1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/Constants.h" 22 #include "llvm/Function.h" 23 #include "llvm/GlobalVariable.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 void EnsureDest(QualType T) { 59 if (!Dest.isIgnored()) return; 60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 61 } 62 63 public: 64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 66 } 67 68 //===--------------------------------------------------------------------===// 69 // Utilities 70 //===--------------------------------------------------------------------===// 71 72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 73 /// represents a value lvalue, this method emits the address of the lvalue, 74 /// then loads the result into DestPtr. 75 void EmitAggLoadOfLValue(const Expr *E); 76 77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 78 void EmitFinalDestCopy(QualType type, const LValue &src); 79 void EmitFinalDestCopy(QualType type, RValue src, 80 CharUnits srcAlignment = CharUnits::Zero()); 81 void EmitCopy(QualType type, const AggValueSlot &dest, 82 const AggValueSlot &src); 83 84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 85 86 void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); 87 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void VisitStmt(Stmt *S) { 103 CGF.ErrorUnsupported(S, "aggregate expression"); 104 } 105 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 106 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 107 Visit(GE->getResultExpr()); 108 } 109 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 110 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 111 return Visit(E->getReplacement()); 112 } 113 114 // l-values. 115 void VisitDeclRefExpr(DeclRefExpr *E) { 116 // For aggregates, we should always be able to emit the variable 117 // as an l-value unless it's a reference. This is due to the fact 118 // that we can't actually ever see a normal l2r conversion on an 119 // aggregate in C++, and in C there's no language standard 120 // actively preventing us from listing variables in the captures 121 // list of a block. 122 if (E->getDecl()->getType()->isReferenceType()) { 123 if (CodeGenFunction::ConstantEmission result 124 = CGF.tryEmitAsConstant(E)) { 125 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 126 return; 127 } 128 } 129 130 EmitAggLoadOfLValue(E); 131 } 132 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 153 void VisitObjCMessageExpr(ObjCMessageExpr *E); 154 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 155 EmitAggLoadOfLValue(E); 156 } 157 158 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 159 void VisitChooseExpr(const ChooseExpr *CE); 160 void VisitInitListExpr(InitListExpr *E); 161 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 162 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 163 Visit(DAE->getExpr()); 164 } 165 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 166 void VisitCXXConstructExpr(const CXXConstructExpr *E); 167 void VisitLambdaExpr(LambdaExpr *E); 168 void VisitExprWithCleanups(ExprWithCleanups *E); 169 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 170 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 171 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 172 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 173 174 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 175 if (E->isGLValue()) { 176 LValue LV = CGF.EmitPseudoObjectLValue(E); 177 return EmitFinalDestCopy(E->getType(), LV); 178 } 179 180 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 181 } 182 183 void VisitVAArgExpr(VAArgExpr *E); 184 185 void EmitInitializationToLValue(Expr *E, LValue Address); 186 void EmitNullInitializationToLValue(LValue Address); 187 // case Expr::ChooseExprClass: 188 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 189 void VisitAtomicExpr(AtomicExpr *E) { 190 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 191 } 192 }; 193 } // end anonymous namespace. 194 195 //===----------------------------------------------------------------------===// 196 // Utilities 197 //===----------------------------------------------------------------------===// 198 199 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 200 /// represents a value lvalue, this method emits the address of the lvalue, 201 /// then loads the result into DestPtr. 202 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 203 LValue LV = CGF.EmitLValue(E); 204 EmitFinalDestCopy(E->getType(), LV); 205 } 206 207 /// \brief True if the given aggregate type requires special GC API calls. 208 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 209 // Only record types have members that might require garbage collection. 210 const RecordType *RecordTy = T->getAs<RecordType>(); 211 if (!RecordTy) return false; 212 213 // Don't mess with non-trivial C++ types. 214 RecordDecl *Record = RecordTy->getDecl(); 215 if (isa<CXXRecordDecl>(Record) && 216 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 217 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 218 return false; 219 220 // Check whether the type has an object member. 221 return Record->hasObjectMember(); 222 } 223 224 /// \brief Perform the final move to DestPtr if for some reason 225 /// getReturnValueSlot() didn't use it directly. 226 /// 227 /// The idea is that you do something like this: 228 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 229 /// EmitMoveFromReturnSlot(E, Result); 230 /// 231 /// If nothing interferes, this will cause the result to be emitted 232 /// directly into the return value slot. Otherwise, a final move 233 /// will be performed. 234 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 235 if (shouldUseDestForReturnSlot()) { 236 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 237 // The possibility of undef rvalues complicates that a lot, 238 // though, so we can't really assert. 239 return; 240 } 241 242 // Otherwise, copy from there to the destination. 