;
424   if (CGF.needsEHCleanup(dtorKind)) {
425     // In principle we could tell the cleanup where we are more
426     // directly, but the control flow can get so varied here that it
427     // would actually be quite complex.  Therefore we go through an
428     // alloca.
429     endOfInit = CGF.CreateTempAlloca(begin->getType(),
430                                      "arrayinit.endOfInit");
431     cleanupDominator = Builder.CreateStore(begin, endOfInit);
432     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
433                                          CGF.getDestroyer(dtorKind));
434     cleanup = CGF.EHStack.stable_begin();
435 
436   // Otherwise, remember that we didn't need a cleanup.
437   } else {
438     dtorKind = QualType::DK_none;
439   }
440 
441   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
442 
443   // The 'current element to initialize'.  The invariants on this
444   // variable are complicated.  Essentially, after each iteration of
445   // the loop, it points to the last initialized element, except
446   // that it points to the beginning of the array before any
447   // elements have been initialized.
448   llvm::Value *element = begin;
449 
450   // Emit the explicit initializers.
451   for (uint64_t i = 0; i != NumInitElements; ++i) {
452     // Advance to the next element.
453     if (i > 0) {
454       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
455 
456       // Tell the cleanup that it needs to destroy up to this
457       // element.  TODO: some of these stores can be trivially
458       // observed to be unnecessary.
459       if (endOfInit) Builder.CreateStore(element, endOfInit);
460     }
461 
462     LValue elementLV = CGF.MakeAddrLValue(element, elementType);
463     EmitInitializationToLValue(E->getInit(i), elementLV);
464   }
465 
466   // Check whether there's a non-trivial array-fill expression.
467   Expr *filler = E->getArrayFiller();
468   bool hasTrivialFiller = isTrivialFiller(filler);
469 
470   // Any remaining elements need to be zero-initialized, possibly
471   // using the filler expression.  We can skip this if the we're
472   // emitting to zeroed memory.
473   if (NumInitElements != NumArrayElements &&
474       !(Dest.isZeroed() && hasTrivialFiller &&
475         CGF.getTypes().isZeroInitializable(elementType))) {
476 
477     // Use an actual loop.  This is basically
478     //   do { *array++ = filler; } while (array != end);
479 
480     // Advance to the start of the rest of the array.
481     if (NumInitElements) {
482       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
483       if (endOfInit) Builder.CreateStore(element, endOfInit);
484     }
485 
486     // Compute the end of the array.
487     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
488                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
489                                                  "arrayinit.end");
490 
491     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
492     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
493 
494     // Jump into the body.
495     CGF.EmitBlock(bodyBB);
496     llvm::PHINode *currentElement =
497       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
498     currentElement->addIncoming(element, entryBB);
499 
500     // Emit the actual filler expression.
501     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
502     if (filler)
503       EmitInitializationToLValue(filler, elementLV);
504     else
505       EmitNullInitializationToLValue(elementLV);
506 
507     // Move on to the next element.
508     llvm::Value *nextElement =
509       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
510 
511     // Tell the EH cleanup that we finished with the last element.
512     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
513 
514     // Leave the loop if we're done.
515     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
516                                              "arrayinit.done");
517     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
518     Builder.CreateCondBr(done, endBB, bodyBB);
519     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
520 
521     CGF.EmitBlock(endBB);
522   }
523 
524   // Leave the partial-array cleanup if we entered one.
525   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
526 }
527 
528 //===----------------------------------------------------------------------===//
529 //                            Visitor Methods
530 //===----------------------------------------------------------------------===//
531 
532 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
533   Visit(E->GetTemporaryExpr());
534 }
535 
536 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
537   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
538 }
539 
540 void
541 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
542   if (Dest.isPotentiallyAliased() &&
543       E->getType().isPODType(CGF.getContext())) {
544     // For a POD type, just emit a load of the lvalue + a copy, because our
545     // compound literal might alias the destination.
546     EmitAggLoadOfLValue(E);
547     return;
548   }
549 
550   AggValueSlot Slot = EnsureSlot(E->getType());
551   CGF.EmitAggExpr(E->getInitializer(), Slot);
552 }
553 
554 /// Attempt to look through various unimportant expressions to find a
555 /// cast of the given kind.
