1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 bool IgnoreResult; 38 bool IsInitializer; 39 bool RequiresGCollection; 40 public: 41 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 42 bool ignore, bool isinit, bool requiresGCollection) 43 : CGF(cgf), Builder(CGF.Builder), 44 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore), 45 IsInitializer(isinit), RequiresGCollection(requiresGCollection) { 46 } 47 48 //===--------------------------------------------------------------------===// 49 // Utilities 50 //===--------------------------------------------------------------------===// 51 52 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 53 /// represents a value lvalue, this method emits the address of the lvalue, 54 /// then loads the result into DestPtr. 55 void EmitAggLoadOfLValue(const Expr *E); 56 57 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 58 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 59 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 60 61 //===--------------------------------------------------------------------===// 62 // Visitor Methods 63 //===--------------------------------------------------------------------===// 64 65 void VisitStmt(Stmt *S) { 66 CGF.ErrorUnsupported(S, "aggregate expression"); 67 } 68 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 69 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 70 71 // l-values. 72 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 73 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 74 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 75 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 76 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 77 EmitAggLoadOfLValue(E); 78 } 79 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 80 EmitAggLoadOfLValue(E); 81 } 82 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 83 EmitAggLoadOfLValue(E); 84 } 85 void VisitPredefinedExpr(const PredefinedExpr *E) { 86 EmitAggLoadOfLValue(E); 87 } 88 89 // Operators. 90 void VisitCastExpr(CastExpr *E); 91 void VisitCallExpr(const CallExpr *E); 92 void VisitStmtExpr(const StmtExpr *E); 93 void VisitBinaryOperator(const BinaryOperator *BO); 94 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 95 void VisitBinAssign(const BinaryOperator *E); 96 void VisitBinComma(const BinaryOperator *E); 97 void VisitUnaryAddrOf(const UnaryOperator *E); 98 99 void VisitObjCMessageExpr(ObjCMessageExpr *E); 100 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 104 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 105 106 void VisitConditionalOperator(const ConditionalOperator *CO); 107 void VisitChooseExpr(const ChooseExpr *CE); 108 void VisitInitListExpr(InitListExpr *E); 109 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 110 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 111 Visit(DAE->getExpr()); 112 } 113 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 114 void VisitCXXConstructExpr(const CXXConstructExpr *E); 115 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 116 void VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E); 117 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 118 119 void VisitVAArgExpr(VAArgExpr *E); 120 121 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 122 void EmitNullInitializationToLValue(LValue Address, QualType T); 123 // case Expr::ChooseExprClass: 124 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 125 }; 126 } // end anonymous namespace. 127 128 //===----------------------------------------------------------------------===// 129 // Utilities 130 //===----------------------------------------------------------------------===// 131 132 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 133 /// represents a value lvalue, this method emits the address of the lvalue, 134 /// then loads the result into DestPtr. 135 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 136 LValue LV = CGF.EmitLValue(E); 137 EmitFinalDestCopy(E, LV); 138 } 139 140 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 141 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 142 assert(Src.isAggregate() && "value must be aggregate value!"); 143 144 // If the result is ignored, don't copy from the value. 145 if (DestPtr == 0) { 146 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 147 return; 148 // If the source is volatile, we must read from it; to do that, we need 149 // some place to put it. 150 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 151 } 152 153 if (RequiresGCollection) { 154 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 155 DestPtr, Src.getAggregateAddr(), 156 E->getType()); 157 return; 158 } 159 // If the result of the assignment is used, copy the LHS there also. 160 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 161 // from the source as well, as we can't eliminate it if either operand 162 // is volatile, unless copy has volatile for both source and destination.. 