1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IgnoreResult;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                  bool ignore)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64       IgnoreResult(ignore) {
65   }
66 
67   //===--------------------------------------------------------------------===//
68   //                               Utilities
69   //===--------------------------------------------------------------------===//
70 
71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72   /// represents a value lvalue, this method emits the address of the lvalue,
73   /// then loads the result into DestPtr.
74   void EmitAggLoadOfLValue(const Expr *E);
75 
76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                          unsigned Alignment = 0);
80 
81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82 
83   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                      QualType elementType, InitListExpr *E);
86 
87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
89       return AggValueSlot::NeedsGCBarriers;
90     return AggValueSlot::DoesNotNeedGCBarriers;
91   }
92 
93   bool TypeRequiresGCollection(QualType T);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   void VisitStmt(Stmt *S) {
100     CGF.ErrorUnsupported(S, "aggregate expression");
101   }
102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104     Visit(GE->getResultExpr());
105   }
106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108     return Visit(E->getReplacement());
109   }
110 
111   // l-values.
112   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
113   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
114   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
115   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
116   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
117   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
121     EmitAggLoadOfLValue(E);
122   }
123   void VisitPredefinedExpr(const PredefinedExpr *E) {
124     EmitAggLoadOfLValue(E);
125   }
126 
127   // Operators.
128   void VisitCastExpr(CastExpr *E);
129   void VisitCallExpr(const CallExpr *E);
130   void VisitStmtExpr(const StmtExpr *E);
131   void VisitBinaryOperator(const BinaryOperator *BO);
132   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
133   void VisitBinAssign(const BinaryOperator *E);
134   void VisitBinComma(const BinaryOperator *E);
135 
136   void VisitObjCMessageExpr(ObjCMessageExpr *E);
137   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
142   void VisitChooseExpr(const ChooseExpr *CE);
143   void VisitInitListExpr(InitListExpr *E);
144   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
145   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
146     Visit(DAE->getExpr());
147   }
148   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
149   void VisitCXXConstructExpr(const CXXConstructExpr *E);
150   void VisitLambdaExpr(LambdaExpr *E);
151   void VisitExprWithCleanups(ExprWithCleanups *E);
152   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
153   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
154   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
155   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
156 
157   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
158     if (E->isGLValue()) {
159       LValue LV = CGF.EmitPseudoObjectLValue(E);
160       return EmitFinalDestCopy(E, LV);
161     }
162 
163     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
164   }
165 
166   void VisitVAArgExpr(VAArgExpr *E);
167 
168   void EmitInitializationToLValue(Expr *E, LValue Address);
169   void EmitNullInitializationToLValue(LValue Address);
170   //  case Expr::ChooseExprClass:
171   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
172   void VisitAtomicExpr(AtomicExpr *E) {
173     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
174   }
175 };
176 }  // end anonymous namespace.
177 
178 //===----------------------------------------------------------------------===//
179 //                                Utilities
180 //===----------------------------------------------------------------------===//
181 
182 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
183 /// represents a value lvalue, this method emits the address of the lvalue,
184 /// then loads the result into DestPtr.
185 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
186   LValue LV = CGF.EmitLValue(E);
187   EmitFinalDestCopy(E, LV);
188 }
189 
190 /// \brief True if the given aggregate type requires special GC API calls.
191 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
192   // Only record types have members that might require garbage collection.
193   const RecordType *RecordTy = T->getAs<RecordType>();
194   if (!RecordTy) return false;
195 
196   // Don't mess with non-trivial C++ types.
197   RecordDecl *Record = RecordTy->getDecl();
198   if (isa<CXXRecordDecl>(Record) &&
199       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
200        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
201     return false;
202 
203   // Check whether the type has an object member.
204   return Record->hasObjectMember();
205 }
206 
207 /// \brief Perform the final move to DestPtr if for some reason
208 /// getReturnValueSlot() didn't use it directly.
209 ///
210 /// The idea is that you do something like this:
211 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
212 ///   EmitMoveFromReturnSlot(E, Result);
213 ///
214 /// If nothing interferes, this will cause the result to be emitted
215 /// directly into the return value slot.  Otherwise, a final move
216 /// will be performed.
217 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
218   if (shouldUseDestForReturnSlot()) {
219     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
220     // The possibility of undef rvalues complicates that a lot,
221     // though, so we can't really assert.
222     return;
223   }
224 
225   // Otherwise, do a final copy,
226   assert(Dest.getAddr() != Src.getAggregateAddr());
227   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
228 }
229 
230 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
231 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
232                                        unsigned Alignment) {
233   assert(Src.isAggregate() && "value must be aggregate value!");
234 
235   // If Dest is ignored, then we're evaluating an aggregate expression
236   // in a context (like an expression statement) that doesn't care
237   // about the result.  C says that an lvalue-to-rvalue conversion is
238   // performed in these cases; C++ says that it is not.  In either
239   // case, we don't actually need to do anything unless the value is
240   // volatile.