556 static Expr *findPeephole(Expr *op, CastKind kind) {
557   while (true) {
558     op = op->IgnoreParens();
559     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
560       if (castE->getCastKind() == kind)
561         return castE->getSubExpr();
562       if (castE->getCastKind() == CK_NoOp)
563         continue;
564     }
565     return nullptr;
566   }
567 }
568 
569 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
570   switch (E->getCastKind()) {
571   case CK_Dynamic: {
572     // FIXME: Can this actually happen? We have no test coverage for it.
573     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
574     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
575                                       CodeGenFunction::TCK_Load);
576     // FIXME: Do we also need to handle property references here?
577     if (LV.isSimple())
578       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
579     else
580       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
581 
582     if (!Dest.isIgnored())
583       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
584     break;
585   }
586 
587   case CK_ToUnion: {
588     // Evaluate even if the destination is ignored.
589     if (Dest.isIgnored()) {
590       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
591                       /*ignoreResult=*/true);
592       break;
593     }
594 
595     // GCC union extension
596     QualType Ty = E->getSubExpr()->getType();
597     QualType PtrTy = CGF.getContext().getPointerType(Ty);
598     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
599                                                  CGF.ConvertType(PtrTy));
600     EmitInitializationToLValue(E->getSubExpr(),
601                                CGF.MakeAddrLValue(CastPtr, Ty));
602     break;
603   }
604 
605   case CK_DerivedToBase:
606   case CK_BaseToDerived:
607   case CK_UncheckedDerivedToBase: {
608     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
609                 "should have been unpacked before we got here");
610   }
611 
612   case CK_NonAtomicToAtomic:
613   case CK_AtomicToNonAtomic: {
614     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
615 
616     // Determine the atomic and value types.
617     QualType atomicType = E->getSubExpr()->getType();
618     QualType valueType = E->getType();
619     if (isToAtomic) std::swap(atomicType, valueType);
620 
621     assert(atomicType->isAtomicType());
622     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
623                           atomicType->castAs<AtomicType>()->getValueType()));
624 
625     // Just recurse normally if we're ignoring the result or the
626     // atomic type doesn't change representation.
627     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
628       return Visit(E->getSubExpr());
629     }
630 
631     CastKind peepholeTarget =
632       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
633 
634     // These two cases are reverses of each other; try to peephole them.
635     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
636       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
637                                                      E->getType()) &&
638            "peephole significantly changed types?");
639       return Visit(op);
640     }
641 
642     // If we're converting an r-value of non-atomic type to an r-value
643     // of atomic type, just emit directly into the relevant sub-object.
644     if (isToAtomic) {
645       AggValueSlot valueDest = Dest;
646       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
647         // Zero-initialize.  (Strictly speaking, we only need to intialize
648         // the padding at the end, but this is simpler.)
649         if (!Dest.isZeroed())
650           CGF.EmitNullInitialization(Dest.getAddr(), atomicType);
651 
652         // Build a GEP to refer to the subobject.
653         llvm::Value *valueAddr =
654             CGF.Builder.CreateStructGEP(nullptr, valueDest.getAddr(), 0);
655         valueDest = AggValueSlot::forAddr(valueAddr,
656                                           valueDest.getAlignment(),
657                                           valueDest.getQualifiers(),
658                                           valueDest.isExternallyDestructed(),
659                                           valueDest.requiresGCollection(),
660                                           valueDest.isPotentiallyAliased(),
661                                           AggValueSlot::IsZeroed);
662       }
663 
664       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
665       return;
666     }
667 
668     // Otherwise, we're converting an atomic type to a non-atomic type.
669     // Make an atomic temporary, emit into that, and then copy the value out.
670     AggValueSlot atomicSlot =
671       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
672     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
673 
674     llvm::Value *valueAddr =
675         Builder.CreateStructGEP(nullptr, atomicSlot.getAddr(), 0);
676     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
677     return EmitFinalDestCopy(valueType, rvalue);
678   }
679 
680   case CK_LValueToRValue:
681     // If we're loading from a volatile type, force the destination
682     // into existence.
