1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitConditionalOperator(const ConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitExprWithCleanups(ExprWithCleanups *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitVAArgExpr(VAArgExpr *E); 133 134 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 135 void EmitNullInitializationToLValue(LValue Address, QualType T); 136 // case Expr::ChooseExprClass: 137 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 138 }; 139 } // end anonymous namespace. 140 141 //===----------------------------------------------------------------------===// 142 // Utilities 143 //===----------------------------------------------------------------------===// 144 145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 146 /// represents a value lvalue, this method emits the address of the lvalue, 147 /// then loads the result into DestPtr. 148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 149 LValue LV = CGF.EmitLValue(E); 150 EmitFinalDestCopy(E, LV); 151 } 152 153 /// \brief True if the given aggregate type requires special GC API calls. 154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 155 // Only record types have members that might require garbage collection. 156 const RecordType *RecordTy = T->getAs<RecordType>(); 157 if (!RecordTy) return false; 158 159 // Don't mess with non-trivial C++ types. 160 RecordDecl *Record = RecordTy->getDecl(); 161 if (isa<CXXRecordDecl>(Record) && 162 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 163 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 164 return false; 165 166 // Check whether the type has an object member. 167 return Record->hasObjectMember(); 168 } 169 170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 171 /// 172 /// The idea is that you do something like this: 173 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 174 /// EmitGCMove(E, Result); 175 /// If GC doesn't interfere, this will cause the result to be emitted 176 /// directly into the return value slot. If GC does interfere, a final 177 /// move will be performed. 178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 179 if (Dest.requiresGCollection()) { 180 std::pair<uint64_t, unsigned> TypeInfo = 181 CGF.getContext().getTypeInfo(E->getType()); 182 unsigned long size = TypeInfo.first/8; 183 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 184 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 185 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 186 Src.getAggregateAddr(), 187 SizeVal); 188 } 189 } 190 191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 193 assert(Src.isAggregate() && "value must be aggregate value!"); 194 195 // If Dest is ignored, then we're evaluating an aggregate expression 196 // in a context (like an expression statement) that doesn't care 197 // about the result. C says that an lvalue-to-rvalue conversion is 198 // performed in these cases; C++ says that it is not. In either 199 // case, we don't actually need to do anything unless the value is 200 // volatile. 201 if (Dest.isIgnored()) { 202 if (!Src.isVolatileQualified() || 203 CGF.CGM.getLangOptions().CPlusPlus || 204 (IgnoreResult && Ignore)) 205 return; 206 207 // If the source is volatile, we must read from it; to do that, we need 208 // some place to put it. 209 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 210 } 211 212 if (Dest.requiresGCollection()) { 213 std::pair<uint64_t, unsigned> TypeInfo = 214 CGF.getContext().getTypeInfo(E->getType()); 215 unsigned long size = TypeInfo.first/8; 216 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 217 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 218 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 219 Dest.getAddr(), 220 Src.getAggregateAddr(), 221 SizeVal); 222 return; 223 } 224 // If the result of the assignment is used, copy the LHS there also. 225 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 226 // from the source as well, as we can't eliminate it if either operand 227 // is volatile, unless copy has volatile for both source and destination.. 228 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 229 Dest.isVolatile()|Src.isVolatileQualified()); 230 } 231 232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 234 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 235 236 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 237 Src.isVolatileQualified()), 238 Ignore); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Visitor Methods 243 //===----------------------------------------------------------------------===// 244 245 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 246 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 247 Visit(E->getSubExpr()); 248 return; 249 } 250 251 switch (E->getCastKind()) { 252 case CK_Dynamic: { 253 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 254 