1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   llvm::IRBuilder<> &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
52                          QualType EltTy);
53 
54   void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty);
55 
56   void EmitNonConstInit(InitListExpr *E);
57 
58   //===--------------------------------------------------------------------===//
59   //                            Visitor Methods
60   //===--------------------------------------------------------------------===//
61 
62   void VisitStmt(Stmt *S) {
63     CGF.ErrorUnsupported(S, "aggregate expression");
64   }
65   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
66 
67   // l-values.
68   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
69   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
70   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
71   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
72   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
73       { EmitAggLoadOfLValue(E); }
74 
75   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
76     EmitAggLoadOfLValue(E);
77   }
78 
79   // Operators.
80   //  case Expr::UnaryOperatorClass:
81   //  case Expr::CastExprClass:
82   void VisitImplicitCastExpr(ImplicitCastExpr *E);
83   void VisitCallExpr(const CallExpr *E);
84   void VisitStmtExpr(const StmtExpr *E);
85   void VisitBinaryOperator(const BinaryOperator *BO);
86   void VisitBinAssign(const BinaryOperator *E);
87   void VisitOverloadExpr(const OverloadExpr *E);
88   void VisitBinComma(const BinaryOperator *E);
89 
90   void VisitObjCMessageExpr(ObjCMessageExpr *E);
91   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
95 
96   void VisitConditionalOperator(const ConditionalOperator *CO);
97   void VisitInitListExpr(InitListExpr *E);
98   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
99     Visit(DAE->getExpr());
100   }
101   void VisitVAArgExpr(VAArgExpr *E);
102 
103   void EmitInitializationToLValue(Expr *E, LValue Address);
104   void EmitNullInitializationToLValue(LValue Address, QualType T);
105   //  case Expr::ChooseExprClass:
106 
107 };
108 }  // end anonymous namespace.
109 
110 //===----------------------------------------------------------------------===//
111 //                                Utilities
112 //===----------------------------------------------------------------------===//
113 
114 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
115   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
116 
117   // Aggregate assignment turns into llvm.memset.
118   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
119   if (DestPtr->getType() != BP)
120     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
121 
122   // Get size and alignment info for this aggregate.
123   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
124 
125   // FIXME: Handle variable sized types.
126   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
127 
128   llvm::Value *MemSetOps[4] = {
129     DestPtr,
130     llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty),
131     // TypeInfo.first describes size in bits.
132     llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
133     llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)
134   };
135 
136   Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4);
137 }
138 
139 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr,
140                                        llvm::Value *SrcPtr, QualType Ty) {
141   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
142 
143   // Aggregate assignment turns into llvm.memmove.
144   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
145   if (DestPtr->getType() != BP)
146     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
147   if (SrcPtr->getType() != BP)
148     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
149 
150   // Get size and alignment info for this aggregate.
151   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
152 
153   // FIXME: Handle variable sized types.
154   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
155 
156   llvm::Value *MemMoveOps[4] = {
157     DestPtr, SrcPtr,
158     // TypeInfo.first describes size in bits.
159     llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
160     llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)
161   };
162 
163   Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4);
164 }
165 
166 
167 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
168 /// represents a value lvalue, this method emits the address of the lvalue,
169 /// then loads the result into DestPtr.
170 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
171   LValue LV = CGF.EmitLValue(E);
172   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
173   llvm::Value *SrcPtr = LV.getAddress();
174 
175   // If the result is ignored, don't copy from the value.
176   if (DestPtr == 0)
177     // FIXME: If the source is volatile, we must read from it.
178     return;
179 
180   EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
181 }
182 
183 //===----------------------------------------------------------------------===//
184 //                            Visitor Methods
185 //===----------------------------------------------------------------------===//
186 
187 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
188   assert(CGF.getContext().typesAreCompatible(
189                           E->getSubExpr()->getType().getUnqualifiedType(),
190                           E->getType().getUnqualifiedType()) &&
191          "Implicit cast types must be compatible");
192   Visit(E->getSubExpr());
193 }
194 
195 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
196   RValue RV = CGF.EmitCallExpr(E);
197   assert(RV.isAggregate() && "Return value must be aggregate value!");
198 
199   // If the result is ignored, don't copy from the value.
