1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitCoawaitExpr(CoawaitExpr *E) { 115 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 116 } 117 void VisitCoyieldExpr(CoyieldExpr *E) { 118 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 121 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 123 return Visit(E->getReplacement()); 124 } 125 126 // l-values. 127 void VisitDeclRefExpr(DeclRefExpr *E) { 128 // For aggregates, we should always be able to emit the variable 129 // as an l-value unless it's a reference. This is due to the fact 130 // that we can't actually ever see a normal l2r conversion on an 131 // aggregate in C++, and in C there's no language standard 132 // actively preventing us from listing variables in the captures 133 // list of a block. 134 if (E->getDecl()->getType()->isReferenceType()) { 135 if (CodeGenFunction::ConstantEmission result 136 = CGF.tryEmitAsConstant(E)) { 137 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 138 return; 139 } 140 } 141 142 EmitAggLoadOfLValue(E); 143 } 144 145 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 146 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 147 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 148 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 149 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 150 EmitAggLoadOfLValue(E); 151 } 152 void VisitPredefinedExpr(const PredefinedExpr *E) { 153 EmitAggLoadOfLValue(E); 154 } 155 156 // Operators. 157 void VisitCastExpr(CastExpr *E); 158 void VisitCallExpr(const CallExpr *E); 159 void VisitStmtExpr(const StmtExpr *E); 160 void VisitBinaryOperator(const BinaryOperator *BO); 161 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 162 void VisitBinAssign(const BinaryOperator *E); 163 void VisitBinComma(const BinaryOperator *E); 164 165 void VisitObjCMessageExpr(ObjCMessageExpr *E); 166 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 167 EmitAggLoadOfLValue(E); 168 } 169 170 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 171 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 172 void VisitChooseExpr(const ChooseExpr *CE); 173 void VisitInitListExpr(InitListExpr *E); 174 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 175 llvm::Value *outerBegin = nullptr); 176 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 177 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 178 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 179 Visit(DAE->getExpr()); 180 } 181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 183 Visit(DIE->getExpr()); 184 } 185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 186 void VisitCXXConstructExpr(const CXXConstructExpr *E); 187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 188 void VisitLambdaExpr(LambdaExpr *E); 189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 190 void VisitExprWithCleanups(ExprWithCleanups *E); 191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 194 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 195 196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 197 if (E->isGLValue()) { 198 LValue LV = CGF.EmitPseudoObjectLValue(E); 199 return EmitFinalDestCopy(E->getType(), LV); 200 } 201 202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 203 } 204 205 void VisitVAArgExpr(VAArgExpr *E); 206 207 void EmitInitializationToLValue(Expr *E, LValue Address); 208 void EmitNullInitializationToLValue(LValue Address); 209 // case Expr::ChooseExprClass: 210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 211 void VisitAtomicExpr(AtomicExpr *E) { 212 RValue Res = CGF.EmitAtomicExpr(E); 213 EmitFinalDestCopy(E->getType(), Res); 214 } 215 }; 216 } // end anonymous namespace. 217 218 //===----------------------------------------------------------------------===// 219 // Utilities 220 //===----------------------------------------------------------------------===// 221 222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 223 /// represents a value lvalue, this method emits the address of the lvalue, 224 /// then loads the result into DestPtr. 225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 226 LValue LV = CGF.EmitLValue(E); 227 228 // If the type of the l-value is atomic, then do an atomic load. 229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 231 return; 232 } 233 234 EmitFinalDestCopy(E->getType(), LV); 235 } 236 237 /// \brief True if the given aggregate type requires special GC API calls. 238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 239 // Only record types have members that might require garbage collection. 240 const RecordType *RecordTy = T->getAs<RecordType>(); 241 if (!RecordTy) return false; 242 243 // Don't mess with non-trivial C++ types. 244 RecordDecl *Record = RecordTy->getDecl(); 245 if (isa<CXXRecordDecl>(Record) && 246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 248 return false; 249 250 // Check whether the type has an object member. 251 return Record->hasObjectMember(); 252 } 253 254 /// \brief Perform the final move to DestPtr if for some reason 255 /// getReturnValueSlot() didn't use it directly. 256 /// 257 /// The idea is that you do something like this: 258 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 259 /// EmitMoveFromReturnSlot(E, Result); 260 /// 261 /// If nothing interferes, this will cause the result to be emitted 262 /// directly into the return value slot. Otherwise, a final move 263 /// will be performed. 264 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 265 if (shouldUseDestForReturnSlot()) { 266 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 267 // The possibility of undef rvalues complicates that a lot, 268 // though, so we can't really assert. 269 return; 270 } 271 272 // Otherwise, copy from there to the destination. 273 assert(Dest.getPointer() != src.getAggregatePointer()); 274 EmitFinalDestCopy(E->getType(), src); 275 } 276 277 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 278 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 279 assert(src.isAggregate() && "value must be aggregate value!"); 280 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 281 EmitFinalDestCopy(type, srcLV); 282 } 283 284 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 285 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 286 // If Dest is ignored, then we're evaluating an aggregate expression 287 // in a context that doesn't care about the result. Note that loads 288 // from volatile l-values force the existence of a non-ignored 289 // destination. 290 if (Dest.isIgnored()) 291 return; 292 293 AggValueSlot srcAgg = 294 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 295 needsGC(type), AggValueSlot::IsAliased); 296 EmitCopy(type, Dest, srcAgg); 297 } 298 299 /// Perform a copy from the source into the destination. 