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 255 // FIXME: Do we also need to handle property references here? 256 if (LV.isSimple()) 257 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 258 else 259 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 260 261 if (!Dest.isIgnored()) 262 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 263 break; 264 } 265 266 case CK_ToUnion: { 267 // GCC union extension 268 QualType Ty = E->getSubExpr()->getType(); 269 QualType PtrTy = CGF.getContext().getPointerType(Ty); 270 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 271 CGF.ConvertType(PtrTy)); 272 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 273 Ty); 274 break; 275 } 276 277 case CK_DerivedToBase: 278 case CK_BaseToDerived: 279 case CK_UncheckedDerivedToBase: { 280 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 281 "should have been unpacked before we got here"); 282 break; 283 } 284 285 case CK_GetObjCProperty: { 286 LValue LV = CGF.EmitLValue(E->getSubExpr()); 287 assert(LV.isPropertyRef()); 288 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 289 EmitGCMove(E, RV); 290 break; 291 } 292 293 case CK_LValueToRValue: // hope for downstream optimization 294 case CK_NoOp: 295 case CK_UserDefinedConversion: 296 case CK_ConstructorConversion: 297 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 298 E->getType()) && 299 "Implicit cast types must be compatible"); 300 Visit(E->getSubExpr()); 301 break; 302 303 case CK_LValueBitCast: 304 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 305 break; 306 307 case CK_Dependent: 308 case CK_BitCast: 309 case CK_ArrayToPointerDecay: 310 case CK_FunctionToPointerDecay: 311 case CK_NullToPointer: 312 case CK_NullToMemberPointer: 313 case CK_BaseToDerivedMemberPointer: 314 case CK_DerivedToBaseMemberPointer: 315 case CK_MemberPointerToBoolean: 316 case CK_IntegralToPointer: 317 case CK_PointerToIntegral: 318 case CK_PointerToBoolean: 319 case CK_ToVoid: 320 case CK_VectorSplat: 321 case CK_IntegralCast: 322 case CK_IntegralToBoolean: 323 case CK_IntegralToFloating: 324 case CK_FloatingToIntegral: 325 case CK_FloatingToBoolean: 326 case CK_FloatingCast: 327 case CK_AnyPointerToObjCPointerCast: 328 case CK_AnyPointerToBlockPointerCast: 329 case CK_ObjCObjectLValueCast: 330 case CK_FloatingRealToComplex: 331 case CK_FloatingComplexToReal: 332 case CK_FloatingComplexToBoolean: 333 case CK_FloatingComplexCast: 334 case CK_FloatingComplexToIntegralComplex: 335 case CK_IntegralRealToComplex: 336 case CK_IntegralComplexToReal: 337 case CK_IntegralComplexToBoolean: 338 case CK_IntegralComplexCast: 339 case CK_IntegralComplexToFloatingComplex: 340 llvm_unreachable("cast kind invalid for aggregate types"); 341 } 342 } 343 344 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 345 if (E->getCallReturnType()->isReferenceType()) { 346 EmitAggLoadOfLValue(E); 347 return; 348 } 349 350 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 351 EmitGCMove(E, RV); 352 } 353 354 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 355 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 356 EmitGCMove(E, RV); 357 } 358 359 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 360 llvm_unreachable("direct property access not surrounded by " 361 "lvalue-to-rvalue cast"); 362 } 363 364 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 365 CGF.EmitIgnoredExpr(E->getLHS()); 366 Visit(E->getRHS()); 367 } 368 369 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 370 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 371 } 372 373 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 374 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 375 VisitPointerToDataMemberBinaryOperator(E); 376 else 377 CGF.ErrorUnsupported(E, "aggregate binary expression"); 378 } 379 380 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 381 const BinaryOperator *E) { 382 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 383 EmitFinalDestCopy(E, LV); 384 } 385 386 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 387 // For an assignment to work, the value on the right has 388 // to be compatible with the value on the left. 389 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 390 E->getRHS()->getType()) 391 && "Invalid assignment"); 392 393 // FIXME: __block variables need the RHS evaluated first! 394 LValue LHS = CGF.EmitLValue(E->getLHS()); 395 396 // We have to special case property setters, otherwise we must have 397 // a simple lvalue (no aggregates inside vectors, bitfields). 