1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile(), IsResultUnused); 53 } 54 55 AggValueSlot EnsureSlot(QualType T) { 56 if (!Dest.isIgnored()) return Dest; 57 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 58 } 59 void EnsureDest(QualType T) { 60 if (!Dest.isIgnored()) return; 61 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 62 } 63 64 public: 65 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 66 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 67 IsResultUnused(IsResultUnused) { } 68 69 //===--------------------------------------------------------------------===// 70 // Utilities 71 //===--------------------------------------------------------------------===// 72 73 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 74 /// represents a value lvalue, this method emits the address of the lvalue, 75 /// then loads the result into DestPtr. 76 void EmitAggLoadOfLValue(const Expr *E); 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 void EmitFinalDestCopy(QualType type, const LValue &src); 80 void EmitFinalDestCopy(QualType type, RValue src, 81 CharUnits srcAlignment = CharUnits::Zero()); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 164 void VisitChooseExpr(const ChooseExpr *CE); 165 void VisitInitListExpr(InitListExpr *E); 166 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 167 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 168 Visit(DAE->getExpr()); 169 } 170 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 171 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 172 Visit(DIE->getExpr()); 173 } 174 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 175 void VisitCXXConstructExpr(const CXXConstructExpr *E); 176 void VisitLambdaExpr(LambdaExpr *E); 177 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 178 void VisitExprWithCleanups(ExprWithCleanups *E); 179 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 180 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 181 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 182 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 183 184 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 185 if (E->isGLValue()) { 186 LValue LV = CGF.EmitPseudoObjectLValue(E); 187 return EmitFinalDestCopy(E->getType(), LV); 188 } 189 190 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 191 } 192 193 void VisitVAArgExpr(VAArgExpr *E); 194 195 void EmitInitializationToLValue(Expr *E, LValue Address); 196 void EmitNullInitializationToLValue(LValue Address); 197 // case Expr::ChooseExprClass: 198 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 199 void VisitAtomicExpr(AtomicExpr *E) { 200 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 201 } 202 }; 203 } // end anonymous namespace. 204 205 //===----------------------------------------------------------------------===// 206 // Utilities 207 //===----------------------------------------------------------------------===// 208 209 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 210 /// represents a value lvalue, this method emits the address of the lvalue, 211 /// then loads the result into DestPtr. 212 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 213 LValue LV = CGF.EmitLValue(E); 214 215 // If the type of the l-value is atomic, then do an atomic load. 216 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 217 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 218 return; 219 } 220 221 EmitFinalDestCopy(E->getType(), LV); 222 } 223 224 /// \brief True if the given aggregate type requires special GC API calls. 225 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 226 // Only record types have members that might require garbage collection. 227 const RecordType *RecordTy = T->getAs<RecordType>(); 228 if (!RecordTy) return false; 229 230 // Don't mess with non-trivial C++ types. 231 RecordDecl *Record = RecordTy->getDecl(); 232 if (isa<CXXRecordDecl>(Record) && 233 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 234 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 235 return false; 236 237 // Check whether the type has an object member. 238 return Record->hasObjectMember(); 239 } 240 241 /// \brief Perform the final move to DestPtr if for some reason 242 /// getReturnValueSlot() didn't use it directly. 243 /// 244 /// The idea is that you do something like this: 245 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 246 /// EmitMoveFromReturnSlot(E, Result); 247 /// 248 /// If nothing interferes, this will cause the result to be emitted 249 /// directly into the return value slot. Otherwise, a final move 250 /// will be performed. 251 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 252 if (shouldUseDestForReturnSlot()) { 253 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 254 // The possibility of undef rvalues complicates that a lot, 255 // though, so we can't really assert. 256 return; 257 } 258 259 // Otherwise, copy from there to the destination. 260 assert(Dest.getAddr() != src.getAggregateAddr()); 261 std::pair<CharUnits, CharUnits> typeInfo = 262 CGF.getContext().getTypeInfoInChars(E->getType()); 263 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 264 } 265 266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 268 CharUnits srcAlign) { 269 assert(src.isAggregate() && "value must be aggregate value!"); 270 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 271 EmitFinalDestCopy(type, srcLV); 272 } 273 274 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 275 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 276 // If Dest is ignored, then we're evaluating an aggregate expression 277 // in a context that doesn't care about the result. Note that loads 278 // from volatile l-values force the existence of a non-ignored 279 // destination. 280 if (Dest.isIgnored()) 281 return; 282 283 AggValueSlot srcAgg = 284 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 285 needsGC(type), AggValueSlot::IsAliased); 286 EmitCopy(type, Dest, srcAgg); 287 } 288 289 /// Perform a copy from the source into the destination. 