243 assert(Dest.getAddr() != src.getAggregateAddr()); 244 std::pair<CharUnits, CharUnits> typeInfo = 245 CGF.getContext().getTypeInfoInChars(E->getType()); 246 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 247 } 248 249 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 250 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 251 CharUnits srcAlign) { 252 assert(src.isAggregate() && "value must be aggregate value!"); 253 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 254 EmitFinalDestCopy(type, srcLV); 255 } 256 257 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 258 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 259 // If Dest is ignored, then we're evaluating an aggregate expression 260 // in a context that doesn't care about the result. Note that loads 261 // from volatile l-values force the existence of a non-ignored 262 // destination. 263 if (Dest.isIgnored()) 264 return; 265 266 AggValueSlot srcAgg = 267 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 268 needsGC(type), AggValueSlot::IsAliased); 269 EmitCopy(type, Dest, srcAgg); 270 } 271 272 /// Perform a copy from the source into the destination. 273 /// 274 /// \param type - the type of the aggregate being copied; qualifiers are 275 /// ignored 276 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 277 const AggValueSlot &src) { 278 if (dest.requiresGCollection()) { 279 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 280 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 281 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 282 dest.getAddr(), 283 src.getAddr(), 284 size); 285 return; 286 } 287 288 // If the result of the assignment is used, copy the LHS there also. 289 // It's volatile if either side is. Use the minimum alignment of 290 // the two sides. 291 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 292 dest.isVolatile() || src.isVolatile(), 293 std::min(dest.getAlignment(), src.getAlignment())); 294 } 295 296 static QualType GetStdInitializerListElementType(QualType T) { 297 // Just assume that this is really std::initializer_list. 298 ClassTemplateSpecializationDecl *specialization = 299 cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); 300 return specialization->getTemplateArgs()[0].getAsType(); 301 } 302 303 /// \brief Prepare cleanup for the temporary array. 304 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, 305 QualType arrayType, 306 llvm::Value *addr, 307 const InitListExpr *initList) { 308 QualType::DestructionKind dtorKind = arrayType.isDestructedType(); 309 if (!dtorKind) 310 return; // Type doesn't need destroying. 311 if (dtorKind != QualType::DK_cxx_destructor) { 312 CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); 313 return; 314 } 315 316 CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); 317 CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, 318 /*EHCleanup=*/true); 319 } 320 321 /// \brief Emit the initializer for a std::initializer_list initialized with a 322 /// real initializer list. 323 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, 324 InitListExpr *initList) { 325 // We emit an array containing the elements, then have the init list point 326 // at the array. 327 ASTContext &ctx = CGF.getContext(); 328 unsigned numInits = initList->getNumInits(); 329 QualType element = GetStdInitializerListElementType(initList->getType()); 330 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 331 QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); 332 llvm::Type *LTy = CGF.ConvertTypeForMem(array); 333 llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); 334 alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); 335 alloc->setName(".initlist."); 336 337 EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); 338 339 // FIXME: The diagnostics are somewhat out of place here. 340 RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); 341 RecordDecl::field_iterator field = record->field_begin(); 342 if (field == record->field_end()) { 343 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 344 return; 345 } 346 347 QualType elementPtr = ctx.getPointerType(element.withConst()); 348 349 // Start pointer. 350 if (!ctx.hasSameType(field->getType(), elementPtr)) { 351 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 352 return; 353 } 354 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType()); 355 LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field); 356 llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); 357 CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); 358 ++field; 359 360 if (field == record->field_end()) { 361 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 362 return; 363 } 364 LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field); 365 if (ctx.hasSameType(field->getType(), elementPtr)) { 366 // End pointer. 367 llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); 368 CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); 369 } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { 370 // Length. 371 CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); 372 } else { 373 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 374 return; 375 } 376 377 if (!Dest.isExternallyDestructed()) 378 EmitStdInitializerListCleanup(CGF, array, alloc, initList); 379 } 380 381 /// \brief Emit initialization of an array from an initializer list. 382 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 383 QualType elementType, InitListExpr *E) { 384 uint64_t NumInitElements = E->getNumInits(); 385 386 uint64_t NumArrayElements = AType->getNumElements(); 387 assert(NumInitElements <= NumArrayElements); 388 389 // DestPtr is an array*. Construct an elementType* by drilling 390 // down a level. 391 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 392 llvm::Value *indices[] = { zero, zero }; 393 llvm::Value *begin = 394 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 395 396 // Exception safety requires us to destroy all the 397 // already-constructed members if an initializer throws. 398 // For that, we'll need an EH cleanup. 399 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 400 llvm::AllocaInst *endOfInit = 0; 401 EHScopeStack::stable_iterator cleanup; 402 llvm::Instruction *cleanupDominator = 0; 403 if (CGF.needsEHCleanup(dtorKind)) { 404 // In principle we could tell the cleanup where we are more 405 // directly, but the control flow can get so varied here that it 406 // would actually be quite complex. Therefore we go through an 407 // alloca. 