398 if (LHS.isPropertyRef()) { 399 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 400 CGF.EmitAggExpr(E->getRHS(), Slot); 401 CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS); 402 } else { 403 bool GCollection = false; 404 if (CGF.getContext().getLangOptions().getGCMode()) 405 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 406 407 // Codegen the RHS so that it stores directly into the LHS. 408 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 409 GCollection); 410 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 411 EmitFinalDestCopy(E, LHS, true); 412 } 413 } 414 415 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 416 if (!E->getLHS()) { 417 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 418 return; 419 } 420 421 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 422 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 423 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 424 425 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 426 427 CGF.BeginConditionalBranch(); 428 CGF.EmitBlock(LHSBlock); 429 430 // Save whether the destination's lifetime is externally managed. 431 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 432 433 Visit(E->getLHS()); 434 CGF.EndConditionalBranch(); 435 CGF.EmitBranch(ContBlock); 436 437 CGF.BeginConditionalBranch(); 438 CGF.EmitBlock(RHSBlock); 439 440 // If the result of an agg expression is unused, then the emission 441 // of the LHS might need to create a destination slot. That's fine 442 // with us, and we can safely emit the RHS into the same slot, but 443 // we shouldn't claim that its lifetime is externally managed. 444 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 445 446 Visit(E->getRHS()); 447 CGF.EndConditionalBranch(); 448 CGF.EmitBranch(ContBlock); 449 450 CGF.EmitBlock(ContBlock); 451 } 452 453 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 454 Visit(CE->getChosenSubExpr(CGF.getContext())); 455 } 456 457 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 458 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 459 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 460 461 if (!ArgPtr) { 462 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 463 return; 464 } 465 466 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 467 } 468 469 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 470 // Ensure that we have a slot, but if we already do, remember 471 // whether its lifetime was externally managed. 472 bool WasManaged = Dest.isLifetimeExternallyManaged(); 473 Dest = EnsureSlot(E->getType()); 474 Dest.setLifetimeExternallyManaged(); 475 476 Visit(E->getSubExpr()); 477 478 // Set up the temporary's destructor if its lifetime wasn't already 479 // being managed. 480 if (!WasManaged) 481 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 482 } 483 484 void 485 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 486 AggValueSlot Slot = EnsureSlot(E->getType()); 487 CGF.EmitCXXConstructExpr(E, Slot); 488 } 489 490 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 491 CGF.EmitExprWithCleanups(E, Dest); 492 } 493 494 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 495 QualType T = E->getType(); 496 AggValueSlot Slot = EnsureSlot(T); 497 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 498 } 499 500 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 501 QualType T = E->getType(); 502 AggValueSlot Slot = EnsureSlot(T); 503 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 504 } 505 506 /// isSimpleZero - If emitting this value will obviously just cause a store of 507 /// zero to memory, return true. This can return false if uncertain, so it just 508 /// handles simple cases. 509 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 510 // (0) 511 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 512 return isSimpleZero(PE->getSubExpr(), CGF); 513 // 0 514 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 515 return IL->getValue() == 0; 516 // +0.0 517 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 518 return FL->getValue().isPosZero(); 519 // int() 520 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 521 CGF.getTypes().isZeroInitializable(E->getType())) 522 return true; 523 // (int*)0 - Null pointer expressions. 524 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 525 return ICE->getCastKind() == CK_NullToPointer; 526 // '\0' 527 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 528 return CL->getValue() == 0; 529 530 // Otherwise, hard case: conservatively return false. 531 return false; 532 } 533 534 535 void 536 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 537 // FIXME: Ignore result? 538 // FIXME: Are initializers affected by volatile? 