241   if (Dest.isIgnored()) {
242     if (!Src.isVolatileQualified() ||
243         CGF.CGM.getLangOptions().CPlusPlus ||
244         (IgnoreResult && Ignore))
245       return;
246 
247     // If the source is volatile, we must read from it; to do that, we need
248     // some place to put it.
249     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
250   }
251 
252   if (Dest.requiresGCollection()) {
253     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
254     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
255     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
256     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
257                                                       Dest.getAddr(),
258                                                       Src.getAggregateAddr(),
259                                                       SizeVal);
260     return;
261   }
262   // If the result of the assignment is used, copy the LHS there also.
263   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
264   // from the source as well, as we can't eliminate it if either operand
265   // is volatile, unless copy has volatile for both source and destination..
266   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
267                         Dest.isVolatile()|Src.isVolatileQualified(),
268                         Alignment);
269 }
270 
271 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
272 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
273   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
274 
275   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
276   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
277 }
278 
279 static QualType GetStdInitializerListElementType(QualType T) {
280   // Just assume that this is really std::initializer_list.
281   ClassTemplateSpecializationDecl *specialization =
282       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
283   return specialization->getTemplateArgs()[0].getAsType();
284 }
285 
286 /// \brief Prepare cleanup for the temporary array.
287 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
288                                           QualType arrayType,
289                                           llvm::Value *addr,
290                                           const InitListExpr *initList) {
291   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
292   if (!dtorKind)
293     return; // Type doesn't need destroying.
294   if (dtorKind != QualType::DK_cxx_destructor) {
295     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
296     return;
297   }
298 
299   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
300   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
301                   /*EHCleanup=*/true);
302 }
303 
304 /// \brief Emit the initializer for a std::initializer_list initialized with a
305 /// real initializer list.
306 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
307                                             InitListExpr *initList) {
308   // We emit an array containing the elements, then have the init list point
309   // at the array.
310   ASTContext &ctx = CGF.getContext();
311   unsigned numInits = initList->getNumInits();
312   QualType element = GetStdInitializerListElementType(initList->getType());
313   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
314   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
315   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
316   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
317   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
318   alloc->setName(".initlist.");
319 
320   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
321 
322   // FIXME: The diagnostics are somewhat out of place here.
323   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
324   RecordDecl::field_iterator field = record->field_begin();
325   if (field == record->field_end()) {
326     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
327     return;
328   }
329 
330   QualType elementPtr = ctx.getPointerType(element.withConst());
331 
332   // Start pointer.
333   if (!ctx.hasSameType(field->getType(), elementPtr)) {
334     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
335     return;
336   }
337   LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
338   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
339   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
340   ++field;
341 
342   if (field == record->field_end()) {
343     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
344     return;
345   }
346   LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
347   if (ctx.hasSameType(field->getType(), elementPtr)) {
348     // End pointer.
349     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
350     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
351   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
352     // Length.
353     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
354   } else {
355     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
356     return;
357   }
358 
359   if (!Dest.isExternallyDestructed())
360     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
361 }
362 
363 /// \brief Emit initialization of an array from an initializer list.
364 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
365                                    QualType elementType, InitListExpr *E) {
366   uint64_t NumInitElements = E->getNumInits();
367 
368   uint64_t NumArrayElements = AType->getNumElements();
369   assert(NumInitElements <= NumArrayElements);
370 
371   // DestPtr is an array*.  Construct an elementType* by drilling
372   // down a level.
373   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
374   llvm::Value *indices[] = { zero, zero };
375   llvm::Value *begin =
376     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
377 
378   // Exception safety requires us to destroy all the
379   // already-constructed members if an initializer throws.
380   // For that, we'll need an EH cleanup.
381   QualType::DestructionKind dtorKind = elementType.isDestructedType();
382   llvm::AllocaInst *endOfInit = 0;
383   EHScopeStack::stable_iterator cleanup;
384   llvm::Instruction *cleanupDominator = 0;
385   if (CGF.needsEHCleanup(dtorKind)) {
386     // In principle we could tell the cleanup where we are more
387     // directly, but the control flow can get so varied here that it
388     // would actually be quite complex.  Therefore we go through an
389     // alloca.
390     endOfInit = CGF.CreateTempAlloca(begin->getType(),
391                                      "arrayinit.endOfInit");
392     cleanupDominator = Builder.CreateStore(begin, endOfInit);
393     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
394                                          CGF.getDestroyer(dtorKind));
395     cleanup = CGF.EHStack.stable_begin();
396 
397   // Otherwise, remember that we didn't need a cleanup.
