1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 89 90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 91 QualType ArrayQTy, InitListExpr *E); 92 93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 95 return AggValueSlot::NeedsGCBarriers; 96 return AggValueSlot::DoesNotNeedGCBarriers; 97 } 98 99 bool TypeRequiresGCollection(QualType T); 100 101 //===--------------------------------------------------------------------===// 102 // Visitor Methods 103 //===--------------------------------------------------------------------===// 104 105 void Visit(Expr *E) { 106 ApplyDebugLocation DL(CGF, E); 107 StmtVisitor<AggExprEmitter>::Visit(E); 108 } 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitCoawaitExpr(CoawaitExpr *E) { 118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitCoyieldExpr(CoyieldExpr *E) { 121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 122 } 123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 126 return Visit(E->getReplacement()); 127 } 128 129 void VisitConstantExpr(ConstantExpr *E) { 130 return Visit(E->getSubExpr()); 131 } 132 133 // l-values. 134 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 135 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 136 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 137 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 138 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 139 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 140 EmitAggLoadOfLValue(E); 141 } 142 void VisitPredefinedExpr(const PredefinedExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 146 // Operators. 147 void VisitCastExpr(CastExpr *E); 148 void VisitCallExpr(const CallExpr *E); 149 void VisitStmtExpr(const StmtExpr *E); 150 void VisitBinaryOperator(const BinaryOperator *BO); 151 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 152 void VisitBinAssign(const BinaryOperator *E); 153 void VisitBinComma(const BinaryOperator *E); 154 void VisitBinCmp(const BinaryOperator *E); 155 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 156 Visit(E->getSemanticForm()); 157 } 158 159 void VisitObjCMessageExpr(ObjCMessageExpr *E); 160 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 161 EmitAggLoadOfLValue(E); 162 } 163 164 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 165 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 166 void VisitChooseExpr(const ChooseExpr *CE); 167 void VisitInitListExpr(InitListExpr *E); 168 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 169 llvm::Value *outerBegin = nullptr); 170 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 171 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 172 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 173 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 174 Visit(DAE->getExpr()); 175 } 176 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 177 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 178 Visit(DIE->getExpr()); 179 } 180 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 181 void VisitCXXConstructExpr(const CXXConstructExpr *E); 182 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 183 void VisitLambdaExpr(LambdaExpr *E); 184 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 185 void VisitExprWithCleanups(ExprWithCleanups *E); 186 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 187 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 188 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 189 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 190 191 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 192 if (E->isGLValue()) { 193 LValue LV = CGF.EmitPseudoObjectLValue(E); 194 return EmitFinalDestCopy(E->getType(), LV); 195 } 196 197 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 198 } 199 200 void VisitVAArgExpr(VAArgExpr *E); 201 202 void EmitInitializationToLValue(Expr *E, LValue Address); 203 void EmitNullInitializationToLValue(LValue Address); 204 // case Expr::ChooseExprClass: 205 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 206 void VisitAtomicExpr(AtomicExpr *E) { 207 RValue Res = CGF.EmitAtomicExpr(E); 208 EmitFinalDestCopy(E->getType(), Res); 209 } 210 }; 211 } // end anonymous namespace. 212 213 //===----------------------------------------------------------------------===// 214 // Utilities 215 //===----------------------------------------------------------------------===// 216 217 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 218 /// represents a value lvalue, this method emits the address of the lvalue, 219 /// then loads the result into DestPtr. 220 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 221 LValue LV = CGF.EmitLValue(E); 222 223 // If the type of the l-value is atomic, then do an atomic load. 224 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 225 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 226 return; 227 } 228 229 EmitFinalDestCopy(E->getType(), LV); 230 } 231 232 /// True if the given aggregate type requires special GC API calls. 233 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 234 // Only record types have members that might require garbage collection. 235 const RecordType *RecordTy = T->getAs<RecordType>(); 236 if (!RecordTy) return false; 237 238 // Don't mess with non-trivial C++ types. 239 RecordDecl *Record = RecordTy->getDecl(); 240 if (isa<CXXRecordDecl>(Record) && 241 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 242 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 243 return false; 244 245 // Check whether the type has an object member. 246 return Record->hasObjectMember(); 247 } 248 249 void AggExprEmitter::withReturnValueSlot( 250 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 251 QualType RetTy = E->getType(); 252 bool RequiresDestruction = 253 !Dest.isExternallyDestructed() && 254 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 255 256 // If it makes no observable difference, save a memcpy + temporary. 257 // 258 // We need to always provide our own temporary if destruction is required. 259 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 260 // its lifetime before we have the chance to emit a proper destructor call. 261 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 262 (RequiresDestruction && !Dest.getAddress().isValid()); 263 264 Address RetAddr = Address::invalid(); 265 Address RetAllocaAddr = Address::invalid(); 266 267 EHScopeStack::stable_iterator LifetimeEndBlock; 268 llvm::Value *LifetimeSizePtr = nullptr; 269 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 270 if (!UseTemp) { 271 RetAddr = Dest.getAddress(); 272 } else { 273 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 274 uint64_t Size = 275 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 276 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 277 if (LifetimeSizePtr) { 278 LifetimeStartInst = 279 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 280 assert(LifetimeStartInst->getIntrinsicID() == 281 llvm::Intrinsic::lifetime_start && 282 "Last insertion wasn't a lifetime.start?"); 283 284 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 285 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 286 LifetimeEndBlock = CGF.EHStack.stable_begin(); 287 } 288 } 289 290 RValue Src = 291 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 292 Dest.isExternallyDestructed())); 293 294 if (!UseTemp) 295 return; 296 297 assert(Dest.getPointer() != Src.getAggregatePointer()); 298 EmitFinalDestCopy(E->getType(), Src); 299 300 if (!RequiresDestruction && LifetimeStartInst) { 301 // If there's no dtor to run, the copy was the last use of our temporary. 302 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 303 // eagerly. 304 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 305 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 306 } 307 } 308 309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 310 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 311 assert(src.isAggregate() && "value must be aggregate value!"); 312 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 313 EmitFinalDestCopy(type, srcLV, EVK_RValue); 314 } 315 316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 317 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 318 ExprValueKind SrcValueKind) { 319 // If Dest is ignored, then we're evaluating an aggregate expression 320 // in a context that doesn't care about the result. Note that loads 321 // from volatile l-values force the existence of a non-ignored 322 // destination. 