539 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 540 // Storing "i32 0" to a zero'd memory location is a noop. 541 } else if (isa<ImplicitValueInitExpr>(E)) { 542 EmitNullInitializationToLValue(LV, T); 543 } else if (T->isReferenceType()) { 544 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 545 CGF.EmitStoreThroughLValue(RV, LV, T); 546 } else if (T->isAnyComplexType()) { 547 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 548 } else if (CGF.hasAggregateLLVMType(T)) { 549 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 550 false, Dest.isZeroed())); 551 } else { 552 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); 553 } 554 } 555 556 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 557 // If the destination slot is already zeroed out before the aggregate is 558 // copied into it, we don't have to emit any zeros here. 559 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 560 return; 561 562 if (!CGF.hasAggregateLLVMType(T)) { 563 // For non-aggregates, we can store zero 564 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 565 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 566 } else { 567 // There's a potential optimization opportunity in combining 568 // memsets; that would be easy for arrays, but relatively 569 // difficult for structures with the current code. 570 CGF.EmitNullInitialization(LV.getAddress(), T); 571 } 572 } 573 574 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 575 #if 0 576 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 577 // (Length of globals? Chunks of zeroed-out space?). 578 // 579 // If we can, prefer a copy from a global; this is a lot less code for long 580 // globals, and it's easier for the current optimizers to analyze. 581 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 582 llvm::GlobalVariable* GV = 583 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 584 llvm::GlobalValue::InternalLinkage, C, ""); 585 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 586 return; 587 } 588 #endif 589 if (E->hadArrayRangeDesignator()) 590 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 591 592 llvm::Value *DestPtr = Dest.getAddr(); 593 594 // Handle initialization of an array. 595 if (E->getType()->isArrayType()) { 596 const llvm::PointerType *APType = 597 cast<llvm::PointerType>(DestPtr->getType()); 598 const llvm::ArrayType *AType = 599 cast<llvm::ArrayType>(APType->getElementType()); 600 601 uint64_t NumInitElements = E->getNumInits(); 602 603 if (E->getNumInits() > 0) { 604 QualType T1 = E->getType(); 605 QualType T2 = E->getInit(0)->getType(); 606 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 607 EmitAggLoadOfLValue(E->getInit(0)); 608 return; 609 } 610 } 611 612 uint64_t NumArrayElements = AType->getNumElements(); 613 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 614 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 615 616 // FIXME: were we intentionally ignoring address spaces and GC attributes? 617 618 for (uint64_t i = 0; i != NumArrayElements; ++i) { 619 // If we're done emitting initializers and the destination is known-zeroed 620 // then we're done. 621 if (i == NumInitElements && 622 Dest.isZeroed() && 623 CGF.getTypes().isZeroInitializable(ElementType)) 624 break; 625 626 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 627 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 628 629 if (i < NumInitElements) 630 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 631 else 632 EmitNullInitializationToLValue(LV, ElementType); 633 634 // If the GEP didn't get used because of a dead zero init or something 635 // else, clean it up for -O0 builds and general tidiness. 636 if (llvm::GetElementPtrInst *GEP = 637 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 638 if (GEP->use_empty()) 639 GEP->eraseFromParent(); 640 } 641 return; 642 } 643 644 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 645 646 // Do struct initialization; this code just sets each individual member 647 // to the approprate value. This makes bitfield support automatic; 648 // the disadvantage is that the generated code is more difficult for 649 // the optimizer, especially with bitfields. 650 unsigned NumInitElements = E->getNumInits(); 651 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 652 653 if (E->getType()->isUnionType()) { 654 // Only initialize one field of a union. The field itself is 655 // specified by the initializer list. 656 if (!E->getInitializedFieldInUnion()) { 657 // Empty union; we have nothing to do. 658 659 #ifndef NDEBUG 660 // Make sure that it's really an empty and not a failure of 661 // semantic analysis. 662 for (RecordDecl::field_iterator Field = SD->field_begin(), 663 FieldEnd = SD->field_end(); 664 Field != FieldEnd; ++Field) 665 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 666 #endif 667 return; 668 } 669 670 // FIXME: volatility 671 FieldDecl *Field = E->getInitializedFieldInUnion(); 672 673 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 674 if (NumInitElements) { 675 // Store the initializer into the field 676 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 677 } else { 678 // Default-initialize to null. 679 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 680 } 681 682 return; 683 } 684 685 // Here we iterate over the fields; this makes it simpler to both 686 // default-initialize fields and skip over unnamed fields. 