683     if (E->getSubExpr()->getType().isVolatileQualified()) {
684       EnsureDest(E->getType());
685       return Visit(E->getSubExpr());
686     }
687 
688     // fallthrough
689 
690   case CK_NoOp:
691   case CK_UserDefinedConversion:
692   case CK_ConstructorConversion:
693     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
694                                                    E->getType()) &&
695            "Implicit cast types must be compatible");
696     Visit(E->getSubExpr());
697     break;
698 
699   case CK_LValueBitCast:
700     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
701 
702   case CK_Dependent:
703   case CK_BitCast:
704   case CK_ArrayToPointerDecay:
705   case CK_FunctionToPointerDecay:
706   case CK_NullToPointer:
707   case CK_NullToMemberPointer:
708   case CK_BaseToDerivedMemberPointer:
709   case CK_DerivedToBaseMemberPointer:
710   case CK_MemberPointerToBoolean:
711   case CK_ReinterpretMemberPointer:
712   case CK_IntegralToPointer:
713   case CK_PointerToIntegral:
714   case CK_PointerToBoolean:
715   case CK_ToVoid:
716   case CK_VectorSplat:
717   case CK_IntegralCast:
718   case CK_IntegralToBoolean:
719   case CK_IntegralToFloating:
720   case CK_FloatingToIntegral:
721   case CK_FloatingToBoolean:
722   case CK_FloatingCast:
723   case CK_CPointerToObjCPointerCast:
724   case CK_BlockPointerToObjCPointerCast:
725   case CK_AnyPointerToBlockPointerCast:
726   case CK_ObjCObjectLValueCast:
727   case CK_FloatingRealToComplex:
728   case CK_FloatingComplexToReal:
729   case CK_FloatingComplexToBoolean:
730   case CK_FloatingComplexCast:
731   case CK_FloatingComplexToIntegralComplex:
732   case CK_IntegralRealToComplex:
733   case CK_IntegralComplexToReal:
734   case CK_IntegralComplexToBoolean:
735   case CK_IntegralComplexCast:
736   case CK_IntegralComplexToFloatingComplex:
737   case CK_ARCProduceObject:
738   case CK_ARCConsumeObject:
739   case CK_ARCReclaimReturnedObject:
740   case CK_ARCExtendBlockObject:
741   case CK_CopyAndAutoreleaseBlockObject:
742   case CK_BuiltinFnToFnPtr:
743   case CK_ZeroToOCLEvent:
744   case CK_AddressSpaceConversion:
745     llvm_unreachable("cast kind invalid for aggregate types");
746   }
747 }
748 
749 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
750   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
751     EmitAggLoadOfLValue(E);
752     return;
753   }
754 
755   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
756   EmitMoveFromReturnSlot(E, RV);
757 }
758 
759 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
760   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
761   EmitMoveFromReturnSlot(E, RV);
762 }
763 
764 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
765   CGF.EmitIgnoredExpr(E->getLHS());
766   Visit(E->getRHS());
767 }
768 
769 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
770   CodeGenFunction::StmtExprEvaluation eval(CGF);
771   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
772 }
773 
774 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
775   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
776     VisitPointerToDataMemberBinaryOperator(E);
777   else
778     CGF.ErrorUnsupported(E, "aggregate binary expression");
779 }
780 
781 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
782                                                     const BinaryOperator *E) {
783   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
784   EmitFinalDestCopy(E->getType(), LV);
785 }
786 
787 /// Is the value of the given expression possibly a reference to or
788 /// into a __block variable?
789 static bool isBlockVarRef(const Expr *E) {
790   // Make sure we look through parens.
791   E = E->IgnoreParens();
792 
793   // Check for a direct reference to a __block variable.
794   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
795     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
796     return (var && var->hasAttr<BlocksAttr>());
797   }
798 
799   // More complicated stuff.
800 
801   // Binary operators.
802   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
803     // For an assignment or pointer-to-member operation, just care
804     // about the LHS.
805     if (op->isAssignmentOp() || op->isPtrMemOp())
806       return isBlockVarRef(op->getLHS());
807 
808     // For a comma, just care about the RHS.
809     if (op->getOpcode() == BO_Comma)
810       return isBlockVarRef(op->getRHS());
811 
812     // FIXME: pointer arithmetic?
813     return false;
814 
815   // Check both sides of a conditional operator.
816   } else if (const AbstractConditionalOperator *op
817                = dyn_cast<AbstractConditionalOperator>(E)) {
818     return isBlockVarRef(op->getTrueExpr())
819         || isBlockVarRef(op->getFalseExpr());
820 
821   // OVEs are required to support BinaryConditionalOperators.
822   } else if (const OpaqueValueExpr *op
823                = dyn_cast<OpaqueValueExpr>(E)) {
824     if (const Expr *src = op->getSourceExpr())
825       return isBlockVarRef(src);
826 
827   // Casts are necessary to get things like (*(int*)&var) = foo().