323 if (Dest.isIgnored()) 324 return; 325 326 // Copy non-trivial C structs here. 327 LValue DstLV = CGF.MakeAddrLValue( 328 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 329 330 if (SrcValueKind == EVK_RValue) { 331 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 332 if (Dest.isPotentiallyAliased()) 333 CGF.callCStructMoveAssignmentOperator(DstLV, src); 334 else 335 CGF.callCStructMoveConstructor(DstLV, src); 336 return; 337 } 338 } else { 339 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 340 if (Dest.isPotentiallyAliased()) 341 CGF.callCStructCopyAssignmentOperator(DstLV, src); 342 else 343 CGF.callCStructCopyConstructor(DstLV, src); 344 return; 345 } 346 } 347 348 AggValueSlot srcAgg = AggValueSlot::forLValue( 349 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 350 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 351 EmitCopy(type, Dest, srcAgg); 352 } 353 354 /// Perform a copy from the source into the destination. 355 /// 356 /// \param type - the type of the aggregate being copied; qualifiers are 357 /// ignored 358 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 359 const AggValueSlot &src) { 360 if (dest.requiresGCollection()) { 361 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 362 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 363 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 364 dest.getAddress(), 365 src.getAddress(), 366 size); 367 return; 368 } 369 370 // If the result of the assignment is used, copy the LHS there also. 371 // It's volatile if either side is. Use the minimum alignment of 372 // the two sides. 373 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 374 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 375 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 376 dest.isVolatile() || src.isVolatile()); 377 } 378 379 /// Emit the initializer for a std::initializer_list initialized with a 380 /// real initializer list. 381 void 382 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 383 // Emit an array containing the elements. The array is externally destructed 384 // if the std::initializer_list object is. 385 ASTContext &Ctx = CGF.getContext(); 386 LValue Array = CGF.EmitLValue(E->getSubExpr()); 387 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 388 Address ArrayPtr = Array.getAddress(CGF); 389 390 const ConstantArrayType *ArrayType = 391 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 392 assert(ArrayType && "std::initializer_list constructed from non-array"); 393 394 // FIXME: Perform the checks on the field types in SemaInit. 395 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 396 RecordDecl::field_iterator Field = Record->field_begin(); 397 if (Field == Record->field_end()) { 398 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 399 return; 400 } 401 402 // Start pointer. 403 if (!Field->getType()->isPointerType() || 404 !Ctx.hasSameType(Field->getType()->getPointeeType(), 405 ArrayType->getElementType())) { 406 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 407 return; 408 } 409 410 AggValueSlot Dest = EnsureSlot(E->getType()); 411 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 412 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 413 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 414 llvm::Value *IdxStart[] = { Zero, Zero }; 415 llvm::Value *ArrayStart = 416 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 417 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 418 ++Field; 419 420 if (Field == Record->field_end()) { 421 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 422 return; 423 } 424 425 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 426 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 427 if (Field->getType()->isPointerType() && 428 Ctx.hasSameType(Field->getType()->getPointeeType(), 429 ArrayType->getElementType())) { 430 // End pointer. 431 llvm::Value *IdxEnd[] = { Zero, Size }; 432 llvm::Value *ArrayEnd = 433 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 434 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 435 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 436 // Length. 437 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 438 } else { 439 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 440 return; 441 } 442 } 443 444 /// Determine if E is a trivial array filler, that is, one that is 445 /// equivalent to zero-initialization. 446 static bool isTrivialFiller(Expr *E) { 447 if (!E) 448 return true; 449 450 if (isa<ImplicitValueInitExpr>(E)) 451 return true; 452 453 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 454 if (ILE->getNumInits()) 455 return false; 456 return isTrivialFiller(ILE->getArrayFiller()); 457 } 458 459 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 460 return Cons->getConstructor()->isDefaultConstructor() && 461 Cons->getConstructor()->isTrivial(); 462 463 // FIXME: Are there other cases where we can avoid emitting an initializer? 464 return false; 465 } 466 467 /// Emit initialization of an array from an initializer list. 468 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 469 QualType ArrayQTy, InitListExpr *E) { 470 uint64_t NumInitElements = E->getNumInits(); 471 472 uint64_t NumArrayElements = AType->getNumElements(); 473 assert(NumInitElements <= NumArrayElements); 474 475 QualType elementType = 476 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 477 478 // DestPtr is an array*. Construct an elementType* by drilling 479 // down a level. 480 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 481 llvm::Value *indices[] = { zero, zero }; 482 llvm::Value *begin = 483 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 484 485 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 486 CharUnits elementAlign = 487 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 488 489 // Consider initializing the array by copying from a global. For this to be 490 // more efficient than per-element initialization, the size of the elements 491 // with explicit initializers should be large enough. 492 if (NumInitElements * elementSize.getQuantity() > 16 && 493 elementType.isTriviallyCopyableType(CGF.getContext())) { 494 CodeGen::CodeGenModule &CGM = CGF.CGM; 495 ConstantEmitter Emitter(CGF); 496 LangAS AS = ArrayQTy.getAddressSpace(); 497 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 498 auto GV = new llvm::GlobalVariable( 499 CGM.getModule(), C->getType(), 500 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 501 llvm::GlobalValue::PrivateLinkage, C, "constinit", 502 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 503 CGM.getContext().getTargetAddressSpace(AS)); 504 Emitter.finalize(GV); 505 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 506 GV->setAlignment(Align.getAsAlign()); 507 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 508 return; 509 } 510 } 511 512 // Exception safety requires us to destroy all the 513 // already-constructed members if an initializer throws. 514 // For that, we'll need an EH cleanup. 515 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 516 Address endOfInit = Address::invalid(); 517 EHScopeStack::stable_iterator cleanup; 518 llvm::Instruction *cleanupDominator = nullptr; 519 if (CGF.needsEHCleanup(dtorKind)) { 520 // In principle we could tell the cleanup where we are more 521 // directly, but the control flow can get so varied here that it 522 // would actually be quite complex. Therefore we go through an 523 // alloca. 524 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 525 "arrayinit.endOfInit"); 526 cleanupDominator = Builder.CreateStore(begin, endOfInit); 527 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 528 elementAlign, 529 CGF.getDestroyer(dtorKind)); 530 cleanup = CGF.EHStack.stable_begin(); 531 532 // Otherwise, remember that we didn't need a cleanup. 533 } else { 534 dtorKind = QualType::DK_none; 535 } 536 537 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 538 539 // The 'current element to initialize'. The invariants on this 540 // variable are complicated. Essentially, after each iteration of 541 // the loop, it points to the last initialized element, except 542 // that it points to the beginning of the array before any 543 // elements have been initialized. 544 llvm::Value *element = begin; 545 546 // Emit the explicit initializers. 547 for (uint64_t i = 0; i != NumInitElements; ++i) { 548 // Advance to the next element. 549 if (i > 0) { 550 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 551 552 // Tell the cleanup that it needs to destroy up to this 553 // element. TODO: some of these stores can be trivially 554 // observed to be unnecessary. 555 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 556 } 557 558 LValue elementLV = 559 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 560 EmitInitializationToLValue(E->getInit(i), elementLV); 561 } 562 563 // Check whether there's a non-trivial array-fill expression. 564 Expr *filler = E->getArrayFiller(); 565 bool hasTrivialFiller = isTrivialFiller(filler); 566 567 // Any remaining elements need to be zero-initialized, possibly 568 // using the filler expression. We can skip this if the we're 569 // emitting to zeroed memory. 570 if (NumInitElements != NumArrayElements && 571 !