300 /// 301 /// \param type - the type of the aggregate being copied; qualifiers are 302 /// ignored 303 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 304 const AggValueSlot &src) { 305 if (dest.requiresGCollection()) { 306 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 307 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 308 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 309 dest.getAddress(), 310 src.getAddress(), 311 size); 312 return; 313 } 314 315 // If the result of the assignment is used, copy the LHS there also. 316 // It's volatile if either side is. Use the minimum alignment of 317 // the two sides. 318 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 319 dest.isVolatile() || src.isVolatile()); 320 } 321 322 /// \brief Emit the initializer for a std::initializer_list initialized with a 323 /// real initializer list. 324 void 325 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 326 // Emit an array containing the elements. The array is externally destructed 327 // if the std::initializer_list object is. 328 ASTContext &Ctx = CGF.getContext(); 329 LValue Array = CGF.EmitLValue(E->getSubExpr()); 330 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 331 Address ArrayPtr = Array.getAddress(); 332 333 const ConstantArrayType *ArrayType = 334 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 335 assert(ArrayType && "std::initializer_list constructed from non-array"); 336 337 // FIXME: Perform the checks on the field types in SemaInit. 338 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 339 RecordDecl::field_iterator Field = Record->field_begin(); 340 if (Field == Record->field_end()) { 341 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 342 return; 343 } 344 345 // Start pointer. 346 if (!Field->getType()->isPointerType() || 347 !Ctx.hasSameType(Field->getType()->getPointeeType(), 348 ArrayType->getElementType())) { 349 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 350 return; 351 } 352 353 AggValueSlot Dest = EnsureSlot(E->getType()); 354 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 355 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 356 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 357 llvm::Value *IdxStart[] = { Zero, Zero }; 358 llvm::Value *ArrayStart = 359 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 360 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 361 ++Field; 362 363 if (Field == Record->field_end()) { 364 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 365 return; 366 } 367 368 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 369 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 370 if (Field->getType()->isPointerType() && 371 Ctx.hasSameType(Field->getType()->getPointeeType(), 372 ArrayType->getElementType())) { 373 // End pointer. 374 llvm::Value *IdxEnd[] = { Zero, Size }; 375 llvm::Value *ArrayEnd = 376 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 377 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 378 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 379 // Length. 380 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 381 } else { 382 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 383 return; 384 } 385 } 386 387 /// \brief Determine if E is a trivial array filler, that is, one that is 388 /// equivalent to zero-initialization. 389 static bool isTrivialFiller(Expr *E) { 390 if (!E) 391 return true; 392 393 if (isa<ImplicitValueInitExpr>(E)) 394 return true; 395 396 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 397 if (ILE->getNumInits()) 398 return false; 399 return isTrivialFiller(ILE->getArrayFiller()); 400 } 401 402 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 403 return Cons->getConstructor()->isDefaultConstructor() && 404 Cons->getConstructor()->isTrivial(); 405 406 // FIXME: Are there other cases where we can avoid emitting an initializer? 407 return false; 408 } 409 410 /// \brief Emit initialization of an array from an initializer list. 411 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 412 QualType elementType, InitListExpr *E) { 413 uint64_t NumInitElements = E->getNumInits(); 414 415 uint64_t NumArrayElements = AType->getNumElements(); 416 assert(NumInitElements <= NumArrayElements); 417 418 // DestPtr is an array*. Construct an elementType* by drilling 419 // down a level. 420 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 421 llvm::Value *indices[] = { zero, zero }; 422 llvm::Value *begin = 423 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 424 425 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 426 CharUnits elementAlign = 427 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 428 429 // Exception safety requires us to destroy all the 430 // already-constructed members if an initializer throws. 431 // For that, we'll need an EH cleanup. 432 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 433 Address endOfInit = Address::invalid(); 434 EHScopeStack::stable_iterator cleanup; 435 llvm::Instruction *cleanupDominator = nullptr; 436 if (CGF.needsEHCleanup(dtorKind)) { 437 // In principle we could tell the cleanup where we are more 438 // directly, but the control flow can get so varied here that it 439 // would actually be quite complex. Therefore we go through an 440 // alloca. 441 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 442 "arrayinit.endOfInit"); 443 cleanupDominator = Builder.CreateStore(begin, endOfInit); 444 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 445 elementAlign, 446 CGF.getDestroyer(dtorKind)); 447 cleanup = CGF.EHStack.stable_begin(); 448 449 // Otherwise, remember that we didn't need a cleanup. 450 } else { 451 dtorKind = QualType::DK_none; 452 } 453 454 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 455 456 // The 'current element to initialize'. The invariants on this 457 // variable are complicated. Essentially, after each iteration of 458 // the loop, it points to the last initialized element, except 459 // that it points to the beginning of the array before any 460 // elements have been initialized. 461 llvm::Value *element = begin; 462 463 // Emit the explicit initializers. 464 for (uint64_t i = 0; i != NumInitElements; ++i) { 465 // Advance to the next element. 466 if (i > 0) { 467 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 468 469 // Tell the cleanup that it needs to destroy up to this 470 // element. TODO: some of these stores can be trivially 471 // observed to be unnecessary. 472 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 473 } 474 475 LValue elementLV = 476 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 477 EmitInitializationToLValue(E->getInit(i), elementLV); 478 } 479 480 // Check whether there's a non-trivial array-fill expression. 481 Expr *filler = E->getArrayFiller(); 482 bool hasTrivialFiller = isTrivialFiller(filler); 483 484 // Any remaining elements need to be zero-initialized, possibly 485 // using the filler expression. We can skip this if the we're 486 // emitting to zeroed memory. 487 if (NumInitElements != NumArrayElements && 488 !