1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 CGBuilderTy &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 void EmitNonConstInit(InitListExpr *E); 52 53 //===--------------------------------------------------------------------===// 54 // Visitor Methods 55 //===--------------------------------------------------------------------===// 56 57 void VisitStmt(Stmt *S) { 58 CGF.ErrorUnsupported(S, "aggregate expression"); 59 } 60 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 61 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 62 63 // l-values. 64 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 65 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 66 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 67 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 68 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 69 { EmitAggLoadOfLValue(E); } 70 71 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 72 EmitAggLoadOfLValue(E); 73 } 74 75 // Operators. 76 // case Expr::UnaryOperatorClass: 77 // case Expr::CastExprClass: 78 void VisitCStyleCastExpr(CStyleCastExpr *E); 79 void VisitImplicitCastExpr(ImplicitCastExpr *E); 80 void VisitCallExpr(const CallExpr *E); 81 void VisitStmtExpr(const StmtExpr *E); 82 void VisitBinaryOperator(const BinaryOperator *BO); 83 void VisitBinAssign(const BinaryOperator *E); 84 void VisitOverloadExpr(const OverloadExpr *E); 85 void VisitBinComma(const BinaryOperator *E); 86 87 void VisitObjCMessageExpr(ObjCMessageExpr *E); 88 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 89 EmitAggLoadOfLValue(E); 90 } 91 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 92 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 93 94 void VisitConditionalOperator(const ConditionalOperator *CO); 95 void VisitInitListExpr(InitListExpr *E); 96 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 97 Visit(DAE->getExpr()); 98 } 99 void VisitVAArgExpr(VAArgExpr *E); 100 101 void EmitInitializationToLValue(Expr *E, LValue Address); 102 void EmitNullInitializationToLValue(LValue Address, QualType T); 103 // case Expr::ChooseExprClass: 104 105 }; 106 } // end anonymous namespace. 107 108 //===----------------------------------------------------------------------===// 109 // Utilities 110 //===----------------------------------------------------------------------===// 111 112 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 113 /// represents a value lvalue, this method emits the address of the lvalue, 114 /// then loads the result into DestPtr. 115 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 116 LValue LV = CGF.EmitLValue(E); 117 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 118 llvm::Value *SrcPtr = LV.getAddress(); 119 120 // If the result is ignored, don't copy from the value. 121 if (DestPtr == 0) 122 // FIXME: If the source is volatile, we must read from it. 123 return; 124 125 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 126 } 127 128 //===----------------------------------------------------------------------===// 129 // Visitor Methods 130 //===----------------------------------------------------------------------===// 131 132 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 133 // GCC union extension 134 if (E->getType()->isUnionType()) { 135 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 136 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0); 137 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 138 return; 139 } 140 141 Visit(E->getSubExpr()); 142 } 143 144 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 145 assert(CGF.getContext().typesAreCompatible( 146 E->getSubExpr()->getType().getUnqualifiedType(), 147 E->getType().getUnqualifiedType()) && 148 "Implicit cast types must be compatible"); 149 Visit(E->getSubExpr()); 150 } 151 152 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 153 RValue RV = CGF.EmitCallExpr(E); 154 assert(RV.isAggregate() && "Return value must be aggregate value!"); 155 156 // If the result is ignored, don't copy from the value. 157 if (DestPtr == 0) 158 // FIXME: If the source is volatile, we must read from it. 159 return; 160 161 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 162 } 163 164 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 165 RValue RV = CGF.EmitObjCMessageExpr(E); 166 assert(RV.isAggregate() && "Return value must be aggregate value!"); 167 168 // If the result is ignored, don't copy from the value. 169 if (DestPtr == 0) 170 // FIXME: If the source is volatile, we must read from it. 171 return; 172 173 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 174 } 175 176 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 177 RValue RV = CGF.EmitObjCPropertyGet(E); 178 assert(RV.isAggregate() && "Return value must be aggregate value!"); 179 180 // If the result is ignored, don't copy from the value. 181 if (DestPtr == 0) 182 // FIXME: If the source is volatile, we must read from it. 183 return; 184 185 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 186 } 187 188 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 189 RValue RV = CGF.EmitObjCPropertyGet(E); 190 assert(RV.isAggregate() && "Return value must be aggregate value!"); 191 192 // If the result is ignored, don't copy from the value. 193 if (DestPtr == 0) 194 // FIXME: If the source is volatile, we must read from it. 195 return; 196 197 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 198 } 199 200 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) { 201 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 202 E->arg_end(CGF.getContext())); 203 204 assert(RV.isAggregate() && "Return value must be aggregate value!"); 205 206 // If the result is ignored, don't copy from the value. 