(Dest.isZeroed() && hasTrivialFiller && 572 CGF.getTypes().isZeroInitializable(elementType))) { 573 574 // Use an actual loop. This is basically 575 // do { *array++ = filler; } while (array != end); 576 577 // Advance to the start of the rest of the array. 578 if (NumInitElements) { 579 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 580 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 581 } 582 583 // Compute the end of the array. 584 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 585 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 586 "arrayinit.end"); 587 588 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 589 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 590 591 // Jump into the body. 592 CGF.EmitBlock(bodyBB); 593 llvm::PHINode *currentElement = 594 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 595 currentElement->addIncoming(element, entryBB); 596 597 // Emit the actual filler expression. 598 { 599 // C++1z [class.temporary]p5: 600 // when a default constructor is called to initialize an element of 601 // an array with no corresponding initializer [...] the destruction of 602 // every temporary created in a default argument is sequenced before 603 // the construction of the next array element, if any 604 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 605 LValue elementLV = 606 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 607 if (filler) 608 EmitInitializationToLValue(filler, elementLV); 609 else 610 EmitNullInitializationToLValue(elementLV); 611 } 612 613 // Move on to the next element. 614 llvm::Value *nextElement = 615 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 616 617 // Tell the EH cleanup that we finished with the last element. 618 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 619 620 // Leave the loop if we're done. 621 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 622 "arrayinit.done"); 623 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 624 Builder.CreateCondBr(done, endBB, bodyBB); 625 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 626 627 CGF.EmitBlock(endBB); 628 } 629 630 // Leave the partial-array cleanup if we entered one. 631 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // Visitor Methods 636 //===----------------------------------------------------------------------===// 637 638 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 639 Visit(E->getSubExpr()); 640 } 641 642 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 643 // If this is a unique OVE, just visit its source expression. 644 if (e->isUnique()) 645 Visit(e->getSourceExpr()); 646 else 647 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 648 } 649 650 void 651 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 652 if (Dest.isPotentiallyAliased() && 653 E->getType().isPODType(CGF.getContext())) { 654 // For a POD type, just emit a load of the lvalue + a copy, because our 655 // compound literal might alias the destination. 656 EmitAggLoadOfLValue(E); 657 return; 658 } 659 660 AggValueSlot Slot = EnsureSlot(E->getType()); 661 662 // Block-scope compound literals are destroyed at the end of the enclosing 663 // scope in C. 664 bool Destruct = 665 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 666 if (Destruct) 667 Slot.setExternallyDestructed(); 668 669 CGF.EmitAggExpr(E->getInitializer(), Slot); 670 671 if (Destruct) 672 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 673 CGF.pushLifetimeExtendedDestroy( 674 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 675 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 676 } 677 678 /// Attempt to look through various unimportant expressions to find a 679 /// cast of the given kind. 680 static Expr *findPeephole(Expr *op, CastKind kind) { 681 while (true) { 682 op = op->IgnoreParens(); 683 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 684 if (castE->getCastKind() == kind) 685 return castE->getSubExpr(); 686 if (castE->getCastKind() == CK_NoOp) 687 continue; 688 } 689 return nullptr; 690 } 691 } 692 693 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 694 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 695 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 696 switch (E->getCastKind()) { 697 case CK_Dynamic: { 698 // FIXME: Can this actually happen? We have no test coverage for it. 699 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 700 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 701 CodeGenFunction::TCK_Load); 702 // FIXME: Do we also need to handle property references here? 703 if (LV.isSimple()) 704 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 705 else 706 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 707 708 if (!Dest.isIgnored()) 709 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 710 break; 711 } 712 713 case CK_ToUnion: { 714 // Evaluate even if the destination is ignored. 715 if (Dest.isIgnored()) { 716 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 717 /*ignoreResult=*/true); 718 break; 719 } 720 721 // GCC union extension 722 QualType Ty = E->getSubExpr()->getType(); 723 Address CastPtr = 724 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 725 EmitInitializationToLValue(E->getSubExpr(), 726 CGF.MakeAddrLValue(CastPtr, Ty)); 727 break; 728 } 729 730 case CK_LValueToRValueBitCast: { 731 if (Dest.isIgnored()) { 732 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 733 /*ignoreResult=*/true); 734 break; 735 } 736 737 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 738 Address SourceAddress = 739 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 740 Address DestAddress = 741 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 742 llvm::Value *SizeVal = llvm::ConstantInt::get( 743 CGF.SizeTy, 744 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 745 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 746 break; 747 } 748 749 case CK_DerivedToBase: 750 case CK_BaseToDerived: 751 case CK_UncheckedDerivedToBase: { 752 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 753 "should have been unpacked before we got here"); 754 } 755 756 case CK_NonAtomicToAtomic: 757 case CK_AtomicToNonAtomic: { 758 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 759 760 // Determine the atomic and value types. 761 QualType atomicType = E->getSubExpr()->getType(); 762 QualType valueType = E->getType(); 763 if (isToAtomic) std::swap(atomicType, valueType); 764 765 assert(atomicType->isAtomicType()); 766 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 767 atomicType->castAs<AtomicType>()->getValueType())); 768 769 // Just recurse normally if we're ignoring the result or the 770 // atomic type doesn't change representation. 771 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 772 return Visit(E->getSubExpr()); 773 } 774 775 CastKind peepholeTarget = 776 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 777 778 // These two cases are reverses of each other; try to peephole them. 779 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 780 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 781 E->getType()) && 782 "peephole significantly changed types?"); 783 return Visit(op); 784 } 785 786 // If we're converting an r-value of non-atomic type to an r-value 787 // of atomic type, just emit directly into the relevant sub-object. 788 if (isToAtomic) { 789 AggValueSlot valueDest = Dest; 790 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 791 // Zero-initialize. (Strictly speaking, we only need to initialize 792 // the padding at the end, but this is simpler.) 793 if (!Dest.isZeroed()) 794 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 795 796 // Build a GEP to refer to the subobject. 797 Address valueAddr = 798 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 799 valueDest = AggValueSlot::forAddr(valueAddr, 800 valueDest.getQualifiers(), 801 valueDest.isExternallyDestructed(), 802 valueDest.requiresGCollection(), 803 valueDest.isPotentiallyAliased(), 804 AggValueSlot::DoesNotOverlap, 805 AggValueSlot::IsZeroed); 806 } 807 808 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 809 return; 810 } 811 812 // Otherwise, we're converting an atomic type to a non-atomic type. 813 // Make an atomic temporary, emit into that, and then copy the value out. 814 AggValueSlot atomicSlot = 815 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 816 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 817 818 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 819 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 820 return EmitFinalDestCopy(valueType, rvalue); 821 } 822 case CK_AddressSpaceConversion: 823 return Visit(E->getSubExpr()); 824 825 case CK_LValueToRValue: 826 // If we're loading from a volatile type, force the destination 827 // into existence. 