(Dest.isZeroed() && hasTrivialFiller && 489 CGF.getTypes().isZeroInitializable(elementType))) { 490 491 // Use an actual loop. This is basically 492 // do { *array++ = filler; } while (array != end); 493 494 // Advance to the start of the rest of the array. 495 if (NumInitElements) { 496 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 497 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 498 } 499 500 // Compute the end of the array. 501 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 502 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 503 "arrayinit.end"); 504 505 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 506 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 507 508 // Jump into the body. 509 CGF.EmitBlock(bodyBB); 510 llvm::PHINode *currentElement = 511 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 512 currentElement->addIncoming(element, entryBB); 513 514 // Emit the actual filler expression. 515 LValue elementLV = 516 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 517 if (filler) 518 EmitInitializationToLValue(filler, elementLV); 519 else 520 EmitNullInitializationToLValue(elementLV); 521 522 // Move on to the next element. 523 llvm::Value *nextElement = 524 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 525 526 // Tell the EH cleanup that we finished with the last element. 527 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 528 529 // Leave the loop if we're done. 530 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 531 "arrayinit.done"); 532 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 533 Builder.CreateCondBr(done, endBB, bodyBB); 534 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 535 536 CGF.EmitBlock(endBB); 537 } 538 539 // Leave the partial-array cleanup if we entered one. 540 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Visitor Methods 545 //===----------------------------------------------------------------------===// 546 547 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 548 Visit(E->GetTemporaryExpr()); 549 } 550 551 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 552 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 553 } 554 555 void 556 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 557 if (Dest.isPotentiallyAliased() && 558 E->getType().isPODType(CGF.getContext())) { 559 // For a POD type, just emit a load of the lvalue + a copy, because our 560 // compound literal might alias the destination. 561 EmitAggLoadOfLValue(E); 562 return; 563 } 564 565 AggValueSlot Slot = EnsureSlot(E->getType()); 566 CGF.EmitAggExpr(E->getInitializer(), Slot); 567 } 568 569 /// Attempt to look through various unimportant expressions to find a 570 /// cast of the given kind. 571 static Expr *findPeephole(Expr *op, CastKind kind) { 572 while (true) { 573 op = op->IgnoreParens(); 574 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 575 if (castE->getCastKind() == kind) 576 return castE->getSubExpr(); 577 if (castE->getCastKind() == CK_NoOp) 578 continue; 579 } 580 return nullptr; 581 } 582 } 583 584 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 585 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 586 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 587 switch (E->getCastKind()) { 588 case CK_Dynamic: { 589 // FIXME: Can this actually happen? We have no test coverage for it. 590 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 591 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 592 CodeGenFunction::TCK_Load); 593 // FIXME: Do we also need to handle property references here? 594 if (LV.isSimple()) 595 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 596 else 597 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 598 599 if (!Dest.isIgnored()) 600 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 601 break; 602 } 603 604 case CK_ToUnion: { 605 // Evaluate even if the destination is ignored. 606 if (Dest.isIgnored()) { 607 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 608 /*ignoreResult=*/true); 609 break; 610 } 611 612 // GCC union extension 613 QualType Ty = E->getSubExpr()->getType(); 614 Address CastPtr = 615 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 616 EmitInitializationToLValue(E->getSubExpr(), 617 CGF.MakeAddrLValue(CastPtr, Ty)); 618 break; 619 } 620 621 case CK_DerivedToBase: 622 case CK_BaseToDerived: 623 case CK_UncheckedDerivedToBase: { 624 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 625 "should have been unpacked before we got here"); 626 } 627 628 case CK_NonAtomicToAtomic: 629 case CK_AtomicToNonAtomic: { 630 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 631 632 // Determine the atomic and value types. 633 QualType atomicType = E->getSubExpr()->getType(); 634 QualType valueType = E->getType(); 635 if (isToAtomic) std::swap(atomicType, valueType); 636 637 assert(atomicType->isAtomicType()); 638 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 639 atomicType->castAs<AtomicType>()->getValueType())); 640 641 // Just recurse normally if we're ignoring the result or the 642 // atomic type doesn't change representation. 643 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 644 return Visit(E->getSubExpr()); 645 } 646 647 CastKind peepholeTarget = 648 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 649 650 // These two cases are reverses of each other; try to peephole them. 651 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 652 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 653 E->getType()) && 654 "peephole significantly changed types?"); 655 return Visit(op); 656 } 657 658 // If we're converting an r-value of non-atomic type to an r-value 659 // of atomic type, just emit directly into the relevant sub-object. 660 if (isToAtomic) { 661 AggValueSlot valueDest = Dest; 662 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 663 // Zero-initialize. (Strictly speaking, we only need to intialize 664 // the padding at the end, but this is simpler.) 665 if (!Dest.isZeroed()) 666 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 667 668 // Build a GEP to refer to the subobject. 669 Address valueAddr = 670 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 671 CharUnits()); 672 valueDest = AggValueSlot::forAddr(valueAddr, 673 valueDest.getQualifiers(), 674 valueDest.isExternallyDestructed(), 675 valueDest.requiresGCollection(), 676 valueDest.isPotentiallyAliased(), 677 AggValueSlot::IsZeroed); 678 } 679 680 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 681 return; 682 } 683 684 // Otherwise, we're converting an atomic type to a non-atomic type. 685 // Make an atomic temporary, emit into that, and then copy the value out. 686 AggValueSlot atomicSlot = 687 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 688 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 689 690 Address valueAddr = 691 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 692 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 693 return EmitFinalDestCopy(valueType, rvalue); 694 } 695 696 case CK_LValueToRValue: 697 // If we're loading from a volatile type, force the destination 698 // into existence. 