398   } else {
399     dtorKind = QualType::DK_none;
400   }
401 
402   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
403 
404   // The 'current element to initialize'.  The invariants on this
405   // variable are complicated.  Essentially, after each iteration of
406   // the loop, it points to the last initialized element, except
407   // that it points to the beginning of the array before any
408   // elements have been initialized.
409   llvm::Value *element = begin;
410 
411   // Emit the explicit initializers.
412   for (uint64_t i = 0; i != NumInitElements; ++i) {
413     // Advance to the next element.
414     if (i > 0) {
415       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
416 
417       // Tell the cleanup that it needs to destroy up to this
418       // element.  TODO: some of these stores can be trivially
419       // observed to be unnecessary.
420       if (endOfInit) Builder.CreateStore(element, endOfInit);
421     }
422 
423     // If these are nested std::initializer_list inits, do them directly,
424     // because they are conceptually the same "location".
425     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
426     if (initList && initList->initializesStdInitializerList()) {
427       EmitStdInitializerList(element, initList);
428     } else {
429       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
430       EmitInitializationToLValue(E->getInit(i), elementLV);
431     }
432   }
433 
434   // Check whether there's a non-trivial array-fill expression.
435   // Note that this will be a CXXConstructExpr even if the element
436   // type is an array (or array of array, etc.) of class type.
437   Expr *filler = E->getArrayFiller();
438   bool hasTrivialFiller = true;
439   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
440     assert(cons->getConstructor()->isDefaultConstructor());
441     hasTrivialFiller = cons->getConstructor()->isTrivial();
442   }
443 
444   // Any remaining elements need to be zero-initialized, possibly
445   // using the filler expression.  We can skip this if the we're
446   // emitting to zeroed memory.
447   if (NumInitElements != NumArrayElements &&
448       !(Dest.isZeroed() && hasTrivialFiller &&
449         CGF.getTypes().isZeroInitializable(elementType))) {
450 
451     // Use an actual loop.  This is basically
452     //   do { *array++ = filler; } while (array != end);
453 
454     // Advance to the start of the rest of the array.
455     if (NumInitElements) {
456       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
457       if (endOfInit) Builder.CreateStore(element, endOfInit);
458     }
459 
460     // Compute the end of the array.
461     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
462                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
463                                                  "arrayinit.end");
464 
465     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
466     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
467 
468     // Jump into the body.
469     CGF.EmitBlock(bodyBB);
470     llvm::PHINode *currentElement =
471       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
472     currentElement->addIncoming(element, entryBB);
473 
474     // Emit the actual filler expression.
475     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
476     if (filler)
477       EmitInitializationToLValue(filler, elementLV);
478     else
479       EmitNullInitializationToLValue(elementLV);
480 
481     // Move on to the next element.
482     llvm::Value *nextElement =
483       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
484 
485     // Tell the EH cleanup that we finished with the last element.
486     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
487 
488     // Leave the loop if we're done.
489     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
490                                              "arrayinit.done");
491     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
492     Builder.CreateCondBr(done, endBB, bodyBB);
493     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
494 
495     CGF.EmitBlock(endBB);
496   }
497 
498   // Leave the partial-array cleanup if we entered one.
499   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
500 }
501 
502 //===----------------------------------------------------------------------===//
503 //                            Visitor Methods
504 //===----------------------------------------------------------------------===//
505 
506 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
507   Visit(E->GetTemporaryExpr());
508 }
509 
510 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
511   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
512 }
513 
514 void
515 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
516   if (E->getType().isPODType(CGF.getContext())) {
517     // For a POD type, just emit a load of the lvalue + a copy, because our
518     // compound literal might alias the destination.
519     // FIXME: This is a band-aid; the real problem appears to be in our handling
520     // of assignments, where we store directly into the LHS without checking
521     // whether anything in the RHS aliases.
522     EmitAggLoadOfLValue(E);
523     return;
524   }
525 
526   AggValueSlot Slot = EnsureSlot(E->getType());
527   CGF.EmitAggExpr(E->getInitializer(), Slot);
528 }
529 
530 
531 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
532   switch (E->getCastKind()) {
533   case CK_Dynamic: {
534     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
535     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
536     // FIXME: Do we also need to handle property references here?