828 if (E->getSubExpr()->getType().isVolatileQualified()) { 829 bool Destruct = 830 !Dest.isExternallyDestructed() && 831 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 832 if (Destruct) 833 Dest.setExternallyDestructed(); 834 EnsureDest(E->getType()); 835 Visit(E->getSubExpr()); 836 837 if (Destruct) 838 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 839 E->getType()); 840 841 return; 842 } 843 844 LLVM_FALLTHROUGH; 845 846 847 case CK_NoOp: 848 case CK_UserDefinedConversion: 849 case CK_ConstructorConversion: 850 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 851 E->getType()) && 852 "Implicit cast types must be compatible"); 853 Visit(E->getSubExpr()); 854 break; 855 856 case CK_LValueBitCast: 857 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 858 859 case CK_Dependent: 860 case CK_BitCast: 861 case CK_ArrayToPointerDecay: 862 case CK_FunctionToPointerDecay: 863 case CK_NullToPointer: 864 case CK_NullToMemberPointer: 865 case CK_BaseToDerivedMemberPointer: 866 case CK_DerivedToBaseMemberPointer: 867 case CK_MemberPointerToBoolean: 868 case CK_ReinterpretMemberPointer: 869 case CK_IntegralToPointer: 870 case CK_PointerToIntegral: 871 case CK_PointerToBoolean: 872 case CK_ToVoid: 873 case CK_VectorSplat: 874 case CK_IntegralCast: 875 case CK_BooleanToSignedIntegral: 876 case CK_IntegralToBoolean: 877 case CK_IntegralToFloating: 878 case CK_FloatingToIntegral: 879 case CK_FloatingToBoolean: 880 case CK_FloatingCast: 881 case CK_CPointerToObjCPointerCast: 882 case CK_BlockPointerToObjCPointerCast: 883 case CK_AnyPointerToBlockPointerCast: 884 case CK_ObjCObjectLValueCast: 885 case CK_FloatingRealToComplex: 886 case CK_FloatingComplexToReal: 887 case CK_FloatingComplexToBoolean: 888 case CK_FloatingComplexCast: 889 case CK_FloatingComplexToIntegralComplex: 890 case CK_IntegralRealToComplex: 891 case CK_IntegralComplexToReal: 892 case CK_IntegralComplexToBoolean: 893 case CK_IntegralComplexCast: 894 case CK_IntegralComplexToFloatingComplex: 895 case CK_ARCProduceObject: 896 case CK_ARCConsumeObject: 897 case CK_ARCReclaimReturnedObject: 898 case CK_ARCExtendBlockObject: 899 case CK_CopyAndAutoreleaseBlockObject: 900 case CK_BuiltinFnToFnPtr: 901 case CK_ZeroToOCLOpaqueType: 902 903 case CK_IntToOCLSampler: 904 case CK_FixedPointCast: 905 case CK_FixedPointToBoolean: 906 case CK_FixedPointToIntegral: 907 case CK_IntegralToFixedPoint: 908 llvm_unreachable("cast kind invalid for aggregate types"); 909 } 910 } 911 912 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 913 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 914 EmitAggLoadOfLValue(E); 915 return; 916 } 917 918 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 919 return CGF.EmitCallExpr(E, Slot); 920 }); 921 } 922 923 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 924 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 925 return CGF.EmitObjCMessageExpr(E, Slot); 926 }); 927 } 928 929 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 930 CGF.EmitIgnoredExpr(E->getLHS()); 931 Visit(E->getRHS()); 932 } 933 934 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 935 CodeGenFunction::StmtExprEvaluation eval(CGF); 936 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 937 } 938 939 enum CompareKind { 940 CK_Less, 941 CK_Greater, 942 CK_Equal, 943 }; 944 945 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 946 const BinaryOperator *E, llvm::Value *LHS, 947 llvm::Value *RHS, CompareKind Kind, 948 const char *NameSuffix = "") { 949 QualType ArgTy = E->getLHS()->getType(); 950 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 951 ArgTy = CT->getElementType(); 952 953 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 954 assert(Kind == CK_Equal && 955 "member pointers may only be compared for equality"); 956 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 957 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 958 } 959 960 // Compute the comparison instructions for the specified comparison kind. 961 struct CmpInstInfo { 962 const char *Name; 963 llvm::CmpInst::Predicate FCmp; 964 llvm::CmpInst::Predicate SCmp; 965 llvm::CmpInst::Predicate UCmp; 966 }; 967 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 968 using FI = llvm::FCmpInst; 969 using II = llvm::ICmpInst; 970 switch (Kind) { 971 case CK_Less: 972 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 973 case CK_Greater: 974 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 975 case CK_Equal: 976 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 977 } 978 llvm_unreachable("Unrecognised CompareKind enum"); 979 }(); 980 981 if (ArgTy->hasFloatingRepresentation()) 982 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 983 llvm::Twine(InstInfo.Name) + NameSuffix); 984 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 985 auto Inst = 986 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 987 return Builder.CreateICmp(Inst, LHS, RHS, 988 llvm::Twine(InstInfo.Name) + NameSuffix); 989 } 990 991 llvm_unreachable("unsupported aggregate binary expression should have " 992 "already been handled"); 993 } 994 995 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 996 using llvm::BasicBlock; 997 using llvm::PHINode; 998 using llvm::Value; 999 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1000 E->getRHS()->getType())); 1001 const ComparisonCategoryInfo &CmpInfo = 1002 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1003 assert(CmpInfo.Record->isTriviallyCopyable() && 1004 "cannot copy non-trivially copyable aggregate"); 1005 1006 QualType ArgTy = E->getLHS()->getType(); 1007 1008 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1009 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1010 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1011 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1012 } 1013 bool IsComplex = ArgTy->isAnyComplexType(); 1014 1015 // Evaluate the operands to the expression and extract their values. 1016 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1017 RValue RV = CGF.EmitAnyExpr(E); 1018 if (RV.isScalar()) 1019 return {RV.getScalarVal(), nullptr}; 1020 if (RV.isAggregate()) 1021 return {RV.getAggregatePointer(), nullptr}; 1022 assert(RV.isComplex()); 1023 return RV.getComplexVal(); 1024 }; 1025 auto LHSValues = EmitOperand(E->getLHS()), 1026 RHSValues = EmitOperand(E->getRHS()); 1027 1028 auto EmitCmp = [&](CompareKind K) { 1029 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1030 K, IsComplex ? ".r" : ""); 1031 if (!IsComplex) 1032 return Cmp; 1033 assert(K == CompareKind::CK_Equal); 1034 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1035 RHSValues.second, K, ".i"); 1036 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1037 }; 1038 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1039 return Builder.getInt(VInfo->getIntValue()); 1040 }; 1041 1042 Value *Select; 1043 if (ArgTy->isNullPtrType()) { 1044 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1045 } else if (!CmpInfo.isPartial()) { 1046 Value *SelectOne = 1047 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1048 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1049 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1050 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1051 SelectOne, "sel.eq"); 1052 } else { 1053 Value *SelectEq = Builder.CreateSelect( 1054 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1055 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1056 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1057 EmitCmpRes(CmpInfo.getGreater()), 1058 SelectEq, "sel.gt"); 1059 Select = Builder.CreateSelect( 1060 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1061 } 1062 // Create the return value in the destination slot. 1063 EnsureDest(E->getType()); 1064 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1065 1066 // Emit the address of the first (and only) field in the comparison category 1067 // type, and initialize it from the constant integer value selected above. 1068 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1069 DestLV, *CmpInfo.Record->field_begin()); 1070 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1071 1072 // All done! The result is in the Dest slot. 1073 } 1074 1075 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1076 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1077 VisitPointerToDataMemberBinaryOperator(E); 1078 else 1079 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1080 } 1081 1082 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1083 const BinaryOperator *E) { 1084 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1085 EmitFinalDestCopy(E->getType(), LV); 1086 } 1087 1088 /// Is the value of the given expression possibly a reference to or 1089 /// into a __block variable? 1090 static bool isBlockVarRef(const Expr *E) { 1091 // Make sure we look through parens. 1092 E = E->IgnoreParens(); 1093 1094 // Check for a direct reference to a __block variable. 