290 /// 291 /// \param type - the type of the aggregate being copied; qualifiers are 292 /// ignored 293 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 294 const AggValueSlot &src) { 295 if (dest.requiresGCollection()) { 296 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 297 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 298 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 299 dest.getAddr(), 300 src.getAddr(), 301 size); 302 return; 303 } 304 305 // If the result of the assignment is used, copy the LHS there also. 306 // It's volatile if either side is. Use the minimum alignment of 307 // the two sides. 308 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 309 dest.isVolatile() || src.isVolatile(), 310 std::min(dest.getAlignment(), src.getAlignment())); 311 } 312 313 /// \brief Emit the initializer for a std::initializer_list initialized with a 314 /// real initializer list. 315 void 316 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 317 // Emit an array containing the elements. The array is externally destructed 318 // if the std::initializer_list object is. 319 ASTContext &Ctx = CGF.getContext(); 320 LValue Array = CGF.EmitLValue(E->getSubExpr()); 321 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 322 llvm::Value *ArrayPtr = Array.getAddress(); 323 324 const ConstantArrayType *ArrayType = 325 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 326 assert(ArrayType && "std::initializer_list constructed from non-array"); 327 328 // FIXME: Perform the checks on the field types in SemaInit. 329 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 330 RecordDecl::field_iterator Field = Record->field_begin(); 331 if (Field == Record->field_end()) { 332 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 333 return; 334 } 335 336 // Start pointer. 337 if (!Field->getType()->isPointerType() || 338 !Ctx.hasSameType(Field->getType()->getPointeeType(), 339 ArrayType->getElementType())) { 340 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 341 return; 342 } 343 344 AggValueSlot Dest = EnsureSlot(E->getType()); 345 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 346 Dest.getAlignment()); 347 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 348 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 349 llvm::Value *IdxStart[] = { Zero, Zero }; 350 llvm::Value *ArrayStart = 351 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 352 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 353 ++Field; 354 355 if (Field == Record->field_end()) { 356 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 357 return; 358 } 359 360 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 361 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 362 if (Field->getType()->isPointerType() && 363 Ctx.hasSameType(Field->getType()->getPointeeType(), 364 ArrayType->getElementType())) { 365 // End pointer. 366 llvm::Value *IdxEnd[] = { Zero, Size }; 367 llvm::Value *ArrayEnd = 368 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 369 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 370 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 371 // Length. 372 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 373 } else { 374 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 375 return; 376 } 377 } 378 379 /// \brief Determine if E is a trivial array filler, that is, one that is 380 /// equivalent to zero-initialization. 381 static bool isTrivialFiller(Expr *E) { 382 if (!E) 383 return true; 384 385 if (isa<ImplicitValueInitExpr>(E)) 386 return true; 387 388 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 389 if (ILE->getNumInits()) 390 return false; 391 return isTrivialFiller(ILE->getArrayFiller()); 392 } 393 394 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 395 return Cons->getConstructor()->isDefaultConstructor() && 396 Cons->getConstructor()->isTrivial(); 397 398 // FIXME: Are there other cases where we can avoid emitting an initializer? 399 return false; 400 } 401 402 /// \brief Emit initialization of an array from an initializer list. 403 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 404 QualType elementType, InitListExpr *E) { 405 uint64_t NumInitElements = E->getNumInits(); 406 407 uint64_t NumArrayElements = AType->getNumElements(); 408 assert(NumInitElements <= NumArrayElements); 409 410 // DestPtr is an array*. Construct an elementType* by drilling 411 // down a level. 412 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 413 llvm::Value *indices[] = { zero, zero }; 414 llvm::Value *begin = 415 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 416 417 // Exception safety requires us to destroy all the 418 // already-constructed members if an initializer throws. 419 // For that, we'll need an EH cleanup. 420 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 421 llvm::AllocaInst *endOfInit = nullptr; 422 EHScopeStack::stable_iterator cleanup; 423 llvm::Instruction *cleanupDominator = nullptr; 424 if (CGF.needsEHCleanup(dtorKind)) { 425 // In principle we could tell the cleanup where we are more 426 // directly, but the control flow can get so varied here that it 427 // would actually be quite complex. Therefore we go through an 428 // alloca. 429 endOfInit = CGF.CreateTempAlloca(begin->getType(), 430 "arrayinit.endOfInit"); 431 cleanupDominator = Builder.CreateStore(begin, endOfInit); 432 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 433 CGF.getDestroyer(dtorKind)); 434 cleanup = CGF.EHStack.stable_begin(); 435 436 // Otherwise, remember that we didn't need a cleanup. 437 } else { 438 dtorKind = QualType::DK_none; 439 } 440 441 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 442 443 // The 'current element to initialize'. The invariants on this 444 // variable are complicated. Essentially, after each iteration of 445 // the loop, it points to the last initialized element, except 446 // that it points to the beginning of the array before any 447 // elements have been initialized. 448 llvm::Value *element = begin; 449 450 // Emit the explicit initializers. 451 for (uint64_t i = 0; i != NumInitElements; ++i) { 452 // Advance to the next element. 453 if (i > 0) { 454 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 455 456 // Tell the cleanup that it needs to destroy up to this 457 // element. TODO: some of these stores can be trivially 458 // observed to be unnecessary. 459 if (endOfInit) Builder.CreateStore(element, endOfInit); 460 } 461 462 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 463 EmitInitializationToLValue(E->getInit(i), elementLV); 464 } 465 466 // Check whether there's a non-trivial array-fill expression. 