699 if (E->getSubExpr()->getType().isVolatileQualified()) { 700 EnsureDest(E->getType()); 701 return Visit(E->getSubExpr()); 702 } 703 704 // fallthrough 705 706 case CK_NoOp: 707 case CK_UserDefinedConversion: 708 case CK_ConstructorConversion: 709 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 710 E->getType()) && 711 "Implicit cast types must be compatible"); 712 Visit(E->getSubExpr()); 713 break; 714 715 case CK_LValueBitCast: 716 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 717 718 case CK_Dependent: 719 case CK_BitCast: 720 case CK_ArrayToPointerDecay: 721 case CK_FunctionToPointerDecay: 722 case CK_NullToPointer: 723 case CK_NullToMemberPointer: 724 case CK_BaseToDerivedMemberPointer: 725 case CK_DerivedToBaseMemberPointer: 726 case CK_MemberPointerToBoolean: 727 case CK_ReinterpretMemberPointer: 728 case CK_IntegralToPointer: 729 case CK_PointerToIntegral: 730 case CK_PointerToBoolean: 731 case CK_ToVoid: 732 case CK_VectorSplat: 733 case CK_IntegralCast: 734 case CK_BooleanToSignedIntegral: 735 case CK_IntegralToBoolean: 736 case CK_IntegralToFloating: 737 case CK_FloatingToIntegral: 738 case CK_FloatingToBoolean: 739 case CK_FloatingCast: 740 case CK_CPointerToObjCPointerCast: 741 case CK_BlockPointerToObjCPointerCast: 742 case CK_AnyPointerToBlockPointerCast: 743 case CK_ObjCObjectLValueCast: 744 case CK_FloatingRealToComplex: 745 case CK_FloatingComplexToReal: 746 case CK_FloatingComplexToBoolean: 747 case CK_FloatingComplexCast: 748 case CK_FloatingComplexToIntegralComplex: 749 case CK_IntegralRealToComplex: 750 case CK_IntegralComplexToReal: 751 case CK_IntegralComplexToBoolean: 752 case CK_IntegralComplexCast: 753 case CK_IntegralComplexToFloatingComplex: 754 case CK_ARCProduceObject: 755 case CK_ARCConsumeObject: 756 case CK_ARCReclaimReturnedObject: 757 case CK_ARCExtendBlockObject: 758 case CK_CopyAndAutoreleaseBlockObject: 759 case CK_BuiltinFnToFnPtr: 760 case CK_ZeroToOCLEvent: 761 case CK_ZeroToOCLQueue: 762 case CK_AddressSpaceConversion: 763 case CK_IntToOCLSampler: 764 llvm_unreachable("cast kind invalid for aggregate types"); 765 } 766 } 767 768 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 769 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 770 EmitAggLoadOfLValue(E); 771 return; 772 } 773 774 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 775 EmitMoveFromReturnSlot(E, RV); 776 } 777 778 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 779 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 780 EmitMoveFromReturnSlot(E, RV); 781 } 782 783 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 784 CGF.EmitIgnoredExpr(E->getLHS()); 785 Visit(E->getRHS()); 786 } 787 788 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 789 CodeGenFunction::StmtExprEvaluation eval(CGF); 790 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 791 } 792 793 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 794 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 795 VisitPointerToDataMemberBinaryOperator(E); 796 else 797 CGF.ErrorUnsupported(E, "aggregate binary expression"); 798 } 799 800 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 801 const BinaryOperator *E) { 802 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 803 EmitFinalDestCopy(E->getType(), LV); 804 } 805 806 /// Is the value of the given expression possibly a reference to or 807 /// into a __block variable? 808 static bool isBlockVarRef(const Expr *E) { 809 // Make sure we look through parens. 810 E = E->IgnoreParens(); 811 812 // Check for a direct reference to a __block variable. 813 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 814 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 815 return (var && var->hasAttr<BlocksAttr>()); 816 } 817 818 // More complicated stuff. 819 820 // Binary operators. 821 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 822 // For an assignment or pointer-to-member operation, just care 823 // about the LHS. 824 if (op->isAssignmentOp() || op->isPtrMemOp()) 825 return isBlockVarRef(op->getLHS()); 826 827 // For a comma, just care about the RHS. 828 if (op->getOpcode() == BO_Comma) 829 return isBlockVarRef(op->getRHS()); 830 831 // FIXME: pointer arithmetic? 832 return false; 833 834 // Check both sides of a conditional operator. 835 } else if (const AbstractConditionalOperator *op 836 = dyn_cast<AbstractConditionalOperator>(E)) { 837 return isBlockVarRef(op->getTrueExpr()) 838 || isBlockVarRef(op->getFalseExpr()); 839 840 // OVEs are required to support BinaryConditionalOperators. 841 } else if (const OpaqueValueExpr *op 842 = dyn_cast<OpaqueValueExpr>(E)) { 843 if (const Expr *src = op->getSourceExpr()) 844 return isBlockVarRef(src); 845 846 // Casts are necessary to get things like (*(int*)&var) = foo(). 847 // We don't really care about the kind of cast here, except 848 // we don't want to look through l2r casts, because it's okay 849 // to get the *value* in a __block variable. 850 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 851 if (cast->getCastKind() == CK_LValueToRValue) 852 return false; 853 return isBlockVarRef(cast->getSubExpr()); 854 855 // Handle unary operators. Again, just aggressively look through 856 // it, ignoring the operation. 857 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 858 return isBlockVarRef(uop->getSubExpr()); 859 860 // Look into the base of a field access. 861 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 862 return isBlockVarRef(mem->getBase()); 863 864 // Look into the base of a subscript. 865 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 866 return isBlockVarRef(sub->getBase()); 867 } 868 869 return false; 870 } 871 872 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 873 // For an assignment to work, the value on the right has 874 // to be compatible with the value on the left. 875 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 876 E->getRHS()->getType()) 877 && "Invalid assignment"); 878 879 // If the LHS might be a __block variable, and the RHS can 880 // potentially cause a block copy, we need to evaluate the RHS first 881 // so that the assignment goes the right place. 882 // This is pretty semantically fragile. 883 if (isBlockVarRef(E->getLHS()) && 884 E->getRHS()->HasSideEffects(CGF.getContext())) { 885 // Ensure that we have a destination, and evaluate the RHS into that. 886 EnsureDest(E->getRHS()->getType()); 887 Visit(E->getRHS()); 888 889 // Now emit the LHS and copy into it. 890 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 891 892 // That copy is an atomic copy if the LHS is atomic. 