200   if (DestPtr == 0)
201     // FIXME: If the source is volatile, we must read from it.
202     return;
203 
204   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
205 }
206 
207 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
208   RValue RV = CGF.EmitObjCMessageExpr(E);
209   assert(RV.isAggregate() && "Return value must be aggregate value!");
210 
211   // If the result is ignored, don't copy from the value.
212   if (DestPtr == 0)
213     // FIXME: If the source is volatile, we must read from it.
214     return;
215 
216   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
217 }
218 
219 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
220   RValue RV = CGF.EmitObjCPropertyGet(E);
221   assert(RV.isAggregate() && "Return value must be aggregate value!");
222 
223   // If the result is ignored, don't copy from the value.
224   if (DestPtr == 0)
225     // FIXME: If the source is volatile, we must read from it.
226     return;
227 
228   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
229 }
230 
231 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) {
232   RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
233                                E->arg_end(CGF.getContext()));
234 
235   assert(RV.isAggregate() && "Return value must be aggregate value!");
236 
237   // If the result is ignored, don't copy from the value.
238   if (DestPtr == 0)
239     // FIXME: If the source is volatile, we must read from it.
240     return;
241 
242   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
243 }
244 
245 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
246   CGF.EmitAnyExpr(E->getLHS());
247   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
248 }
249 
250 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
251   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
252 }
253 
254 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
255   CGF.ErrorUnsupported(E, "aggregate binary expression");
256 }
257 
258 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
259   // For an assignment to work, the value on the right has
260   // to be compatible with the value on the left.
261   assert(CGF.getContext().typesAreCompatible(
262              E->getLHS()->getType().getUnqualifiedType(),
263              E->getRHS()->getType().getUnqualifiedType())
264          && "Invalid assignment");
265   LValue LHS = CGF.EmitLValue(E->getLHS());
266 
267   // Codegen the RHS so that it stores directly into the LHS.
268   CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
269 
270   if (DestPtr == 0)
271     return;
272 
273   // If the result of the assignment is used, copy the RHS there also.
274   EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
275 }
276 
277 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
278   llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
279   llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
280   llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
281 
282   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
283   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
284 
285   CGF.EmitBlock(LHSBlock);
286 
287   // Handle the GNU extension for missing LHS.
288   assert(E->getLHS() && "Must have LHS for aggregate value");
289 
290   Visit(E->getLHS());
291   Builder.CreateBr(ContBlock);
292   LHSBlock = Builder.GetInsertBlock();
293 
294   CGF.EmitBlock(RHSBlock);
295 
296   Visit(E->getRHS());
297   Builder.CreateBr(ContBlock);
298   RHSBlock = Builder.GetInsertBlock();
299 
300   CGF.EmitBlock(ContBlock);
301 }
302 
303 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
304   llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress();
305   llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
306   if (DestPtr)
307     // FIXME: volatility
308     Builder.CreateStore(V, DestPtr);
309 }
310 
311 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
312 
313   const llvm::PointerType *APType =
314     cast<llvm::PointerType>(DestPtr->getType());
315   const llvm::Type *DestType = APType->getElementType();
316 
317   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
318     unsigned NumInitElements = E->getNumInits();
319 
320     unsigned i;
321     for (i = 0; i != NumInitElements; ++i) {
322       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
323       Expr *Init = E->getInit(i);
324       if (isa<InitListExpr>(Init))
325         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
326       else
327         // FIXME: volatility
328         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
329     }
330 
331     // Emit remaining default initializers
332     unsigned NumArrayElements = AType->getNumElements();
333     QualType QType = E->getInit(0)->getType();
334     const llvm::Type *EType = AType->getElementType();
335     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
336       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
337       if (EType->isSingleValueType())
338         // FIXME: volatility
339         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
340       else
341         EmitAggregateClear(NextVal, QType);
342     }
343   } else
344     assert(false && "Invalid initializer");
345 }
346 
347 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
348   // FIXME: Are initializers affected by volatile?