467 Expr *filler = E->getArrayFiller(); 468 bool hasTrivialFiller = isTrivialFiller(filler); 469 470 // Any remaining elements need to be zero-initialized, possibly 471 // using the filler expression. We can skip this if the we're 472 // emitting to zeroed memory. 473 if (NumInitElements != NumArrayElements && 474 !(Dest.isZeroed() && hasTrivialFiller && 475 CGF.getTypes().isZeroInitializable(elementType))) { 476 477 // Use an actual loop. This is basically 478 // do { *array++ = filler; } while (array != end); 479 480 // Advance to the start of the rest of the array. 481 if (NumInitElements) { 482 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 483 if (endOfInit) Builder.CreateStore(element, endOfInit); 484 } 485 486 // Compute the end of the array. 487 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 488 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 489 "arrayinit.end"); 490 491 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 492 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 493 494 // Jump into the body. 495 CGF.EmitBlock(bodyBB); 496 llvm::PHINode *currentElement = 497 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 498 currentElement->addIncoming(element, entryBB); 499 500 // Emit the actual filler expression. 501 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 502 if (filler) 503 EmitInitializationToLValue(filler, elementLV); 504 else 505 EmitNullInitializationToLValue(elementLV); 506 507 // Move on to the next element. 508 llvm::Value *nextElement = 509 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 510 511 // Tell the EH cleanup that we finished with the last element. 512 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 513 514 // Leave the loop if we're done. 515 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 516 "arrayinit.done"); 517 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 518 Builder.CreateCondBr(done, endBB, bodyBB); 519 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 520 521 CGF.EmitBlock(endBB); 522 } 523 524 // Leave the partial-array cleanup if we entered one. 525 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 526 } 527 528 //===----------------------------------------------------------------------===// 529 // Visitor Methods 530 //===----------------------------------------------------------------------===// 531 532 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 533 Visit(E->GetTemporaryExpr()); 534 } 535 536 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 537 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 538 } 539 540 void 541 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 542 if (Dest.isPotentiallyAliased() && 543 E->getType().isPODType(CGF.getContext())) { 544 // For a POD type, just emit a load of the lvalue + a copy, because our 545 // compound literal might alias the destination. 546 EmitAggLoadOfLValue(E); 547 return; 548 } 549 550 AggValueSlot Slot = EnsureSlot(E->getType()); 551 CGF.EmitAggExpr(E->getInitializer(), Slot); 552 } 553 554 /// Attempt to look through various unimportant expressions to find a 555 /// cast of the given kind. 556 static Expr *findPeephole(Expr *op, CastKind kind) { 557 while (true) { 558 op = op->IgnoreParens(); 559 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 560 if (castE->getCastKind() == kind) 561 return castE->getSubExpr(); 562 if (castE->getCastKind() == CK_NoOp) 563 continue; 564 } 565 return nullptr; 566 } 567 } 568 569 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 570 switch (E->getCastKind()) { 571 case CK_Dynamic: { 572 // FIXME: Can this actually happen? We have no test coverage for it. 573 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 574 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 575 CodeGenFunction::TCK_Load); 576 // FIXME: Do we also need to handle property references here? 577 if (LV.isSimple()) 578 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 579 else 580 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 581 582 if (!Dest.isIgnored()) 583 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 584 break; 585 } 586 587 case CK_ToUnion: { 588 // Evaluate even if the destination is ignored. 589 if (Dest.isIgnored()) { 590 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 591 /*ignoreResult=*/true); 592 break; 593 } 594 595 // GCC union extension 596 QualType Ty = E->getSubExpr()->getType(); 597 QualType PtrTy = CGF.getContext().getPointerType(Ty); 598 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 599 CGF.ConvertType(PtrTy)); 600 EmitInitializationToLValue(E->getSubExpr(), 601 CGF.MakeAddrLValue(CastPtr, Ty)); 602 break; 603 } 604 605 case CK_DerivedToBase: 606 case CK_BaseToDerived: 607 case CK_UncheckedDerivedToBase: { 608 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 609 "should have been unpacked before we got here"); 610 } 611 612 case CK_NonAtomicToAtomic: 613 case CK_AtomicToNonAtomic: { 614 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 615 616 // Determine the atomic and value types. 617 QualType atomicType = E->getSubExpr()->getType(); 618 QualType valueType = E->getType(); 619 if (isToAtomic) std::swap(atomicType, valueType); 620 621 assert(atomicType->isAtomicType()); 622 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 623 atomicType->castAs<AtomicType>()->getValueType())); 624 625 // Just recurse normally if we're ignoring the result or the 626 // atomic type doesn't change representation. 627 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 628 return Visit(E->getSubExpr()); 629 } 630 631 CastKind peepholeTarget = 632 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 633 634 // These two cases are reverses of each other; try to peephole them. 635 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 636 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 637 E->getType()) && 638 "peephole significantly changed types?"); 639 return Visit(op); 640 } 641 642 // If we're converting an r-value of non-atomic type to an r-value 643 // of atomic type, just emit directly into the relevant sub-object. 644 if (isToAtomic) { 645 AggValueSlot valueDest = Dest; 646 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 647 // Zero-initialize. (Strictly speaking, we only need to intialize 648 // the padding at the end, but this is simpler.) 