163 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 164 VolatileDest|Src.isVolatileQualified()); 165 } 166 167 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 168 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 169 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 170 171 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 172 Src.isVolatileQualified()), 173 Ignore); 174 } 175 176 //===----------------------------------------------------------------------===// 177 // Visitor Methods 178 //===----------------------------------------------------------------------===// 179 180 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 181 switch (E->getCastKind()) { 182 default: assert(0 && "Unhandled cast kind!"); 183 184 case CastExpr::CK_ToUnion: { 185 // GCC union extension 186 QualType PtrTy = 187 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 188 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 189 CGF.ConvertType(PtrTy)); 190 EmitInitializationToLValue(E->getSubExpr(), 191 LValue::MakeAddr(CastPtr, Qualifiers()), 192 E->getType()); 193 break; 194 } 195 196 // FIXME: Remove the CK_Unknown check here. 197 case CastExpr::CK_Unknown: 198 case CastExpr::CK_NoOp: 199 case CastExpr::CK_UserDefinedConversion: 200 case CastExpr::CK_ConstructorConversion: 201 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 202 E->getType()) && 203 "Implicit cast types must be compatible"); 204 Visit(E->getSubExpr()); 205 break; 206 207 case CastExpr::CK_NullToMemberPointer: { 208 const llvm::Type *PtrDiffTy = 209 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 210 211 llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy); 212 llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr"); 213 Builder.CreateStore(NullValue, Ptr, VolatileDest); 214 215 llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj"); 216 Builder.CreateStore(NullValue, Adj, VolatileDest); 217 218 break; 219 } 220 221 case CastExpr::CK_BitCast: { 222 // This must be a member function pointer cast. 223 Visit(E->getSubExpr()); 224 break; 225 } 226 227 case CastExpr::CK_DerivedToBaseMemberPointer: 228 case CastExpr::CK_BaseToDerivedMemberPointer: { 229 QualType SrcType = E->getSubExpr()->getType(); 230 231 llvm::Value *Src = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(SrcType), 232 "tmp"); 233 CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified()); 234 235 llvm::Value *SrcPtr = Builder.CreateStructGEP(Src, 0, "src.ptr"); 236 SrcPtr = Builder.CreateLoad(SrcPtr); 237 238 llvm::Value *SrcAdj = Builder.CreateStructGEP(Src, 1, "src.adj"); 239 SrcAdj = Builder.CreateLoad(SrcAdj); 240 241 llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); 242 Builder.CreateStore(SrcPtr, DstPtr, VolatileDest); 243 244 llvm::Value *DstAdj = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); 245 246 // Now See if we need to update the adjustment. 247 const CXXRecordDecl *BaseDecl = 248 cast<CXXRecordDecl>(SrcType->getAs<MemberPointerType>()-> 249 getClass()->getAs<RecordType>()->getDecl()); 250 const CXXRecordDecl *DerivedDecl = 251 cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()-> 252 getClass()->getAs<RecordType>()->getDecl()); 253 if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) 254 std::swap(DerivedDecl, BaseDecl); 255 256 if (llvm::Constant *Adj = 257 CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, BaseDecl)) { 258 if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) 259 SrcAdj = Builder.CreateSub(SrcAdj, Adj, "adj"); 260 else 261 SrcAdj = Builder.CreateAdd(SrcAdj, Adj, "adj"); 262 } 263 264 Builder.CreateStore(SrcAdj, DstAdj, VolatileDest); 265 break; 266 } 267 } 268 } 269 270 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 271 if (E->getCallReturnType()->isReferenceType()) { 272 EmitAggLoadOfLValue(E); 273 return; 274 } 275 276 // If the struct doesn't require GC, we can just pass the destination 277 // directly to EmitCall. 278 if (!RequiresGCollection) { 279 CGF.EmitCallExpr(E, ReturnValueSlot(DestPtr, VolatileDest)); 280 return; 281 } 282 283 RValue RV = CGF.EmitCallExpr(E); 284 EmitFinalDestCopy(E, RV); 285 } 286 287 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 288 RValue RV = CGF.EmitObjCMessageExpr(E); 289 EmitFinalDestCopy(E, RV); 290 } 291 292 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 293 RValue RV = CGF.EmitObjCPropertyGet(E); 294 EmitFinalDestCopy(E, RV); 295 } 296 297 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 298 ObjCImplicitSetterGetterRefExpr *E) { 299 RValue RV = CGF.EmitObjCPropertyGet(E); 300 EmitFinalDestCopy(E, RV); 301 } 302 303 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 304 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 305 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest, 306 /*IgnoreResult=*/false, IsInitializer); 307 } 308 309 void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) { 310 // We have a member function pointer. 