1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   llvm::Value *DestPtr;
37   bool VolatileDest;
38   bool IgnoreResult;
39   bool IsInitializer;
40 public:
41   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
42                  bool ignore, bool isinit)
43     : CGF(cgf), Builder(CGF.Builder),
44       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
45       IsInitializer(isinit) {
46   }
47 
48   //===--------------------------------------------------------------------===//
49   //                               Utilities
50   //===--------------------------------------------------------------------===//
51 
52   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
53   /// represents a value lvalue, this method emits the address of the lvalue,
54   /// then loads the result into DestPtr.
55   void EmitAggLoadOfLValue(const Expr *E);
56 
57   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
58   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
59   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
60 
61   //===--------------------------------------------------------------------===//
62   //                            Visitor Methods
63   //===--------------------------------------------------------------------===//
64 
65   void VisitStmt(Stmt *S) {
66     CGF.ErrorUnsupported(S, "aggregate expression");
67   }
68   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
69   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
70 
71   // l-values.
72   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
73   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
74   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
75   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
76   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
77     EmitAggLoadOfLValue(E);
78   }
79   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
80     EmitAggLoadOfLValue(E);
81   }
82   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
83     EmitAggLoadOfLValue(E);
84   }
85   void VisitPredefinedExpr(const PredefinedExpr *E) {
86     EmitAggLoadOfLValue(E);
87   }
88 
89   // Operators.
90   void VisitCastExpr(CastExpr *E);
91   void VisitCallExpr(const CallExpr *E);
92   void VisitStmtExpr(const StmtExpr *E);
93   void VisitBinaryOperator(const BinaryOperator *BO);
94   void VisitBinAssign(const BinaryOperator *E);
95   void VisitBinComma(const BinaryOperator *E);
96 
97   void VisitObjCMessageExpr(ObjCMessageExpr *E);
98   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
102   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
103 
104   void VisitConditionalOperator(const ConditionalOperator *CO);
105   void VisitChooseExpr(const ChooseExpr *CE);
106   void VisitInitListExpr(InitListExpr *E);
107   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
108     Visit(DAE->getExpr());
109   }
110   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
111   void VisitCXXConstructExpr(const CXXConstructExpr *E);
112   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
113 
114   void VisitVAArgExpr(VAArgExpr *E);
115 
116   void EmitInitializationToLValue(Expr *E, LValue Address);
117   void EmitNullInitializationToLValue(LValue Address, QualType T);
118   //  case Expr::ChooseExprClass:
119 
120 };
121 }  // end anonymous namespace.
122 
123 //===----------------------------------------------------------------------===//
124 //                                Utilities
125 //===----------------------------------------------------------------------===//
126 
127 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
128 /// represents a value lvalue, this method emits the address of the lvalue,
129 /// then loads the result into DestPtr.
130 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
131   LValue LV = CGF.EmitLValue(E);
132   EmitFinalDestCopy(E, LV);
133 }
134 
135 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
136 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
137   assert(Src.isAggregate() && "value must be aggregate value!");
138 
139   // If the result is ignored, don't copy from the value.
140   if (DestPtr == 0) {
141     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
142       return;
143     // If the source is volatile, we must read from it; to do that, we need
144     // some place to put it.
145     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
146   }
147 
148   // If the result of the assignment is used, copy the LHS there also.
149   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
150   // from the source as well, as we can't eliminate it if either operand
151   // is volatile, unless copy has volatile for both source and destination..
152   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
153                         VolatileDest|Src.isVolatileQualified());
154 }
155 
156 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
157 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
158   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
159 
160   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
161                                             Src.isVolatileQualified()),
162                     Ignore);
163 }
164 
165 //===----------------------------------------------------------------------===//
166 //                            Visitor Methods
167 //===----------------------------------------------------------------------===//
168 
169 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
170   if (E->getCastKind() == CastExpr::CK_ToUnion) {
171     // GCC union extension
172     QualType PtrTy =
173         CGF.getContext().getPointerType(E->getSubExpr()->getType());
174     llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
175                                                  CGF.ConvertType(PtrTy));
176     EmitInitializationToLValue(E->getSubExpr(),
177                                LValue::MakeAddr(CastPtr, 0));
178     return;
179   }
180 
181   // FIXME: Remove the CK_Unknown check here.
