1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 llvm::Value *DestPtr; 37 bool VolatileDest; 38 bool IgnoreResult; 39 40 public: 41 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 42 bool ignore) 43 : CGF(cgf), Builder(CGF.Builder), 44 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { 45 } 46 47 //===--------------------------------------------------------------------===// 48 // Utilities 49 //===--------------------------------------------------------------------===// 50 51 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 52 /// represents a value lvalue, this method emits the address of the lvalue, 53 /// then loads the result into DestPtr. 54 void EmitAggLoadOfLValue(const Expr *E); 55 56 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 57 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 58 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 59 60 //===--------------------------------------------------------------------===// 61 // Visitor Methods 62 //===--------------------------------------------------------------------===// 63 64 void VisitStmt(Stmt *S) { 65 CGF.ErrorUnsupported(S, "aggregate expression"); 66 } 67 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 68 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 69 70 // l-values. 71 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 72 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 73 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 74 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 75 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 76 EmitAggLoadOfLValue(E); 77 } 78 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 79 EmitAggLoadOfLValue(E); 80 } 81 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 82 EmitAggLoadOfLValue(E); 83 } 84 void VisitPredefinedExpr(const PredefinedExpr *E) { 85 EmitAggLoadOfLValue(E); 86 } 87 88 // Operators. 89 void VisitCStyleCastExpr(CStyleCastExpr *E); 90 void VisitImplicitCastExpr(ImplicitCastExpr *E); 91 void VisitCallExpr(const CallExpr *E); 92 void VisitStmtExpr(const StmtExpr *E); 93 void VisitBinaryOperator(const BinaryOperator *BO); 94 void VisitBinAssign(const BinaryOperator *E); 95 void VisitBinComma(const BinaryOperator *E); 96 97 void VisitObjCMessageExpr(ObjCMessageExpr *E); 98 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 99 EmitAggLoadOfLValue(E); 100 } 101 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 102 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 103 104 void VisitConditionalOperator(const ConditionalOperator *CO); 105 void VisitChooseExpr(const ChooseExpr *CE); 106 void VisitInitListExpr(InitListExpr *E); 107 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 108 Visit(DAE->getExpr()); 109 } 110 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 111 void VisitCXXConstructExpr(const CXXConstructExpr *E); 112 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 113 114 void VisitVAArgExpr(VAArgExpr *E); 115 116 void EmitInitializationToLValue(Expr *E, LValue Address); 117 void EmitNullInitializationToLValue(LValue Address, QualType T); 118 // case Expr::ChooseExprClass: 119 120 }; 121 } // end anonymous namespace. 122 123 //===----------------------------------------------------------------------===// 124 // Utilities 125 //===----------------------------------------------------------------------===// 126 127 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 128 /// represents a value lvalue, this method emits the address of the lvalue, 129 /// then loads the result into DestPtr. 130 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 131 LValue LV = CGF.EmitLValue(E); 132 EmitFinalDestCopy(E, LV); 133 } 134 135 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 136 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 137 assert(Src.isAggregate() && "value must be aggregate value!"); 138 139 // If the result is ignored, don't copy from the value. 140 if (DestPtr == 0) { 141 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 142 return; 143 // If the source is volatile, we must read from it; to do that, we need 144 // some place to put it. 145 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 146 } 147 148 // If the result of the assignment is used, copy the LHS there also. 149 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 150 // from the source as well, as we can't eliminate it if either operand 151 // is volatile, unless copy has volatile for both source and destination.. 