1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 llvm::Value *DestPtr; 37 bool VolatileDest; 38 bool IgnoreResult; 39 40 public: 41 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 42 bool ignore) 43 : CGF(cgf), Builder(CGF.Builder), 44 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { 45 } 46 47 //===--------------------------------------------------------------------===// 48 // Utilities 49 //===--------------------------------------------------------------------===// 50 51 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 52 /// represents a value lvalue, this method emits the address of the lvalue, 53 /// then loads the result into DestPtr. 54 void EmitAggLoadOfLValue(const Expr *E); 55 56 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 57 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 58 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 59 60 //===--------------------------------------------------------------------===// 61 // Visitor Methods 62 //===--------------------------------------------------------------------===// 63 64 void VisitStmt(Stmt *S) { 65 CGF.ErrorUnsupported(S, "aggregate expression"); 66 } 67 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 68 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 69 70 // l-values. 71 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 72 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 73 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 74 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 75 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 76 EmitAggLoadOfLValue(E); 77 } 78 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 79 EmitAggLoadOfLValue(E); 80 } 81 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 82 EmitAggLoadOfLValue(E); 83 } 84 void VisitPredefinedExpr(const PredefinedExpr *E) { 85 EmitAggLoadOfLValue(E); 86 } 87 88 // Operators. 89 void VisitCStyleCastExpr(CStyleCastExpr *E); 90 void VisitImplicitCastExpr(ImplicitCastExpr *E); 91 void VisitCallExpr(const CallExpr *E); 92 void VisitStmtExpr(const StmtExpr *E); 93 void VisitBinaryOperator(const BinaryOperator *BO); 94 void VisitBinAssign(const BinaryOperator *E); 95 void VisitBinComma(const BinaryOperator *E); 96 97 void VisitObjCMessageExpr(ObjCMessageExpr *E); 98 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 99 EmitAggLoadOfLValue(E); 100 } 101 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 102 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 103 104 void VisitConditionalOperator(const ConditionalOperator *CO); 105 void VisitInitListExpr(InitListExpr *E); 106 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 107 Visit(DAE->getExpr()); 108 } 109 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 110 void VisitCXXConstructExpr(const CXXConstructExpr *E); 111 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 112 113 void VisitVAArgExpr(VAArgExpr *E); 114 115 void EmitInitializationToLValue(Expr *E, LValue Address); 116 void EmitNullInitializationToLValue(LValue Address, QualType T); 117 // case Expr::ChooseExprClass: 118 119 }; 120 } // end anonymous namespace. 121 122 //===----------------------------------------------------------------------===// 123 // Utilities 124 //===----------------------------------------------------------------------===// 125 126 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 127 /// represents a value lvalue, this method emits the address of the lvalue, 128 /// then loads the result into DestPtr. 129 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 130 LValue LV = CGF.EmitLValue(E); 131 EmitFinalDestCopy(E, LV); 132 } 133 134 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 135 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 136 assert(Src.isAggregate() && "value must be aggregate value!"); 137 138 // If the result is ignored, don't copy from the value. 139 if (DestPtr == 0) { 140 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 141 return; 142 // If the source is volatile, we must read from it; to do that, we need 143 // some place to put it. 144 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 145 } 146 147 // If the result of the assignment is used, copy the LHS there also. 148 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 149 // from the source as well, as we can't eliminate it if either operand 150 // is volatile, unless copy has volatile for both source and destination.. 