649 if (!Dest.isZeroed()) 650 CGF.EmitNullInitialization(Dest.getAddr(), atomicType); 651 652 // Build a GEP to refer to the subobject. 653 llvm::Value *valueAddr = 654 CGF.Builder.CreateStructGEP(nullptr, valueDest.getAddr(), 0); 655 valueDest = AggValueSlot::forAddr(valueAddr, 656 valueDest.getAlignment(), 657 valueDest.getQualifiers(), 658 valueDest.isExternallyDestructed(), 659 valueDest.requiresGCollection(), 660 valueDest.isPotentiallyAliased(), 661 AggValueSlot::IsZeroed); 662 } 663 664 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 665 return; 666 } 667 668 // Otherwise, we're converting an atomic type to a non-atomic type. 669 // Make an atomic temporary, emit into that, and then copy the value out. 670 AggValueSlot atomicSlot = 671 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 672 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 673 674 llvm::Value *valueAddr = 675 Builder.CreateStructGEP(nullptr, atomicSlot.getAddr(), 0); 676 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 677 return EmitFinalDestCopy(valueType, rvalue); 678 } 679 680 case CK_LValueToRValue: 681 // If we're loading from a volatile type, force the destination 682 // into existence. 683 if (E->getSubExpr()->getType().isVolatileQualified()) { 684 EnsureDest(E->getType()); 685 return Visit(E->getSubExpr()); 686 } 687 688 // fallthrough 689 690 case CK_NoOp: 691 case CK_UserDefinedConversion: 692 case CK_ConstructorConversion: 693 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 694 E->getType()) && 695 "Implicit cast types must be compatible"); 696 Visit(E->getSubExpr()); 697 break; 698 699 case CK_LValueBitCast: 700 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 701 702 case CK_Dependent: 703 case CK_BitCast: 704 case CK_ArrayToPointerDecay: 705 case CK_FunctionToPointerDecay: 706 case CK_NullToPointer: 707 case CK_NullToMemberPointer: 708 case CK_BaseToDerivedMemberPointer: 709 case CK_DerivedToBaseMemberPointer: 710 case CK_MemberPointerToBoolean: 711 case CK_ReinterpretMemberPointer: 712 case CK_IntegralToPointer: 713 case CK_PointerToIntegral: 714 case CK_PointerToBoolean: 715 case CK_ToVoid: 716 case CK_VectorSplat: 717 case CK_IntegralCast: 718 case CK_IntegralToBoolean: 719 case CK_IntegralToFloating: 720 case CK_FloatingToIntegral: 721 case CK_FloatingToBoolean: 722 case CK_FloatingCast: 723 case CK_CPointerToObjCPointerCast: 724 case CK_BlockPointerToObjCPointerCast: 725 case CK_AnyPointerToBlockPointerCast: 726 case CK_ObjCObjectLValueCast: 727 case CK_FloatingRealToComplex: 728 case CK_FloatingComplexToReal: 729 case CK_FloatingComplexToBoolean: 730 case CK_FloatingComplexCast: 731 case CK_FloatingComplexToIntegralComplex: 732 case CK_IntegralRealToComplex: 733 case CK_IntegralComplexToReal: 734 case CK_IntegralComplexToBoolean: 735 case CK_IntegralComplexCast: 736 case CK_IntegralComplexToFloatingComplex: 737 case CK_ARCProduceObject: 738 case CK_ARCConsumeObject: 739 case CK_ARCReclaimReturnedObject: 740 case CK_ARCExtendBlockObject: 741 case CK_CopyAndAutoreleaseBlockObject: 742 case CK_BuiltinFnToFnPtr: 743 case CK_ZeroToOCLEvent: 744 case CK_AddressSpaceConversion: 745 llvm_unreachable("cast kind invalid for aggregate types"); 746 } 747 } 748 749 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 750 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 751 EmitAggLoadOfLValue(E); 752 return; 753 } 754 755 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 756 EmitMoveFromReturnSlot(E, RV); 757 } 758 759 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 760 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 761 EmitMoveFromReturnSlot(E, RV); 762 } 763 764 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 765 CGF.EmitIgnoredExpr(E->getLHS()); 766 Visit(E->getRHS()); 767 } 768 769 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 770 CodeGenFunction::StmtExprEvaluation eval(CGF); 771 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 772 } 773 774 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 775 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 776 VisitPointerToDataMemberBinaryOperator(E); 777 else 778 CGF.ErrorUnsupported(E, "aggregate binary expression"); 779 } 780 781 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 782 const BinaryOperator *E) { 783 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 784 EmitFinalDestCopy(E->getType(), LV); 785 } 786 787 /// Is the value of the given expression possibly a reference to or 788 /// into a __block variable? 789 static bool isBlockVarRef(const Expr *E) { 790 // Make sure we look through parens. 791 E = E->IgnoreParens(); 792 793 // Check for a direct reference to a __block variable. 794 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 795 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 796 return (var && var->hasAttr<BlocksAttr>()); 797 } 798 799 // More complicated stuff. 800 801 // Binary operators. 802 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 803 // For an assignment or pointer-to-member operation, just care 804 // about the LHS. 805 if (op->isAssignmentOp() || op->isPtrMemOp()) 806 return isBlockVarRef(op->getLHS()); 807 808 // For a comma, just care about the RHS. 809 if (op->getOpcode() == BO_Comma) 810 return isBlockVarRef(op->getRHS()); 811 812 // FIXME: pointer arithmetic? 813 return false; 814 815 // Check both sides of a conditional operator. 816 } else if (const AbstractConditionalOperator *op 817 = dyn_cast<AbstractConditionalOperator>(E)) { 818 return isBlockVarRef(op->getTrueExpr()) 819 || isBlockVarRef(op->getFalseExpr()); 820 821 // OVEs are required to support BinaryConditionalOperators. 822 } else if (const OpaqueValueExpr *op 823 = dyn_cast<OpaqueValueExpr>(E)) { 824 if (const Expr *src = op->getSourceExpr()) 825 return isBlockVarRef(src); 826 827 // Casts are necessary to get things like (*(int*)&var) = foo(). 828 // We don't really care about the kind of cast here, except 829 // we don't want to look through l2r casts, because it's okay 830 // to get the *value* in a __block variable. 831 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 832 if (cast->getCastKind() == CK_LValueToRValue) 833 return false; 834 return isBlockVarRef(cast->getSubExpr()); 835 836 // Handle unary operators. Again, just aggressively look through 837 // it, ignoring the operation. 