152 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 153 VolatileDest|Src.isVolatileQualified()); 154 } 155 156 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 157 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 158 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 159 160 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 161 Src.isVolatileQualified()), 162 Ignore); 163 } 164 165 //===----------------------------------------------------------------------===// 166 // Visitor Methods 167 //===----------------------------------------------------------------------===// 168 169 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 170 // GCC union extension 171 if (E->getSubExpr()->getType()->isScalarType()) { 172 QualType PtrTy = 173 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 174 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 175 CGF.ConvertType(PtrTy)); 176 EmitInitializationToLValue(E->getSubExpr(), 177 LValue::MakeAddr(CastPtr, 0)); 178 return; 179 } 180 181 Visit(E->getSubExpr()); 182 } 183 184 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 185 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 186 E->getType()) && 187 "Implicit cast types must be compatible"); 188 Visit(E->getSubExpr()); 189 } 190 191 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 192 if (E->getCallReturnType()->isReferenceType()) { 193 EmitAggLoadOfLValue(E); 194 return; 195 } 196 197 RValue RV = CGF.EmitCallExpr(E); 198 EmitFinalDestCopy(E, RV); 199 } 200 201 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 202 RValue RV = CGF.EmitObjCMessageExpr(E); 203 EmitFinalDestCopy(E, RV); 204 } 205 206 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 207 RValue RV = CGF.EmitObjCPropertyGet(E); 208 EmitFinalDestCopy(E, RV); 209 } 210 211 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 212 RValue RV = CGF.EmitObjCPropertyGet(E); 213 EmitFinalDestCopy(E, RV); 214 } 215 216 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 217 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 218 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 219 } 220 221 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 222 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 223 } 224 225 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 226 CGF.ErrorUnsupported(E, "aggregate binary expression"); 227 } 228 229 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 230 // For an assignment to work, the value on the right has 231 // to be compatible with the value on the left. 232 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 233 E->getRHS()->getType()) 234 && "Invalid assignment"); 235 LValue LHS = CGF.EmitLValue(E->getLHS()); 236 237 // We have to special case property setters, otherwise we must have 238 // a simple lvalue (no aggregates inside vectors, bitfields). 239 if (LHS.isPropertyRef()) { 240 llvm::Value *AggLoc = DestPtr; 241 if (!AggLoc) 242 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 243 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 244 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 245 RValue::getAggregate(AggLoc, VolatileDest)); 246 } else if (LHS.isKVCRef()) { 247 llvm::Value *AggLoc = DestPtr; 248 if (!AggLoc) 249 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 250 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 251 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 252 RValue::getAggregate(AggLoc, VolatileDest)); 253 } else { 254 if (CGF.getContext().getLangOptions().NeXTRuntime) { 255 QualType LHSTy = E->getLHS()->getType(); 256 if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>()) 257 if (FDTTy->getDecl()->hasObjectMember()) { 258 LValue RHS = CGF.EmitLValue(E->getRHS()); 259 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, LHS.getAddress(), 260 RHS.getAddress(), 261 CGF.getContext().getTypeSize(LHSTy) / 8); 262 return; 263 } 264 } 265 // Codegen the RHS so that it stores directly into the LHS. 266 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 267 EmitFinalDestCopy(E, LHS, true); 268 } 269 } 270 271 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 272 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 273 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 274 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 275 276 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 277 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 278 279 CGF.PushConditionalTempDestruction(); 280 CGF.EmitBlock(LHSBlock); 281 282 // Handle the GNU extension for missing LHS. 283 assert(E->getLHS() && "Must have LHS for aggregate value"); 284 285 Visit(E->getLHS()); 286 CGF.PopConditionalTempDestruction(); 287 CGF.EmitBranch(ContBlock); 288 289 CGF.PushConditionalTempDestruction(); 290 CGF.EmitBlock(RHSBlock); 291 292 Visit(E->getRHS()); 293 CGF.PopConditionalTempDestruction(); 294 CGF.EmitBranch(ContBlock); 295 296 CGF.EmitBlock(ContBlock); 297 } 298 299 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 300 Visit(CE->getChosenSubExpr(CGF.getContext())); 301 } 302 303 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 304 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 305 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 306 307 if (!ArgPtr) { 308 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 309 return; 310 } 311 312 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 313 } 314 315 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 316 llvm::Value *Val = DestPtr; 317 318 if (!Val) { 319 // Create a temporary variable. 