537     if (LV.isSimple())
538       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
539     else
540       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
541 
542     if (!Dest.isIgnored())
543       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
544     break;
545   }
546 
547   case CK_ToUnion: {
548     if (Dest.isIgnored()) break;
549 
550     // GCC union extension
551     QualType Ty = E->getSubExpr()->getType();
552     QualType PtrTy = CGF.getContext().getPointerType(Ty);
553     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
554                                                  CGF.ConvertType(PtrTy));
555     EmitInitializationToLValue(E->getSubExpr(),
556                                CGF.MakeAddrLValue(CastPtr, Ty));
557     break;
558   }
559 
560   case CK_DerivedToBase:
561   case CK_BaseToDerived:
562   case CK_UncheckedDerivedToBase: {
563     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
564                 "should have been unpacked before we got here");
565   }
566 
567   case CK_LValueToRValue: // hope for downstream optimization
568   case CK_NoOp:
569   case CK_AtomicToNonAtomic:
570   case CK_NonAtomicToAtomic:
571   case CK_UserDefinedConversion:
572   case CK_ConstructorConversion:
573     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
574                                                    E->getType()) &&
575            "Implicit cast types must be compatible");
576     Visit(E->getSubExpr());
577     break;
578 
579   case CK_LValueBitCast:
580     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
581 
582   case CK_Dependent:
583   case CK_BitCast:
584   case CK_ArrayToPointerDecay:
585   case CK_FunctionToPointerDecay:
586   case CK_NullToPointer:
587   case CK_NullToMemberPointer:
588   case CK_BaseToDerivedMemberPointer:
589   case CK_DerivedToBaseMemberPointer:
590   case CK_MemberPointerToBoolean:
591   case CK_ReinterpretMemberPointer:
592   case CK_IntegralToPointer:
593   case CK_PointerToIntegral:
594   case CK_PointerToBoolean:
595   case CK_ToVoid:
596   case CK_VectorSplat:
597   case CK_IntegralCast:
598   case CK_IntegralToBoolean:
599   case CK_IntegralToFloating:
600   case CK_FloatingToIntegral:
601   case CK_FloatingToBoolean:
602   case CK_FloatingCast:
603   case CK_CPointerToObjCPointerCast:
604   case CK_BlockPointerToObjCPointerCast:
605   case CK_AnyPointerToBlockPointerCast:
606   case CK_ObjCObjectLValueCast:
607   case CK_FloatingRealToComplex:
608   case CK_FloatingComplexToReal:
609   case CK_FloatingComplexToBoolean:
610   case CK_FloatingComplexCast:
611   case CK_FloatingComplexToIntegralComplex:
612   case CK_IntegralRealToComplex:
613   case CK_IntegralComplexToReal:
614   case CK_IntegralComplexToBoolean:
615   case CK_IntegralComplexCast:
616   case CK_IntegralComplexToFloatingComplex:
617   case CK_ARCProduceObject:
618   case CK_ARCConsumeObject:
619   case CK_ARCReclaimReturnedObject:
620   case CK_ARCExtendBlockObject:
621   case CK_CopyAndAutoreleaseBlockObject:
622     llvm_unreachable("cast kind invalid for aggregate types");
623   }
624 }
625 
626 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
627   if (E->getCallReturnType()->isReferenceType()) {
628     EmitAggLoadOfLValue(E);
629     return;
630   }
631 
632   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
633   EmitMoveFromReturnSlot(E, RV);
634 }
635 
636 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
637   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
638   EmitMoveFromReturnSlot(E, RV);
639 }
640 
641 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
642   CGF.EmitIgnoredExpr(E->getLHS());
643   Visit(E->getRHS());
644 }
645 
646 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
647   CodeGenFunction::StmtExprEvaluation eval(CGF);
648   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
649 }
650 
651 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
652   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
653     VisitPointerToDataMemberBinaryOperator(E);
654   else
655     CGF.ErrorUnsupported(E, "aggregate binary expression");
656 }
657 
658 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
659                                                     const BinaryOperator *E) {
660   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
661   EmitFinalDestCopy(E, LV);
662 }
663 
664 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
665   // For an assignment to work, the value on the right has
666   // to be compatible with the value on the left.
667   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
668                                                  E->getRHS()->getType())
669          && "Invalid assignment");
670 
671   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
672     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
673       if (VD->hasAttr<BlocksAttr>() &&
674           E->getRHS()->HasSideEffects(CGF.getContext())) {
675         // When __block variable on LHS, the RHS must be evaluated first
676         // as it may change the 'forwarding' field via call to Block_copy.
677         LValue RHS = CGF.EmitLValue(E->getRHS());
678         LValue LHS = CGF.EmitLValue(E->getLHS());
679         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
680                                        needsGC(E->getLHS()->getType()),
681                                        AggValueSlot::IsAliased);
682         EmitFinalDestCopy(E, RHS, true);
683         return;
684       }
685 
686   LValue LHS = CGF.EmitLValue(E->getLHS());
687 
688   // Codegen the RHS so that it stores directly into the LHS.
689   AggValueSlot LHSSlot =
690     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
691                             needsGC(E->getLHS()->getType()),
692                             AggValueSlot::IsAliased);
693   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
694   EmitFinalDestCopy(E, LHS, true);
695 }
696 
697 void AggExprEmitter::
698 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
699   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
700   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
701   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
702 
703   // Bind the common expression if necessary.
704   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
705 
706   CodeGenFunction::ConditionalEvaluation eval(CGF);
707   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
708 
709   // Save whether the destination's lifetime is externally managed.