838 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 839 return isBlockVarRef(uop->getSubExpr()); 840 841 // Look into the base of a field access. 842 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 843 return isBlockVarRef(mem->getBase()); 844 845 // Look into the base of a subscript. 846 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 847 return isBlockVarRef(sub->getBase()); 848 } 849 850 return false; 851 } 852 853 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 854 // For an assignment to work, the value on the right has 855 // to be compatible with the value on the left. 856 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 857 E->getRHS()->getType()) 858 && "Invalid assignment"); 859 860 // If the LHS might be a __block variable, and the RHS can 861 // potentially cause a block copy, we need to evaluate the RHS first 862 // so that the assignment goes the right place. 863 // This is pretty semantically fragile. 864 if (isBlockVarRef(E->getLHS()) && 865 E->getRHS()->HasSideEffects(CGF.getContext())) { 866 // Ensure that we have a destination, and evaluate the RHS into that. 867 EnsureDest(E->getRHS()->getType()); 868 Visit(E->getRHS()); 869 870 // Now emit the LHS and copy into it. 871 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 872 873 // That copy is an atomic copy if the LHS is atomic. 874 if (LHS.getType()->isAtomicType() || 875 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 876 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 877 return; 878 } 879 880 EmitCopy(E->getLHS()->getType(), 881 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 882 needsGC(E->getLHS()->getType()), 883 AggValueSlot::IsAliased), 884 Dest); 885 return; 886 } 887 888 LValue LHS = CGF.EmitLValue(E->getLHS()); 889 890 // If we have an atomic type, evaluate into the destination and then 891 // do an atomic copy. 892 if (LHS.getType()->isAtomicType() || 893 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 894 EnsureDest(E->getRHS()->getType()); 895 Visit(E->getRHS()); 896 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 897 return; 898 } 899 900 // Codegen the RHS so that it stores directly into the LHS. 901 AggValueSlot LHSSlot = 902 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 903 needsGC(E->getLHS()->getType()), 904 AggValueSlot::IsAliased); 905 // A non-volatile aggregate destination might have volatile member. 906 if (!LHSSlot.isVolatile() && 907 CGF.hasVolatileMember(E->getLHS()->getType())) 908 LHSSlot.setVolatile(true); 909 910 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 911 912 // Copy into the destination if the assignment isn't ignored. 913 EmitFinalDestCopy(E->getType(), LHS); 914 } 915 916 void AggExprEmitter:: 917 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 918 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 919 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 920 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 921 922 // Bind the common expression if necessary. 923 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 924 925 CodeGenFunction::ConditionalEvaluation eval(CGF); 926 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 927 CGF.getProfileCount(E)); 928 929 // Save whether the destination's lifetime is externally managed. 930 bool isExternallyDestructed = Dest.isExternallyDestructed(); 931 932 eval.begin(CGF); 933 CGF.EmitBlock(LHSBlock); 934 CGF.incrementProfileCounter(E); 935 Visit(E->getTrueExpr()); 936 eval.end(CGF); 937 938 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 939 CGF.Builder.CreateBr(ContBlock); 940 941 // If the result of an agg expression is unused, then the emission 942 // of the LHS might need to create a destination slot. That's fine 943 // with us, and we can safely emit the RHS into the same slot, but 944 // we shouldn't claim that it's already being destructed. 945 Dest.setExternallyDestructed(isExternallyDestructed); 946 947 eval.begin(CGF); 948 CGF.EmitBlock(RHSBlock); 949 Visit(E->getFalseExpr()); 950 eval.end(CGF); 951 952 CGF.EmitBlock(ContBlock); 953 } 954 955 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 956 Visit(CE->getChosenSubExpr()); 957 } 958 959 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 960 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 961 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 962 963 if (!ArgPtr) { 964 // If EmitVAArg fails, we fall back to the LLVM instruction. 965 llvm::Value *Val = 966 Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 967 if (!Dest.isIgnored()) 968 Builder.CreateStore(Val, Dest.getAddr()); 969 return; 970 } 971 972 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 973 } 974 975 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 976 // Ensure that we have a slot, but if we already do, remember 977 // whether it was externally destructed. 978 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 979 EnsureDest(E->getType()); 980 981 // We're going to push a destructor if there isn't already one. 982 Dest.setExternallyDestructed(); 983 984 Visit(E->getSubExpr()); 985 986 // Push that destructor we promised. 987 if (!wasExternallyDestructed) 988 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 989 } 990 991 void 992 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 993 AggValueSlot Slot = EnsureSlot(E->getType()); 994 CGF.EmitCXXConstructExpr(E, Slot); 995 } 996 997 void 998 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 999 AggValueSlot Slot = EnsureSlot(E->getType()); 1000 CGF.EmitLambdaExpr(E, Slot); 1001 } 1002 1003 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1004 CGF.enterFullExpression(E); 1005 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1006 Visit(E->getSubExpr()); 1007 } 1008 1009 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1010 QualType T = E->getType(); 1011 AggValueSlot Slot = EnsureSlot(T); 1012 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1013 } 1014 1015 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1016 QualType T = E->getType(); 1017 AggValueSlot Slot = EnsureSlot(T); 1018 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1019 } 1020 1021 /// isSimpleZero - If emitting this value will obviously just cause a store of 1022 /// zero to memory, return true. This can return false if uncertain, so it just 1023 /// handles simple cases. 