828   // We don't really care about the kind of cast here, except
829   // we don't want to look through l2r casts, because it's okay
830   // to get the *value* in a __block variable.
831   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
832     if (cast->getCastKind() == CK_LValueToRValue)
833       return false;
834     return isBlockVarRef(cast->getSubExpr());
835 
836   // Handle unary operators.  Again, just aggressively look through
837   // it, ignoring the operation.
838   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
839     return isBlockVarRef(uop->getSubExpr());
840 
841   // Look into the base of a field access.
842   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
843     return isBlockVarRef(mem->getBase());
844 
845   // Look into the base of a subscript.
846   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
847     return isBlockVarRef(sub->getBase());
848   }
849 
850   return false;
851 }
852 
853 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
854   // For an assignment to work, the value on the right has
855   // to be compatible with the value on the left.
856   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
857                                                  E->getRHS()->getType())
858          && "Invalid assignment");
859 
860   // If the LHS might be a __block variable, and the RHS can
861   // potentially cause a block copy, we need to evaluate the RHS first
862   // so that the assignment goes the right place.
863   // This is pretty semantically fragile.
864   if (isBlockVarRef(E->getLHS()) &&
865       E->getRHS()->HasSideEffects(CGF.getContext())) {
866     // Ensure that we have a destination, and evaluate the RHS into that.
867     EnsureDest(E->getRHS()->getType());
868     Visit(E->getRHS());
869 
870     // Now emit the LHS and copy into it.
871     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
872 
873     // That copy is an atomic copy if the LHS is atomic.
874     if (LHS.getType()->isAtomicType() ||
875         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
876       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
877       return;
878     }
879 
880     EmitCopy(E->getLHS()->getType(),
881              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
882                                      needsGC(E->getLHS()->getType()),
883                                      AggValueSlot::IsAliased),
884              Dest);
885     return;
886   }
887 
888   LValue LHS = CGF.EmitLValue(E->getLHS());
889 
890   // If we have an atomic type, evaluate into the destination and then
891   // do an atomic copy.
892   if (LHS.getType()->isAtomicType() ||
893       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
894     EnsureDest(E->getRHS()->getType());
895     Visit(E->getRHS());
896     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
897     return;
898   }
899 
900   // Codegen the RHS so that it stores directly into the LHS.
901   AggValueSlot LHSSlot =
902     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
903                             needsGC(E->getLHS()->getType()),
904                             AggValueSlot::IsAliased);
905   // A non-volatile aggregate destination might have volatile member.
906   if (!LHSSlot.isVolatile() &&
907       CGF.hasVolatileMember(E->getLHS()->getType()))
908     LHSSlot.setVolatile(true);
909 
910   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
911 
912   // Copy into the destination if the assignment isn't ignored.
913   EmitFinalDestCopy(E->getType(), LHS);
914 }
915 
916 void AggExprEmitter::
917 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
918   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
919   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
920   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
921 
922   // Bind the common expression if necessary.
923   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
924 
925   CodeGenFunction::ConditionalEvaluation eval(CGF);
926   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
927                            CGF.getProfileCount(E));
928 
929   // Save whether the destination's lifetime is externally managed.
930   bool isExternallyDestructed = Dest.isExternallyDestructed();
931 
932   eval.begin(CGF);
933   CGF.EmitBlock(LHSBlock);
934   CGF.incrementProfileCounter(E);
935   Visit(E->getTrueExpr());
936   eval.end(CGF);
937 
938   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
939   CGF.Builder.CreateBr(ContBlock);
940 
941   // If the result of an agg expression is unused, then the emission
942   // of the LHS might need to create a destination slot.  That's fine
943   // with us, and we can safely emit the RHS into the same slot, but
944   // we shouldn't claim that it's already being destructed.
945   Dest.setExternallyDestructed(isExternallyDestructed);
946 
947   eval.begin(CGF);
948   CGF.EmitBlock(RHSBlock);
949   Visit(E->getFalseExpr());
950   eval.end(CGF);
951 
952   CGF.EmitBlock(ContBlock);
953 }
954 
955 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
956   Visit(CE->getChosenSubExpr());
957 }
958 
959 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
960   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
961   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
962 
963   if (!ArgPtr) {
964     // If EmitVAArg fails, we fall back to the LLVM instruction.
965     llvm::Value *Val =
966         Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
967     if (!Dest.isIgnored())
968       Builder.CreateStore(Val, Dest.getAddr());
969     return;
970   }
971 
972   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
973 }
974 
975 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
976   // Ensure that we have a slot, but if we already do, remember
977   // whether it was externally destructed.