182   assert((E->getCastKind() == CastExpr::CK_NoOp ||
183           E->getCastKind() == CastExpr::CK_Unknown) &&
184          "Only no-op casts allowed!");
185   assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
186                                                  E->getType()) &&
187          "Implicit cast types must be compatible");
188   Visit(E->getSubExpr());
189 }
190 
191 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
192   if (E->getCallReturnType()->isReferenceType()) {
193     EmitAggLoadOfLValue(E);
194     return;
195   }
196 
197   RValue RV = CGF.EmitCallExpr(E);
198   EmitFinalDestCopy(E, RV);
199 }
200 
201 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
202   RValue RV = CGF.EmitObjCMessageExpr(E);
203   EmitFinalDestCopy(E, RV);
204 }
205 
206 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
207   RValue RV = CGF.EmitObjCPropertyGet(E);
208   EmitFinalDestCopy(E, RV);
209 }
210 
211 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
212   RValue RV = CGF.EmitObjCPropertyGet(E);
213   EmitFinalDestCopy(E, RV);
214 }
215 
216 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
217   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
218   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
219                   /*IgnoreResult=*/false, IsInitializer);
220 }
221 
222 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
223   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
224 }
225 
226 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
227   CGF.ErrorUnsupported(E, "aggregate binary expression");
228 }
229 
230 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
231   // For an assignment to work, the value on the right has
232   // to be compatible with the value on the left.
233   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
234                                                  E->getRHS()->getType())
235          && "Invalid assignment");
236   LValue LHS = CGF.EmitLValue(E->getLHS());
237 
238   // We have to special case property setters, otherwise we must have
239   // a simple lvalue (no aggregates inside vectors, bitfields).
240   if (LHS.isPropertyRef()) {
241     llvm::Value *AggLoc = DestPtr;
242     if (!AggLoc)
243       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
244     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
245     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
246                             RValue::getAggregate(AggLoc, VolatileDest));
247   } else if (LHS.isKVCRef()) {
248     llvm::Value *AggLoc = DestPtr;
249     if (!AggLoc)
250       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
251     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
252     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
253                             RValue::getAggregate(AggLoc, VolatileDest));
254   } else {
255     if (CGF.getContext().getLangOptions().NeXTRuntime) {
256       QualType LHSTy = E->getLHS()->getType();
257       if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
258         if (FDTTy->getDecl()->hasObjectMember()) {
259           LValue RHS = CGF.EmitLValue(E->getRHS());
260           CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, LHS.getAddress(),
261                                       RHS.getAddress(),
262                                       CGF.getContext().getTypeSize(LHSTy) / 8);
263           return;
264         }
265     }
266     // Codegen the RHS so that it stores directly into the LHS.
267     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
268     EmitFinalDestCopy(E, LHS, true);
269   }
270 }
271 
272 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
273   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
274   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
275   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
276 
277   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
278   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
279 
280   CGF.PushConditionalTempDestruction();
281   CGF.EmitBlock(LHSBlock);
282 
283   // Handle the GNU extension for missing LHS.
284   assert(E->getLHS() && "Must have LHS for aggregate value");
285 
286   Visit(E->getLHS());
287   CGF.PopConditionalTempDestruction();
288   CGF.EmitBranch(ContBlock);
289 
290   CGF.PushConditionalTempDestruction();
291   CGF.EmitBlock(RHSBlock);
292 
293   Visit(E->getRHS());
294   CGF.PopConditionalTempDestruction();
295   CGF.EmitBranch(ContBlock);
296 
297   CGF.EmitBlock(ContBlock);
298 }
299 
300 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
301   Visit(CE->getChosenSubExpr(CGF.getContext()));
302 }
303 
304 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
305   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
306   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
307 
308   if (!ArgPtr) {
309     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
310     return;
311   }
312 
313   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
314 }
315 
316 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
317   llvm::Value *Val = DestPtr;
318 
319   if (!Val) {
320     // Create a temporary variable.
321     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
322 
323     // FIXME: volatile
324     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
325   } else
326     Visit(E->getSubExpr());
327 
328   // Don't make this a live temporary if we're emitting an initializer expr.