687 unsigned CurInitVal = 0; 688 for (RecordDecl::field_iterator Field = SD->field_begin(), 689 FieldEnd = SD->field_end(); 690 Field != FieldEnd; ++Field) { 691 // We're done once we hit the flexible array member 692 if (Field->getType()->isIncompleteArrayType()) 693 break; 694 695 if (Field->isUnnamedBitfield()) 696 continue; 697 698 // Don't emit GEP before a noop store of zero. 699 if (CurInitVal == NumInitElements && Dest.isZeroed() && 700 CGF.getTypes().isZeroInitializable(E->getType())) 701 break; 702 703 // FIXME: volatility 704 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 705 // We never generate write-barries for initialized fields. 706 FieldLoc.setNonGC(true); 707 708 if (CurInitVal < NumInitElements) { 709 // Store the initializer into the field. 710 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 711 Field->getType()); 712 } else { 713 // We're out of initalizers; default-initialize to null 714 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 715 } 716 717 // If the GEP didn't get used because of a dead zero init or something 718 // else, clean it up for -O0 builds and general tidiness. 719 if (FieldLoc.isSimple()) 720 if (llvm::GetElementPtrInst *GEP = 721 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 722 if (GEP->use_empty()) 723 GEP->eraseFromParent(); 724 } 725 } 726 727 //===----------------------------------------------------------------------===// 728 // Entry Points into this File 729 //===----------------------------------------------------------------------===// 730 731 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 732 /// non-zero bytes that will be stored when outputting the initializer for the 733 /// specified initializer expression. 734 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 735 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 736 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 737 738 // 0 and 0.0 won't require any non-zero stores! 739 if (isSimpleZero(E, CGF)) return 0; 740 741 // If this is an initlist expr, sum up the size of sizes of the (present) 742 // elements. If this is something weird, assume the whole thing is non-zero. 743 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 744 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 745 return CGF.getContext().getTypeSize(E->getType())/8; 746 747 // InitListExprs for structs have to be handled carefully. If there are 748 // reference members, we need to consider the size of the reference, not the 749 // referencee. InitListExprs for unions and arrays can't have references. 750 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 751 if (!RT->isUnionType()) { 752 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 753 uint64_t NumNonZeroBytes = 0; 754 755 unsigned ILEElement = 0; 756 for (RecordDecl::field_iterator Field = SD->field_begin(), 757 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 758 // We're done once we hit the flexible array member or run out of 759 // InitListExpr elements. 760 if (Field->getType()->isIncompleteArrayType() || 761 ILEElement == ILE->getNumInits()) 762 break; 763 if (Field->isUnnamedBitfield()) 764 continue; 765 766 const Expr *E = ILE->getInit(ILEElement++); 767 768 // Reference values are always non-null and have the width of a pointer. 769 if (Field->getType()->isReferenceType()) 770 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 771 else 772 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 773 } 774 775 return NumNonZeroBytes; 776 } 777 } 778 779 780 uint64_t NumNonZeroBytes = 0; 781 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 782 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 783 return NumNonZeroBytes; 784 } 785 786 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 787 /// zeros in it, emit a memset and avoid storing the individual zeros. 788 /// 789 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 790 CodeGenFunction &CGF) { 791 // If the slot is already known to be zeroed, nothing to do. Don't mess with 792 // volatile stores. 793 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 794 795 // If the type is 16-bytes or smaller, prefer individual stores over memset. 796 std::pair<uint64_t, unsigned> TypeInfo = 797 CGF.getContext().getTypeInfo(E->getType()); 798 if (TypeInfo.first/8 <= 16) 799 return; 800 801 // Check to see if over 3/4 of the initializer are known to be zero. If so, 802 // we prefer to emit memset + individual stores for the rest. 803 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 804 if (NumNonZeroBytes*4 > TypeInfo.first/8) 805 return; 806 807 // Okay, it seems like a good idea to use an initial memset, emit the call. 808 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 809 llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8); 810 811 llvm::Value *Loc = Slot.getAddr(); 812 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 813 814 Loc = CGF.Builder.CreateBitCast(Loc, BP); 815 CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(), 816 SizeVal->getType()), 817 Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal, 818 CGF.Builder.getFalse()); 819 820 // Tell the AggExprEmitter that the slot is known zero. 821 Slot.setZeroed(); 822 } 823 824 825 826 827 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 828 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 829 /// the value of the aggregate expression is not needed. If VolatileDest is 830 /// true, DestPtr cannot be 0. 