207 if (DestPtr == 0) 208 // FIXME: If the source is volatile, we must read from it. 209 return; 210 211 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 212 } 213 214 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 215 CGF.EmitAnyExpr(E->getLHS()); 216 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 217 } 218 219 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 220 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 221 } 222 223 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 224 CGF.ErrorUnsupported(E, "aggregate binary expression"); 225 } 226 227 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 228 // For an assignment to work, the value on the right has 229 // to be compatible with the value on the left. 230 assert(CGF.getContext().typesAreCompatible( 231 E->getLHS()->getType().getUnqualifiedType(), 232 E->getRHS()->getType().getUnqualifiedType()) 233 && "Invalid assignment"); 234 LValue LHS = CGF.EmitLValue(E->getLHS()); 235 236 // We have to special case property setters, otherwise we must have 237 // a simple lvalue (no aggregates inside vectors, bitfields). 238 if (LHS.isPropertyRef()) { 239 // FIXME: Volatility? 240 llvm::Value *AggLoc = DestPtr; 241 if (!AggLoc) 242 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 243 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 244 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 245 RValue::getAggregate(AggLoc)); 246 } 247 else if (LHS.isKVCRef()) { 248 // FIXME: Volatility? 249 llvm::Value *AggLoc = DestPtr; 250 if (!AggLoc) 251 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 252 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 253 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 254 RValue::getAggregate(AggLoc)); 255 } else { 256 // Codegen the RHS so that it stores directly into the LHS. 257 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 258 259 if (DestPtr == 0) 260 return; 261 262 // If the result of the assignment is used, copy the RHS there also. 263 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 264 } 265 } 266 267 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 268 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 269 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 270 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 271 272 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 273 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 274 275 CGF.EmitBlock(LHSBlock); 276 277 // Handle the GNU extension for missing LHS. 278 assert(E->getLHS() && "Must have LHS for aggregate value"); 279 280 Visit(E->getLHS()); 281 CGF.EmitBranch(ContBlock); 282 283 CGF.EmitBlock(RHSBlock); 284 285 Visit(E->getRHS()); 286 CGF.EmitBranch(ContBlock); 287 288 CGF.EmitBlock(ContBlock); 289 } 290 291 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 292 llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); 293 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 294 295 if (!ArgPtr) { 296 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 297 return; 298 } 299 300 if (DestPtr) 301 // FIXME: volatility 302 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 303 } 304 305 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 306 const llvm::PointerType *APType = 307 cast<llvm::PointerType>(DestPtr->getType()); 308 const llvm::Type *DestType = APType->getElementType(); 309 310 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 311 unsigned NumInitElements = E->getNumInits(); 312 313 unsigned i; 314 for (i = 0; i != NumInitElements; ++i) { 315 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 316 Expr *Init = E->getInit(i); 317 if (isa<InitListExpr>(Init)) 318 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 319 else 320 // FIXME: volatility 321 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 322 } 323 324 // Emit remaining default initializers 325 unsigned NumArrayElements = AType->getNumElements(); 326 QualType QType = E->getInit(0)->getType(); 327 const llvm::Type *EType = AType->getElementType(); 328 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 329 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 330 if (EType->isSingleValueType()) 331 // FIXME: volatility 332 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 333 else 334 CGF.EmitAggregateClear(NextVal, QType); 335 } 336 } else 337 assert(false && "Invalid initializer"); 338 } 339 340 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 341 // FIXME: Are initializers affected by volatile? 342 if (E->getType()->isComplexType()) { 343 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 344 } else if (isa<CXXZeroInitValueExpr>(E)) { 345 EmitNullInitializationToLValue(LV, E->getType()); 346 } else if (CGF.hasAggregateLLVMType(E->getType())) { 347 CGF.EmitAnyExpr(E, LV.getAddress(), false); 348 } else { 349 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 350 } 351 } 352 353 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 354 if (!CGF.hasAggregateLLVMType(T)) { 355 // For non-aggregates, we can store zero 356 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 357 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 358 } else { 359 // Otherwise, just memset the whole thing to zero. This is legal 360 // because in LLVM, all default initializers are guaranteed to have a 361 // bit pattern of all zeros. 362 // There's a potential optimization opportunity in combining 363 // memsets; that would be easy for arrays, but relatively 364 // difficult for structures with the current code. 365 const llvm::Type *SizeTy = llvm::Type::Int64Ty; 366 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset, 367 &SizeTy, 1); 368 uint64_t Size = CGF.getContext().getTypeSize(T); 369 370 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 371 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 372 Builder.CreateCall4(MemSet, DestPtr, 373 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 374 llvm::ConstantInt::get(SizeTy, Size/8), 375 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 376 } 377 } 378 379 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 380 #if 0 381 // FIXME: Disabled while we figure out what to do about 382 // test/CodeGen/bitfield.c 383 // 384 // If we can, prefer a copy from a global; this is a lot less 385 // code for long globals, and it's easier for the current optimizers 386 // to analyze. 