151 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 152 VolatileDest|Src.isVolatileQualified()); 153 } 154 155 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 156 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 157 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 158 159 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 160 Src.isVolatileQualified()), 161 Ignore); 162 } 163 164 //===----------------------------------------------------------------------===// 165 // Visitor Methods 166 //===----------------------------------------------------------------------===// 167 168 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 169 // GCC union extension 170 if (E->getSubExpr()->getType()->isScalarType()) { 171 QualType PtrTy = 172 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 173 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 174 CGF.ConvertType(PtrTy)); 175 EmitInitializationToLValue(E->getSubExpr(), LValue::MakeAddr(CastPtr, 0)); 176 return; 177 } 178 179 Visit(E->getSubExpr()); 180 } 181 182 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 183 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 184 E->getType()) && 185 "Implicit cast types must be compatible"); 186 Visit(E->getSubExpr()); 187 } 188 189 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 190 if (E->getCallReturnType()->isReferenceType()) { 191 EmitAggLoadOfLValue(E); 192 return; 193 } 194 195 RValue RV = CGF.EmitCallExpr(E); 196 EmitFinalDestCopy(E, RV); 197 } 198 199 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 200 RValue RV = CGF.EmitObjCMessageExpr(E); 201 EmitFinalDestCopy(E, RV); 202 } 203 204 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 205 RValue RV = CGF.EmitObjCPropertyGet(E); 206 EmitFinalDestCopy(E, RV); 207 } 208 209 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 210 RValue RV = CGF.EmitObjCPropertyGet(E); 211 EmitFinalDestCopy(E, RV); 212 } 213 214 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 215 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 216 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 217 } 218 219 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 220 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 221 } 222 223 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 224 CGF.ErrorUnsupported(E, "aggregate binary expression"); 225 } 226 227 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 228 // For an assignment to work, the value on the right has 229 // to be compatible with the value on the left. 230 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 231 E->getRHS()->getType()) 232 && "Invalid assignment"); 233 LValue LHS = CGF.EmitLValue(E->getLHS()); 234 235 // We have to special case property setters, otherwise we must have 236 // a simple lvalue (no aggregates inside vectors, bitfields). 237 if (LHS.isPropertyRef()) { 238 llvm::Value *AggLoc = DestPtr; 239 if (!AggLoc) 240 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 241 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 242 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 243 RValue::getAggregate(AggLoc, VolatileDest)); 244 } 245 else if (LHS.isKVCRef()) { 246 llvm::Value *AggLoc = DestPtr; 247 if (!AggLoc) 248 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 249 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 250 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 251 RValue::getAggregate(AggLoc, VolatileDest)); 252 } else { 253 if (CGF.getContext().getLangOptions().NeXTRuntime) { 254 QualType LHSTy = E->getLHS()->getType(); 255 if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAsRecordType()) 256 if (FDTTy->getDecl()->hasObjectMember()) { 257 LValue RHS = CGF.EmitLValue(E->getRHS()); 258 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, LHS.getAddress(), 259 RHS.getAddress(), 260 CGF.getContext().getTypeSize(LHSTy) / 8); 261 return; 262 } 263 } 264 // Codegen the RHS so that it stores directly into the LHS. 265 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 266 EmitFinalDestCopy(E, LHS, true); 267 } 268 } 269 270 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 271 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 272 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 273 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 274 275 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 276 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 277 278 CGF.PushConditionalTempDestruction(); 279 CGF.EmitBlock(LHSBlock); 280 281 // Handle the GNU extension for missing LHS. 282 assert(E->getLHS() && "Must have LHS for aggregate value"); 283 284 Visit(E->getLHS()); 285 CGF.PopConditionalTempDestruction(); 286 CGF.EmitBranch(ContBlock); 287 288 CGF.PushConditionalTempDestruction(); 289 CGF.EmitBlock(RHSBlock); 290 291 Visit(E->getRHS()); 292 CGF.PopConditionalTempDestruction(); 293 CGF.EmitBranch(ContBlock); 294 295 CGF.EmitBlock(ContBlock); 296 } 297 298 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 299 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 300 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 301 302 if (!ArgPtr) { 303 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 304 return; 305 } 306 307 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 308 } 309 310 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 311 llvm::Value *Val = DestPtr; 312 313 if (!Val) { 314 // Create a temporary variable. 