1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/AST.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Function.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Intrinsics.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Aggregate Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 31 CodeGenFunction &CGF; 32 llvm::IRBuilder &Builder; 33 llvm::Value *DestPtr; 34 bool VolatileDest; 35 public: 36 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 37 : CGF(cgf), Builder(CGF.Builder), 38 DestPtr(destPtr), VolatileDest(volatileDest) { 39 } 40 41 //===--------------------------------------------------------------------===// 42 // Utilities 43 //===--------------------------------------------------------------------===// 44 45 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 46 /// represents a value lvalue, this method emits the address of the lvalue, 47 /// then loads the result into DestPtr. 48 void EmitAggLoadOfLValue(const Expr *E); 49 50 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 51 QualType EltTy); 52 53 void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty); 54 55 void EmitNonConstInit(InitListExpr *E); 56 57 //===--------------------------------------------------------------------===// 58 // Visitor Methods 59 //===--------------------------------------------------------------------===// 60 61 void VisitStmt(Stmt *S) { 62 CGF.WarnUnsupported(S, "aggregate expression"); 63 } 64 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 72 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 73 EmitAggLoadOfLValue(E); 74 } 75 76 // Operators. 77 // case Expr::UnaryOperatorClass: 78 // case Expr::CastExprClass: 79 void VisitImplicitCastExpr(ImplicitCastExpr *E); 80 void VisitCallExpr(const CallExpr *E); 81 void VisitStmtExpr(const StmtExpr *E); 82 void VisitBinaryOperator(const BinaryOperator *BO); 83 void VisitBinAssign(const BinaryOperator *E); 84 void VisitOverloadExpr(const OverloadExpr *E); 85 void VisitBinComma(const BinaryOperator *E); 86 87 88 void VisitConditionalOperator(const ConditionalOperator *CO); 89 void VisitInitListExpr(InitListExpr *E); 90 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 91 Visit(DAE->getExpr()); 92 } 93 94 void EmitInitializationToLValue(Expr *E, LValue Address); 95 void EmitNullInitializationToLValue(LValue Address, QualType T); 96 // case Expr::ChooseExprClass: 97 98 }; 99 } // end anonymous namespace. 100 101 //===----------------------------------------------------------------------===// 102 // Utilities 103 //===----------------------------------------------------------------------===// 104 105 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 106 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 107 108 // Aggregate assignment turns into llvm.memset. 109 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 110 if (DestPtr->getType() != BP) 111 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 112 113 // Get size and alignment info for this aggregate. 114 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 115 116 // FIXME: Handle variable sized types. 117 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 118 119 llvm::Value *MemSetOps[4] = { 120 DestPtr, 121 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 122 // TypeInfo.first describes size in bits. 123 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 124 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 125 }; 126 127 Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4); 128 } 129 130 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr, 131 llvm::Value *SrcPtr, QualType Ty) { 132 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 133 134 // Aggregate assignment turns into llvm.memcpy. 135 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 136 if (DestPtr->getType() != BP) 137 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 138 if (SrcPtr->getType() != BP) 139 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 140 141 // Get size and alignment info for this aggregate. 142 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 143 144 // FIXME: Handle variable sized types. 145 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 146 147 llvm::Value *MemCpyOps[4] = { 148 DestPtr, SrcPtr, 149 // TypeInfo.first describes size in bits. 150 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 151 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 152 }; 153 154 Builder.CreateCall(CGF.CGM.getMemCpyFn(), MemCpyOps, MemCpyOps+4); 155 } 156 157 158 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 159 /// represents a value lvalue, this method emits the address of the lvalue, 160 /// then loads the result into DestPtr. 161 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 162 LValue LV = CGF.EmitLValue(E); 163 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 164 llvm::Value *SrcPtr = LV.getAddress(); 165 166 // If the result is ignored, don't copy from the value. 