329   if (!IsInitializer)
330     CGF.PushCXXTemporary(E->getTemporary(), Val);
331 }
332 
333 void
334 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
335   llvm::Value *Val = DestPtr;
336 
337   if (!Val) {
338     // Create a temporary variable.
339     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
340   }
341 
342   CGF.EmitCXXConstructExpr(Val, E);
343 }
344 
345 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
346   CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer);
347 }
348 
349 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
350   // FIXME: Ignore result?
351   // FIXME: Are initializers affected by volatile?
352   if (isa<ImplicitValueInitExpr>(E)) {
353     EmitNullInitializationToLValue(LV, E->getType());
354   } else if (E->getType()->isComplexType()) {
355     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
356   } else if (CGF.hasAggregateLLVMType(E->getType())) {
357     CGF.EmitAnyExpr(E, LV.getAddress(), false);
358   } else {
359     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
360   }
361 }
362 
363 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
364   if (!CGF.hasAggregateLLVMType(T)) {
365     // For non-aggregates, we can store zero
366     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
367     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
368   } else {
369     // Otherwise, just memset the whole thing to zero.  This is legal
370     // because in LLVM, all default initializers are guaranteed to have a
371     // bit pattern of all zeros.
372     // FIXME: That isn't true for member pointers!
373     // There's a potential optimization opportunity in combining
374     // memsets; that would be easy for arrays, but relatively
375     // difficult for structures with the current code.
376     CGF.EmitMemSetToZero(LV.getAddress(), T);
377   }
378 }
379 
380 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
381 #if 0
382   // FIXME: Disabled while we figure out what to do about
383   // test/CodeGen/bitfield.c
384   //
385   // If we can, prefer a copy from a global; this is a lot less code for long
386   // globals, and it's easier for the current optimizers to analyze.
387   // FIXME: Should we really be doing this? Should we try to avoid cases where
388   // we emit a global with a lot of zeros?  Should we try to avoid short
389   // globals?
390   if (E->isConstantInitializer(CGF.getContext(), 0)) {
391     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
392     llvm::GlobalVariable* GV =
393     new llvm::GlobalVariable(C->getType(), true,
394                              llvm::GlobalValue::InternalLinkage,
395                              C, "", &CGF.CGM.getModule(), 0);
396     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
397     return;
398   }
399 #endif
400   if (E->hadArrayRangeDesignator()) {
401     CGF.ErrorUnsupported(E, "GNU array range designator extension");
402   }
403 
404   // Handle initialization of an array.
405   if (E->getType()->isArrayType()) {
406     const llvm::PointerType *APType =
407       cast<llvm::PointerType>(DestPtr->getType());
408     const llvm::ArrayType *AType =
409       cast<llvm::ArrayType>(APType->getElementType());
410 
411     uint64_t NumInitElements = E->getNumInits();
412 
413     if (E->getNumInits() > 0) {
414       QualType T1 = E->getType();
415       QualType T2 = E->getInit(0)->getType();
416       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
417         EmitAggLoadOfLValue(E->getInit(0));
418         return;
419       }
420     }
421 
422     uint64_t NumArrayElements = AType->getNumElements();
423     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
424     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
425 
426     unsigned CVRqualifier = ElementType.getCVRQualifiers();
427 
428     for (uint64_t i = 0; i != NumArrayElements; ++i) {
429       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
430       if (i < NumInitElements)
431         EmitInitializationToLValue(E->getInit(i),
432                                    LValue::MakeAddr(NextVal, CVRqualifier));
433       else
434         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
435                                        ElementType);
436     }
437     return;
438   }
439 
440   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
441 
442   // Do struct initialization; this code just sets each individual member
443   // to the approprate value.  This makes bitfield support automatic;
444   // the disadvantage is that the generated code is more difficult for
445   // the optimizer, especially with bitfields.
446   unsigned NumInitElements = E->getNumInits();
447   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
448   unsigned CurInitVal = 0;
449 
450   if (E->getType()->isUnionType()) {
451     // Only initialize one field of a union. The field itself is
452     // specified by the initializer list.
453     if (!E->getInitializedFieldInUnion()) {
454       // Empty union; we have nothing to do.