893 if (LHS.getType()->isAtomicType() || 894 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 895 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 896 return; 897 } 898 899 EmitCopy(E->getLHS()->getType(), 900 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 901 needsGC(E->getLHS()->getType()), 902 AggValueSlot::IsAliased), 903 Dest); 904 return; 905 } 906 907 LValue LHS = CGF.EmitLValue(E->getLHS()); 908 909 // If we have an atomic type, evaluate into the destination and then 910 // do an atomic copy. 911 if (LHS.getType()->isAtomicType() || 912 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 913 EnsureDest(E->getRHS()->getType()); 914 Visit(E->getRHS()); 915 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 916 return; 917 } 918 919 // Codegen the RHS so that it stores directly into the LHS. 920 AggValueSlot LHSSlot = 921 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 922 needsGC(E->getLHS()->getType()), 923 AggValueSlot::IsAliased); 924 // A non-volatile aggregate destination might have volatile member. 925 if (!LHSSlot.isVolatile() && 926 CGF.hasVolatileMember(E->getLHS()->getType())) 927 LHSSlot.setVolatile(true); 928 929 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 930 931 // Copy into the destination if the assignment isn't ignored. 932 EmitFinalDestCopy(E->getType(), LHS); 933 } 934 935 void AggExprEmitter:: 936 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 937 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 938 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 939 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 940 941 // Bind the common expression if necessary. 942 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 943 944 CodeGenFunction::ConditionalEvaluation eval(CGF); 945 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 946 CGF.getProfileCount(E)); 947 948 // Save whether the destination's lifetime is externally managed. 949 bool isExternallyDestructed = Dest.isExternallyDestructed(); 950 951 eval.begin(CGF); 952 CGF.EmitBlock(LHSBlock); 953 CGF.incrementProfileCounter(E); 954 Visit(E->getTrueExpr()); 955 eval.end(CGF); 956 957 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 958 CGF.Builder.CreateBr(ContBlock); 959 960 // If the result of an agg expression is unused, then the emission 961 // of the LHS might need to create a destination slot. That's fine 962 // with us, and we can safely emit the RHS into the same slot, but 963 // we shouldn't claim that it's already being destructed. 964 Dest.setExternallyDestructed(isExternallyDestructed); 965 966 eval.begin(CGF); 967 CGF.EmitBlock(RHSBlock); 968 Visit(E->getFalseExpr()); 969 eval.end(CGF); 970 971 CGF.EmitBlock(ContBlock); 972 } 973 974 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 975 Visit(CE->getChosenSubExpr()); 976 } 977 978 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 979 Address ArgValue = Address::invalid(); 980 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 981 982 // If EmitVAArg fails, emit an error. 983 if (!ArgPtr.isValid()) { 984 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 985 return; 986 } 987 988 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 989 } 990 991 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 992 // Ensure that we have a slot, but if we already do, remember 993 // whether it was externally destructed. 994 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 995 EnsureDest(E->getType()); 996 997 // We're going to push a destructor if there isn't already one. 998 Dest.setExternallyDestructed(); 999 1000 Visit(E->getSubExpr()); 1001 1002 // Push that destructor we promised. 1003 if (!wasExternallyDestructed) 1004 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1005 } 1006 1007 void 1008 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1009 AggValueSlot Slot = EnsureSlot(E->getType()); 1010 CGF.EmitCXXConstructExpr(E, Slot); 1011 } 1012 1013 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1014 const CXXInheritedCtorInitExpr *E) { 1015 AggValueSlot Slot = EnsureSlot(E->getType()); 1016 CGF.EmitInheritedCXXConstructorCall( 1017 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1018 E->inheritedFromVBase(), E); 1019 } 1020 1021 void 1022 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1023 AggValueSlot Slot = EnsureSlot(E->getType()); 1024 CGF.EmitLambdaExpr(E, Slot); 1025 } 1026 1027 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1028 CGF.enterFullExpression(E); 1029 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1030 Visit(E->getSubExpr()); 1031 } 1032 1033 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1034 QualType T = E->getType(); 1035 AggValueSlot Slot = EnsureSlot(T); 1036 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1037 } 1038 1039 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1040 QualType T = E->getType(); 1041 AggValueSlot Slot = EnsureSlot(T); 1042 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1043 } 1044 1045 /// isSimpleZero - If emitting this value will obviously just cause a store of 1046 /// zero to memory, return true. This can return false if uncertain, so it just 1047 /// handles simple cases. 1048 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1049 E = E->IgnoreParens(); 1050 1051 // 0 1052 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1053 return IL->getValue() == 0; 1054 // +0.0 1055 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1056 return FL->getValue().isPosZero(); 1057 // int() 1058 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1059 CGF.getTypes().isZeroInitializable(E->getType())) 1060 return true; 1061 // (int*)0 - Null pointer expressions. 1062 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1063 return ICE->getCastKind() == CK_NullToPointer && 1064 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1065 // '\0' 1066 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1067 return CL->getValue() == 0; 1068 1069 // Otherwise, hard case: conservatively return false. 1070 return false; 1071 } 1072 1073 1074 void 1075 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1076 QualType type = LV.getType(); 1077 // FIXME: Ignore result? 1078 // FIXME: Are initializers affected by volatile? 1079 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1080 // Storing "i32 0" to a zero'd memory location is a noop. 1081 return; 1082 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1083 return EmitNullInitializationToLValue(LV); 1084 } else if (isa<NoInitExpr>(E)) { 1085 // Do nothing. 1086 return; 1087 } else if (type->isReferenceType()) { 1088 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1089 return CGF.EmitStoreThroughLValue(RV, LV); 1090 } 1091 1092 switch (CGF.getEvaluationKind(type)) { 1093 case TEK_Complex: 1094 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1095 return; 1096 case TEK_Aggregate: 1097 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1098 AggValueSlot::IsDestructed, 1099 AggValueSlot::DoesNotNeedGCBarriers, 1100 AggValueSlot::IsNotAliased, 1101 Dest.isZeroed())); 1102 return; 1103 case TEK_Scalar: 1104 if (LV.isSimple()) { 1105 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1106 } else { 1107 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1108 } 1109 return; 1110 } 1111 llvm_unreachable("bad evaluation kind"); 1112 } 1113 1114 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1115 QualType type = lv.getType(); 1116 1117 // If the destination slot is already zeroed out before the aggregate is 1118 // copied into it, we don't have to emit any zeros here. 1119 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1120 return; 1121 1122 if (CGF.hasScalarEvaluationKind(type)) { 1123 // For non-aggregates, we can store the appropriate null constant. 