387 // FIXME: Should we really be doing this? Should we try to avoid 388 // cases where we emit a global with a lot of zeros? Should 389 // we try to avoid short globals? 390 if (E->isConstantInitializer(CGF.getContext(), 0)) { 391 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 392 llvm::GlobalVariable* GV = 393 new llvm::GlobalVariable(C->getType(), true, 394 llvm::GlobalValue::InternalLinkage, 395 C, "", &CGF.CGM.getModule(), 0); 396 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 397 return; 398 } 399 #endif 400 // Handle initialization of an array. 401 if (E->getType()->isArrayType()) { 402 const llvm::PointerType *APType = 403 cast<llvm::PointerType>(DestPtr->getType()); 404 const llvm::ArrayType *AType = 405 cast<llvm::ArrayType>(APType->getElementType()); 406 407 uint64_t NumInitElements = E->getNumInits(); 408 409 if (E->getNumInits() > 0) { 410 QualType T1 = E->getType(); 411 QualType T2 = E->getInit(0)->getType(); 412 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 413 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 414 EmitAggLoadOfLValue(E->getInit(0)); 415 return; 416 } 417 } 418 419 uint64_t NumArrayElements = AType->getNumElements(); 420 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 421 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 422 423 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 424 425 for (uint64_t i = 0; i != NumArrayElements; ++i) { 426 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 427 if (i < NumInitElements) 428 EmitInitializationToLValue(E->getInit(i), 429 LValue::MakeAddr(NextVal, CVRqualifier)); 430 else 431 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 432 ElementType); 433 } 434 return; 435 } 436 437 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 438 439 // Do struct initialization; this code just sets each individual member 440 // to the approprate value. This makes bitfield support automatic; 441 // the disadvantage is that the generated code is more difficult for 442 // the optimizer, especially with bitfields. 443 unsigned NumInitElements = E->getNumInits(); 444 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 445 unsigned CurInitVal = 0; 446 447 if (E->getType()->isUnionType()) { 448 // Only initialize one field of a union. The field itself is 449 // specified by the initializer list. 450 if (!E->getInitializedFieldInUnion()) { 451 // Empty union; we have nothing to do. 452 453 #ifndef NDEBUG 454 // Make sure that it's really an empty and not a failure of 455 // semantic analysis. 456 for (RecordDecl::field_iterator Field = SD->field_begin(), 457 FieldEnd = SD->field_end(); 458 Field != FieldEnd; ++Field) 459 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 460 #endif 461 return; 462 } 463 464 // FIXME: volatility 465 FieldDecl *Field = E->getInitializedFieldInUnion(); 466 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 467 468 if (NumInitElements) { 469 // Store the initializer into the field 470 EmitInitializationToLValue(E->getInit(0), FieldLoc); 471 } else { 472 // Default-initialize to null 473 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 474 } 475 476 return; 477 } 478 479 // Here we iterate over the fields; this makes it simpler to both 480 // default-initialize fields and skip over unnamed fields. 481 for (RecordDecl::field_iterator Field = SD->field_begin(), 482 FieldEnd = SD->field_end(); 483 Field != FieldEnd; ++Field) { 484 // We're done once we hit the flexible array member 485 if (Field->getType()->isIncompleteArrayType()) 486 break; 487 488 if (Field->isUnnamedBitfield()) 489 continue; 490 491 // FIXME: volatility 492 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 493 if (CurInitVal < NumInitElements) { 494 // Store the initializer into the field 495 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 496 } else { 497 // We're out of initalizers; default-initialize to null 498 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 499 } 500 } 501 } 502 503 //===----------------------------------------------------------------------===// 504 // Entry Points into this File 505 //===----------------------------------------------------------------------===// 506 507 /// EmitAggExpr - Emit the computation of the specified expression of 508 /// aggregate type. The result is computed into DestPtr. Note that if 509 /// DestPtr is null, the value of the aggregate expression is not needed. 510 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 511 bool VolatileDest) { 512 assert(E && hasAggregateLLVMType(E->getType()) && 513 "Invalid aggregate expression to emit"); 514 515 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 516 } 517 518 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 519 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 520 521 EmitMemSetToZero(DestPtr, Ty); 522 } 523 524 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 525 llvm::Value *SrcPtr, QualType Ty) { 526 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 527 528 // Aggregate assignment turns into llvm.memmove. 529 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 530 if (DestPtr->getType() != BP) 531 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 532 if (SrcPtr->getType() != BP) 533 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 534 535 // Get size and alignment info for this aggregate. 536 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 537 538 // FIXME: Handle variable sized types. 539 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 540 541 Builder.CreateCall4(CGM.getMemMoveFn(), 542 DestPtr, SrcPtr, 543 // TypeInfo.first describes size in bits. 544 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 545 llvm::ConstantInt::get(llvm::Type::Int32Ty, 546 TypeInfo.second/8)); 547 } 548