311 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 312 (void) MPT; 313 assert(MPT->getPointeeType()->isFunctionProtoType() && 314 "Unexpected member pointer type!"); 315 316 const DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr()); 317 const CXXMethodDecl *MD = 318 cast<CXXMethodDecl>(DRE->getDecl())->getCanonicalDecl(); 319 320 const llvm::Type *PtrDiffTy = 321 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 322 323 llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); 324 llvm::Value *FuncPtr; 325 326 if (MD->isVirtual()) { 327 int64_t Index = 328 CGF.CGM.getVtableInfo().getMethodVtableIndex(MD); 329 330 FuncPtr = llvm::ConstantInt::get(PtrDiffTy, Index + 1); 331 } else { 332 FuncPtr = llvm::ConstantExpr::getPtrToInt(CGF.CGM.GetAddrOfFunction(MD), 333 PtrDiffTy); 334 } 335 Builder.CreateStore(FuncPtr, DstPtr, VolatileDest); 336 337 llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); 338 339 // The adjustment will always be 0. 340 Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr, 341 VolatileDest); 342 } 343 344 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 345 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 346 } 347 348 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 349 if (E->getOpcode() == BinaryOperator::PtrMemD || 350 E->getOpcode() == BinaryOperator::PtrMemI) 351 VisitPointerToDataMemberBinaryOperator(E); 352 else 353 CGF.ErrorUnsupported(E, "aggregate binary expression"); 354 } 355 356 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 357 const BinaryOperator *E) { 358 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 359 EmitFinalDestCopy(E, LV); 360 } 361 362 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 363 // For an assignment to work, the value on the right has 364 // to be compatible with the value on the left. 365 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 366 E->getRHS()->getType()) 367 && "Invalid assignment"); 368 LValue LHS = CGF.EmitLValue(E->getLHS()); 369 370 // We have to special case property setters, otherwise we must have 371 // a simple lvalue (no aggregates inside vectors, bitfields). 372 if (LHS.isPropertyRef()) { 373 llvm::Value *AggLoc = DestPtr; 374 if (!AggLoc) 375 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 376 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 377 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 378 RValue::getAggregate(AggLoc, VolatileDest)); 379 } else if (LHS.isKVCRef()) { 380 llvm::Value *AggLoc = DestPtr; 381 if (!AggLoc) 382 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 383 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 384 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 385 RValue::getAggregate(AggLoc, VolatileDest)); 386 } else { 387 bool RequiresGCollection = false; 388 if (CGF.getContext().getLangOptions().NeXTRuntime) { 389 QualType LHSTy = E->getLHS()->getType(); 390 if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>()) 391 RequiresGCollection = FDTTy->getDecl()->hasObjectMember(); 392 } 393 // Codegen the RHS so that it stores directly into the LHS. 394 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(), 395 false, false, RequiresGCollection); 396 EmitFinalDestCopy(E, LHS, true); 397 } 398 } 399 400 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 401 if (!E->getLHS()) { 402 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 403 return; 404 } 405 406 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 407 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 408 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 409 410 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 411 412 CGF.StartConditionalBranch(); 413 CGF.EmitBlock(LHSBlock); 414 415 // Handle the GNU extension for missing LHS. 416 assert(E->getLHS() && "Must have LHS for aggregate value"); 417 418 Visit(E->getLHS()); 419 CGF.FinishConditionalBranch(); 420 CGF.EmitBranch(ContBlock); 421 422 CGF.StartConditionalBranch(); 423 CGF.EmitBlock(RHSBlock); 424 425 Visit(E->getRHS()); 426 CGF.FinishConditionalBranch(); 427 CGF.EmitBranch(ContBlock); 428 429 CGF.EmitBlock(ContBlock); 430 } 431 432 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 433 Visit(CE->getChosenSubExpr(CGF.getContext())); 434 } 435 436 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 437 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 438 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 439 440 if (!ArgPtr) { 441 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 442 return; 443 } 444 445 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers())); 446 } 447 448 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 449 llvm::Value *Val = DestPtr; 450 451 if (!Val) { 452 // Create a temporary variable. 453 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 454 455 // FIXME: volatile 456 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 457 } else 458 Visit(E->getSubExpr()); 459 460 // Don't make this a live temporary if we're emitting an initializer expr. 461 if (!IsInitializer) 462 CGF.PushCXXTemporary(E->getTemporary(), Val); 463 } 464 465 void 466 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 467 llvm::Value *Val = DestPtr; 468 469 if (!Val) { 470 // Create a temporary variable. 