320 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 321 322 // FIXME: volatile 323 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 324 } else 325 Visit(E->getSubExpr()); 326 327 CGF.PushCXXTemporary(E->getTemporary(), Val); 328 } 329 330 void 331 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 332 llvm::Value *Val = DestPtr; 333 334 if (!Val) { 335 // Create a temporary variable. 336 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 337 } 338 339 CGF.EmitCXXConstructExpr(Val, E); 340 } 341 342 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 343 CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest); 344 } 345 346 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 347 // FIXME: Ignore result? 348 // FIXME: Are initializers affected by volatile? 349 if (isa<ImplicitValueInitExpr>(E)) { 350 EmitNullInitializationToLValue(LV, E->getType()); 351 } else if (E->getType()->isComplexType()) { 352 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 353 } else if (CGF.hasAggregateLLVMType(E->getType())) { 354 CGF.EmitAnyExpr(E, LV.getAddress(), false); 355 } else { 356 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 357 } 358 } 359 360 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 361 if (!CGF.hasAggregateLLVMType(T)) { 362 // For non-aggregates, we can store zero 363 llvm::Value *Null = CGF.getLLVMContext().getNullValue(CGF.ConvertType(T)); 364 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 365 } else { 366 // Otherwise, just memset the whole thing to zero. This is legal 367 // because in LLVM, all default initializers are guaranteed to have a 368 // bit pattern of all zeros. 369 // FIXME: That isn't true for member pointers! 370 // There's a potential optimization opportunity in combining 371 // memsets; that would be easy for arrays, but relatively 372 // difficult for structures with the current code. 373 CGF.EmitMemSetToZero(LV.getAddress(), T); 374 } 375 } 376 377 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 378 #if 0 379 // FIXME: Disabled while we figure out what to do about 380 // test/CodeGen/bitfield.c 381 // 382 // If we can, prefer a copy from a global; this is a lot less code for long 383 // globals, and it's easier for the current optimizers to analyze. 384 // FIXME: Should we really be doing this? Should we try to avoid cases where 385 // we emit a global with a lot of zeros? Should we try to avoid short 386 // globals? 387 if (E->isConstantInitializer(CGF.getContext(), 0)) { 388 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 389 llvm::GlobalVariable* GV = 390 new llvm::GlobalVariable(C->getType(), true, 391 llvm::GlobalValue::InternalLinkage, 392 C, "", &CGF.CGM.getModule(), 0); 393 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 394 return; 395 } 396 #endif 397 if (E->hadArrayRangeDesignator()) { 398 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 399 } 400 401 // Handle initialization of an array. 402 if (E->getType()->isArrayType()) { 403 const llvm::PointerType *APType = 404 cast<llvm::PointerType>(DestPtr->getType()); 405 const llvm::ArrayType *AType = 406 cast<llvm::ArrayType>(APType->getElementType()); 407 408 uint64_t NumInitElements = E->getNumInits(); 409 410 if (E->getNumInits() > 0) { 411 QualType T1 = E->getType(); 412 QualType T2 = E->getInit(0)->getType(); 413 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 414 EmitAggLoadOfLValue(E->getInit(0)); 415 return; 416 } 417 } 418 419 uint64_t NumArrayElements = AType->getNumElements(); 420 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 421 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 422 423 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 424 425 for (uint64_t i = 0; i != NumArrayElements; ++i) { 426 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 427 if (i < NumInitElements) 428 EmitInitializationToLValue(E->getInit(i), 429 LValue::MakeAddr(NextVal, CVRqualifier)); 430 else 431 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 432 ElementType); 433 } 434 return; 435 } 436 437 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 438 439 // Do struct initialization; this code just sets each individual member 440 // to the approprate value. This makes bitfield support automatic; 441 // the disadvantage is that the generated code is more difficult for 442 // the optimizer, especially with bitfields. 