408 endOfInit = CGF.CreateTempAlloca(begin->getType(), 409 "arrayinit.endOfInit"); 410 cleanupDominator = Builder.CreateStore(begin, endOfInit); 411 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 412 CGF.getDestroyer(dtorKind)); 413 cleanup = CGF.EHStack.stable_begin(); 414 415 // Otherwise, remember that we didn't need a cleanup. 416 } else { 417 dtorKind = QualType::DK_none; 418 } 419 420 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 421 422 // The 'current element to initialize'. The invariants on this 423 // variable are complicated. Essentially, after each iteration of 424 // the loop, it points to the last initialized element, except 425 // that it points to the beginning of the array before any 426 // elements have been initialized. 427 llvm::Value *element = begin; 428 429 // Emit the explicit initializers. 430 for (uint64_t i = 0; i != NumInitElements; ++i) { 431 // Advance to the next element. 432 if (i > 0) { 433 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 434 435 // Tell the cleanup that it needs to destroy up to this 436 // element. TODO: some of these stores can be trivially 437 // observed to be unnecessary. 438 if (endOfInit) Builder.CreateStore(element, endOfInit); 439 } 440 441 // If these are nested std::initializer_list inits, do them directly, 442 // because they are conceptually the same "location". 443 InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); 444 if (initList && initList->initializesStdInitializerList()) { 445 EmitStdInitializerList(element, initList); 446 } else { 447 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 448 EmitInitializationToLValue(E->getInit(i), elementLV); 449 } 450 } 451 452 // Check whether there's a non-trivial array-fill expression. 453 // Note that this will be a CXXConstructExpr even if the element 454 // type is an array (or array of array, etc.) of class type. 455 Expr *filler = E->getArrayFiller(); 456 bool hasTrivialFiller = true; 457 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 458 assert(cons->getConstructor()->isDefaultConstructor()); 459 hasTrivialFiller = cons->getConstructor()->isTrivial(); 460 } 461 462 // Any remaining elements need to be zero-initialized, possibly 463 // using the filler expression. We can skip this if the we're 464 // emitting to zeroed memory. 465 if (NumInitElements != NumArrayElements && 466 !(Dest.isZeroed() && hasTrivialFiller && 467 CGF.getTypes().isZeroInitializable(elementType))) { 468 469 // Use an actual loop. This is basically 470 // do { *array++ = filler; } while (array != end); 471 472 // Advance to the start of the rest of the array. 473 if (NumInitElements) { 474 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 475 if (endOfInit) Builder.CreateStore(element, endOfInit); 476 } 477 478 // Compute the end of the array. 479 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 480 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 481 "arrayinit.end"); 482 483 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 484 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 485 486 // Jump into the body. 487 CGF.EmitBlock(bodyBB); 488 llvm::PHINode *currentElement = 489 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 490 currentElement->addIncoming(element, entryBB); 491 492 // Emit the actual filler expression. 493 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 494 if (filler) 495 EmitInitializationToLValue(filler, elementLV); 496 else 497 EmitNullInitializationToLValue(elementLV); 498 499 // Move on to the next element. 500 llvm::Value *nextElement = 501 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 502 503 // Tell the EH cleanup that we finished with the last element. 504 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 505 506 // Leave the loop if we're done. 507 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 508 "arrayinit.done"); 509 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 510 Builder.CreateCondBr(done, endBB, bodyBB); 511 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 512 513 CGF.EmitBlock(endBB); 514 } 515 516 // Leave the partial-array cleanup if we entered one. 517 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 518 } 519 520 //===----------------------------------------------------------------------===// 521 // Visitor Methods 522 //===----------------------------------------------------------------------===// 523 524 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 525 Visit(E->GetTemporaryExpr()); 526 } 527 528 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 529 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 530 } 531 532 void 533 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 534 if (E->getType().isPODType(CGF.getContext())) { 535 // For a POD type, just emit a load of the lvalue + a copy, because our 536 // compound literal might alias the destination. 537 // FIXME: This is a band-aid; the real problem appears to be in our handling 538 // of assignments, where we store directly into the LHS without checking 539 // whether anything in the RHS aliases. 540 EmitAggLoadOfLValue(E); 541 return; 542 } 543 544 AggValueSlot Slot = EnsureSlot(E->getType()); 545 CGF.EmitAggExpr(E->getInitializer(), Slot); 546 } 547 548 549 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 550 switch (E->getCastKind()) { 551 case CK_Dynamic: { 552 // FIXME: Can this actually happen? We have no test coverage for it. 553 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 554 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 555 CodeGenFunction::CT_Load); 556 // FIXME: Do we also need to handle property references here? 557 if (LV.isSimple()) 558 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 559 else 560 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 561 562 if (!Dest.isIgnored()) 563 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 564 break; 565 } 566 567 case CK_ToUnion: { 568 if (Dest.isIgnored()) break; 569 570 // GCC union extension 571 QualType Ty = E->getSubExpr()->getType(); 572 QualType PtrTy = CGF.getContext().getPointerType(Ty); 573 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 574 CGF.ConvertType(PtrTy)); 575 EmitInitializationToLValue(E->getSubExpr(), 576 CGF.MakeAddrLValue(CastPtr, Ty)); 577 break; 578 } 579 580 case CK_DerivedToBase: 581 case CK_BaseToDerived: 582 case CK_UncheckedDerivedToBase: { 583 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 584 "should have been unpacked before we got here"); 585 } 586 587 case CK_LValueToRValue: 588 // If we're loading from a volatile type, force the destination 589 // into existence. 