1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
119 
120   void VisitConditionalOperator(const ConditionalOperator *CO);
121   void VisitChooseExpr(const ChooseExpr *CE);
122   void VisitInitListExpr(InitListExpr *E);
123   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
124   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
125     Visit(DAE->getExpr());
126   }
127   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
128   void VisitCXXConstructExpr(const CXXConstructExpr *E);
129   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
130   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
131   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132 
133   void VisitVAArgExpr(VAArgExpr *E);
134 
135   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
136   void EmitNullInitializationToLValue(LValue Address, QualType T);
137   //  case Expr::ChooseExprClass:
138   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
139 };
140 }  // end anonymous namespace.
141 
142 //===----------------------------------------------------------------------===//
143 //                                Utilities
144 //===----------------------------------------------------------------------===//
145 
146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
147 /// represents a value lvalue, this method emits the address of the lvalue,
148 /// then loads the result into DestPtr.
149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
150   LValue LV = CGF.EmitLValue(E);
151   EmitFinalDestCopy(E, LV);
152 }
153 
154 /// \brief True if the given aggregate type requires special GC API calls.
155 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
156   // Only record types have members that might require garbage collection.
157   const RecordType *RecordTy = T->getAs<RecordType>();
158   if (!RecordTy) return false;
159 
160   // Don't mess with non-trivial C++ types.
161   RecordDecl *Record = RecordTy->getDecl();
162   if (isa<CXXRecordDecl>(Record) &&
163       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
164        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
165     return false;
166 
167   // Check whether the type has an object member.
168   return Record->hasObjectMember();
169 }
170 
171 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
172 ///
173 /// The idea is that you do something like this:
174 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
175 ///   EmitGCMove(E, Result);
176 /// If GC doesn't interfere, this will cause the result to be emitted
177 /// directly into the return value slot.  If GC does interfere, a final
178 /// move will be performed.
179 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
180   if (Dest.requiresGCollection()) {
181     std::pair<uint64_t, unsigned> TypeInfo =
182       CGF.getContext().getTypeInfo(E->getType());
183     unsigned long size = TypeInfo.first/8;
184     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
185     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
186     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
187                                                     Src.getAggregateAddr(),
188                                                     SizeVal);
189   }
190 }
191 
192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
194   assert(Src.isAggregate() && "value must be aggregate value!");
195 
196   // If Dest is ignored, then we're evaluating an aggregate expression
197   // in a context (like an expression statement) that doesn't care
198   // about the result.  C says that an lvalue-to-rvalue conversion is
199   // performed in these cases; C++ says that it is not.  In either
200   // case, we don't actually need to do anything unless the value is
201   // volatile.
202   if (Dest.isIgnored()) {
203     if (!Src.isVolatileQualified() ||
204         CGF.CGM.getLangOptions().CPlusPlus ||
205         (IgnoreResult && Ignore))
206       return;
207 
208     // If the source is volatile, we must read from it; to do that, we need
209     // some place to put it.
210     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
211   }
212 
213   if (Dest.requiresGCollection()) {
214     std::pair<uint64_t, unsigned> TypeInfo =
215     CGF.getContext().getTypeInfo(E->getType());
216     unsigned long size = TypeInfo.first/8;
217     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
218     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
219     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
220                                                       Dest.getAddr(),
221                                                       Src.getAggregateAddr(),
222                                                       SizeVal);
223     return;
224   }
225   // If the result of the assignment is used, copy the LHS there also.
226   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
227   // from the source as well, as we can't eliminate it if either operand
228   // is volatile, unless copy has volatile for both source and destination..
229   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
230                         Dest.isVolatile()|Src.isVolatileQualified());
231 }
232 
233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
235   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
236 
237   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
238                                             Src.isVolatileQualified()),
239                     Ignore);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 //                            Visitor Methods
244 //===----------------------------------------------------------------------===//
245 
246 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
247   if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
248     Visit(E->getSubExpr());
249     return;
250   }
251 
252   switch (E->getCastKind()) {
253   default: assert(0 && "Unhandled cast kind!");
254 
255   case CK_Dynamic: {
256     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
257     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
258     // FIXME: Do we also need to handle property references here?