167 if (DestPtr == 0) 168 // FIXME: If the source is volatile, we must read from it. 169 return; 170 171 EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 172 } 173 174 //===----------------------------------------------------------------------===// 175 // Visitor Methods 176 //===----------------------------------------------------------------------===// 177 178 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) 179 { 180 QualType STy = E->getSubExpr()->getType().getCanonicalType(); 181 QualType Ty = E->getType().getCanonicalType(); 182 183 assert(CGF.getContext().typesAreCompatible( 184 STy.getUnqualifiedType(), Ty.getUnqualifiedType()) 185 && "Implicit cast types must be compatible"); 186 187 Visit(E->getSubExpr()); 188 } 189 190 void AggExprEmitter::VisitCallExpr(const CallExpr *E) 191 { 192 RValue RV = CGF.EmitCallExpr(E); 193 assert(RV.isAggregate() && "Return value must be aggregate value!"); 194 195 // If the result is ignored, don't copy from the value. 196 if (DestPtr == 0) 197 // FIXME: If the source is volatile, we must read from it. 198 return; 199 200 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 201 } 202 203 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) 204 { 205 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 206 E->getNumArgs(CGF.getContext())); 207 assert(RV.isAggregate() && "Return value must be aggregate value!"); 208 209 // If the result is ignored, don't copy from the value. 210 if (DestPtr == 0) 211 // FIXME: If the source is volatile, we must read from it. 212 return; 213 214 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 215 } 216 217 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) 218 { 219 CGF.EmitAnyExpr(E->getLHS()); 220 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 221 } 222 223 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 224 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 225 } 226 227 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 228 CGF.WarnUnsupported(E, "aggregate binary expression"); 229 } 230 231 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 232 // For an assignment to work, the value on the right has 233 // to be compatible with the value on the left. 234 assert(CGF.getContext().typesAreCompatible( 235 E->getLHS()->getType().getUnqualifiedType(), 236 E->getRHS()->getType().getUnqualifiedType()) 237 && "Invalid assignment"); 238 LValue LHS = CGF.EmitLValue(E->getLHS()); 239 240 // Codegen the RHS so that it stores directly into the LHS. 241 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 242 243 if (DestPtr == 0) 244 return; 245 246 // If the result of the assignment is used, copy the RHS there also. 247 EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 248 } 249 250 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 251 llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?"); 252 llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:"); 253 llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont"); 254 255 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 256 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 257 258 CGF.EmitBlock(LHSBlock); 259 260 // Handle the GNU extension for missing LHS. 261 assert(E->getLHS() && "Must have LHS for aggregate value"); 262 263 Visit(E->getLHS()); 264 Builder.CreateBr(ContBlock); 265 LHSBlock = Builder.GetInsertBlock(); 266 267 CGF.EmitBlock(RHSBlock); 268 269 Visit(E->getRHS()); 270 Builder.CreateBr(ContBlock); 271 RHSBlock = Builder.GetInsertBlock(); 272 273 CGF.EmitBlock(ContBlock); 274 } 275 276 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 277 278 const llvm::PointerType *APType = 279 cast<llvm::PointerType>(DestPtr->getType()); 280 const llvm::Type *DestType = APType->getElementType(); 281 282 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 283 unsigned NumInitElements = E->getNumInits(); 284 285 unsigned i; 286 for (i = 0; i != NumInitElements; ++i) { 287 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 288 Expr *Init = E->getInit(i); 289 if (isa<InitListExpr>(Init)) 290 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 291 else 292 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 293 } 294 295 // Emit remaining default initializers 296 unsigned NumArrayElements = AType->getNumElements(); 297 QualType QType = E->getInit(0)->getType(); 298 const llvm::Type *EType = AType->getElementType(); 299 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 300 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 301 if (EType->isSingleValueType()) 302 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 303 else 304 EmitAggregateClear(NextVal, QType); 305 } 306 } else 307 assert(false && "Invalid initializer"); 308 } 309 310 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 311 // FIXME: Are initializers affected by volatile? 