315 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 316 317 // FIXME: volatile 318 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 319 } else 320 Visit(E->getSubExpr()); 321 322 CGF.PushCXXTemporary(E->getTemporary(), Val); 323 } 324 325 void 326 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 327 llvm::Value *Val = DestPtr; 328 329 if (!Val) { 330 // Create a temporary variable. 331 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 332 } 333 334 CGF.EmitCXXConstructExpr(Val, E); 335 } 336 337 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 338 CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest); 339 } 340 341 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 342 // FIXME: Ignore result? 343 // FIXME: Are initializers affected by volatile? 344 if (isa<ImplicitValueInitExpr>(E)) { 345 EmitNullInitializationToLValue(LV, E->getType()); 346 } else if (E->getType()->isComplexType()) { 347 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 348 } else if (CGF.hasAggregateLLVMType(E->getType())) { 349 CGF.EmitAnyExpr(E, LV.getAddress(), false); 350 } else { 351 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 352 } 353 } 354 355 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 356 if (!CGF.hasAggregateLLVMType(T)) { 357 // For non-aggregates, we can store zero 358 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 359 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 360 } else { 361 // Otherwise, just memset the whole thing to zero. This is legal 362 // because in LLVM, all default initializers are guaranteed to have a 363 // bit pattern of all zeros. 364 // FIXME: That isn't true for member pointers! 365 // There's a potential optimization opportunity in combining 366 // memsets; that would be easy for arrays, but relatively 367 // difficult for structures with the current code. 368 CGF.EmitMemSetToZero(LV.getAddress(), T); 369 } 370 } 371 372 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 373 #if 0 374 // FIXME: Disabled while we figure out what to do about 375 // test/CodeGen/bitfield.c 376 // 377 // If we can, prefer a copy from a global; this is a lot less code for long 378 // globals, and it's easier for the current optimizers to analyze. 379 // FIXME: Should we really be doing this? Should we try to avoid cases where 380 // we emit a global with a lot of zeros? Should we try to avoid short 381 // globals? 382 if (E->isConstantInitializer(CGF.getContext(), 0)) { 383 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 384 llvm::GlobalVariable* GV = 385 new llvm::GlobalVariable(C->getType(), true, 386 llvm::GlobalValue::InternalLinkage, 387 C, "", &CGF.CGM.getModule(), 0); 388 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 389 return; 390 } 391 #endif 392 if (E->hadArrayRangeDesignator()) { 393 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 394 } 395 396 // Handle initialization of an array. 397 if (E->getType()->isArrayType()) { 398 const llvm::PointerType *APType = 399 cast<llvm::PointerType>(DestPtr->getType()); 400 const llvm::ArrayType *AType = 401 cast<llvm::ArrayType>(APType->getElementType()); 402 403 uint64_t NumInitElements = E->getNumInits(); 404 405 if (E->getNumInits() > 0) { 406 QualType T1 = E->getType(); 407 QualType T2 = E->getInit(0)->getType(); 408 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 409 EmitAggLoadOfLValue(E->getInit(0)); 410 return; 411 } 412 } 413 414 uint64_t NumArrayElements = AType->getNumElements(); 415 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 416 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 417 418 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 419 420 for (uint64_t i = 0; i != NumArrayElements; ++i) { 421 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 422 if (i < NumInitElements) 423 EmitInitializationToLValue(E->getInit(i), 424 LValue::MakeAddr(NextVal, CVRqualifier)); 425 else 426 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 427 ElementType); 428 } 429 return; 430 } 431 432 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 433 434 // Do struct initialization; this code just sets each individual member 435 // to the approprate value. This makes bitfield support automatic; 436 // the disadvantage is that the generated code is more difficult for 437 // the optimizer, especially with bitfields. 