259     if (LV.isSimple())
260       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
261     else
262       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
263 
264     if (!Dest.isIgnored())
265       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
266     break;
267   }
268 
269   case CK_ToUnion: {
270     // GCC union extension
271     QualType Ty = E->getSubExpr()->getType();
272     QualType PtrTy = CGF.getContext().getPointerType(Ty);
273     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
274                                                  CGF.ConvertType(PtrTy));
275     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
276                                Ty);
277     break;
278   }
279 
280   case CK_DerivedToBase:
281   case CK_BaseToDerived:
282   case CK_UncheckedDerivedToBase: {
283     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
284                 "should have been unpacked before we got here");
285     break;
286   }
287 
288   case CK_NoOp:
289   case CK_UserDefinedConversion:
290   case CK_ConstructorConversion:
291     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
292                                                    E->getType()) &&
293            "Implicit cast types must be compatible");
294     Visit(E->getSubExpr());
295     break;
296 
297   case CK_LValueBitCast:
298     llvm_unreachable("there are no lvalue bit-casts on aggregates");
299     break;
300   }
301 }
302 
303 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
304   if (E->getCallReturnType()->isReferenceType()) {
305     EmitAggLoadOfLValue(E);
306     return;
307   }
308 
309   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
310   EmitGCMove(E, RV);
311 }
312 
313 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
314   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
315   EmitGCMove(E, RV);
316 }
317 
318 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
319   RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
320   EmitGCMove(E, RV);
321 }
322 
323 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
324                                    ObjCImplicitSetterGetterRefExpr *E) {
325   RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
326   EmitGCMove(E, RV);
327 }
328 
329 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
330   CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true);
331   Visit(E->getRHS());
332 }
333 
334 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
335   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
336 }
337 
338 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
339   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
340     VisitPointerToDataMemberBinaryOperator(E);
341   else
342     CGF.ErrorUnsupported(E, "aggregate binary expression");
343 }
344 
345 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
346                                                     const BinaryOperator *E) {
347   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
348   EmitFinalDestCopy(E, LV);
349 }
350 
351 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
352   // For an assignment to work, the value on the right has
353   // to be compatible with the value on the left.
354   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
355                                                  E->getRHS()->getType())
356          && "Invalid assignment");
357   LValue LHS = CGF.EmitLValue(E->getLHS());
358 
359   // We have to special case property setters, otherwise we must have
360   // a simple lvalue (no aggregates inside vectors, bitfields).
361   if (LHS.isPropertyRef()) {
362     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
363     CGF.EmitAggExpr(E->getRHS(), Slot);
364     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue());
365   } else if (LHS.isKVCRef()) {
366     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
367     CGF.EmitAggExpr(E->getRHS(), Slot);
368     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue());
369   } else {
370     bool GCollection = false;
371     if (CGF.getContext().getLangOptions().getGCMode())
372       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
373 
374     // Codegen the RHS so that it stores directly into the LHS.
375     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
376                                                    GCollection);
377     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
378     EmitFinalDestCopy(E, LHS, true);
379   }
380 }
381 
382 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
383   if (!E->getLHS()) {
384     CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
385     return;
386   }
387 
388   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
389   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
390   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
391 
392   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
393 
394   CGF.BeginConditionalBranch();
395   CGF.EmitBlock(LHSBlock);
396 
397   // Save whether the destination's lifetime is externally managed.
398   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
399 
400   Visit(E->getLHS());
401   CGF.EndConditionalBranch();
402   CGF.EmitBranch(ContBlock);
403 
404   CGF.BeginConditionalBranch();
405   CGF.EmitBlock(RHSBlock);
406 
407   // If the result of an agg expression is unused, then the emission
408   // of the LHS might need to create a destination slot.  That's fine
409   // with us, and we can safely emit the RHS into the same slot, but
410   // we shouldn't claim that its lifetime is externally managed.
411   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
412 
413   Visit(E->getRHS());
414   CGF.EndConditionalBranch();
415   CGF.EmitBranch(ContBlock);
416 
417   CGF.EmitBlock(ContBlock);
418 }
419 
420 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
421   Visit(CE->getChosenSubExpr(CGF.getContext()));
422 }
423 
424 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
425   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
426   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
427 
428   if (!ArgPtr) {
429     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
430     return;
431   }
432 
433   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
434 }
435 
436 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
437   // Ensure that we have a slot, but if we already do, remember
438   // whether its lifetime was externally managed.
439   bool WasManaged = Dest.isLifetimeExternallyManaged();
440   Dest = EnsureSlot(E->getType());
441   Dest.setLifetimeExternallyManaged();
442 
443   Visit(E->getSubExpr());
444 
445   // Set up the temporary's destructor if its lifetime wasn't already
446   // being managed.