710   bool isExternallyDestructed = Dest.isExternallyDestructed();
711 
712   eval.begin(CGF);
713   CGF.EmitBlock(LHSBlock);
714   Visit(E->getTrueExpr());
715   eval.end(CGF);
716 
717   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
718   CGF.Builder.CreateBr(ContBlock);
719 
720   // If the result of an agg expression is unused, then the emission
721   // of the LHS might need to create a destination slot.  That's fine
722   // with us, and we can safely emit the RHS into the same slot, but
723   // we shouldn't claim that it's already being destructed.
724   Dest.setExternallyDestructed(isExternallyDestructed);
725 
726   eval.begin(CGF);
727   CGF.EmitBlock(RHSBlock);
728   Visit(E->getFalseExpr());
729   eval.end(CGF);
730 
731   CGF.EmitBlock(ContBlock);
732 }
733 
734 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
735   Visit(CE->getChosenSubExpr(CGF.getContext()));
736 }
737 
738 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
739   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
740   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
741 
742   if (!ArgPtr) {
743     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
744     return;
745   }
746 
747   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
748 }
749 
750 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
751   // Ensure that we have a slot, but if we already do, remember
752   // whether it was externally destructed.
753   bool wasExternallyDestructed = Dest.isExternallyDestructed();
754   Dest = EnsureSlot(E->getType());
755 
756   // We're going to push a destructor if there isn't already one.
757   Dest.setExternallyDestructed();
758 
759   Visit(E->getSubExpr());
760 
761   // Push that destructor we promised.
762   if (!wasExternallyDestructed)
763     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
764 }
765 
766 void
767 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
768   AggValueSlot Slot = EnsureSlot(E->getType());
769   CGF.EmitCXXConstructExpr(E, Slot);
770 }
771 
772 void
773 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
774   AggValueSlot Slot = EnsureSlot(E->getType());
775   CGF.EmitLambdaExpr(E, Slot);
776 }
777 
778 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
779   CGF.enterFullExpression(E);
780   CodeGenFunction::RunCleanupsScope cleanups(CGF);
781   Visit(E->getSubExpr());
782 }
783 
784 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
785   QualType T = E->getType();
786   AggValueSlot Slot = EnsureSlot(T);
787   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
788 }
789 
790 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
791   QualType T = E->getType();
792   AggValueSlot Slot = EnsureSlot(T);
793   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
794 }
795 
796 /// isSimpleZero - If emitting this value will obviously just cause a store of
797 /// zero to memory, return true.  This can return false if uncertain, so it just
798 /// handles simple cases.
799 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
800   E = E->IgnoreParens();
801 
802   // 0
803   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
804     return IL->getValue() == 0;
805   // +0.0
806   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
807     return FL->getValue().isPosZero();
808   // int()
809   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
810       CGF.getTypes().isZeroInitializable(E->getType()))
811     return true;
812   // (int*)0 - Null pointer expressions.
813   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
814     return ICE->getCastKind() == CK_NullToPointer;
815   // '\0'
816   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
817     return CL->getValue() == 0;
818 
819   // Otherwise, hard case: conservatively return false.
820   return false;
821 }
822 
823 
824 void
825 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
826   QualType type = LV.getType();
827   // FIXME: Ignore result?
828   // FIXME: Are initializers affected by volatile?
829   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
830     // Storing "i32 0" to a zero'd memory location is a noop.
831   } else if (isa<ImplicitValueInitExpr>(E)) {
832     EmitNullInitializationToLValue(LV);
833   } else if (type->isReferenceType()) {
834     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
835     CGF.EmitStoreThroughLValue(RV, LV);
836   } else if (type->isAnyComplexType()) {
837     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
838   } else if (CGF.hasAggregateLLVMType(type)) {
839     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
840                                                AggValueSlot::IsDestructed,
841                                       AggValueSlot::DoesNotNeedGCBarriers,
842                                                AggValueSlot::IsNotAliased,
843                                                Dest.isZeroed()));
844   } else if (LV.isSimple()) {
845     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
846   } else {
847     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
848   }
849 }
850 
851 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
852   QualType type = lv.getType();
853 
854   // If the destination slot is already zeroed out before the aggregate is
855   // copied into it, we don't have to emit any zeros here.
856   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
857     return;
858 
859   if (!CGF.hasAggregateLLVMType(type)) {
860     // For non-aggregates, we can store zero.
861     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
862     // Note that the following is not equivalent to
863     // EmitStoreThroughBitfieldLValue for ARC types.
864     if (lv.isBitField()) {
865       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
866     } else {
867       assert(lv.isSimple());
868       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
869     }
870   } else {
871     // There's a potential optimization opportunity in combining
872     // memsets; that would be easy for arrays, but relatively
873     // difficult for structures with the current code.
874     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
875   }
876 }
877 
878 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
879 #if 0
880   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
881   // (Length of globals? Chunks of zeroed-out space?).