590 if (E->getSubExpr()->getType().isVolatileQualified()) { 591 EnsureDest(E->getType()); 592 return Visit(E->getSubExpr()); 593 } 594 // fallthrough 595 596 case CK_NoOp: 597 case CK_AtomicToNonAtomic: 598 case CK_NonAtomicToAtomic: 599 case CK_UserDefinedConversion: 600 case CK_ConstructorConversion: 601 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 602 E->getType()) && 603 "Implicit cast types must be compatible"); 604 Visit(E->getSubExpr()); 605 break; 606 607 case CK_LValueBitCast: 608 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 609 610 case CK_Dependent: 611 case CK_BitCast: 612 case CK_ArrayToPointerDecay: 613 case CK_FunctionToPointerDecay: 614 case CK_NullToPointer: 615 case CK_NullToMemberPointer: 616 case CK_BaseToDerivedMemberPointer: 617 case CK_DerivedToBaseMemberPointer: 618 case CK_MemberPointerToBoolean: 619 case CK_ReinterpretMemberPointer: 620 case CK_IntegralToPointer: 621 case CK_PointerToIntegral: 622 case CK_PointerToBoolean: 623 case CK_ToVoid: 624 case CK_VectorSplat: 625 case CK_IntegralCast: 626 case CK_IntegralToBoolean: 627 case CK_IntegralToFloating: 628 case CK_FloatingToIntegral: 629 case CK_FloatingToBoolean: 630 case CK_FloatingCast: 631 case CK_CPointerToObjCPointerCast: 632 case CK_BlockPointerToObjCPointerCast: 633 case CK_AnyPointerToBlockPointerCast: 634 case CK_ObjCObjectLValueCast: 635 case CK_FloatingRealToComplex: 636 case CK_FloatingComplexToReal: 637 case CK_FloatingComplexToBoolean: 638 case CK_FloatingComplexCast: 639 case CK_FloatingComplexToIntegralComplex: 640 case CK_IntegralRealToComplex: 641 case CK_IntegralComplexToReal: 642 case CK_IntegralComplexToBoolean: 643 case CK_IntegralComplexCast: 644 case CK_IntegralComplexToFloatingComplex: 645 case CK_ARCProduceObject: 646 case CK_ARCConsumeObject: 647 case CK_ARCReclaimReturnedObject: 648 case CK_ARCExtendBlockObject: 649 case CK_CopyAndAutoreleaseBlockObject: 650 llvm_unreachable("cast kind invalid for aggregate types"); 651 } 652 } 653 654 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 655 if (E->getCallReturnType()->isReferenceType()) { 656 EmitAggLoadOfLValue(E); 657 return; 658 } 659 660 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 661 EmitMoveFromReturnSlot(E, RV); 662 } 663 664 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 665 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 666 EmitMoveFromReturnSlot(E, RV); 667 } 668 669 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 670 CGF.EmitIgnoredExpr(E->getLHS()); 671 Visit(E->getRHS()); 672 } 673 674 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 675 CodeGenFunction::StmtExprEvaluation eval(CGF); 676 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 677 } 678 679 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 680 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 681 VisitPointerToDataMemberBinaryOperator(E); 682 else 683 CGF.ErrorUnsupported(E, "aggregate binary expression"); 684 } 685 686 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 687 const BinaryOperator *E) { 688 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 689 EmitFinalDestCopy(E->getType(), LV); 690 } 691 692 /// Is the value of the given expression possibly a reference to or 693 /// into a __block variable? 694 static bool isBlockVarRef(const Expr *E) { 695 // Make sure we look through parens. 696 E = E->IgnoreParens(); 697 698 // Check for a direct reference to a __block variable. 699 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 700 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 701 return (var && var->hasAttr<BlocksAttr>()); 702 } 703 704 // More complicated stuff. 705 706 // Binary operators. 707 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 708 // For an assignment or pointer-to-member operation, just care 709 // about the LHS. 710 if (op->isAssignmentOp() || op->isPtrMemOp()) 711 return isBlockVarRef(op->getLHS()); 712 713 // For a comma, just care about the RHS. 714 if (op->getOpcode() == BO_Comma) 715 return isBlockVarRef(op->getRHS()); 716 717 // FIXME: pointer arithmetic? 718 return false; 719 720 // Check both sides of a conditional operator. 721 } else if (const AbstractConditionalOperator *op 722 = dyn_cast<AbstractConditionalOperator>(E)) { 723 return isBlockVarRef(op->getTrueExpr()) 724 || isBlockVarRef(op->getFalseExpr()); 725 726 // OVEs are required to support BinaryConditionalOperators. 727 } else if (const OpaqueValueExpr *op 728 = dyn_cast<OpaqueValueExpr>(E)) { 729 if (const Expr *src = op->getSourceExpr()) 730 return isBlockVarRef(src); 731 732 // Casts are necessary to get things like (*(int*)&var) = foo(). 733 // We don't really care about the kind of cast here, except 734 // we don't want to look through l2r casts, because it's okay 735 // to get the *value* in a __block variable. 736 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 737 if (cast->getCastKind() == CK_LValueToRValue) 738 return false; 739 return isBlockVarRef(cast->getSubExpr()); 740 741 // Handle unary operators. Again, just aggressively look through 742 // it, ignoring the operation. 743 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 744 return isBlockVarRef(uop->getSubExpr()); 745 746 // Look into the base of a field access. 747 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 748 return isBlockVarRef(mem->getBase()); 749 750 // Look into the base of a subscript. 