471 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 472 } 473 474 if (E->requiresZeroInitialization()) 475 EmitNullInitializationToLValue(LValue::MakeAddr(Val, 476 // FIXME: Qualifiers()? 477 E->getType().getQualifiers()), 478 E->getType()); 479 480 CGF.EmitCXXConstructExpr(Val, E); 481 } 482 483 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 484 llvm::Value *Val = DestPtr; 485 486 if (!Val) { 487 // Create a temporary variable. 488 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 489 } 490 CGF.EmitCXXExprWithTemporaries(E, Val, VolatileDest, IsInitializer); 491 } 492 493 void AggExprEmitter::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) { 494 llvm::Value *Val = DestPtr; 495 496 if (!Val) { 497 // Create a temporary variable. 498 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 499 } 500 LValue LV = LValue::MakeAddr(Val, Qualifiers()); 501 EmitNullInitializationToLValue(LV, E->getType()); 502 } 503 504 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 505 llvm::Value *Val = DestPtr; 506 507 if (!Val) { 508 // Create a temporary variable. 509 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 510 } 511 LValue LV = LValue::MakeAddr(Val, Qualifiers()); 512 EmitNullInitializationToLValue(LV, E->getType()); 513 } 514 515 void 516 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 517 // FIXME: Ignore result? 518 // FIXME: Are initializers affected by volatile? 519 if (isa<ImplicitValueInitExpr>(E)) { 520 EmitNullInitializationToLValue(LV, T); 521 } else if (T->isReferenceType()) { 522 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*IsInitializer=*/false); 523 CGF.EmitStoreThroughLValue(RV, LV, T); 524 } else if (T->isAnyComplexType()) { 525 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 526 } else if (CGF.hasAggregateLLVMType(T)) { 527 CGF.EmitAnyExpr(E, LV.getAddress(), false); 528 } else { 529 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 530 } 531 } 532 533 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 534 if (!CGF.hasAggregateLLVMType(T)) { 535 // For non-aggregates, we can store zero 536 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 537 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 538 } else { 539 // Otherwise, just memset the whole thing to zero. This is legal 540 // because in LLVM, all default initializers are guaranteed to have a 541 // bit pattern of all zeros. 542 // FIXME: That isn't true for member pointers! 543 // There's a potential optimization opportunity in combining 544 // memsets; that would be easy for arrays, but relatively 545 // difficult for structures with the current code. 546 CGF.EmitMemSetToZero(LV.getAddress(), T); 547 } 548 } 549 550 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 551 #if 0 552 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 553 // (Length of globals? Chunks of zeroed-out space?). 554 // 555 // If we can, prefer a copy from a global; this is a lot less code for long 556 // globals, and it's easier for the current optimizers to analyze. 557 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 558 llvm::GlobalVariable* GV = 559 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 560 llvm::GlobalValue::InternalLinkage, C, ""); 561 EmitFinalDestCopy(E, LValue::MakeAddr(GV, Qualifiers())); 562 return; 563 } 564 #endif 565 if (E->hadArrayRangeDesignator()) { 566 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 567 } 568 569 // Handle initialization of an array. 570 if (E->getType()->isArrayType()) { 571 const llvm::PointerType *APType = 572 cast<llvm::PointerType>(DestPtr->getType()); 573 const llvm::ArrayType *AType = 574 cast<llvm::ArrayType>(APType->getElementType()); 575 576 uint64_t NumInitElements = E->getNumInits(); 577 578 if (E->getNumInits() > 0) { 579 QualType T1 = E->getType(); 580 QualType T2 = E->getInit(0)->getType(); 581 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 582 EmitAggLoadOfLValue(E->getInit(0)); 583 return; 584 } 585 } 586 587 uint64_t NumArrayElements = AType->getNumElements(); 588 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 589 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 590 591 // FIXME: were we intentionally ignoring address spaces and GC attributes? 592 Qualifiers Quals = CGF.MakeQualifiers(ElementType); 593 594 for (uint64_t i = 0; i != NumArrayElements; ++i) { 595 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 596 if (i < NumInitElements) 597 EmitInitializationToLValue(E->getInit(i), 598 LValue::MakeAddr(NextVal, Quals), 599 ElementType); 600 else 601 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals), 602 ElementType); 603 } 604 return; 605 } 606 607 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 608 609 // Do struct initialization; this code just sets each individual member 610 // to the approprate value. This makes bitfield support automatic; 611 // the disadvantage is that the generated code is more difficult for 612 // the optimizer, especially with bitfields. 