882   //
883   // If we can, prefer a copy from a global; this is a lot less code for long
884   // globals, and it's easier for the current optimizers to analyze.
885   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
886     llvm::GlobalVariable* GV =
887     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
888                              llvm::GlobalValue::InternalLinkage, C, "");
889     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
890     return;
891   }
892 #endif
893   if (E->hadArrayRangeDesignator())
894     CGF.ErrorUnsupported(E, "GNU array range designator extension");
895 
896   if (E->initializesStdInitializerList()) {
897     EmitStdInitializerList(Dest.getAddr(), E);
898     return;
899   }
900 
901   llvm::Value *DestPtr = EnsureSlot(E->getType()).getAddr();
902 
903   // Handle initialization of an array.
904   if (E->getType()->isArrayType()) {
905     if (E->getNumInits() > 0) {
906       QualType T1 = E->getType();
907       QualType T2 = E->getInit(0)->getType();
908       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
909         EmitAggLoadOfLValue(E->getInit(0));
910         return;
911       }
912     }
913 
914     QualType elementType =
915         CGF.getContext().getAsArrayType(E->getType())->getElementType();
916 
917     llvm::PointerType *APType =
918       cast<llvm::PointerType>(DestPtr->getType());
919     llvm::ArrayType *AType =
920       cast<llvm::ArrayType>(APType->getElementType());
921 
922     EmitArrayInit(DestPtr, AType, elementType, E);
923     return;
924   }
925 
926   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
927 
928   // Do struct initialization; this code just sets each individual member
929   // to the approprate value.  This makes bitfield support automatic;
930   // the disadvantage is that the generated code is more difficult for
931   // the optimizer, especially with bitfields.
932   unsigned NumInitElements = E->getNumInits();
933   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
934 
935   if (record->isUnion()) {
936     // Only initialize one field of a union. The field itself is
937     // specified by the initializer list.
938     if (!E->getInitializedFieldInUnion()) {
939       // Empty union; we have nothing to do.
940 
941 #ifndef NDEBUG
942       // Make sure that it's really an empty and not a failure of
943       // semantic analysis.
944       for (RecordDecl::field_iterator Field = record->field_begin(),
945                                    FieldEnd = record->field_end();
946            Field != FieldEnd; ++Field)
947         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
948 #endif
949       return;
950     }
951 
952     // FIXME: volatility
953     FieldDecl *Field = E->getInitializedFieldInUnion();
954 
955     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
956     if (NumInitElements) {
957       // Store the initializer into the field
958       EmitInitializationToLValue(E->getInit(0), FieldLoc);
959     } else {
960       // Default-initialize to null.
961       EmitNullInitializationToLValue(FieldLoc);
962     }
963 
964     return;
965   }
966 
967   // We'll need to enter cleanup scopes in case any of the member
968   // initializers throw an exception.
969   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
970   llvm::Instruction *cleanupDominator = 0;
971 
972   // Here we iterate over the fields; this makes it simpler to both
973   // default-initialize fields and skip over unnamed fields.
974   unsigned curInitIndex = 0;
975   for (RecordDecl::field_iterator field = record->field_begin(),
976                                fieldEnd = record->field_end();
977        field != fieldEnd; ++field) {
978     // We're done once we hit the flexible array member.
979     if (field->getType()->isIncompleteArrayType())
980       break;
981 
982     // Always skip anonymous bitfields.
983     if (field->isUnnamedBitfield())
984       continue;
985 
986     // We're done if we reach the end of the explicit initializers, we
987     // have a zeroed object, and the rest of the fields are
988     // zero-initializable.
989     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
990         CGF.getTypes().isZeroInitializable(E->getType()))
991       break;
992 
993     // FIXME: volatility
994     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
995     // We never generate write-barries for initialized fields.
996     LV.setNonGC(true);
997 
998     if (curInitIndex < NumInitElements) {
999       // Store the initializer into the field.
1000       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1001     } else {
1002       // We're out of initalizers; default-initialize to null
1003       EmitNullInitializationToLValue(LV);
1004     }
1005 
1006     // Push a destructor if necessary.
1007     // FIXME: if we have an array of structures, all explicitly
1008     // initialized, we can end up pushing a linear number of cleanups.
1009     bool pushedCleanup = false;
1010     if (QualType::DestructionKind dtorKind
1011           = field->getType().isDestructedType()) {
1012       assert(LV.isSimple());
1013       if (CGF.needsEHCleanup(dtorKind)) {
1014         if (!cleanupDominator)
1015           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1016 
1017         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1018                         CGF.getDestroyer(dtorKind), false);
1019         cleanups.push_back(CGF.EHStack.stable_begin());
1020         pushedCleanup = true;
1021       }
1022     }
1023 
1024     // If the GEP didn't get used because of a dead zero init or something
1025     // else, clean it up for -O0 builds and general tidiness.