1124 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1125 // Note that the following is not equivalent to 1126 // EmitStoreThroughBitfieldLValue for ARC types. 1127 if (lv.isBitField()) { 1128 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1129 } else { 1130 assert(lv.isSimple()); 1131 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1132 } 1133 } else { 1134 // There's a potential optimization opportunity in combining 1135 // memsets; that would be easy for arrays, but relatively 1136 // difficult for structures with the current code. 1137 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1138 } 1139 } 1140 1141 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1142 #if 0 1143 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1144 // (Length of globals? Chunks of zeroed-out space?). 1145 // 1146 // If we can, prefer a copy from a global; this is a lot less code for long 1147 // globals, and it's easier for the current optimizers to analyze. 1148 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1149 llvm::GlobalVariable* GV = 1150 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1151 llvm::GlobalValue::InternalLinkage, C, ""); 1152 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1153 return; 1154 } 1155 #endif 1156 if (E->hadArrayRangeDesignator()) 1157 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1158 1159 if (E->isTransparent()) 1160 return Visit(E->getInit(0)); 1161 1162 AggValueSlot Dest = EnsureSlot(E->getType()); 1163 1164 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1165 1166 // Handle initialization of an array. 1167 if (E->getType()->isArrayType()) { 1168 QualType elementType = 1169 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1170 1171 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1172 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1173 return; 1174 } 1175 1176 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1177 1178 // Do struct initialization; this code just sets each individual member 1179 // to the approprate value. This makes bitfield support automatic; 1180 // the disadvantage is that the generated code is more difficult for 1181 // the optimizer, especially with bitfields. 1182 unsigned NumInitElements = E->getNumInits(); 1183 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1184 1185 // We'll need to enter cleanup scopes in case any of the element 1186 // initializers throws an exception. 1187 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1188 llvm::Instruction *cleanupDominator = nullptr; 1189 1190 unsigned curInitIndex = 0; 1191 1192 // Emit initialization of base classes. 1193 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1194 assert(E->getNumInits() >= CXXRD->getNumBases() && 1195 "missing initializer for base class"); 1196 for (auto &Base : CXXRD->bases()) { 1197 assert(!Base.isVirtual() && "should not see vbases here"); 1198 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1199 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1200 Dest.getAddress(), CXXRD, BaseRD, 1201 /*isBaseVirtual*/ false); 1202 AggValueSlot AggSlot = 1203 AggValueSlot::forAddr(V, Qualifiers(), 1204 AggValueSlot::IsDestructed, 1205 AggValueSlot::DoesNotNeedGCBarriers, 1206 AggValueSlot::IsNotAliased); 1207 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1208 1209 if (QualType::DestructionKind dtorKind = 1210 Base.getType().isDestructedType()) { 1211 CGF.pushDestroy(dtorKind, V, Base.getType()); 1212 cleanups.push_back(CGF.EHStack.stable_begin()); 1213 } 1214 } 1215 } 1216 1217 // Prepare a 'this' for CXXDefaultInitExprs. 1218 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1219 1220 if (record->isUnion()) { 1221 // Only initialize one field of a union. The field itself is 1222 // specified by the initializer list. 1223 if (!E->getInitializedFieldInUnion()) { 1224 // Empty union; we have nothing to do. 1225 1226 #ifndef NDEBUG 1227 // Make sure that it's really an empty and not a failure of 1228 // semantic analysis. 1229 for (const auto *Field : record->fields()) 1230 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1231 #endif 1232 return; 1233 } 1234 1235 // FIXME: volatility 1236 FieldDecl *Field = E->getInitializedFieldInUnion(); 1237 1238 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1239 if (NumInitElements) { 1240 // Store the initializer into the field 1241 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1242 } else { 1243 // Default-initialize to null. 1244 EmitNullInitializationToLValue(FieldLoc); 1245 } 1246 1247 return; 1248 } 1249 1250 // Here we iterate over the fields; this makes it simpler to both 1251 // default-initialize fields and skip over unnamed fields. 1252 for (const auto *field : record->fields()) { 1253 // We're done once we hit the flexible array member. 1254 if (field->getType()->isIncompleteArrayType()) 1255 break; 1256 1257 // Always skip anonymous bitfields. 1258 if (field->isUnnamedBitfield()) 1259 continue; 1260 1261 // We're done if we reach the end of the explicit initializers, we 1262 // have a zeroed object, and the rest of the fields are 1263 // zero-initializable. 1264 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1265 CGF.getTypes().isZeroInitializable(E->getType())) 1266 break; 1267 1268 1269 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1270 // We never generate write-barries for initialized fields. 1271 LV.setNonGC(true); 1272 1273 if (curInitIndex < NumInitElements) { 1274 // Store the initializer into the field. 1275 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1276 } else { 1277 // We're out of initializers; default-initialize to null 1278 EmitNullInitializationToLValue(LV); 1279 } 1280 1281 // Push a destructor if necessary. 1282 // FIXME: if we have an array of structures, all explicitly 1283 // initialized, we can end up pushing a linear number of cleanups. 1284 bool pushedCleanup = false; 1285 if (QualType::DestructionKind dtorKind 1286 = field->getType().isDestructedType()) { 1287 assert(LV.isSimple()); 1288 if (CGF.needsEHCleanup(dtorKind)) { 1289 if (!cleanupDominator) 1290 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1291 CGF.Int8Ty, 1292 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1293 CharUnits::One()); // placeholder 1294 1295 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1296 CGF.getDestroyer(dtorKind), false); 1297 cleanups.push_back(CGF.EHStack.stable_begin()); 1298 pushedCleanup = true; 1299 } 1300 } 1301 1302 // If the GEP didn't get used because of a dead zero init or something 1303 // else, clean it up for -O0 builds and general tidiness. 