1024 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1025 E = E->IgnoreParens(); 1026 1027 // 0 1028 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1029 return IL->getValue() == 0; 1030 // +0.0 1031 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1032 return FL->getValue().isPosZero(); 1033 // int() 1034 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1035 CGF.getTypes().isZeroInitializable(E->getType())) 1036 return true; 1037 // (int*)0 - Null pointer expressions. 1038 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1039 return ICE->getCastKind() == CK_NullToPointer; 1040 // '\0' 1041 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1042 return CL->getValue() == 0; 1043 1044 // Otherwise, hard case: conservatively return false. 1045 return false; 1046 } 1047 1048 1049 void 1050 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1051 QualType type = LV.getType(); 1052 // FIXME: Ignore result? 1053 // FIXME: Are initializers affected by volatile? 1054 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1055 // Storing "i32 0" to a zero'd memory location is a noop. 1056 return; 1057 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1058 return EmitNullInitializationToLValue(LV); 1059 } else if (type->isReferenceType()) { 1060 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1061 return CGF.EmitStoreThroughLValue(RV, LV); 1062 } 1063 1064 switch (CGF.getEvaluationKind(type)) { 1065 case TEK_Complex: 1066 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1067 return; 1068 case TEK_Aggregate: 1069 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1070 AggValueSlot::IsDestructed, 1071 AggValueSlot::DoesNotNeedGCBarriers, 1072 AggValueSlot::IsNotAliased, 1073 Dest.isZeroed())); 1074 return; 1075 case TEK_Scalar: 1076 if (LV.isSimple()) { 1077 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1078 } else { 1079 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1080 } 1081 return; 1082 } 1083 llvm_unreachable("bad evaluation kind"); 1084 } 1085 1086 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1087 QualType type = lv.getType(); 1088 1089 // If the destination slot is already zeroed out before the aggregate is 1090 // copied into it, we don't have to emit any zeros here. 1091 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1092 return; 1093 1094 if (CGF.hasScalarEvaluationKind(type)) { 1095 // For non-aggregates, we can store the appropriate null constant. 1096 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1097 // Note that the following is not equivalent to 1098 // EmitStoreThroughBitfieldLValue for ARC types. 1099 if (lv.isBitField()) { 1100 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1101 } else { 1102 assert(lv.isSimple()); 1103 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1104 } 1105 } else { 1106 // There's a potential optimization opportunity in combining 1107 // memsets; that would be easy for arrays, but relatively 1108 // difficult for structures with the current code. 1109 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1110 } 1111 } 1112 1113 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1114 #if 0 1115 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1116 // (Length of globals? Chunks of zeroed-out space?). 1117 // 1118 // If we can, prefer a copy from a global; this is a lot less code for long 1119 // globals, and it's easier for the current optimizers to analyze. 1120 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1121 llvm::GlobalVariable* GV = 1122 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1123 llvm::GlobalValue::InternalLinkage, C, ""); 1124 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1125 return; 1126 } 1127 #endif 1128 if (E->hadArrayRangeDesignator()) 1129 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1130 1131 AggValueSlot Dest = EnsureSlot(E->getType()); 1132 1133 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1134 Dest.getAlignment()); 1135 1136 // Handle initialization of an array. 1137 if (E->getType()->isArrayType()) { 1138 if (E->isStringLiteralInit()) 1139 return Visit(E->getInit(0)); 1140 1141 QualType elementType = 1142 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1143 1144 llvm::PointerType *APType = 1145 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1146 llvm::ArrayType *AType = 1147 cast<llvm::ArrayType>(APType->getElementType()); 1148 1149 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1150 return; 1151 } 1152 1153 if (E->getType()->isAtomicType()) { 1154 // An _Atomic(T) object can be list-initialized from an expression 1155 // of the same type. 1156 assert(E->getNumInits() == 1 && 1157 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1158 E->getType()) && 1159 "unexpected list initialization for atomic object"); 1160 return Visit(E->getInit(0)); 1161 } 1162 1163 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1164 1165 // Do struct initialization; this code just sets each individual member 1166 // to the approprate value. This makes bitfield support automatic; 1167 // the disadvantage is that the generated code is more difficult for 1168 // the optimizer, especially with bitfields. 1169 unsigned NumInitElements = E->getNumInits(); 1170 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1171 1172 // Prepare a 'this' for CXXDefaultInitExprs. 1173 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1174 1175 if (record->isUnion()) { 1176 // Only initialize one field of a union. The field itself is 1177 // specified by the initializer list. 1178 if (!E->getInitializedFieldInUnion()) { 1179 // Empty union; we have nothing to do. 1180 1181 #ifndef NDEBUG 1182 // Make sure that it's really an empty and not a failure of 1183 // semantic analysis. 1184 for (const auto *Field : record->fields()) 1185 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1186 #endif 1187 return; 1188 } 1189 1190 // FIXME: volatility 1191 FieldDecl *Field = E->getInitializedFieldInUnion(); 1192 1193 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1194 if (NumInitElements) { 1195 // Store the initializer into the field 1196 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1197 } else { 1198 // Default-initialize to null. 1199 EmitNullInitializationToLValue(FieldLoc); 1200 } 1201 1202 return; 1203 } 1204 1205 // We'll need to enter cleanup scopes in case any of the member 1206 // initializers throw an exception. 