1095 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1096 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1097 return (var && var->hasAttr<BlocksAttr>()); 1098 } 1099 1100 // More complicated stuff. 1101 1102 // Binary operators. 1103 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1104 // For an assignment or pointer-to-member operation, just care 1105 // about the LHS. 1106 if (op->isAssignmentOp() || op->isPtrMemOp()) 1107 return isBlockVarRef(op->getLHS()); 1108 1109 // For a comma, just care about the RHS. 1110 if (op->getOpcode() == BO_Comma) 1111 return isBlockVarRef(op->getRHS()); 1112 1113 // FIXME: pointer arithmetic? 1114 return false; 1115 1116 // Check both sides of a conditional operator. 1117 } else if (const AbstractConditionalOperator *op 1118 = dyn_cast<AbstractConditionalOperator>(E)) { 1119 return isBlockVarRef(op->getTrueExpr()) 1120 || isBlockVarRef(op->getFalseExpr()); 1121 1122 // OVEs are required to support BinaryConditionalOperators. 1123 } else if (const OpaqueValueExpr *op 1124 = dyn_cast<OpaqueValueExpr>(E)) { 1125 if (const Expr *src = op->getSourceExpr()) 1126 return isBlockVarRef(src); 1127 1128 // Casts are necessary to get things like (*(int*)&var) = foo(). 1129 // We don't really care about the kind of cast here, except 1130 // we don't want to look through l2r casts, because it's okay 1131 // to get the *value* in a __block variable. 1132 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1133 if (cast->getCastKind() == CK_LValueToRValue) 1134 return false; 1135 return isBlockVarRef(cast->getSubExpr()); 1136 1137 // Handle unary operators. Again, just aggressively look through 1138 // it, ignoring the operation. 1139 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1140 return isBlockVarRef(uop->getSubExpr()); 1141 1142 // Look into the base of a field access. 1143 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1144 return isBlockVarRef(mem->getBase()); 1145 1146 // Look into the base of a subscript. 1147 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1148 return isBlockVarRef(sub->getBase()); 1149 } 1150 1151 return false; 1152 } 1153 1154 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1155 // For an assignment to work, the value on the right has 1156 // to be compatible with the value on the left. 1157 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1158 E->getRHS()->getType()) 1159 && "Invalid assignment"); 1160 1161 // If the LHS might be a __block variable, and the RHS can 1162 // potentially cause a block copy, we need to evaluate the RHS first 1163 // so that the assignment goes the right place. 1164 // This is pretty semantically fragile. 1165 if (isBlockVarRef(E->getLHS()) && 1166 E->getRHS()->HasSideEffects(CGF.getContext())) { 1167 // Ensure that we have a destination, and evaluate the RHS into that. 1168 EnsureDest(E->getRHS()->getType()); 1169 Visit(E->getRHS()); 1170 1171 // Now emit the LHS and copy into it. 1172 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1173 1174 // That copy is an atomic copy if the LHS is atomic. 1175 if (LHS.getType()->isAtomicType() || 1176 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1177 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1178 return; 1179 } 1180 1181 EmitCopy(E->getLHS()->getType(), 1182 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1183 needsGC(E->getLHS()->getType()), 1184 AggValueSlot::IsAliased, 1185 AggValueSlot::MayOverlap), 1186 Dest); 1187 return; 1188 } 1189 1190 LValue LHS = CGF.EmitLValue(E->getLHS()); 1191 1192 // If we have an atomic type, evaluate into the destination and then 1193 // do an atomic copy. 1194 if (LHS.getType()->isAtomicType() || 1195 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1196 EnsureDest(E->getRHS()->getType()); 1197 Visit(E->getRHS()); 1198 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1199 return; 1200 } 1201 1202 // Codegen the RHS so that it stores directly into the LHS. 1203 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1204 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1205 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1206 // A non-volatile aggregate destination might have volatile member. 1207 if (!LHSSlot.isVolatile() && 1208 CGF.hasVolatileMember(E->getLHS()->getType())) 1209 LHSSlot.setVolatile(true); 1210 1211 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1212 1213 // Copy into the destination if the assignment isn't ignored. 1214 EmitFinalDestCopy(E->getType(), LHS); 1215 } 1216 1217 void AggExprEmitter:: 1218 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1219 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1220 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1221 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1222 1223 // Bind the common expression if necessary. 1224 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1225 1226 CodeGenFunction::ConditionalEvaluation eval(CGF); 1227 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1228 CGF.getProfileCount(E)); 1229 1230 // Save whether the destination's lifetime is externally managed. 1231 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1232 1233 eval.begin(CGF); 1234 CGF.EmitBlock(LHSBlock); 1235 CGF.incrementProfileCounter(E); 1236 Visit(E->getTrueExpr()); 1237 eval.end(CGF); 1238 1239 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1240 CGF.Builder.CreateBr(ContBlock); 1241 1242 // If the result of an agg expression is unused, then the emission 1243 // of the LHS might need to create a destination slot. That's fine 1244 // with us, and we can safely emit the RHS into the same slot, but 1245 // we shouldn't claim that it's already being destructed. 1246 Dest.setExternallyDestructed(isExternallyDestructed); 1247 1248 eval.begin(CGF); 1249 CGF.EmitBlock(RHSBlock); 1250 Visit(E->getFalseExpr()); 1251 eval.end(CGF); 1252 1253 CGF.EmitBlock(ContBlock); 1254 } 1255 1256 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1257 Visit(CE->getChosenSubExpr()); 1258 } 1259 1260 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1261 Address ArgValue = Address::invalid(); 1262 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1263 1264 // If EmitVAArg fails, emit an error. 1265 if (!ArgPtr.isValid()) { 1266 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1267 return; 1268 } 1269 1270 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1271 } 1272 1273 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1274 // Ensure that we have a slot, but if we already do, remember 1275 // whether it was externally destructed. 1276 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1277 EnsureDest(E->getType()); 1278 1279 // We're going to push a destructor if there isn't already one. 1280 Dest.setExternallyDestructed(); 1281 1282 Visit(E->getSubExpr()); 1283 1284 // Push that destructor we promised. 1285 if (!wasExternallyDestructed) 1286 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1287 } 1288 1289 void 1290 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1291 AggValueSlot Slot = EnsureSlot(E->getType()); 1292 CGF.EmitCXXConstructExpr(E, Slot); 1293 } 1294 1295 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1296 const CXXInheritedCtorInitExpr *E) { 1297 AggValueSlot Slot = EnsureSlot(E->getType()); 1298 CGF.EmitInheritedCXXConstructorCall( 1299 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1300 E->inheritedFromVBase(), E); 1301 } 1302 1303 void 1304 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1305 AggValueSlot Slot = EnsureSlot(E->getType()); 1306 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1307 1308 // We'll need to enter cleanup scopes in case any of the element 1309 // initializers throws an exception. 1310 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1311 llvm::Instruction *CleanupDominator = nullptr; 1312 1313 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1314 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1315 e = E->capture_init_end(); 1316 i != e; ++i, ++CurField) { 1317 // Emit initialization 1318 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1319 if (CurField->hasCapturedVLAType()) { 1320 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1321 continue; 1322 } 1323 1324 EmitInitializationToLValue(*i, LV); 1325 1326 // Push a destructor if necessary. 