447   if (!WasManaged)
448     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
449 }
450 
451 void
452 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
453   AggValueSlot Slot = EnsureSlot(E->getType());
454   CGF.EmitCXXConstructExpr(E, Slot);
455 }
456 
457 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
458   CGF.EmitCXXExprWithTemporaries(E, Dest);
459 }
460 
461 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
462   QualType T = E->getType();
463   AggValueSlot Slot = EnsureSlot(T);
464   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
465 }
466 
467 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
468   QualType T = E->getType();
469   AggValueSlot Slot = EnsureSlot(T);
470   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
471 }
472 
473 void
474 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
475   // FIXME: Ignore result?
476   // FIXME: Are initializers affected by volatile?
477   if (isa<ImplicitValueInitExpr>(E)) {
478     EmitNullInitializationToLValue(LV, T);
479   } else if (T->isReferenceType()) {
480     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
481     CGF.EmitStoreThroughLValue(RV, LV, T);
482   } else if (T->isAnyComplexType()) {
483     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
484   } else if (CGF.hasAggregateLLVMType(T)) {
485     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true));
486   } else {
487     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T);
488   }
489 }
490 
491 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
492   if (!CGF.hasAggregateLLVMType(T)) {
493     // For non-aggregates, we can store zero
494     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
495     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
496   } else {
497     // There's a potential optimization opportunity in combining
498     // memsets; that would be easy for arrays, but relatively
499     // difficult for structures with the current code.
500     CGF.EmitNullInitialization(LV.getAddress(), T);
501   }
502 }
503 
504 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
505 #if 0
506   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
507   // (Length of globals? Chunks of zeroed-out space?).
508   //
509   // If we can, prefer a copy from a global; this is a lot less code for long
510   // globals, and it's easier for the current optimizers to analyze.
511   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
512     llvm::GlobalVariable* GV =
513     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
514                              llvm::GlobalValue::InternalLinkage, C, "");
515     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
516     return;
517   }
518 #endif
519   if (E->hadArrayRangeDesignator())
520     CGF.ErrorUnsupported(E, "GNU array range designator extension");
521 
522   llvm::Value *DestPtr = Dest.getAddr();
523 
524   // Handle initialization of an array.
525   if (E->getType()->isArrayType()) {
526     const llvm::PointerType *APType =
527       cast<llvm::PointerType>(DestPtr->getType());
528     const llvm::ArrayType *AType =
529       cast<llvm::ArrayType>(APType->getElementType());
530 
531     uint64_t NumInitElements = E->getNumInits();
532 
533     if (E->getNumInits() > 0) {
534       QualType T1 = E->getType();
535       QualType T2 = E->getInit(0)->getType();
536       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
537         EmitAggLoadOfLValue(E->getInit(0));
538         return;
539       }
540     }
541 
542     uint64_t NumArrayElements = AType->getNumElements();
543     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
544     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
545 
546     // FIXME: were we intentionally ignoring address spaces and GC attributes?
547 
548     for (uint64_t i = 0; i != NumArrayElements; ++i) {
549       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
550       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
551       if (i < NumInitElements)
552         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
553 
554       else
555         EmitNullInitializationToLValue(LV, ElementType);
556     }
557     return;
558   }
559 
560   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
561 
562   // Do struct initialization; this code just sets each individual member
563   // to the approprate value.  This makes bitfield support automatic;
564   // the disadvantage is that the generated code is more difficult for
565   // the optimizer, especially with bitfields.
566   unsigned NumInitElements = E->getNumInits();
567   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
568 
569   if (E->getType()->isUnionType()) {
570     // Only initialize one field of a union. The field itself is
571     // specified by the initializer list.
572     if (!E->getInitializedFieldInUnion()) {
573       // Empty union; we have nothing to do.
574 
575 #ifndef NDEBUG
576       // Make sure that it's really an empty and not a failure of
577       // semantic analysis.
578       for (RecordDecl::field_iterator Field = SD->field_begin(),
579                                    FieldEnd = SD->field_end();
580            Field != FieldEnd; ++Field)
581         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
582 #endif
583       return;
584     }
585 
586     // FIXME: volatility
587     FieldDecl *Field = E->getInitializedFieldInUnion();
588     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
589 
590     if (NumInitElements) {
591       // Store the initializer into the field
592       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
593     } else {
594       // Default-initialize to null
595       EmitNullInitializationToLValue(FieldLoc, Field->getType());
596     }
597 
598     return;
599   }
600 
601   // Here we iterate over the fields; this makes it simpler to both
602   // default-initialize fields and skip over unnamed fields.