443 unsigned NumInitElements = E->getNumInits(); 444 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 445 unsigned CurInitVal = 0; 446 447 if (E->getType()->isUnionType()) { 448 // Only initialize one field of a union. The field itself is 449 // specified by the initializer list. 450 if (!E->getInitializedFieldInUnion()) { 451 // Empty union; we have nothing to do. 452 453 #ifndef NDEBUG 454 // Make sure that it's really an empty and not a failure of 455 // semantic analysis. 456 for (RecordDecl::field_iterator Field = SD->field_begin(), 457 FieldEnd = SD->field_end(); 458 Field != FieldEnd; ++Field) 459 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 460 #endif 461 return; 462 } 463 464 // FIXME: volatility 465 FieldDecl *Field = E->getInitializedFieldInUnion(); 466 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 467 468 if (NumInitElements) { 469 // Store the initializer into the field 470 EmitInitializationToLValue(E->getInit(0), FieldLoc); 471 } else { 472 // Default-initialize to null 473 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 474 } 475 476 return; 477 } 478 479 // Here we iterate over the fields; this makes it simpler to both 480 // default-initialize fields and skip over unnamed fields. 481 for (RecordDecl::field_iterator Field = SD->field_begin(), 482 FieldEnd = SD->field_end(); 483 Field != FieldEnd; ++Field) { 484 // We're done once we hit the flexible array member 485 if (Field->getType()->isIncompleteArrayType()) 486 break; 487 488 if (Field->isUnnamedBitfield()) 489 continue; 490 491 // FIXME: volatility 492 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 493 // We never generate write-barries for initialized fields. 494 LValue::SetObjCNonGC(FieldLoc, true); 495 if (CurInitVal < NumInitElements) { 496 // Store the initializer into the field 497 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 498 } else { 499 // We're out of initalizers; default-initialize to null 500 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 501 } 502 } 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Entry Points into this File 507 //===----------------------------------------------------------------------===// 508 509 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 510 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 511 /// the value of the aggregate expression is not needed. If VolatileDest is 512 /// true, DestPtr cannot be 0. 513 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 514 bool VolatileDest, bool IgnoreResult) { 515 assert(E && hasAggregateLLVMType(E->getType()) && 516 "Invalid aggregate expression to emit"); 517 assert ((DestPtr != 0 || VolatileDest == false) 518 && "volatile aggregate can't be 0"); 519 520 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) 521 .Visit(const_cast<Expr*>(E)); 522 } 523 524 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 525 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 526 527 EmitMemSetToZero(DestPtr, Ty); 528 } 529 530 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 531 llvm::Value *SrcPtr, QualType Ty, 532 bool isVolatile) { 533 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 534 535 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 536 // C99 6.5.16.1p3, which states "If the value being stored in an object is 537 // read from another object that overlaps in anyway the storage of the first 538 // object, then the overlap shall be exact and the two objects shall have 539 // qualified or unqualified versions of a compatible type." 540 // 541 // memcpy is not defined if the source and destination pointers are exactly 542 // equal, but other compilers do this optimization, and almost every memcpy 543 // implementation handles this case safely. If there is a libc that does not 544 // safely handle this, we can add a target hook. 545 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 546 if (DestPtr->getType() != BP) 547 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 548 if (SrcPtr->getType() != BP) 549 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 550 551 // Get size and alignment info for this aggregate. 552 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 553 554 // FIXME: Handle variable sized types. 555 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 556 557 // FIXME: If we have a volatile struct, the optimizer can remove what might 558 // appear to be `extra' memory ops: 559 // 560 // volatile struct { int i; } a, b; 561 // 562 // int main() { 563 // a = b; 564 // a = b; 565 // } 566 // 567 // we need to use a differnt call here. We use isVolatile to indicate when 568 // either the source or the destination is volatile. 569 Builder.CreateCall4(CGM.getMemCpyFn(), 570 DestPtr, SrcPtr, 571 // TypeInfo.first describes size in bits. 572 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 573 llvm::ConstantInt::get(llvm::Type::Int32Ty, 574 TypeInfo.second/8)); 575 } 576