751 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 752 return isBlockVarRef(sub->getBase()); 753 } 754 755 return false; 756 } 757 758 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 759 // For an assignment to work, the value on the right has 760 // to be compatible with the value on the left. 761 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 762 E->getRHS()->getType()) 763 && "Invalid assignment"); 764 765 // If the LHS might be a __block variable, and the RHS can 766 // potentially cause a block copy, we need to evaluate the RHS first 767 // so that the assignment goes the right place. 768 // This is pretty semantically fragile. 769 if (isBlockVarRef(E->getLHS()) && 770 E->getRHS()->HasSideEffects(CGF.getContext())) { 771 // Ensure that we have a destination, and evaluate the RHS into that. 772 EnsureDest(E->getRHS()->getType()); 773 Visit(E->getRHS()); 774 775 // Now emit the LHS and copy into it. 776 LValue LHS = CGF.EmitLValue(E->getLHS()); 777 778 EmitCopy(E->getLHS()->getType(), 779 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 780 needsGC(E->getLHS()->getType()), 781 AggValueSlot::IsAliased), 782 Dest); 783 return; 784 } 785 786 LValue LHS = CGF.EmitLValue(E->getLHS()); 787 788 // Codegen the RHS so that it stores directly into the LHS. 789 AggValueSlot LHSSlot = 790 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 791 needsGC(E->getLHS()->getType()), 792 AggValueSlot::IsAliased); 793 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 794 795 // Copy into the destination if the assignment isn't ignored. 796 EmitFinalDestCopy(E->getType(), LHS); 797 } 798 799 void AggExprEmitter:: 800 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 801 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 802 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 803 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 804 805 // Bind the common expression if necessary. 806 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 807 808 CodeGenFunction::ConditionalEvaluation eval(CGF); 809 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 810 811 // Save whether the destination's lifetime is externally managed. 812 bool isExternallyDestructed = Dest.isExternallyDestructed(); 813 814 eval.begin(CGF); 815 CGF.EmitBlock(LHSBlock); 816 Visit(E->getTrueExpr()); 817 eval.end(CGF); 818 819 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 820 CGF.Builder.CreateBr(ContBlock); 821 822 // If the result of an agg expression is unused, then the emission 823 // of the LHS might need to create a destination slot. That's fine 824 // with us, and we can safely emit the RHS into the same slot, but 825 // we shouldn't claim that it's already being destructed. 826 Dest.setExternallyDestructed(isExternallyDestructed); 827 828 eval.begin(CGF); 829 CGF.EmitBlock(RHSBlock); 830 Visit(E->getFalseExpr()); 831 eval.end(CGF); 832 833 CGF.EmitBlock(ContBlock); 834 } 835 836 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 837 Visit(CE->getChosenSubExpr(CGF.getContext())); 838 } 839 840 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 841 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 842 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 843 844 if (!ArgPtr) { 845 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 846 return; 847 } 848 849 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 850 } 851 852 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 853 // Ensure that we have a slot, but if we already do, remember 854 // whether it was externally destructed. 855 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 856 EnsureDest(E->getType()); 857 858 // We're going to push a destructor if there isn't already one. 859 Dest.setExternallyDestructed(); 860 861 Visit(E->getSubExpr()); 862 863 // Push that destructor we promised. 864 if (!wasExternallyDestructed) 865 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 866 } 867 868 void 869 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 870 AggValueSlot Slot = EnsureSlot(E->getType()); 871 CGF.EmitCXXConstructExpr(E, Slot); 872 } 873 874 void 875 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 876 AggValueSlot Slot = EnsureSlot(E->getType()); 877 CGF.EmitLambdaExpr(E, Slot); 878 } 879 880 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 881 CGF.enterFullExpression(E); 882 CodeGenFunction::RunCleanupsScope cleanups(CGF); 883 Visit(E->getSubExpr()); 884 } 885 886 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 887 QualType T = E->getType(); 888 AggValueSlot Slot = EnsureSlot(T); 889 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 890 } 891 892 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 893 QualType T = E->getType(); 894 AggValueSlot Slot = EnsureSlot(T); 895 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 896 } 897 898 /// isSimpleZero - If emitting this value will obviously just cause a store of 899 /// zero to memory, return true. This can return false if uncertain, so it just 900 /// handles simple cases. 901 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 902 E = E->IgnoreParens(); 903 904 // 0 905 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 906 return IL->getValue() == 0; 907 // +0.0 908 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 909 return FL->getValue().isPosZero(); 910 // int() 911 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 912 CGF.getTypes().isZeroInitializable(E->getType())) 913 return true; 914 // (int*)0 - Null pointer expressions. 915 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 916 return ICE->getCastKind() == CK_NullToPointer; 917 // '\0' 918 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 919 return CL->getValue() == 0; 920 921 // Otherwise, hard case: conservatively return false. 922 return false; 923 } 924 925 926 void 927 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 928 QualType type = LV.getType(); 929 // FIXME: Ignore result? 930 // FIXME: Are initializers affected by volatile? 