1207 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1208 llvm::Instruction *cleanupDominator = nullptr; 1209 1210 // Here we iterate over the fields; this makes it simpler to both 1211 // default-initialize fields and skip over unnamed fields. 1212 unsigned curInitIndex = 0; 1213 for (const auto *field : record->fields()) { 1214 // We're done once we hit the flexible array member. 1215 if (field->getType()->isIncompleteArrayType()) 1216 break; 1217 1218 // Always skip anonymous bitfields. 1219 if (field->isUnnamedBitfield()) 1220 continue; 1221 1222 // We're done if we reach the end of the explicit initializers, we 1223 // have a zeroed object, and the rest of the fields are 1224 // zero-initializable. 1225 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1226 CGF.getTypes().isZeroInitializable(E->getType())) 1227 break; 1228 1229 1230 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1231 // We never generate write-barries for initialized fields. 1232 LV.setNonGC(true); 1233 1234 if (curInitIndex < NumInitElements) { 1235 // Store the initializer into the field. 1236 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1237 } else { 1238 // We're out of initalizers; default-initialize to null 1239 EmitNullInitializationToLValue(LV); 1240 } 1241 1242 // Push a destructor if necessary. 1243 // FIXME: if we have an array of structures, all explicitly 1244 // initialized, we can end up pushing a linear number of cleanups. 1245 bool pushedCleanup = false; 1246 if (QualType::DestructionKind dtorKind 1247 = field->getType().isDestructedType()) { 1248 assert(LV.isSimple()); 1249 if (CGF.needsEHCleanup(dtorKind)) { 1250 if (!cleanupDominator) 1251 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1252 1253 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1254 CGF.getDestroyer(dtorKind), false); 1255 cleanups.push_back(CGF.EHStack.stable_begin()); 1256 pushedCleanup = true; 1257 } 1258 } 1259 1260 // If the GEP didn't get used because of a dead zero init or something 1261 // else, clean it up for -O0 builds and general tidiness. 1262 if (!pushedCleanup && LV.isSimple()) 1263 if (llvm::GetElementPtrInst *GEP = 1264 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1265 if (GEP->use_empty()) 1266 GEP->eraseFromParent(); 1267 } 1268 1269 // Deactivate all the partial cleanups in reverse order, which 1270 // generally means popping them. 1271 for (unsigned i = cleanups.size(); i != 0; --i) 1272 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1273 1274 // Destroy the placeholder if we made one. 1275 if (cleanupDominator) 1276 cleanupDominator->eraseFromParent(); 1277 } 1278 1279 //===----------------------------------------------------------------------===// 1280 // Entry Points into this File 1281 //===----------------------------------------------------------------------===// 1282 1283 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1284 /// non-zero bytes that will be stored when outputting the initializer for the 1285 /// specified initializer expression. 1286 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1287 E = E->IgnoreParens(); 1288 1289 // 0 and 0.0 won't require any non-zero stores! 1290 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1291 1292 // If this is an initlist expr, sum up the size of sizes of the (present) 1293 // elements. If this is something weird, assume the whole thing is non-zero. 1294 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1295 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1296 return CGF.getContext().getTypeSizeInChars(E->getType()); 1297 1298 // InitListExprs for structs have to be handled carefully. If there are 1299 // reference members, we need to consider the size of the reference, not the 1300 // referencee. InitListExprs for unions and arrays can't have references. 1301 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1302 if (!RT->isUnionType()) { 1303 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1304 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1305 1306 unsigned ILEElement = 0; 1307 for (const auto *Field : SD->fields()) { 1308 // We're done once we hit the flexible array member or run out of 1309 // InitListExpr elements. 1310 if (Field->getType()->isIncompleteArrayType() || 1311 ILEElement == ILE->getNumInits()) 1312 break; 1313 if (Field->isUnnamedBitfield()) 1314 continue; 1315 1316 const Expr *E = ILE->getInit(ILEElement++); 1317 1318 // Reference values are always non-null and have the width of a pointer. 1319 if (Field->getType()->isReferenceType()) 1320 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1321 CGF.getTarget().getPointerWidth(0)); 1322 else 1323 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1324 } 1325 1326 return NumNonZeroBytes; 1327 } 1328 } 1329 1330 1331 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1332 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1333 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1334 return NumNonZeroBytes; 1335 } 1336 1337 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1338 /// zeros in it, emit a memset and avoid storing the individual zeros. 1339 /// 1340 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1341 CodeGenFunction &CGF) { 1342 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1343 // volatile stores. 1344 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr) 1345 return; 1346 1347 // C++ objects with a user-declared constructor don't need zero'ing. 1348 if (CGF.getLangOpts().CPlusPlus) 1349 if (const RecordType *RT = CGF.getContext() 1350 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1351 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1352 if (RD->hasUserDeclaredConstructor()) 1353 return; 1354 } 1355 1356 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1357 std::pair<CharUnits, CharUnits> TypeInfo = 1358 CGF.getContext().getTypeInfoInChars(E->getType()); 1359 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1360 return; 1361 1362 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1363 // we prefer to emit memset + individual stores for the rest. 1364 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1365 if (NumNonZeroBytes*4 > TypeInfo.first) 1366 return; 1367 1368 // Okay, it seems like a good idea to use an initial memset, emit the call. 1369 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1370 CharUnits Align = TypeInfo.second; 1371 1372 llvm::Value *Loc = Slot.getAddr(); 1373 1374 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1375 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1376 Align.getQuantity(), false); 1377 1378 // Tell the AggExprEmitter that the slot is known zero. 1379 Slot.setZeroed(); 1380 } 1381 1382 1383 1384 1385 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1386 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1387 /// the value of the aggregate expression is not needed. If VolatileDest is 1388 /// true, DestPtr cannot be 0. 