438 unsigned NumInitElements = E->getNumInits(); 439 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 440 unsigned CurInitVal = 0; 441 442 if (E->getType()->isUnionType()) { 443 // Only initialize one field of a union. The field itself is 444 // specified by the initializer list. 445 if (!E->getInitializedFieldInUnion()) { 446 // Empty union; we have nothing to do. 447 448 #ifndef NDEBUG 449 // Make sure that it's really an empty and not a failure of 450 // semantic analysis. 451 for (RecordDecl::field_iterator Field = SD->field_begin(), 452 FieldEnd = SD->field_end(); 453 Field != FieldEnd; ++Field) 454 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 455 #endif 456 return; 457 } 458 459 // FIXME: volatility 460 FieldDecl *Field = E->getInitializedFieldInUnion(); 461 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 462 463 if (NumInitElements) { 464 // Store the initializer into the field 465 EmitInitializationToLValue(E->getInit(0), FieldLoc); 466 } else { 467 // Default-initialize to null 468 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 469 } 470 471 return; 472 } 473 474 // Here we iterate over the fields; this makes it simpler to both 475 // default-initialize fields and skip over unnamed fields. 476 for (RecordDecl::field_iterator Field = SD->field_begin(), 477 FieldEnd = SD->field_end(); 478 Field != FieldEnd; ++Field) { 479 // We're done once we hit the flexible array member 480 if (Field->getType()->isIncompleteArrayType()) 481 break; 482 483 if (Field->isUnnamedBitfield()) 484 continue; 485 486 // FIXME: volatility 487 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 488 // We never generate write-barries for initialized fields. 489 LValue::SetObjCNonGC(FieldLoc, true); 490 if (CurInitVal < NumInitElements) { 491 // Store the initializer into the field 492 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 493 } else { 494 // We're out of initalizers; default-initialize to null 495 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 496 } 497 } 498 } 499 500 //===----------------------------------------------------------------------===// 501 // Entry Points into this File 502 //===----------------------------------------------------------------------===// 503 504 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 505 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 506 /// the value of the aggregate expression is not needed. If VolatileDest is 507 /// true, DestPtr cannot be 0. 508 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 509 bool VolatileDest, bool IgnoreResult) { 510 assert(E && hasAggregateLLVMType(E->getType()) && 511 "Invalid aggregate expression to emit"); 512 assert ((DestPtr != 0 || VolatileDest == false) 513 && "volatile aggregate can't be 0"); 514 515 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) 516 .Visit(const_cast<Expr*>(E)); 517 } 518 519 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 520 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 521 522 EmitMemSetToZero(DestPtr, Ty); 523 } 524 525 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 526 llvm::Value *SrcPtr, QualType Ty, 527 bool isVolatile) { 528 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 529 530 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 531 // C99 6.5.16.1p3, which states "If the value being stored in an object is 532 // read from another object that overlaps in anyway the storage of the first 533 // object, then the overlap shall be exact and the two objects shall have 534 // qualified or unqualified versions of a compatible type." 535 // 536 // memcpy is not defined if the source and destination pointers are exactly 537 // equal, but other compilers do this optimization, and almost every memcpy 538 // implementation handles this case safely. If there is a libc that does not 539 // safely handle this, we can add a target hook. 540 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 541 if (DestPtr->getType() != BP) 542 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 543 if (SrcPtr->getType() != BP) 544 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 545 546 // Get size and alignment info for this aggregate. 547 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 548 549 // FIXME: Handle variable sized types. 550 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 551 552 // FIXME: If we have a volatile struct, the optimizer can remove what might 553 // appear to be `extra' memory ops: 554 // 555 // volatile struct { int i; } a, b; 556 // 557 // int main() { 558 // a = b; 559 // a = b; 560 // } 561 // 562 // we need to use a differnt call here. We use isVolatile to indicate when 563 // either the source or the destination is volatile. 564 Builder.CreateCall4(CGM.getMemCpyFn(), 565 DestPtr, SrcPtr, 566 // TypeInfo.first describes size in bits. 567 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 568 llvm::ConstantInt::get(llvm::Type::Int32Ty, 569 TypeInfo.second/8)); 570 } 571