1304 if (!pushedCleanup && LV.isSimple()) 1305 if (llvm::GetElementPtrInst *GEP = 1306 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1307 if (GEP->use_empty()) 1308 GEP->eraseFromParent(); 1309 } 1310 1311 // Deactivate all the partial cleanups in reverse order, which 1312 // generally means popping them. 1313 for (unsigned i = cleanups.size(); i != 0; --i) 1314 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1315 1316 // Destroy the placeholder if we made one. 1317 if (cleanupDominator) 1318 cleanupDominator->eraseFromParent(); 1319 } 1320 1321 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1322 llvm::Value *outerBegin) { 1323 // Emit the common subexpression. 1324 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1325 1326 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1327 uint64_t numElements = E->getArraySize().getZExtValue(); 1328 1329 if (!numElements) 1330 return; 1331 1332 // destPtr is an array*. Construct an elementType* by drilling down a level. 1333 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1334 llvm::Value *indices[] = {zero, zero}; 1335 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1336 "arrayinit.begin"); 1337 1338 // Prepare to special-case multidimensional array initialization: we avoid 1339 // emitting multiple destructor loops in that case. 1340 if (!outerBegin) 1341 outerBegin = begin; 1342 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1343 1344 QualType elementType = 1345 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1346 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1347 CharUnits elementAlign = 1348 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1349 1350 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1351 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1352 1353 // Jump into the body. 1354 CGF.EmitBlock(bodyBB); 1355 llvm::PHINode *index = 1356 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1357 index->addIncoming(zero, entryBB); 1358 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1359 1360 // Prepare for a cleanup. 1361 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1362 EHScopeStack::stable_iterator cleanup; 1363 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1364 if (outerBegin->getType() != element->getType()) 1365 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1366 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1367 elementAlign, 1368 CGF.getDestroyer(dtorKind)); 1369 cleanup = CGF.EHStack.stable_begin(); 1370 } else { 1371 dtorKind = QualType::DK_none; 1372 } 1373 1374 // Emit the actual filler expression. 1375 { 1376 // Temporaries created in an array initialization loop are destroyed 1377 // at the end of each iteration. 1378 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1379 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1380 LValue elementLV = 1381 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1382 1383 if (InnerLoop) { 1384 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1385 auto elementSlot = AggValueSlot::forLValue( 1386 elementLV, AggValueSlot::IsDestructed, 1387 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1388 AggExprEmitter(CGF, elementSlot, false) 1389 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1390 } else 1391 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1392 } 1393 1394 // Move on to the next element. 1395 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1396 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1397 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1398 1399 // Leave the loop if we're done. 1400 llvm::Value *done = Builder.CreateICmpEQ( 1401 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1402 "arrayinit.done"); 1403 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1404 Builder.CreateCondBr(done, endBB, bodyBB); 1405 1406 CGF.EmitBlock(endBB); 1407 1408 // Leave the partial-array cleanup if we entered one. 1409 if (dtorKind) 1410 CGF.DeactivateCleanupBlock(cleanup, index); 1411 } 1412 1413 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1414 AggValueSlot Dest = EnsureSlot(E->getType()); 1415 1416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1417 EmitInitializationToLValue(E->getBase(), DestLV); 1418 VisitInitListExpr(E->getUpdater()); 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // Entry Points into this File 1423 //===----------------------------------------------------------------------===// 1424 1425 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1426 /// non-zero bytes that will be stored when outputting the initializer for the 1427 /// specified initializer expression. 1428 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1429 E = E->IgnoreParens(); 1430 1431 // 0 and 0.0 won't require any non-zero stores! 1432 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1433 1434 // If this is an initlist expr, sum up the size of sizes of the (present) 1435 // elements. If this is something weird, assume the whole thing is non-zero. 1436 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1437 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1438 return CGF.getContext().getTypeSizeInChars(E->getType()); 1439 1440 // InitListExprs for structs have to be handled carefully. If there are 1441 // reference members, we need to consider the size of the reference, not the 1442 // referencee. InitListExprs for unions and arrays can't have references. 1443 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1444 if (!RT->isUnionType()) { 1445 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1446 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1447 1448 unsigned ILEElement = 0; 1449 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1450 while (ILEElement != CXXRD->getNumBases()) 1451 NumNonZeroBytes += 1452 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1453 for (const auto *Field : SD->fields()) { 1454 // We're done once we hit the flexible array member or run out of 1455 // InitListExpr elements. 1456 if (Field->getType()->isIncompleteArrayType() || 1457 ILEElement == ILE->getNumInits()) 1458 break; 1459 if (Field->isUnnamedBitfield()) 1460 continue; 1461 1462 const Expr *E = ILE->getInit(ILEElement++); 1463 1464 // Reference values are always non-null and have the width of a pointer. 1465 if (Field->getType()->isReferenceType()) 1466 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1467 CGF.getTarget().getPointerWidth(0)); 1468 else 1469 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1470 } 1471 1472 return NumNonZeroBytes; 1473 } 1474 } 1475 1476 1477 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1478 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1479 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1480 return NumNonZeroBytes; 1481 } 1482 1483 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1484 /// zeros in it, emit a memset and avoid storing the individual zeros. 