1327 if (QualType::DestructionKind DtorKind = 1328 CurField->getType().isDestructedType()) { 1329 assert(LV.isSimple()); 1330 if (CGF.needsEHCleanup(DtorKind)) { 1331 if (!CleanupDominator) 1332 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1333 CGF.Int8Ty, 1334 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1335 CharUnits::One()); // placeholder 1336 1337 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1338 CGF.getDestroyer(DtorKind), false); 1339 Cleanups.push_back(CGF.EHStack.stable_begin()); 1340 } 1341 } 1342 } 1343 1344 // Deactivate all the partial cleanups in reverse order, which 1345 // generally means popping them. 1346 for (unsigned i = Cleanups.size(); i != 0; --i) 1347 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1348 1349 // Destroy the placeholder if we made one. 1350 if (CleanupDominator) 1351 CleanupDominator->eraseFromParent(); 1352 } 1353 1354 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1355 CGF.enterFullExpression(E); 1356 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1357 Visit(E->getSubExpr()); 1358 } 1359 1360 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1361 QualType T = E->getType(); 1362 AggValueSlot Slot = EnsureSlot(T); 1363 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1364 } 1365 1366 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1367 QualType T = E->getType(); 1368 AggValueSlot Slot = EnsureSlot(T); 1369 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1370 } 1371 1372 /// isSimpleZero - If emitting this value will obviously just cause a store of 1373 /// zero to memory, return true. This can return false if uncertain, so it just 1374 /// handles simple cases. 1375 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1376 E = E->IgnoreParens(); 1377 1378 // 0 1379 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1380 return IL->getValue() == 0; 1381 // +0.0 1382 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1383 return FL->getValue().isPosZero(); 1384 // int() 1385 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1386 CGF.getTypes().isZeroInitializable(E->getType())) 1387 return true; 1388 // (int*)0 - Null pointer expressions. 1389 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1390 return ICE->getCastKind() == CK_NullToPointer && 1391 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1392 !E->HasSideEffects(CGF.getContext()); 1393 // '\0' 1394 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1395 return CL->getValue() == 0; 1396 1397 // Otherwise, hard case: conservatively return false. 1398 return false; 1399 } 1400 1401 1402 void 1403 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1404 QualType type = LV.getType(); 1405 // FIXME: Ignore result? 1406 // FIXME: Are initializers affected by volatile? 1407 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1408 // Storing "i32 0" to a zero'd memory location is a noop. 1409 return; 1410 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1411 return EmitNullInitializationToLValue(LV); 1412 } else if (isa<NoInitExpr>(E)) { 1413 // Do nothing. 1414 return; 1415 } else if (type->isReferenceType()) { 1416 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1417 return CGF.EmitStoreThroughLValue(RV, LV); 1418 } 1419 1420 switch (CGF.getEvaluationKind(type)) { 1421 case TEK_Complex: 1422 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1423 return; 1424 case TEK_Aggregate: 1425 CGF.EmitAggExpr( 1426 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1427 AggValueSlot::DoesNotNeedGCBarriers, 1428 AggValueSlot::IsNotAliased, 1429 AggValueSlot::MayOverlap, Dest.isZeroed())); 1430 return; 1431 case TEK_Scalar: 1432 if (LV.isSimple()) { 1433 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1434 } else { 1435 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1436 } 1437 return; 1438 } 1439 llvm_unreachable("bad evaluation kind"); 1440 } 1441 1442 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1443 QualType type = lv.getType(); 1444 1445 // If the destination slot is already zeroed out before the aggregate is 1446 // copied into it, we don't have to emit any zeros here. 1447 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1448 return; 1449 1450 if (CGF.hasScalarEvaluationKind(type)) { 1451 // For non-aggregates, we can store the appropriate null constant. 1452 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1453 // Note that the following is not equivalent to 1454 // EmitStoreThroughBitfieldLValue for ARC types. 1455 if (lv.isBitField()) { 1456 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1457 } else { 1458 assert(lv.isSimple()); 1459 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1460 } 1461 } else { 1462 // There's a potential optimization opportunity in combining 1463 // memsets; that would be easy for arrays, but relatively 1464 // difficult for structures with the current code. 1465 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1466 } 1467 } 1468 1469 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1470 #if 0 1471 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1472 // (Length of globals? Chunks of zeroed-out space?). 1473 // 1474 // If we can, prefer a copy from a global; this is a lot less code for long 1475 // globals, and it's easier for the current optimizers to analyze. 1476 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1477 llvm::GlobalVariable* GV = 1478 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1479 llvm::GlobalValue::InternalLinkage, C, ""); 1480 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1481 return; 1482 } 1483 #endif 1484 if (E->hadArrayRangeDesignator()) 1485 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1486 1487 if (E->isTransparent()) 1488 return Visit(E->getInit(0)); 1489 1490 AggValueSlot Dest = EnsureSlot(E->getType()); 1491 1492 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1493 1494 // Handle initialization of an array. 1495 if (E->getType()->isArrayType()) { 1496 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1497 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1498 return; 1499 } 1500 1501 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1502 1503 // Do struct initialization; this code just sets each individual member 1504 // to the approprate value. This makes bitfield support automatic; 1505 // the disadvantage is that the generated code is more difficult for 1506 // the optimizer, especially with bitfields. 1507 unsigned NumInitElements = E->getNumInits(); 1508 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1509 1510 // We'll need to enter cleanup scopes in case any of the element 1511 // initializers throws an exception. 1512 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1513 llvm::Instruction *cleanupDominator = nullptr; 1514 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1515 cleanups.push_back(cleanup); 1516 if (!cleanupDominator) // create placeholder once needed 1517 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1518 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1519 CharUnits::One()); 1520 }; 1521 1522 unsigned curInitIndex = 0; 1523 1524 // Emit initialization of base classes. 1525 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1526 assert(E->getNumInits() >= CXXRD->getNumBases() && 1527 "missing initializer for base class"); 1528 for (auto &Base : CXXRD->bases()) { 1529 assert(!Base.isVirtual() && "should not see vbases here"); 1530 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1531 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1532 Dest.getAddress(), CXXRD, BaseRD, 1533 /*isBaseVirtual*/ false); 1534 AggValueSlot AggSlot = AggValueSlot::forAddr( 1535 V, Qualifiers(), 1536 AggValueSlot::IsDestructed, 1537 AggValueSlot::DoesNotNeedGCBarriers, 1538 AggValueSlot::IsNotAliased, 1539 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1540 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1541 1542 if (QualType::DestructionKind dtorKind = 1543 Base.getType().isDestructedType()) { 1544 CGF.pushDestroy(dtorKind, V, Base.getType()); 1545 addCleanup(CGF.EHStack.stable_begin()); 1546 } 1547 } 1548 } 1549 1550 // Prepare a 'this' for CXXDefaultInitExprs. 1551 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1552 1553 if (record->isUnion()) { 1554 // Only initialize one field of a union. The field itself is 1555 // specified by the initializer list. 1556 if (!E->getInitializedFieldInUnion()) { 1557 // Empty union; we have nothing to do. 1558 1559 #ifndef NDEBUG 1560 // Make sure that it's really an empty and not a failure of 1561 // semantic analysis. 1562 for (const auto *Field : record->fields()) 1563 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1564 #endif 1565 return; 1566 } 1567 1568 // FIXME: volatility 1569 FieldDecl *Field = E->getInitializedFieldInUnion(); 1570 1571 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1572 if (NumInitElements) { 1573 // Store the initializer into the field 1574 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1575 } else { 1576 // Default-initialize to null. 1577 EmitNullInitializationToLValue(FieldLoc); 1578 } 1579 1580 return; 1581 } 1582 1583 // Here we iterate over the fields; this makes it simpler to both 1584 // default-initialize fields and skip over unnamed fields. 1585 for (const auto *field : record->fields()) { 1586 // We're done once we hit the flexible array member. 1587 if (field->getType()->isIncompleteArrayType()) 1588 break; 1589 1590 // Always skip anonymous bitfields. 