931 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 932 // Storing "i32 0" to a zero'd memory location is a noop. 933 } else if (isa<ImplicitValueInitExpr>(E)) { 934 EmitNullInitializationToLValue(LV); 935 } else if (type->isReferenceType()) { 936 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 937 CGF.EmitStoreThroughLValue(RV, LV); 938 } else if (type->isAnyComplexType()) { 939 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 940 } else if (CGF.hasAggregateLLVMType(type)) { 941 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 942 AggValueSlot::IsDestructed, 943 AggValueSlot::DoesNotNeedGCBarriers, 944 AggValueSlot::IsNotAliased, 945 Dest.isZeroed())); 946 } else if (LV.isSimple()) { 947 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 948 } else { 949 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 950 } 951 } 952 953 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 954 QualType type = lv.getType(); 955 956 // If the destination slot is already zeroed out before the aggregate is 957 // copied into it, we don't have to emit any zeros here. 958 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 959 return; 960 961 if (!CGF.hasAggregateLLVMType(type)) { 962 // For non-aggregates, we can store zero. 963 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 964 // Note that the following is not equivalent to 965 // EmitStoreThroughBitfieldLValue for ARC types. 966 if (lv.isBitField()) { 967 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 968 } else { 969 assert(lv.isSimple()); 970 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 971 } 972 } else { 973 // There's a potential optimization opportunity in combining 974 // memsets; that would be easy for arrays, but relatively 975 // difficult for structures with the current code. 976 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 977 } 978 } 979 980 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 981 #if 0 982 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 983 // (Length of globals? Chunks of zeroed-out space?). 984 // 985 // If we can, prefer a copy from a global; this is a lot less code for long 986 // globals, and it's easier for the current optimizers to analyze. 987 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 988 llvm::GlobalVariable* GV = 989 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 990 llvm::GlobalValue::InternalLinkage, C, ""); 991 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 992 return; 993 } 994 #endif 995 if (E->hadArrayRangeDesignator()) 996 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 997 998 if (E->initializesStdInitializerList()) { 999 EmitStdInitializerList(Dest.getAddr(), E); 1000 return; 1001 } 1002 1003 AggValueSlot Dest = EnsureSlot(E->getType()); 1004 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1005 Dest.getAlignment()); 1006 1007 // Handle initialization of an array. 1008 if (E->getType()->isArrayType()) { 1009 if (E->isStringLiteralInit()) 1010 return Visit(E->getInit(0)); 1011 1012 QualType elementType = 1013 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1014 1015 llvm::PointerType *APType = 1016 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1017 llvm::ArrayType *AType = 1018 cast<llvm::ArrayType>(APType->getElementType()); 1019 1020 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1021 return; 1022 } 1023 1024 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1025 1026 // Do struct initialization; this code just sets each individual member 1027 // to the approprate value. This makes bitfield support automatic; 1028 // the disadvantage is that the generated code is more difficult for 1029 // the optimizer, especially with bitfields. 1030 unsigned NumInitElements = E->getNumInits(); 1031 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1032 1033 if (record->isUnion()) { 1034 // Only initialize one field of a union. The field itself is 1035 // specified by the initializer list. 1036 if (!E->getInitializedFieldInUnion()) { 1037 // Empty union; we have nothing to do. 1038 1039 #ifndef NDEBUG 1040 // Make sure that it's really an empty and not a failure of 1041 // semantic analysis. 1042 for (RecordDecl::field_iterator Field = record->field_begin(), 1043 FieldEnd = record->field_end(); 1044 Field != FieldEnd; ++Field) 1045 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1046 #endif 1047 return; 1048 } 1049 1050 // FIXME: volatility 1051 FieldDecl *Field = E->getInitializedFieldInUnion(); 1052 1053 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1054 if (NumInitElements) { 1055 // Store the initializer into the field 1056 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1057 } else { 1058 // Default-initialize to null. 1059 EmitNullInitializationToLValue(FieldLoc); 1060 } 1061 1062 return; 1063 } 1064 1065 // We'll need to enter cleanup scopes in case any of the member 1066 // initializers throw an exception. 1067 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1068 llvm::Instruction *cleanupDominator = 0; 1069 1070 // Here we iterate over the fields; this makes it simpler to both 1071 // default-initialize fields and skip over unnamed fields. 1072 unsigned curInitIndex = 0; 1073 for (RecordDecl::field_iterator field = record->field_begin(), 1074 fieldEnd = record->field_end(); 1075 field != fieldEnd; ++field) { 1076 // We're done once we hit the flexible array member. 1077 if (field->getType()->isIncompleteArrayType()) 1078 break; 1079 1080 // Always skip anonymous bitfields. 1081 if (field->isUnnamedBitfield()) 1082 continue; 1083 1084 // We're done if we reach the end of the explicit initializers, we 1085 // have a zeroed object, and the rest of the fields are 1086 // zero-initializable. 1087 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1088 CGF.getTypes().isZeroInitializable(E->getType())) 1089 break; 1090 1091 1092 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); 1093 // We never generate write-barries for initialized fields. 1094 LV.setNonGC(true); 1095 1096 if (curInitIndex < NumInitElements) { 1097 // Store the initializer into the field. 1098 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1099 } else { 1100 // We're out of initalizers; default-initialize to null 1101 EmitNullInitializationToLValue(LV); 1102 } 1103 1104 // Push a destructor if necessary. 1105 // FIXME: if we have an array of structures, all explicitly 1106 // initialized, we can end up pushing a linear number of cleanups. 