1485 /// 1486 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1487 CodeGenFunction &CGF) { 1488 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1489 // volatile stores. 1490 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1491 return; 1492 1493 // C++ objects with a user-declared constructor don't need zero'ing. 1494 if (CGF.getLangOpts().CPlusPlus) 1495 if (const RecordType *RT = CGF.getContext() 1496 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1497 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1498 if (RD->hasUserDeclaredConstructor()) 1499 return; 1500 } 1501 1502 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1503 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1504 if (Size <= CharUnits::fromQuantity(16)) 1505 return; 1506 1507 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1508 // we prefer to emit memset + individual stores for the rest. 1509 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1510 if (NumNonZeroBytes*4 > Size) 1511 return; 1512 1513 // Okay, it seems like a good idea to use an initial memset, emit the call. 1514 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1515 1516 Address Loc = Slot.getAddress(); 1517 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1518 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1519 1520 // Tell the AggExprEmitter that the slot is known zero. 1521 Slot.setZeroed(); 1522 } 1523 1524 1525 1526 1527 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1528 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1529 /// the value of the aggregate expression is not needed. If VolatileDest is 1530 /// true, DestPtr cannot be 0. 1531 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1532 assert(E && hasAggregateEvaluationKind(E->getType()) && 1533 "Invalid aggregate expression to emit"); 1534 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1535 "slot has bits but no address"); 1536 1537 // Optimize the slot if possible. 1538 CheckAggExprForMemSetUse(Slot, E, *this); 1539 1540 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1541 } 1542 1543 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1544 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1545 Address Temp = CreateMemTemp(E->getType()); 1546 LValue LV = MakeAddrLValue(Temp, E->getType()); 1547 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1548 AggValueSlot::DoesNotNeedGCBarriers, 1549 AggValueSlot::IsNotAliased)); 1550 return LV; 1551 } 1552 1553 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1554 Address SrcPtr, QualType Ty, 1555 bool isVolatile, 1556 bool isAssignment) { 1557 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1558 1559 if (getLangOpts().CPlusPlus) { 1560 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1561 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1562 assert((Record->hasTrivialCopyConstructor() || 1563 Record->hasTrivialCopyAssignment() || 1564 Record->hasTrivialMoveConstructor() || 1565 Record->hasTrivialMoveAssignment() || 1566 Record->isUnion()) && 1567 "Trying to aggregate-copy a type without a trivial copy/move " 1568 "constructor or assignment operator"); 1569 // Ignore empty classes in C++. 1570 if (Record->isEmpty()) 1571 return; 1572 } 1573 } 1574 1575 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1576 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1577 // read from another object that overlaps in anyway the storage of the first 1578 // object, then the overlap shall be exact and the two objects shall have 1579 // qualified or unqualified versions of a compatible type." 1580 // 1581 // memcpy is not defined if the source and destination pointers are exactly 1582 // equal, but other compilers do this optimization, and almost every memcpy 1583 // implementation handles this case safely. If there is a libc that does not 1584 // safely handle this, we can add a target hook. 1585 1586 // Get data size info for this aggregate. If this is an assignment, 1587 // don't copy the tail padding, because we might be assigning into a 1588 // base subobject where the tail padding is claimed. Otherwise, 1589 // copying it is fine. 1590 std::pair<CharUnits, CharUnits> TypeInfo; 1591 if (isAssignment) 1592 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1593 else 1594 TypeInfo = getContext().getTypeInfoInChars(Ty); 1595 1596 llvm::Value *SizeVal = nullptr; 1597 if (TypeInfo.first.isZero()) { 1598 // But note that getTypeInfo returns 0 for a VLA. 1599 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1600 getContext().getAsArrayType(Ty))) { 1601 QualType BaseEltTy; 1602 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1603 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1604 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1605 if (!isAssignment) 1606 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1607 assert(!TypeInfo.first.isZero()); 1608 SizeVal = Builder.CreateNUWMul( 1609 SizeVal, 1610 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1611 if (!isAssignment) { 1612 SizeVal = Builder.CreateNUWSub( 1613 SizeVal, 1614 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1615 SizeVal = Builder.CreateNUWAdd( 1616 SizeVal, llvm::ConstantInt::get( 1617 SizeTy, LastElementTypeInfo.first.getQuantity())); 1618 } 1619 } 1620 } 1621 if (!SizeVal) { 1622 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1623 } 1624 1625 // FIXME: If we have a volatile struct, the optimizer can remove what might 1626 // appear to be `extra' memory ops: 1627 // 1628 // volatile struct { int i; } a, b; 1629 // 1630 // int main() { 1631 // a = b; 1632 // a = b; 1633 // } 1634 // 1635 // we need to use a different call here. We use isVolatile to indicate when 1636 // either the source or the destination is volatile. 1637 1638 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1639 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1640 1641 // Don't do any of the memmove_collectable tests if GC isn't set. 1642 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1643 // fall through 1644 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1645 RecordDecl *Record = RecordTy->getDecl(); 1646 if (Record->hasObjectMember()) { 1647 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1648 SizeVal); 1649 return; 1650 } 1651 } else if (Ty->isArrayType()) { 1652 QualType BaseType = getContext().getBaseElementType(Ty); 1653 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1654 if (RecordTy->getDecl()->hasObjectMember()) { 1655 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1656 SizeVal); 1657 return; 1658 } 1659 } 1660 } 1661 1662 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1663 1664 // Determine the metadata to describe the position of any padding in this 1665 // memcpy, as well as the TBAA tags for the members of the struct, in case 1666 // the optimizer wishes to expand it in to scalar memory operations. 1667 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1668 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1669 } 1670