1591 if (field->isUnnamedBitfield()) 1592 continue; 1593 1594 // We're done if we reach the end of the explicit initializers, we 1595 // have a zeroed object, and the rest of the fields are 1596 // zero-initializable. 1597 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1598 CGF.getTypes().isZeroInitializable(E->getType())) 1599 break; 1600 1601 1602 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1603 // We never generate write-barries for initialized fields. 1604 LV.setNonGC(true); 1605 1606 if (curInitIndex < NumInitElements) { 1607 // Store the initializer into the field. 1608 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1609 } else { 1610 // We're out of initializers; default-initialize to null 1611 EmitNullInitializationToLValue(LV); 1612 } 1613 1614 // Push a destructor if necessary. 1615 // FIXME: if we have an array of structures, all explicitly 1616 // initialized, we can end up pushing a linear number of cleanups. 1617 bool pushedCleanup = false; 1618 if (QualType::DestructionKind dtorKind 1619 = field->getType().isDestructedType()) { 1620 assert(LV.isSimple()); 1621 if (CGF.needsEHCleanup(dtorKind)) { 1622 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1623 CGF.getDestroyer(dtorKind), false); 1624 addCleanup(CGF.EHStack.stable_begin()); 1625 pushedCleanup = true; 1626 } 1627 } 1628 1629 // If the GEP didn't get used because of a dead zero init or something 1630 // else, clean it up for -O0 builds and general tidiness. 1631 if (!pushedCleanup && LV.isSimple()) 1632 if (llvm::GetElementPtrInst *GEP = 1633 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1634 if (GEP->use_empty()) 1635 GEP->eraseFromParent(); 1636 } 1637 1638 // Deactivate all the partial cleanups in reverse order, which 1639 // generally means popping them. 1640 assert((cleanupDominator || cleanups.empty()) && 1641 "Missing cleanupDominator before deactivating cleanup blocks"); 1642 for (unsigned i = cleanups.size(); i != 0; --i) 1643 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1644 1645 // Destroy the placeholder if we made one. 1646 if (cleanupDominator) 1647 cleanupDominator->eraseFromParent(); 1648 } 1649 1650 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1651 llvm::Value *outerBegin) { 1652 // Emit the common subexpression. 1653 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1654 1655 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1656 uint64_t numElements = E->getArraySize().getZExtValue(); 1657 1658 if (!numElements) 1659 return; 1660 1661 // destPtr is an array*. Construct an elementType* by drilling down a level. 1662 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1663 llvm::Value *indices[] = {zero, zero}; 1664 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1665 "arrayinit.begin"); 1666 1667 // Prepare to special-case multidimensional array initialization: we avoid 1668 // emitting multiple destructor loops in that case. 1669 if (!outerBegin) 1670 outerBegin = begin; 1671 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1672 1673 QualType elementType = 1674 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1675 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1676 CharUnits elementAlign = 1677 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1678 1679 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1680 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1681 1682 // Jump into the body. 1683 CGF.EmitBlock(bodyBB); 1684 llvm::PHINode *index = 1685 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1686 index->addIncoming(zero, entryBB); 1687 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1688 1689 // Prepare for a cleanup. 1690 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1691 EHScopeStack::stable_iterator cleanup; 1692 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1693 if (outerBegin->getType() != element->getType()) 1694 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1695 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1696 elementAlign, 1697 CGF.getDestroyer(dtorKind)); 1698 cleanup = CGF.EHStack.stable_begin(); 1699 } else { 1700 dtorKind = QualType::DK_none; 1701 } 1702 1703 // Emit the actual filler expression. 1704 { 1705 // Temporaries created in an array initialization loop are destroyed 1706 // at the end of each iteration. 1707 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1708 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1709 LValue elementLV = 1710 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1711 1712 if (InnerLoop) { 1713 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1714 auto elementSlot = AggValueSlot::forLValue( 1715 elementLV, CGF, AggValueSlot::IsDestructed, 1716 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1717 AggValueSlot::DoesNotOverlap); 1718 AggExprEmitter(CGF, elementSlot, false) 1719 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1720 } else 1721 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1722 } 1723 1724 // Move on to the next element. 1725 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1726 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1727 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1728 1729 // Leave the loop if we're done. 1730 llvm::Value *done = Builder.CreateICmpEQ( 1731 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1732 "arrayinit.done"); 1733 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1734 Builder.CreateCondBr(done, endBB, bodyBB); 1735 1736 CGF.EmitBlock(endBB); 1737 1738 // Leave the partial-array cleanup if we entered one. 1739 if (dtorKind) 1740 CGF.DeactivateCleanupBlock(cleanup, index); 1741 } 1742 1743 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1744 AggValueSlot Dest = EnsureSlot(E->getType()); 1745 1746 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1747 EmitInitializationToLValue(E->getBase(), DestLV); 1748 VisitInitListExpr(E->getUpdater()); 1749 } 1750 1751 //===----------------------------------------------------------------------===// 1752 // Entry Points into this File 1753 //===----------------------------------------------------------------------===// 1754 1755 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1756 /// non-zero bytes that will be stored when outputting the initializer for the 1757 /// specified initializer expression. 1758 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1759 E = E->IgnoreParens(); 1760 1761 // 0 and 0.0 won't require any non-zero stores! 1762 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1763 1764 // If this is an initlist expr, sum up the size of sizes of the (present) 1765 // elements. If this is something weird, assume the whole thing is non-zero. 1766 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1767 while (ILE && ILE->isTransparent()) 1768 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1769 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1770 return CGF.getContext().getTypeSizeInChars(E->getType()); 1771 1772 // InitListExprs for structs have to be handled carefully. If there are 1773 // reference members, we need to consider the size of the reference, not the 1774 // referencee. InitListExprs for unions and arrays can't have references. 1775 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1776 if (!RT->isUnionType()) { 1777 RecordDecl *SD = RT->getDecl(); 1778 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1779 1780 unsigned ILEElement = 0; 1781 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1782 while (ILEElement != CXXRD->getNumBases()) 1783 NumNonZeroBytes += 1784 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1785 for (const auto *Field : SD->fields()) { 1786 // We're done once we hit the flexible array member or run out of 1787 // InitListExpr elements. 1788 if (Field->getType()->isIncompleteArrayType() || 1789 ILEElement == ILE->getNumInits()) 1790 break; 1791 if (Field->isUnnamedBitfield()) 1792 continue; 1793 1794 const Expr *E = ILE->getInit(ILEElement++); 1795 1796 // Reference values are always non-null and have the width of a pointer. 1797 if (Field->getType()->isReferenceType()) 1798 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1799 CGF.getTarget().getPointerWidth(0)); 1800 else 1801 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1802 } 1803 1804 return NumNonZeroBytes; 1805 } 1806 } 1807 1808 1809 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1810 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1811 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1812 return NumNonZeroBytes; 1813 } 1814 1815 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1816 /// zeros in it, emit a memset and avoid storing the individual zeros. 1817 /// 1818 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1819 CodeGenFunction &CGF) { 1820 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1821 // volatile stores. 