455 
456 #ifndef NDEBUG
457       // Make sure that it's really an empty and not a failure of
458       // semantic analysis.
459       for (RecordDecl::field_iterator Field = SD->field_begin(),
460                                    FieldEnd = SD->field_end();
461            Field != FieldEnd; ++Field)
462         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
463 #endif
464       return;
465     }
466 
467     // FIXME: volatility
468     FieldDecl *Field = E->getInitializedFieldInUnion();
469     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
470 
471     if (NumInitElements) {
472       // Store the initializer into the field
473       EmitInitializationToLValue(E->getInit(0), FieldLoc);
474     } else {
475       // Default-initialize to null
476       EmitNullInitializationToLValue(FieldLoc, Field->getType());
477     }
478 
479     return;
480   }
481 
482   // Here we iterate over the fields; this makes it simpler to both
483   // default-initialize fields and skip over unnamed fields.
484   for (RecordDecl::field_iterator Field = SD->field_begin(),
485                                FieldEnd = SD->field_end();
486        Field != FieldEnd; ++Field) {
487     // We're done once we hit the flexible array member
488     if (Field->getType()->isIncompleteArrayType())
489       break;
490 
491     if (Field->isUnnamedBitfield())
492       continue;
493 
494     // FIXME: volatility
495     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
496     // We never generate write-barries for initialized fields.
497     LValue::SetObjCNonGC(FieldLoc, true);
498     if (CurInitVal < NumInitElements) {
499       // Store the initializer into the field
500       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
501     } else {
502       // We're out of initalizers; default-initialize to null
503       EmitNullInitializationToLValue(FieldLoc, Field->getType());
504     }
505   }
506 }
507 
508 //===----------------------------------------------------------------------===//
509 //                        Entry Points into this File
510 //===----------------------------------------------------------------------===//
511 
512 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
513 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
514 /// the value of the aggregate expression is not needed.  If VolatileDest is
515 /// true, DestPtr cannot be 0.
516 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
517                                   bool VolatileDest, bool IgnoreResult,
518                                   bool IsInitializer) {
519   assert(E && hasAggregateLLVMType(E->getType()) &&
520          "Invalid aggregate expression to emit");
521   assert ((DestPtr != 0 || VolatileDest == false)
522           && "volatile aggregate can't be 0");
523 
524   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer)
525     .Visit(const_cast<Expr*>(E));
526 }
527 
528 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
529   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
530 
531   EmitMemSetToZero(DestPtr, Ty);
532 }
533 
534 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
535                                         llvm::Value *SrcPtr, QualType Ty,
536                                         bool isVolatile) {
537   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
538 
539   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
540   // C99 6.5.16.1p3, which states "If the value being stored in an object is
541   // read from another object that overlaps in anyway the storage of the first
542   // object, then the overlap shall be exact and the two objects shall have
543   // qualified or unqualified versions of a compatible type."
544   //
545   // memcpy is not defined if the source and destination pointers are exactly
546   // equal, but other compilers do this optimization, and almost every memcpy
547   // implementation handles this case safely.  If there is a libc that does not
548   // safely handle this, we can add a target hook.
549   const llvm::Type *BP =
550                 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
551   if (DestPtr->getType() != BP)
552     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
553   if (SrcPtr->getType() != BP)
554     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
555 
556   // Get size and alignment info for this aggregate.
557   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
558 
559   // FIXME: Handle variable sized types.
560   const llvm::Type *IntPtr =
561           llvm::IntegerType::get(VMContext, LLVMPointerWidth);
562 
563   // FIXME: If we have a volatile struct, the optimizer can remove what might
564   // appear to be `extra' memory ops:
565   //
566   // volatile struct { int i; } a, b;
567   //
568   // int main() {
569   //   a = b;
570   //   a = b;
571   // }
572   //
573   // we need to use a differnt call here.  We use isVolatile to indicate when
574   // either the source or the destination is volatile.
575   Builder.CreateCall4(CGM.getMemCpyFn(),
576                       DestPtr, SrcPtr,
577                       // TypeInfo.first describes size in bits.
578                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
579                       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
580                                              TypeInfo.second/8));
581 }
582