349   if (E->getType()->isComplexType()) {
350     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
351   } else if (CGF.hasAggregateLLVMType(E->getType())) {
352     CGF.EmitAnyExpr(E, LV.getAddress(), false);
353   } else {
354     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
355   }
356 }
357 
358 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
359   if (!CGF.hasAggregateLLVMType(T)) {
360     // For non-aggregates, we can store zero
361     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
362     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
363   } else {
364     // Otherwise, just memset the whole thing to zero.  This is legal
365     // because in LLVM, all default initializers are guaranteed to have a
366     // bit pattern of all zeros.
367     // There's a potential optimization opportunity in combining
368     // memsets; that would be easy for arrays, but relatively
369     // difficult for structures with the current code.
370     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64);
371     uint64_t Size = CGF.getContext().getTypeSize(T);
372 
373     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
374     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
375     Builder.CreateCall4(MemSet, DestPtr,
376                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
377                         llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8),
378                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
379   }
380 }
381 
382 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
383   // FIXME: For constant expressions, call into const expr emitter so
384   // that we can emit a memcpy instead of storing the individual
385   // members.  This is purely for perf; both codepaths lead to
386   // equivalent (although not necessarily identical) code.  It's worth
387   // noting that LLVM keeps on getting smarter, though, so it might
388   // not be worth bothering.
389 
390   // Handle initialization of an array.
391   if (E->getType()->isArrayType()) {
392     const llvm::PointerType *APType =
393       cast<llvm::PointerType>(DestPtr->getType());
394     const llvm::ArrayType *AType =
395       cast<llvm::ArrayType>(APType->getElementType());
396 
397     uint64_t NumInitElements = E->getNumInits();
398 
399     if (E->getNumInits() > 0) {
400       QualType T1 = E->getType();
401       QualType T2 = E->getInit(0)->getType();
402       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
403           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
404         EmitAggLoadOfLValue(E->getInit(0));
405         return;
406       }
407     }
408 
409     uint64_t NumArrayElements = AType->getNumElements();
410     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
411     ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType();
412 
413     unsigned CVRqualifier = ElementType.getCVRQualifiers();
414 
415     for (uint64_t i = 0; i != NumArrayElements; ++i) {
416       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
417       if (i < NumInitElements)
418         EmitInitializationToLValue(E->getInit(i),
419                                    LValue::MakeAddr(NextVal, CVRqualifier));
420       else
421         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
422                                        ElementType);
423     }
424     return;
425   }
426 
427   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
428 
429   // Do struct initialization; this code just sets each individual member
430   // to the approprate value.  This makes bitfield support automatic;
431   // the disadvantage is that the generated code is more difficult for
432   // the optimizer, especially with bitfields.
433   unsigned NumInitElements = E->getNumInits();
434   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
435   unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember();
436   unsigned CurInitVal = 0;
437   bool isUnion = E->getType()->isUnionType();
438 
439   // Here we iterate over the fields; this makes it simpler to both
440   // default-initialize fields and skip over unnamed fields.
441   for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) {
442     FieldDecl *CurField = SD->getMember(CurFieldNo);
443     if (CurField->getIdentifier() == 0) {
444       // Initializers can't initialize unnamed fields, e.g. "int : 20;"
445       continue;
446     }
447     // FIXME: volatility
448     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0);
449     if (CurInitVal < NumInitElements) {
450       // Store the initializer into the field
451       // This will probably have to get a bit smarter when we support
452       // designators in initializers
453       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
454     } else {
455       // We're out of initalizers; default-initialize to null
456       EmitNullInitializationToLValue(FieldLoc, CurField->getType());
457     }
458 
459     // Unions only initialize one field.
460     // (things can get weird with designators, but they aren't
461     // supported yet.)
462     if (E->getType()->isUnionType())
463       break;
464   }
465 }
466 
467 //===----------------------------------------------------------------------===//
468 //                        Entry Points into this File
469 //===----------------------------------------------------------------------===//
470 
471 /// EmitAggExpr - Emit the computation of the specified expression of
472 /// aggregate type.  The result is computed into DestPtr.  Note that if
473 /// DestPtr is null, the value of the aggregate expression is not needed.
474 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
475                                   bool VolatileDest) {
476   assert(E && hasAggregateLLVMType(E->getType()) &&
477          "Invalid aggregate expression to emit");
478 
479   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
480 }
481