831 /// 832 /// \param IsInitializer - true if this evaluation is initializing an 833 /// object whose lifetime is already being managed. 834 // 835 // FIXME: Take Qualifiers object. 836 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 837 bool IgnoreResult) { 838 assert(E && hasAggregateLLVMType(E->getType()) && 839 "Invalid aggregate expression to emit"); 840 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 841 "slot has bits but no address"); 842 843 // Optimize the slot if possible. 844 CheckAggExprForMemSetUse(Slot, E, *this); 845 846 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 847 } 848 849 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 850 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 851 llvm::Value *Temp = CreateMemTemp(E->getType()); 852 LValue LV = MakeAddrLValue(Temp, E->getType()); 853 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 854 return LV; 855 } 856 857 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 858 llvm::Value *SrcPtr, QualType Ty, 859 bool isVolatile) { 860 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 861 862 if (getContext().getLangOptions().CPlusPlus) { 863 if (const RecordType *RT = Ty->getAs<RecordType>()) { 864 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 865 assert((Record->hasTrivialCopyConstructor() || 866 Record->hasTrivialCopyAssignment()) && 867 "Trying to aggregate-copy a type without a trivial copy " 868 "constructor or assignment operator"); 869 // Ignore empty classes in C++. 870 if (Record->isEmpty()) 871 return; 872 } 873 } 874 875 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 876 // C99 6.5.16.1p3, which states "If the value being stored in an object is 877 // read from another object that overlaps in anyway the storage of the first 878 // object, then the overlap shall be exact and the two objects shall have 879 // qualified or unqualified versions of a compatible type." 880 // 881 // memcpy is not defined if the source and destination pointers are exactly 882 // equal, but other compilers do this optimization, and almost every memcpy 883 // implementation handles this case safely. If there is a libc that does not 884 // safely handle this, we can add a target hook. 885 886 // Get size and alignment info for this aggregate. 887 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 888 889 // FIXME: Handle variable sized types. 890 891 // FIXME: If we have a volatile struct, the optimizer can remove what might 892 // appear to be `extra' memory ops: 893 // 894 // volatile struct { int i; } a, b; 895 // 896 // int main() { 897 // a = b; 898 // a = b; 899 // } 900 // 901 // we need to use a different call here. We use isVolatile to indicate when 902 // either the source or the destination is volatile. 903 904 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 905 const llvm::Type *DBP = 906 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 907 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 908 909 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 910 const llvm::Type *SBP = 911 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 912 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 913 914 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 915 RecordDecl *Record = RecordTy->getDecl(); 916 if (Record->hasObjectMember()) { 917 unsigned long size = TypeInfo.first/8; 918 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 919 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 920 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 921 SizeVal); 922 return; 923 } 924 } else if (getContext().getAsArrayType(Ty)) { 925 QualType BaseType = getContext().getBaseElementType(Ty); 926 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 927 if (RecordTy->getDecl()->hasObjectMember()) { 928 unsigned long size = TypeInfo.first/8; 929 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 930 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 931 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 932 SizeVal); 933 return; 934 } 935 } 936 } 937 938 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 939 IntPtrTy), 940 DestPtr, SrcPtr, 941 // TypeInfo.first describes size in bits. 942 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 943 Builder.getInt32(TypeInfo.second/8), 944 Builder.getInt1(isVolatile)); 945 } 946