1026     if (!pushedCleanup && LV.isSimple())
1027       if (llvm::GetElementPtrInst *GEP =
1028             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1029         if (GEP->use_empty())
1030           GEP->eraseFromParent();
1031   }
1032 
1033   // Deactivate all the partial cleanups in reverse order, which
1034   // generally means popping them.
1035   for (unsigned i = cleanups.size(); i != 0; --i)
1036     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1037 
1038   // Destroy the placeholder if we made one.
1039   if (cleanupDominator)
1040     cleanupDominator->eraseFromParent();
1041 }
1042 
1043 //===----------------------------------------------------------------------===//
1044 //                        Entry Points into this File
1045 //===----------------------------------------------------------------------===//
1046 
1047 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1048 /// non-zero bytes that will be stored when outputting the initializer for the
1049 /// specified initializer expression.
1050 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1051   E = E->IgnoreParens();
1052 
1053   // 0 and 0.0 won't require any non-zero stores!
1054   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1055 
1056   // If this is an initlist expr, sum up the size of sizes of the (present)
1057   // elements.  If this is something weird, assume the whole thing is non-zero.
1058   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1059   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1060     return CGF.getContext().getTypeSizeInChars(E->getType());
1061 
1062   // InitListExprs for structs have to be handled carefully.  If there are
1063   // reference members, we need to consider the size of the reference, not the
1064   // referencee.  InitListExprs for unions and arrays can't have references.
1065   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1066     if (!RT->isUnionType()) {
1067       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1068       CharUnits NumNonZeroBytes = CharUnits::Zero();
1069 
1070       unsigned ILEElement = 0;
1071       for (RecordDecl::field_iterator Field = SD->field_begin(),
1072            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1073         // We're done once we hit the flexible array member or run out of
1074         // InitListExpr elements.
1075         if (Field->getType()->isIncompleteArrayType() ||
1076             ILEElement == ILE->getNumInits())
1077           break;
1078         if (Field->isUnnamedBitfield())
1079           continue;
1080 
1081         const Expr *E = ILE->getInit(ILEElement++);
1082 
1083         // Reference values are always non-null and have the width of a pointer.
1084         if (Field->getType()->isReferenceType())
1085           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1086               CGF.getContext().getTargetInfo().getPointerWidth(0));
1087         else
1088           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1089       }
1090 
1091       return NumNonZeroBytes;
1092     }
1093   }
1094 
1095 
1096   CharUnits NumNonZeroBytes = CharUnits::Zero();
1097   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1098     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1099   return NumNonZeroBytes;
1100 }
1101 
1102 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1103 /// zeros in it, emit a memset and avoid storing the individual zeros.
1104 ///
1105 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1106                                      CodeGenFunction &CGF) {
1107   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1108   // volatile stores.
1109   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1110 
1111   // C++ objects with a user-declared constructor don't need zero'ing.
1112   if (CGF.getContext().getLangOptions().CPlusPlus)
1113     if (const RecordType *RT = CGF.getContext()
1114                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1115       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1116       if (RD->hasUserDeclaredConstructor())
1117         return;
1118     }
1119 
1120   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1121   std::pair<CharUnits, CharUnits> TypeInfo =
1122     CGF.getContext().getTypeInfoInChars(E->getType());
1123   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1124     return;
1125 
1126   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1127   // we prefer to emit memset + individual stores for the rest.
1128   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1129   if (NumNonZeroBytes*4 > TypeInfo.first)
1130     return;
1131 
1132   // Okay, it seems like a good idea to use an initial memset, emit the call.
1133   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1134   CharUnits Align = TypeInfo.second;
1135 
1136   llvm::Value *Loc = Slot.getAddr();
1137 
1138   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1139   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1140                            Align.getQuantity(), false);
1141 
1142   // Tell the AggExprEmitter that the slot is known zero.
1143   Slot.setZeroed();
1144 }
1145 
1146 
1147 
1148 
1149 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1150 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1151 /// the value of the aggregate expression is not needed.  If VolatileDest is
1152 /// true, DestPtr cannot be 0.
1153 ///
1154 /// \param IsInitializer - true if this evaluation is initializing an
1155 /// object whose lifetime is already being managed.
1156 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1157                                   bool IgnoreResult) {
1158   assert(E && hasAggregateLLVMType(E->getType()) &&
1159          "Invalid aggregate expression to emit");
1160   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1161          "slot has bits but no address");
1162 
1163   // Optimize the slot if possible.