312 if (E->getType()->isComplexType()) { 313 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 314 } else if (CGF.hasAggregateLLVMType(E->getType())) { 315 CGF.EmitAnyExpr(E, LV.getAddress(), false); 316 } else { 317 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 318 } 319 } 320 321 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 322 if (!CGF.hasAggregateLLVMType(T)) { 323 // For non-aggregates, we can store zero 324 const llvm::Type *T = 325 cast<llvm::PointerType>(LV.getAddress()->getType())->getElementType(); 326 Builder.CreateStore(llvm::Constant::getNullValue(T), LV.getAddress()); 327 } else { 328 // Otherwise, just memset the whole thing to zero. This is legal 329 // because in LLVM, all default initializers are guaranteed to have a 330 // bit pattern of all zeros. 331 // There's a potential optimization opportunity in combining 332 // memsets; that would be easy for arrays, but relatively 333 // difficult for structures with the current code. 334 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64); 335 uint64_t Size = CGF.getContext().getTypeSize(T); 336 337 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 338 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 339 Builder.CreateCall4(MemSet, DestPtr, 340 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 341 llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8), 342 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 343 } 344 } 345 346 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 347 if (E->isConstantExpr(CGF.getContext(), 0)) { 348 // FIXME: call into const expr emitter so that we can emit 349 // a memcpy instead of storing the individual members. 350 // This is purely for perf; both codepaths lead to equivalent 351 // (although not necessarily identical) code. 352 // It's worth noting that LLVM keeps on getting smarter, though, 353 // so it might not be worth bothering. 354 } 355 356 // Handle initialization of an array. 357 if (E->getType()->isArrayType()) { 358 const llvm::PointerType *APType = 359 cast<llvm::PointerType>(DestPtr->getType()); 360 const llvm::ArrayType *AType = 361 cast<llvm::ArrayType>(APType->getElementType()); 362 363 uint64_t NumInitElements = E->getNumInits(); 364 365 if (E->getNumInits() > 0 && 366 E->getType().getCanonicalType().getUnqualifiedType() == 367 E->getInit(0)->getType().getCanonicalType().getUnqualifiedType()) { 368 EmitAggLoadOfLValue(E->getInit(0)); 369 return; 370 } 371 372 uint64_t NumArrayElements = AType->getNumElements(); 373 QualType ElementType = E->getType()->getAsArrayType()->getElementType(); 374 375 for (uint64_t i = 0; i != NumArrayElements; ++i) { 376 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 377 if (i < NumInitElements) 378 EmitInitializationToLValue(E->getInit(i), LValue::MakeAddr(NextVal)); 379 else 380 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal), 381 ElementType); 382 } 383 return; 384 } 385 386 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 387 388 // Do struct initialization; this code just sets each individual member 389 // to the approprate value. This makes bitfield support automatic; 390 // the disadvantage is that the generated code is more difficult for 391 // the optimizer, especially with bitfields. 392 unsigned NumInitElements = E->getNumInits(); 393 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 394 unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember(); 395 unsigned CurInitVal = 0; 396 bool isUnion = E->getType()->isUnionType(); 397 398 // Here we iterate over the fields; this makes it simpler to both 399 // default-initialize fields and skip over unnamed fields. 400 for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) { 401 if (CurInitVal >= NumInitElements) { 402 // No more initializers; we're done. 403 break; 404 } 405 406 FieldDecl *CurField = SD->getMember(CurFieldNo); 407 if (CurField->getIdentifier() == 0) { 408 // Initializers can't initialize unnamed fields, e.g. "int : 20;" 409 continue; 410 } 411 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion); 412 if (CurInitVal < NumInitElements) { 413 // Store the initializer into the field 414 // This will probably have to get a bit smarter when we support 415 // designators in initializers 416 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 417 } else { 418 // We're out of initalizers; default-initialize to null 419 EmitNullInitializationToLValue(FieldLoc, CurField->getType()); 420 } 421 422 // Unions only initialize one field. 423 // (things can get weird with designators, but they aren't 424 // supported yet.) 425 if (E->getType()->isUnionType()) 426 break; 427 } 428 } 429 430 //===----------------------------------------------------------------------===// 431 // Entry Points into this File 432 //===----------------------------------------------------------------------===// 433 434 /// EmitAggExpr - Emit the computation of the specified expression of 435 /// aggregate type. The result is computed into DestPtr. Note that if 436 /// DestPtr is null, the value of the aggregate expression is not needed. 437 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 438 bool VolatileDest) { 439 assert(E && hasAggregateLLVMType(E->getType()) && 440 "Invalid aggregate expression to emit"); 441 442 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 443 } 444