978   bool wasExternallyDestructed = Dest.isExternallyDestructed();
979   EnsureDest(E->getType());
980 
981   // We're going to push a destructor if there isn't already one.
982   Dest.setExternallyDestructed();
983 
984   Visit(E->getSubExpr());
985 
986   // Push that destructor we promised.
987   if (!wasExternallyDestructed)
988     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
989 }
990 
991 void
992 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
993   AggValueSlot Slot = EnsureSlot(E->getType());
994   CGF.EmitCXXConstructExpr(E, Slot);
995 }
996 
997 void
998 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
999   AggValueSlot Slot = EnsureSlot(E->getType());
1000   CGF.EmitLambdaExpr(E, Slot);
1001 }
1002 
1003 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1004   CGF.enterFullExpression(E);
1005   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1006   Visit(E->getSubExpr());
1007 }
1008 
1009 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1010   QualType T = E->getType();
1011   AggValueSlot Slot = EnsureSlot(T);
1012   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1013 }
1014 
1015 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1016   QualType T = E->getType();
1017   AggValueSlot Slot = EnsureSlot(T);
1018   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1019 }
1020 
1021 /// isSimpleZero - If emitting this value will obviously just cause a store of
1022 /// zero to memory, return true.  This can return false if uncertain, so it just
1023 /// handles simple cases.
1024 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1025   E = E->IgnoreParens();
1026 
1027   // 0
1028   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1029     return IL->getValue() == 0;
1030   // +0.0
1031   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1032     return FL->getValue().isPosZero();
1033   // int()
1034   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1035       CGF.getTypes().isZeroInitializable(E->getType()))
1036     return true;
1037   // (int*)0 - Null pointer expressions.
1038   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1039     return ICE->getCastKind() == CK_NullToPointer;
1040   // '\0'
1041   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1042     return CL->getValue() == 0;
1043 
1044   // Otherwise, hard case: conservatively return false.
1045   return false;
1046 }
1047 
1048 
1049 void
1050 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1051   QualType type = LV.getType();
1052   // FIXME: Ignore result?
1053   // FIXME: Are initializers affected by volatile?
1054   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1055     // Storing "i32 0" to a zero'd memory location is a noop.
1056     return;
1057   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1058     return EmitNullInitializationToLValue(LV);
1059   } else if (type->isReferenceType()) {
1060     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1061     return CGF.EmitStoreThroughLValue(RV, LV);
1062   }
1063 
1064   switch (CGF.getEvaluationKind(type)) {
1065   case TEK_Complex:
1066     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1067     return;
1068   case TEK_Aggregate:
1069     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1070                                                AggValueSlot::IsDestructed,
1071                                       AggValueSlot::DoesNotNeedGCBarriers,
1072                                                AggValueSlot::IsNotAliased,
1073                                                Dest.isZeroed()));
1074     return;
1075   case TEK_Scalar:
1076     if (LV.isSimple()) {
1077       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1078     } else {
1079       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1080     }
1081     return;
1082   }
1083   llvm_unreachable("bad evaluation kind");
1084 }
1085 
1086 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1087   QualType type = lv.getType();
1088 
1089   // If the destination slot is already zeroed out before the aggregate is
1090   // copied into it, we don't have to emit any zeros here.
1091   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1092     return;
1093 
1094   if (CGF.hasScalarEvaluationKind(type)) {
1095     // For non-aggregates, we can store the appropriate null constant.
1096     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1097     // Note that the following is not equivalent to
1098     // EmitStoreThroughBitfieldLValue for ARC types.
1099     if (lv.isBitField()) {
1100       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1101     } else {
1102       assert(lv.isSimple());
1103       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1104     }
1105   } else {
1106     // There's a potential optimization opportunity in combining
1107     // memsets; that would be easy for arrays, but relatively
1108     // difficult for structures with the current code.
1109     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1110   }
1111 }
1112 
1113 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1114 #if 0
1115   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1116   // (Length of globals? Chunks of zeroed-out space?).
1117   //
1118   // If we can, prefer a copy from a global; this is a lot less code for long
1119   // globals, and it's easier for the current optimizers to analyze.