1107 bool pushedCleanup = false; 1108 if (QualType::DestructionKind dtorKind 1109 = field->getType().isDestructedType()) { 1110 assert(LV.isSimple()); 1111 if (CGF.needsEHCleanup(dtorKind)) { 1112 if (!cleanupDominator) 1113 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1114 1115 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1116 CGF.getDestroyer(dtorKind), false); 1117 cleanups.push_back(CGF.EHStack.stable_begin()); 1118 pushedCleanup = true; 1119 } 1120 } 1121 1122 // If the GEP didn't get used because of a dead zero init or something 1123 // else, clean it up for -O0 builds and general tidiness. 1124 if (!pushedCleanup && LV.isSimple()) 1125 if (llvm::GetElementPtrInst *GEP = 1126 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1127 if (GEP->use_empty()) 1128 GEP->eraseFromParent(); 1129 } 1130 1131 // Deactivate all the partial cleanups in reverse order, which 1132 // generally means popping them. 1133 for (unsigned i = cleanups.size(); i != 0; --i) 1134 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1135 1136 // Destroy the placeholder if we made one. 1137 if (cleanupDominator) 1138 cleanupDominator->eraseFromParent(); 1139 } 1140 1141 //===----------------------------------------------------------------------===// 1142 // Entry Points into this File 1143 //===----------------------------------------------------------------------===// 1144 1145 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1146 /// non-zero bytes that will be stored when outputting the initializer for the 1147 /// specified initializer expression. 1148 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1149 E = E->IgnoreParens(); 1150 1151 // 0 and 0.0 won't require any non-zero stores! 1152 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1153 1154 // If this is an initlist expr, sum up the size of sizes of the (present) 1155 // elements. If this is something weird, assume the whole thing is non-zero. 1156 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1157 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1158 return CGF.getContext().getTypeSizeInChars(E->getType()); 1159 1160 // InitListExprs for structs have to be handled carefully. If there are 1161 // reference members, we need to consider the size of the reference, not the 1162 // referencee. InitListExprs for unions and arrays can't have references. 1163 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1164 if (!RT->isUnionType()) { 1165 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1166 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1167 1168 unsigned ILEElement = 0; 1169 for (RecordDecl::field_iterator Field = SD->field_begin(), 1170 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1171 // We're done once we hit the flexible array member or run out of 1172 // InitListExpr elements. 1173 if (Field->getType()->isIncompleteArrayType() || 1174 ILEElement == ILE->getNumInits()) 1175 break; 1176 if (Field->isUnnamedBitfield()) 1177 continue; 1178 1179 const Expr *E = ILE->getInit(ILEElement++); 1180 1181 // Reference values are always non-null and have the width of a pointer. 1182 if (Field->getType()->isReferenceType()) 1183 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1184 CGF.getContext().getTargetInfo().getPointerWidth(0)); 1185 else 1186 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1187 } 1188 1189 return NumNonZeroBytes; 1190 } 1191 } 1192 1193 1194 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1195 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1196 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1197 return NumNonZeroBytes; 1198 } 1199 1200 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1201 /// zeros in it, emit a memset and avoid storing the individual zeros. 1202 /// 1203 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1204 CodeGenFunction &CGF) { 1205 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1206 // volatile stores. 1207 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1208 1209 // C++ objects with a user-declared constructor don't need zero'ing. 1210 if (CGF.getContext().getLangOpts().CPlusPlus) 1211 if (const RecordType *RT = CGF.getContext() 1212 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1213 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1214 if (RD->hasUserDeclaredConstructor()) 1215 return; 1216 } 1217 1218 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1219 std::pair<CharUnits, CharUnits> TypeInfo = 1220 CGF.getContext().getTypeInfoInChars(E->getType()); 1221 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1222 return; 1223 1224 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1225 // we prefer to emit memset + individual stores for the rest. 1226 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1227 if (NumNonZeroBytes*4 > TypeInfo.first) 1228 return; 1229 1230 // Okay, it seems like a good idea to use an initial memset, emit the call. 1231 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1232 CharUnits Align = TypeInfo.second; 1233 1234 llvm::Value *Loc = Slot.getAddr(); 1235 1236 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1237 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1238 Align.getQuantity(), false); 1239 1240 // Tell the AggExprEmitter that the slot is known zero. 1241 Slot.setZeroed(); 1242 } 1243 1244 1245 1246 1247 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1248 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1249 /// the value of the aggregate expression is not needed. If VolatileDest is 1250 /// true, DestPtr cannot be 0. 1251 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1252 assert(E && hasAggregateLLVMType(E->getType()) && 1253 "Invalid aggregate expression to emit"); 1254 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1255 "slot has bits but no address"); 1256 1257 // Optimize the slot if possible. 