1822 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1823 return; 1824 1825 // C++ objects with a user-declared constructor don't need zero'ing. 1826 if (CGF.getLangOpts().CPlusPlus) 1827 if (const RecordType *RT = CGF.getContext() 1828 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1829 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1830 if (RD->hasUserDeclaredConstructor()) 1831 return; 1832 } 1833 1834 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1835 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1836 if (Size <= CharUnits::fromQuantity(16)) 1837 return; 1838 1839 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1840 // we prefer to emit memset + individual stores for the rest. 1841 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1842 if (NumNonZeroBytes*4 > Size) 1843 return; 1844 1845 // Okay, it seems like a good idea to use an initial memset, emit the call. 1846 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1847 1848 Address Loc = Slot.getAddress(); 1849 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1850 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1851 1852 // Tell the AggExprEmitter that the slot is known zero. 1853 Slot.setZeroed(); 1854 } 1855 1856 1857 1858 1859 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1860 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1861 /// the value of the aggregate expression is not needed. If VolatileDest is 1862 /// true, DestPtr cannot be 0. 1863 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1864 assert(E && hasAggregateEvaluationKind(E->getType()) && 1865 "Invalid aggregate expression to emit"); 1866 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1867 "slot has bits but no address"); 1868 1869 // Optimize the slot if possible. 1870 CheckAggExprForMemSetUse(Slot, E, *this); 1871 1872 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1873 } 1874 1875 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1876 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1877 Address Temp = CreateMemTemp(E->getType()); 1878 LValue LV = MakeAddrLValue(Temp, E->getType()); 1879 EmitAggExpr(E, AggValueSlot::forLValue( 1880 LV, *this, AggValueSlot::IsNotDestructed, 1881 AggValueSlot::DoesNotNeedGCBarriers, 1882 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 1883 return LV; 1884 } 1885 1886 AggValueSlot::Overlap_t 1887 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 1888 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 1889 return AggValueSlot::DoesNotOverlap; 1890 1891 // If the field lies entirely within the enclosing class's nvsize, its tail 1892 // padding cannot overlap any already-initialized object. (The only subobjects 1893 // with greater addresses that might already be initialized are vbases.) 1894 const RecordDecl *ClassRD = FD->getParent(); 1895 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 1896 if (Layout.getFieldOffset(FD->getFieldIndex()) + 1897 getContext().getTypeSize(FD->getType()) <= 1898 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 1899 return AggValueSlot::DoesNotOverlap; 1900 1901 // The tail padding may contain values we need to preserve. 1902 return AggValueSlot::MayOverlap; 1903 } 1904 1905 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 1906 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1907 // If the most-derived object is a field declared with [[no_unique_address]], 1908 // the tail padding of any virtual base could be reused for other subobjects 1909 // of that field's class. 1910 if (IsVirtual) 1911 return AggValueSlot::MayOverlap; 1912 1913 // If the base class is laid out entirely within the nvsize of the derived 1914 // class, its tail padding cannot yet be initialized, so we can issue 1915 // stores at the full width of the base class. 1916 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1917 if (Layout.getBaseClassOffset(BaseRD) + 1918 getContext().getASTRecordLayout(BaseRD).getSize() <= 1919 Layout.getNonVirtualSize()) 1920 return AggValueSlot::DoesNotOverlap; 1921 1922 // The tail padding may contain values we need to preserve. 1923 return AggValueSlot::MayOverlap; 1924 } 1925 1926 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1927 AggValueSlot::Overlap_t MayOverlap, 1928 bool isVolatile) { 1929 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1930 1931 Address DestPtr = Dest.getAddress(*this); 1932 Address SrcPtr = Src.getAddress(*this); 1933 1934 if (getLangOpts().CPlusPlus) { 1935 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1936 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1937 assert((Record->hasTrivialCopyConstructor() || 1938 Record->hasTrivialCopyAssignment() || 1939 Record->hasTrivialMoveConstructor() || 1940 Record->hasTrivialMoveAssignment() || 1941 Record->isUnion()) && 1942 "Trying to aggregate-copy a type without a trivial copy/move " 1943 "constructor or assignment operator"); 1944 // Ignore empty classes in C++. 1945 if (Record->isEmpty()) 1946 return; 1947 } 1948 } 1949 1950 if (getLangOpts().CUDAIsDevice) { 1951 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 1952 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 1953 Src)) 1954 return; 1955 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 1956 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 1957 Src)) 1958 return; 1959 } 1960 } 1961 1962 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1963 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1964 // read from another object that overlaps in anyway the storage of the first 1965 // object, then the overlap shall be exact and the two objects shall have 1966 // qualified or unqualified versions of a compatible type." 1967 // 1968 // memcpy is not defined if the source and destination pointers are exactly 1969 // equal, but other compilers do this optimization, and almost every memcpy 1970 // implementation handles this case safely. If there is a libc that does not 1971 // safely handle this, we can add a target hook. 1972 1973 // Get data size info for this aggregate. Don't copy the tail padding if this 1974 // might be a potentially-overlapping subobject, since the tail padding might 1975 // be occupied by a different object. Otherwise, copying it is fine. 1976 std::pair<CharUnits, CharUnits> TypeInfo; 1977 if (MayOverlap) 1978 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1979 else 1980 TypeInfo = getContext().getTypeInfoInChars(Ty); 1981 1982 llvm::Value *SizeVal = nullptr; 1983 if (TypeInfo.first.isZero()) { 1984 // But note that getTypeInfo returns 0 for a VLA. 1985 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1986 getContext().getAsArrayType(Ty))) { 1987 QualType BaseEltTy; 1988 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1989 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1990 assert(!TypeInfo.first.isZero()); 1991 SizeVal = Builder.CreateNUWMul( 1992 SizeVal, 1993 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1994 } 1995 } 1996 if (!SizeVal) { 1997 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1998 } 1999 2000 // FIXME: If we have a volatile struct, the optimizer can remove what might 2001 // appear to be `extra' memory ops: 2002 // 2003 // volatile struct { int i; } a, b; 2004 // 2005 // int main() { 2006 // a = b; 2007 // a = b; 2008 // } 2009 // 2010 // we need to use a different call here. We use isVolatile to indicate when 2011 // either the source or the destination is volatile. 2012 2013 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2014 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2015 2016 // Don't do any of the memmove_collectable tests if GC isn't set. 2017 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2018 // fall through 2019 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2020 RecordDecl *Record = RecordTy->getDecl(); 2021 if (Record->hasObjectMember()) { 2022 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2023 SizeVal); 2024 return; 2025 } 2026 } else if (Ty->isArrayType()) { 2027 QualType BaseType = getContext().getBaseElementType(Ty); 2028 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2029 if (RecordTy->getDecl()->hasObjectMember()) { 2030 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2031 SizeVal); 2032 return; 2033 } 2034 } 2035 } 2036 2037 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2038 2039 // Determine the metadata to describe the position of any padding in this 2040 // memcpy, as well as the TBAA tags for the members of the struct, in case 2041 // the optimizer wishes to expand it in to scalar memory operations. 2042 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2043 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2044 2045 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2046 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2047 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2048 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2049 } 2050 } 2051