1120   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1121     llvm::GlobalVariable* GV =
1122     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1123                              llvm::GlobalValue::InternalLinkage, C, "");
1124     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1125     return;
1126   }
1127 #endif
1128   if (E->hadArrayRangeDesignator())
1129     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1130 
1131   AggValueSlot Dest = EnsureSlot(E->getType());
1132 
1133   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1134                                      Dest.getAlignment());
1135 
1136   // Handle initialization of an array.
1137   if (E->getType()->isArrayType()) {
1138     if (E->isStringLiteralInit())
1139       return Visit(E->getInit(0));
1140 
1141     QualType elementType =
1142         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1143 
1144     llvm::PointerType *APType =
1145       cast<llvm::PointerType>(Dest.getAddr()->getType());
1146     llvm::ArrayType *AType =
1147       cast<llvm::ArrayType>(APType->getElementType());
1148 
1149     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1150     return;
1151   }
1152 
1153   if (E->getType()->isAtomicType()) {
1154     // An _Atomic(T) object can be list-initialized from an expression
1155     // of the same type.
1156     assert(E->getNumInits() == 1 &&
1157            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1158                                                    E->getType()) &&
1159            "unexpected list initialization for atomic object");
1160     return Visit(E->getInit(0));
1161   }
1162 
1163   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1164 
1165   // Do struct initialization; this code just sets each individual member
1166   // to the approprate value.  This makes bitfield support automatic;
1167   // the disadvantage is that the generated code is more difficult for
1168   // the optimizer, especially with bitfields.
1169   unsigned NumInitElements = E->getNumInits();
1170   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1171 
1172   // Prepare a 'this' for CXXDefaultInitExprs.
1173   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
1174 
1175   if (record->isUnion()) {
1176     // Only initialize one field of a union. The field itself is
1177     // specified by the initializer list.
1178     if (!E->getInitializedFieldInUnion()) {
1179       // Empty union; we have nothing to do.
1180 
1181 #ifndef NDEBUG
1182       // Make sure that it's really an empty and not a failure of
1183       // semantic analysis.
1184       for (const auto *Field : record->fields())
1185         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1186 #endif
1187       return;
1188     }
1189 
1190     // FIXME: volatility
1191     FieldDecl *Field = E->getInitializedFieldInUnion();
1192 
1193     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1194     if (NumInitElements) {
1195       // Store the initializer into the field
1196       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1197     } else {
1198       // Default-initialize to null.
1199       EmitNullInitializationToLValue(FieldLoc);
1200     }
1201 
1202     return;
1203   }
1204 
1205   // We'll need to enter cleanup scopes in case any of the member
1206   // initializers throw an exception.
1207   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1208   llvm::Instruction *cleanupDominator = nullptr;
1209 
1210   // Here we iterate over the fields; this makes it simpler to both
1211   // default-initialize fields and skip over unnamed fields.
1212   unsigned curInitIndex = 0;
1213   for (const auto *field : record->fields()) {
1214     // We're done once we hit the flexible array member.
1215     if (field->getType()->isIncompleteArrayType())
1216       break;
1217 
1218     // Always skip anonymous bitfields.
1219     if (field->isUnnamedBitfield())
1220       continue;
1221 
1222     // We're done if we reach the end of the explicit initializers, we
1223     // have a zeroed object, and the rest of the fields are
1224     // zero-initializable.
1225     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1226         CGF.getTypes().isZeroInitializable(E->getType()))
1227       break;
1228 
1229 
1230     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1231     // We never generate write-barries for initialized fields.
1232     LV.setNonGC(true);
1233 
1234     if (curInitIndex < NumInitElements) {
1235       // Store the initializer into the field.
1236       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1237     } else {
1238       // We're out of initalizers; default-initialize to null
1239       EmitNullInitializationToLValue(LV);
1240     }
1241 
1242     // Push a destructor if necessary.
1243     // FIXME: if we have an array of structures, all explicitly
1244     // initialized, we can end up pushing a linear number of cleanups.
1245     bool pushedCleanup = false;
1246     if (QualType::DestructionKind dtorKind
1247           = field->getType().isDestructedType()) {
1248       assert(LV.isSimple());
1249       if (CGF.needsEHCleanup(dtorKind)) {
1250         if (!cleanupDominator)
1251           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1252 
1253         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1254                         CGF.getDestroyer(dtorKind), false);
1255         cleanups.push_back(CGF.EHStack.stable_begin());
1256         pushedCleanup = true;
1257       }
1258     }
1259 
1260     // If the GEP didn't get used because of a dead zero init or something
1261     // else, clean it up for -O0 builds and general tidiness.