603   unsigned CurInitVal = 0;
604   for (RecordDecl::field_iterator Field = SD->field_begin(),
605                                FieldEnd = SD->field_end();
606        Field != FieldEnd; ++Field) {
607     // We're done once we hit the flexible array member
608     if (Field->getType()->isIncompleteArrayType())
609       break;
610 
611     if (Field->isUnnamedBitfield())
612       continue;
613 
614     // FIXME: volatility
615     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
616     // We never generate write-barries for initialized fields.
617     FieldLoc.setNonGC(true);
618     if (CurInitVal < NumInitElements) {
619       // Store the initializer into the field.
620       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
621                                  Field->getType());
622     } else {
623       // We're out of initalizers; default-initialize to null
624       EmitNullInitializationToLValue(FieldLoc, Field->getType());
625     }
626   }
627 }
628 
629 //===----------------------------------------------------------------------===//
630 //                        Entry Points into this File
631 //===----------------------------------------------------------------------===//
632 
633 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
634 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
635 /// the value of the aggregate expression is not needed.  If VolatileDest is
636 /// true, DestPtr cannot be 0.
637 ///
638 /// \param IsInitializer - true if this evaluation is initializing an
639 /// object whose lifetime is already being managed.
640 //
641 // FIXME: Take Qualifiers object.
642 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
643                                   bool IgnoreResult) {
644   assert(E && hasAggregateLLVMType(E->getType()) &&
645          "Invalid aggregate expression to emit");
646   assert((Slot.getAddr() != 0 || Slot.isIgnored())
647          && "slot has bits but no address");
648 
649   AggExprEmitter(*this, Slot, IgnoreResult)
650     .Visit(const_cast<Expr*>(E));
651 }
652 
653 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
654   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
655   llvm::Value *Temp = CreateMemTemp(E->getType());
656   LValue LV = MakeAddrLValue(Temp, E->getType());
657   AggValueSlot Slot
658     = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false);
659   EmitAggExpr(E, Slot);
660   return LV;
661 }
662 
663 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
664                                         llvm::Value *SrcPtr, QualType Ty,
665                                         bool isVolatile) {
666   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
667 
668   if (getContext().getLangOptions().CPlusPlus) {
669     if (const RecordType *RT = Ty->getAs<RecordType>()) {
670       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
671       assert((Record->hasTrivialCopyConstructor() ||
672               Record->hasTrivialCopyAssignment()) &&
673              "Trying to aggregate-copy a type without a trivial copy "
674              "constructor or assignment operator");
675       // Ignore empty classes in C++.
676       if (Record->isEmpty())
677         return;
678     }
679   }
680 
681   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
682   // C99 6.5.16.1p3, which states "If the value being stored in an object is
683   // read from another object that overlaps in anyway the storage of the first
684   // object, then the overlap shall be exact and the two objects shall have
685   // qualified or unqualified versions of a compatible type."
686   //
687   // memcpy is not defined if the source and destination pointers are exactly
688   // equal, but other compilers do this optimization, and almost every memcpy
689   // implementation handles this case safely.  If there is a libc that does not
690   // safely handle this, we can add a target hook.
691 
692   // Get size and alignment info for this aggregate.
693   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
694 
695   // FIXME: Handle variable sized types.
696 
697   // FIXME: If we have a volatile struct, the optimizer can remove what might
698   // appear to be `extra' memory ops:
699   //
700   // volatile struct { int i; } a, b;
701   //
702   // int main() {
703   //   a = b;
704   //   a = b;
705   // }
706   //
707   // we need to use a different call here.  We use isVolatile to indicate when
708   // either the source or the destination is volatile.
709 
710   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
711   const llvm::Type *DBP =
712     llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
713   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
714 
715   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
716   const llvm::Type *SBP =
717     llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
718   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
719 
720   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
721     RecordDecl *Record = RecordTy->getDecl();
722     if (Record->hasObjectMember()) {
723       unsigned long size = TypeInfo.first/8;
724       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
725       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
726       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
727                                                     SizeVal);
728       return;
729     }
730   } else if (getContext().getAsArrayType(Ty)) {
731     QualType BaseType = getContext().getBaseElementType(Ty);
732     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
733       if (RecordTy->getDecl()->hasObjectMember()) {
734         unsigned long size = TypeInfo.first/8;
735         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
736         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
737         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
738                                                       SizeVal);
739         return;
740       }
741     }
742   }
743 
744   Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
745                                       IntPtrTy),
746                       DestPtr, SrcPtr,
747                       // TypeInfo.first describes size in bits.
748                       llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
749                       Builder.getInt32(TypeInfo.second/8),
750                       Builder.getInt1(isVolatile));
751 }
752