1389 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1390 assert(E && hasAggregateEvaluationKind(E->getType()) && 1391 "Invalid aggregate expression to emit"); 1392 assert((Slot.getAddr() != nullptr || Slot.isIgnored()) && 1393 "slot has bits but no address"); 1394 1395 // Optimize the slot if possible. 1396 CheckAggExprForMemSetUse(Slot, E, *this); 1397 1398 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1399 } 1400 1401 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1402 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1403 llvm::Value *Temp = CreateMemTemp(E->getType()); 1404 LValue LV = MakeAddrLValue(Temp, E->getType()); 1405 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1406 AggValueSlot::DoesNotNeedGCBarriers, 1407 AggValueSlot::IsNotAliased)); 1408 return LV; 1409 } 1410 1411 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1412 llvm::Value *SrcPtr, QualType Ty, 1413 bool isVolatile, 1414 CharUnits alignment, 1415 bool isAssignment) { 1416 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1417 1418 if (getLangOpts().CPlusPlus) { 1419 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1420 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1421 assert((Record->hasTrivialCopyConstructor() || 1422 Record->hasTrivialCopyAssignment() || 1423 Record->hasTrivialMoveConstructor() || 1424 Record->hasTrivialMoveAssignment() || 1425 Record->isUnion()) && 1426 "Trying to aggregate-copy a type without a trivial copy/move " 1427 "constructor or assignment operator"); 1428 // Ignore empty classes in C++. 1429 if (Record->isEmpty()) 1430 return; 1431 } 1432 } 1433 1434 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1435 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1436 // read from another object that overlaps in anyway the storage of the first 1437 // object, then the overlap shall be exact and the two objects shall have 1438 // qualified or unqualified versions of a compatible type." 1439 // 1440 // memcpy is not defined if the source and destination pointers are exactly 1441 // equal, but other compilers do this optimization, and almost every memcpy 1442 // implementation handles this case safely. If there is a libc that does not 1443 // safely handle this, we can add a target hook. 1444 1445 // Get data size and alignment info for this aggregate. If this is an 1446 // assignment don't copy the tail padding. Otherwise copying it is fine. 1447 std::pair<CharUnits, CharUnits> TypeInfo; 1448 if (isAssignment) 1449 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1450 else 1451 TypeInfo = getContext().getTypeInfoInChars(Ty); 1452 1453 if (alignment.isZero()) 1454 alignment = TypeInfo.second; 1455 1456 llvm::Value *SizeVal = nullptr; 1457 if (TypeInfo.first.isZero()) { 1458 // But note that getTypeInfo returns 0 for a VLA. 1459 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1460 getContext().getAsArrayType(Ty))) { 1461 QualType BaseEltTy; 1462 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1463 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1464 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1465 if (!isAssignment) 1466 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1467 assert(!TypeInfo.first.isZero()); 1468 SizeVal = Builder.CreateNUWMul( 1469 SizeVal, 1470 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1471 if (!isAssignment) { 1472 SizeVal = Builder.CreateNUWSub( 1473 SizeVal, 1474 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1475 SizeVal = Builder.CreateNUWAdd( 1476 SizeVal, llvm::ConstantInt::get( 1477 SizeTy, LastElementTypeInfo.first.getQuantity())); 1478 } 1479 } 1480 } 1481 if (!SizeVal) { 1482 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1483 } 1484 1485 // FIXME: If we have a volatile struct, the optimizer can remove what might 1486 // appear to be `extra' memory ops: 1487 // 1488 // volatile struct { int i; } a, b; 1489 // 1490 // int main() { 1491 // a = b; 1492 // a = b; 1493 // } 1494 // 1495 // we need to use a different call here. We use isVolatile to indicate when 1496 // either the source or the destination is volatile. 1497 1498 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1499 llvm::Type *DBP = 1500 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1501 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1502 1503 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1504 llvm::Type *SBP = 1505 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1506 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1507 1508 // Don't do any of the memmove_collectable tests if GC isn't set. 1509 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1510 // fall through 1511 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1512 RecordDecl *Record = RecordTy->getDecl(); 1513 if (Record->hasObjectMember()) { 1514 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1515 SizeVal); 1516 return; 1517 } 1518 } else if (Ty->isArrayType()) { 1519 QualType BaseType = getContext().getBaseElementType(Ty); 1520 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1521 if (RecordTy->getDecl()->hasObjectMember()) { 1522 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1523 SizeVal); 1524 return; 1525 } 1526 } 1527 } 1528 1529 // Determine the metadata to describe the position of any padding in this 1530 // memcpy, as well as the TBAA tags for the members of the struct, in case 1531 // the optimizer wishes to expand it in to scalar memory operations. 1532 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1533 1534 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, alignment.getQuantity(), 1535 isVolatile, /*TBAATag=*/nullptr, TBAAStructTag); 1536 } 1537