1262     if (!pushedCleanup && LV.isSimple())
1263       if (llvm::GetElementPtrInst *GEP =
1264             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1265         if (GEP->use_empty())
1266           GEP->eraseFromParent();
1267   }
1268 
1269   // Deactivate all the partial cleanups in reverse order, which
1270   // generally means popping them.
1271   for (unsigned i = cleanups.size(); i != 0; --i)
1272     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1273 
1274   // Destroy the placeholder if we made one.
1275   if (cleanupDominator)
1276     cleanupDominator->eraseFromParent();
1277 }
1278 
1279 //===----------------------------------------------------------------------===//
1280 //                        Entry Points into this File
1281 //===----------------------------------------------------------------------===//
1282 
1283 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1284 /// non-zero bytes that will be stored when outputting the initializer for the
1285 /// specified initializer expression.
1286 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1287   E = E->IgnoreParens();
1288 
1289   // 0 and 0.0 won't require any non-zero stores!
1290   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1291 
1292   // If this is an initlist expr, sum up the size of sizes of the (present)
1293   // elements.  If this is something weird, assume the whole thing is non-zero.
1294   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1295   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1296     return CGF.getContext().getTypeSizeInChars(E->getType());
1297 
1298   // InitListExprs for structs have to be handled carefully.  If there are
1299   // reference members, we need to consider the size of the reference, not the
1300   // referencee.  InitListExprs for unions and arrays can't have references.
1301   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1302     if (!RT->isUnionType()) {
1303       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1304       CharUnits NumNonZeroBytes = CharUnits::Zero();
1305 
1306       unsigned ILEElement = 0;
1307       for (const auto *Field : SD->fields()) {
1308         // We're done once we hit the flexible array member or run out of
1309         // InitListExpr elements.
1310         if (Field->getType()->isIncompleteArrayType() ||
1311             ILEElement == ILE->getNumInits())
1312           break;
1313         if (Field->isUnnamedBitfield())
1314           continue;
1315 
1316         const Expr *E = ILE->getInit(ILEElement++);
1317 
1318         // Reference values are always non-null and have the width of a pointer.
1319         if (Field->getType()->isReferenceType())
1320           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1321               CGF.getTarget().getPointerWidth(0));
1322         else
1323           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1324       }
1325 
1326       return NumNonZeroBytes;
1327     }
1328   }
1329 
1330 
1331   CharUnits NumNonZeroBytes = CharUnits::Zero();
1332   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1333     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1334   return NumNonZeroBytes;
1335 }
1336 
1337 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1338 /// zeros in it, emit a memset and avoid storing the individual zeros.
1339 ///
1340 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1341                                      CodeGenFunction &CGF) {
1342   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1343   // volatile stores.
1344   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr)
1345     return;
1346 
1347   // C++ objects with a user-declared constructor don't need zero'ing.
1348   if (CGF.getLangOpts().CPlusPlus)
1349     if (const RecordType *RT = CGF.getContext()
1350                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1351       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1352       if (RD->hasUserDeclaredConstructor())
1353         return;
1354     }
1355 
1356   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1357   std::pair<CharUnits, CharUnits> TypeInfo =
1358     CGF.getContext().getTypeInfoInChars(E->getType());
1359   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1360     return;
1361 
1362   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1363   // we prefer to emit memset + individual stores for the rest.
1364   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1365   if (NumNonZeroBytes*4 > TypeInfo.first)
1366     return;
1367 
1368   // Okay, it seems like a good idea to use an initial memset, emit the call.
1369   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1370   CharUnits Align = TypeInfo.second;
1371 
1372   llvm::Value *Loc = Slot.getAddr();
1373 
1374   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1375   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1376                            Align.getQuantity(), false);
1377 
1378   // Tell the AggExprEmitter that the slot is known zero.
1379   Slot.setZeroed();
1380 }
1381 
1382 
1383 
1384 
1385 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1386 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1387 /// the value of the aggregate expression is not needed.  If VolatileDest is
1388 /// true, DestPtr cannot be 0.
1389 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1390   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1391          "Invalid aggregate expression to emit");
1392   assert((Slot.getAddr() != nullptr || Slot.isIgnored()) &&
1393          "slot has bits but no address");
1394 
1395   // Optimize the slot if possible.