1164   CheckAggExprForMemSetUse(Slot, E, *this);
1165 
1166   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1167 }
1168 
1169 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1170   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1171   llvm::Value *Temp = CreateMemTemp(E->getType());
1172   LValue LV = MakeAddrLValue(Temp, E->getType());
1173   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1174                                          AggValueSlot::DoesNotNeedGCBarriers,
1175                                          AggValueSlot::IsNotAliased));
1176   return LV;
1177 }
1178 
1179 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1180                                         llvm::Value *SrcPtr, QualType Ty,
1181                                         bool isVolatile, unsigned Alignment) {
1182   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1183 
1184   if (getContext().getLangOptions().CPlusPlus) {
1185     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1186       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1187       assert((Record->hasTrivialCopyConstructor() ||
1188               Record->hasTrivialCopyAssignment() ||
1189               Record->hasTrivialMoveConstructor() ||
1190               Record->hasTrivialMoveAssignment()) &&
1191              "Trying to aggregate-copy a type without a trivial copy "
1192              "constructor or assignment operator");
1193       // Ignore empty classes in C++.
1194       if (Record->isEmpty())
1195         return;
1196     }
1197   }
1198 
1199   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1200   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1201   // read from another object that overlaps in anyway the storage of the first
1202   // object, then the overlap shall be exact and the two objects shall have
1203   // qualified or unqualified versions of a compatible type."
1204   //
1205   // memcpy is not defined if the source and destination pointers are exactly
1206   // equal, but other compilers do this optimization, and almost every memcpy
1207   // implementation handles this case safely.  If there is a libc that does not
1208   // safely handle this, we can add a target hook.
1209 
1210   // Get size and alignment info for this aggregate.
1211   std::pair<CharUnits, CharUnits> TypeInfo =
1212     getContext().getTypeInfoInChars(Ty);
1213 
1214   if (!Alignment)
1215     Alignment = TypeInfo.second.getQuantity();
1216 
1217   // FIXME: Handle variable sized types.
1218 
1219   // FIXME: If we have a volatile struct, the optimizer can remove what might
1220   // appear to be `extra' memory ops:
1221   //
1222   // volatile struct { int i; } a, b;
1223   //
1224   // int main() {
1225   //   a = b;
1226   //   a = b;
1227   // }
1228   //
1229   // we need to use a different call here.  We use isVolatile to indicate when
1230   // either the source or the destination is volatile.
1231 
1232   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1233   llvm::Type *DBP =
1234     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1235   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1236 
1237   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1238   llvm::Type *SBP =
1239     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1240   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1241 
1242   // Don't do any of the memmove_collectable tests if GC isn't set.
1243   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1244     // fall through
1245   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1246     RecordDecl *Record = RecordTy->getDecl();
1247     if (Record->hasObjectMember()) {
1248       CharUnits size = TypeInfo.first;
1249       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1250       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1251       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1252                                                     SizeVal);
1253       return;
1254     }
1255   } else if (Ty->isArrayType()) {
1256     QualType BaseType = getContext().getBaseElementType(Ty);
1257     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1258       if (RecordTy->getDecl()->hasObjectMember()) {
1259         CharUnits size = TypeInfo.first;
1260         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1261         llvm::Value *SizeVal =
1262           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1263         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1264                                                       SizeVal);
1265         return;
1266       }
1267     }
1268   }
1269 
1270   Builder.CreateMemCpy(DestPtr, SrcPtr,
1271                        llvm::ConstantInt::get(IntPtrTy,
1272                                               TypeInfo.first.getQuantity()),
1273                        Alignment, isVolatile);
1274 }
1275 
1276 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1277                                                          const Expr *init) {
1278   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1279   if (cleanups)
1280     init = cleanups->getSubExpr();
1281 
1282   if (isa<InitListExpr>(init) &&
1283       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1284     // We initialized this std::initializer_list with an initializer list.
1285     // A backing array was created. Push a cleanup for it.
1286     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1287   }
1288 }
1289 
1290 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1291                                                    llvm::Value *arrayStart,
1292                                                    const InitListExpr *init) {
1293   // Check if there are any recursive cleanups to do, i.e. if we have
1294   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1295   // then we need to destroy the inner array as well.
1296   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1297     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1298     if (!subInit || !subInit->initializesStdInitializerList())
1299       continue;
1300 
1301     // This one needs to be destroyed. Get the address of the std::init_list.
1302     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1303     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1304                                                  "std.initlist");
1305     CGF.EmitStdInitializerListCleanup(loc, subInit);
1306   }
1307 }
1308 
1309 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1310                                                     const InitListExpr *init) {
1311   ASTContext &ctx = getContext();
1312   QualType element = GetStdInitializerListElementType(init->getType());
1313   unsigned numInits = init->getNumInits();
1314   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1315   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1316   QualType arrayPtr = ctx.getPointerType(array);
1317   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1318 
1319   // lvalue is the location of a std::initializer_list, which as its first
1320   // element has a pointer to the array we want to destroy.
1321   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1322   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1323 
1324   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1325 
1326   llvm::Value *arrayAddress =
1327       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1328   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1329 }
1330