1258 CheckAggExprForMemSetUse(Slot, E, *this); 1259 1260 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1261 } 1262 1263 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1264 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1265 llvm::Value *Temp = CreateMemTemp(E->getType()); 1266 LValue LV = MakeAddrLValue(Temp, E->getType()); 1267 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1268 AggValueSlot::DoesNotNeedGCBarriers, 1269 AggValueSlot::IsNotAliased)); 1270 return LV; 1271 } 1272 1273 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1274 llvm::Value *SrcPtr, QualType Ty, 1275 bool isVolatile, 1276 CharUnits alignment) { 1277 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1278 1279 if (getContext().getLangOpts().CPlusPlus) { 1280 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1281 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1282 assert((Record->hasTrivialCopyConstructor() || 1283 Record->hasTrivialCopyAssignment() || 1284 Record->hasTrivialMoveConstructor() || 1285 Record->hasTrivialMoveAssignment()) && 1286 "Trying to aggregate-copy a type without a trivial copy " 1287 "constructor or assignment operator"); 1288 // Ignore empty classes in C++. 1289 if (Record->isEmpty()) 1290 return; 1291 } 1292 } 1293 1294 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1295 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1296 // read from another object that overlaps in anyway the storage of the first 1297 // object, then the overlap shall be exact and the two objects shall have 1298 // qualified or unqualified versions of a compatible type." 1299 // 1300 // memcpy is not defined if the source and destination pointers are exactly 1301 // equal, but other compilers do this optimization, and almost every memcpy 1302 // implementation handles this case safely. If there is a libc that does not 1303 // safely handle this, we can add a target hook. 1304 1305 // Get data size and alignment info for this aggregate. 1306 std::pair<CharUnits, CharUnits> TypeInfo = 1307 getContext().getTypeInfoDataSizeInChars(Ty); 1308 1309 if (alignment.isZero()) 1310 alignment = TypeInfo.second; 1311 1312 // FIXME: Handle variable sized types. 1313 1314 // FIXME: If we have a volatile struct, the optimizer can remove what might 1315 // appear to be `extra' memory ops: 1316 // 1317 // volatile struct { int i; } a, b; 1318 // 1319 // int main() { 1320 // a = b; 1321 // a = b; 1322 // } 1323 // 1324 // we need to use a different call here. We use isVolatile to indicate when 1325 // either the source or the destination is volatile. 1326 1327 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1328 llvm::Type *DBP = 1329 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1330 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1331 1332 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1333 llvm::Type *SBP = 1334 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1335 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1336 1337 // Don't do any of the memmove_collectable tests if GC isn't set. 1338 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1339 // fall through 1340 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1341 RecordDecl *Record = RecordTy->getDecl(); 1342 if (Record->hasObjectMember()) { 1343 CharUnits size = TypeInfo.first; 1344 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1345 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1346 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1347 SizeVal); 1348 return; 1349 } 1350 } else if (Ty->isArrayType()) { 1351 QualType BaseType = getContext().getBaseElementType(Ty); 1352 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1353 if (RecordTy->getDecl()->hasObjectMember()) { 1354 CharUnits size = TypeInfo.first; 1355 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1356 llvm::Value *SizeVal = 1357 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1358 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1359 SizeVal); 1360 return; 1361 } 1362 } 1363 } 1364 1365 Builder.CreateMemCpy(DestPtr, SrcPtr, 1366 llvm::ConstantInt::get(IntPtrTy, 1367 TypeInfo.first.getQuantity()), 1368 alignment.getQuantity(), isVolatile); 1369 } 1370 1371 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, 1372 const Expr *init) { 1373 const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); 1374 if (cleanups) 1375 init = cleanups->getSubExpr(); 1376 1377 if (isa<InitListExpr>(init) && 1378 cast<InitListExpr>(init)->initializesStdInitializerList()) { 1379 // We initialized this std::initializer_list with an initializer list. 1380 // A backing array was created. Push a cleanup for it. 1381 EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); 1382 } 1383 } 1384 1385 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, 1386 llvm::Value *arrayStart, 1387 const InitListExpr *init) { 1388 // Check if there are any recursive cleanups to do, i.e. if we have 1389 // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; 1390 // then we need to destroy the inner array as well. 1391 for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { 1392 const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); 1393 if (!subInit || !subInit->initializesStdInitializerList()) 1394 continue; 1395 1396 // This one needs to be destroyed. Get the address of the std::init_list. 1397 llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); 1398 llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, 1399 "std.initlist"); 1400 CGF.EmitStdInitializerListCleanup(loc, subInit); 1401 } 1402 } 1403 1404 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, 1405 const InitListExpr *init) { 1406 ASTContext &ctx = getContext(); 1407 QualType element = GetStdInitializerListElementType(init->getType()); 1408 unsigned numInits = init->getNumInits(); 1409 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 1410 QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); 1411 QualType arrayPtr = ctx.getPointerType(array); 1412 llvm::Type *arrayPtrType = ConvertType(arrayPtr); 1413 1414 // lvalue is the location of a std::initializer_list, which as its first 1415 // element has a pointer to the array we want to destroy. 1416 llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); 1417 llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); 1418 1419 ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); 1420 1421 llvm::Value *arrayAddress = 1422 Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); 1423 ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); 1424 } 1425