613 unsigned NumInitElements = E->getNumInits(); 614 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 615 unsigned CurInitVal = 0; 616 617 if (E->getType()->isUnionType()) { 618 // Only initialize one field of a union. The field itself is 619 // specified by the initializer list. 620 if (!E->getInitializedFieldInUnion()) { 621 // Empty union; we have nothing to do. 622 623 #ifndef NDEBUG 624 // Make sure that it's really an empty and not a failure of 625 // semantic analysis. 626 for (RecordDecl::field_iterator Field = SD->field_begin(), 627 FieldEnd = SD->field_end(); 628 Field != FieldEnd; ++Field) 629 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 630 #endif 631 return; 632 } 633 634 // FIXME: volatility 635 FieldDecl *Field = E->getInitializedFieldInUnion(); 636 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 637 638 if (NumInitElements) { 639 // Store the initializer into the field 640 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 641 } else { 642 // Default-initialize to null 643 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 644 } 645 646 return; 647 } 648 649 // Here we iterate over the fields; this makes it simpler to both 650 // default-initialize fields and skip over unnamed fields. 651 for (RecordDecl::field_iterator Field = SD->field_begin(), 652 FieldEnd = SD->field_end(); 653 Field != FieldEnd; ++Field) { 654 // We're done once we hit the flexible array member 655 if (Field->getType()->isIncompleteArrayType()) 656 break; 657 658 if (Field->isUnnamedBitfield()) 659 continue; 660 661 // FIXME: volatility 662 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 663 // We never generate write-barries for initialized fields. 664 LValue::SetObjCNonGC(FieldLoc, true); 665 if (CurInitVal < NumInitElements) { 666 // Store the initializer into the field 667 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 668 Field->getType()); 669 } else { 670 // We're out of initalizers; default-initialize to null 671 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 672 } 673 } 674 } 675 676 //===----------------------------------------------------------------------===// 677 // Entry Points into this File 678 //===----------------------------------------------------------------------===// 679 680 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 681 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 682 /// the value of the aggregate expression is not needed. If VolatileDest is 683 /// true, DestPtr cannot be 0. 684 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 685 bool VolatileDest, bool IgnoreResult, 686 bool IsInitializer, 687 bool RequiresGCollection) { 688 assert(E && hasAggregateLLVMType(E->getType()) && 689 "Invalid aggregate expression to emit"); 690 assert ((DestPtr != 0 || VolatileDest == false) 691 && "volatile aggregate can't be 0"); 692 693 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer, 694 RequiresGCollection) 695 .Visit(const_cast<Expr*>(E)); 696 } 697 698 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 699 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 700 701 EmitMemSetToZero(DestPtr, Ty); 702 } 703 704 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 705 llvm::Value *SrcPtr, QualType Ty, 706 bool isVolatile) { 707 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 708 709 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 710 // C99 6.5.16.1p3, which states "If the value being stored in an object is 711 // read from another object that overlaps in anyway the storage of the first 712 // object, then the overlap shall be exact and the two objects shall have 713 // qualified or unqualified versions of a compatible type." 714 // 715 // memcpy is not defined if the source and destination pointers are exactly 716 // equal, but other compilers do this optimization, and almost every memcpy 717 // implementation handles this case safely. If there is a libc that does not 718 // safely handle this, we can add a target hook. 719 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 720 if (DestPtr->getType() != BP) 721 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 722 if (SrcPtr->getType() != BP) 723 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 724 725 // Get size and alignment info for this aggregate. 726 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 727 728 // FIXME: Handle variable sized types. 729 const llvm::Type *IntPtr = 730 llvm::IntegerType::get(VMContext, LLVMPointerWidth); 731 732 // FIXME: If we have a volatile struct, the optimizer can remove what might 733 // appear to be `extra' memory ops: 734 // 735 // volatile struct { int i; } a, b; 736 // 737 // int main() { 738 // a = b; 739 // a = b; 740 // } 741 // 742 // we need to use a differnt call here. We use isVolatile to indicate when 743 // either the source or the destination is volatile. 744 Builder.CreateCall4(CGM.getMemCpyFn(), 745 DestPtr, SrcPtr, 746 // TypeInfo.first describes size in bits. 747 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 748 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 749 TypeInfo.second/8)); 750 } 751