1396   CheckAggExprForMemSetUse(Slot, E, *this);
1397 
1398   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1399 }
1400 
1401 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1402   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1403   llvm::Value *Temp = CreateMemTemp(E->getType());
1404   LValue LV = MakeAddrLValue(Temp, E->getType());
1405   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1406                                          AggValueSlot::DoesNotNeedGCBarriers,
1407                                          AggValueSlot::IsNotAliased));
1408   return LV;
1409 }
1410 
1411 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1412                                         llvm::Value *SrcPtr, QualType Ty,
1413                                         bool isVolatile,
1414                                         CharUnits alignment,
1415                                         bool isAssignment) {
1416   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1417 
1418   if (getLangOpts().CPlusPlus) {
1419     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1420       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1421       assert((Record->hasTrivialCopyConstructor() ||
1422               Record->hasTrivialCopyAssignment() ||
1423               Record->hasTrivialMoveConstructor() ||
1424               Record->hasTrivialMoveAssignment() ||
1425               Record->isUnion()) &&
1426              "Trying to aggregate-copy a type without a trivial copy/move "
1427              "constructor or assignment operator");
1428       // Ignore empty classes in C++.
1429       if (Record->isEmpty())
1430         return;
1431     }
1432   }
1433 
1434   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1435   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1436   // read from another object that overlaps in anyway the storage of the first
1437   // object, then the overlap shall be exact and the two objects shall have
1438   // qualified or unqualified versions of a compatible type."
1439   //
1440   // memcpy is not defined if the source and destination pointers are exactly
1441   // equal, but other compilers do this optimization, and almost every memcpy
1442   // implementation handles this case safely.  If there is a libc that does not
1443   // safely handle this, we can add a target hook.
1444 
1445   // Get data size and alignment info for this aggregate. If this is an
1446   // assignment don't copy the tail padding. Otherwise copying it is fine.
1447   std::pair<CharUnits, CharUnits> TypeInfo;
1448   if (isAssignment)
1449     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1450   else
1451     TypeInfo = getContext().getTypeInfoInChars(Ty);
1452 
1453   if (alignment.isZero())
1454     alignment = TypeInfo.second;
1455 
1456   llvm::Value *SizeVal = nullptr;
1457   if (TypeInfo.first.isZero()) {
1458     // But note that getTypeInfo returns 0 for a VLA.
1459     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1460             getContext().getAsArrayType(Ty))) {
1461       QualType BaseEltTy;
1462       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1463       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1464       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1465       if (!isAssignment)
1466         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1467       assert(!TypeInfo.first.isZero());
1468       SizeVal = Builder.CreateNUWMul(
1469           SizeVal,
1470           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1471       if (!isAssignment) {
1472         SizeVal = Builder.CreateNUWSub(
1473             SizeVal,
1474             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1475         SizeVal = Builder.CreateNUWAdd(
1476             SizeVal, llvm::ConstantInt::get(
1477                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1478       }
1479     }
1480   }
1481   if (!SizeVal) {
1482     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1483   }
1484 
1485   // FIXME: If we have a volatile struct, the optimizer can remove what might
1486   // appear to be `extra' memory ops:
1487   //
1488   // volatile struct { int i; } a, b;
1489   //
1490   // int main() {
1491   //   a = b;
1492   //   a = b;
1493   // }
1494   //
1495   // we need to use a different call here.  We use isVolatile to indicate when
1496   // either the source or the destination is volatile.
1497 
1498   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1499   llvm::Type *DBP =
1500     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1501   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1502 
1503   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1504   llvm::Type *SBP =
1505     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1506   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1507 
1508   // Don't do any of the memmove_collectable tests if GC isn't set.
1509   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1510     // fall through
1511   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1512     RecordDecl *Record = RecordTy->getDecl();
1513     if (Record->hasObjectMember()) {
1514       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1515                                                     SizeVal);
1516       return;
1517     }
1518   } else if (Ty->isArrayType()) {
1519     QualType BaseType = getContext().getBaseElementType(Ty);
1520     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1521       if (RecordTy->getDecl()->hasObjectMember()) {
1522         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1523                                                       SizeVal);
1524         return;
1525       }
1526     }
1527   }
1528 
1529   // Determine the metadata to describe the position of any padding in this
1530   // memcpy, as well as the TBAA tags for the members of the struct, in case
1531   // the optimizer wishes to expand it in to scalar memory operations.
1532   llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1533 
1534   Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, alignment.getQuantity(),
1535                        isVolatile, /*TBAATag=*/nullptr, TBAAStructTag);
1536 }
1537