1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 void EnsureDest(QualType T) { 59 if (!Dest.isIgnored()) return; 60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 61 } 62 63 public: 64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 66 } 67 68 //===--------------------------------------------------------------------===// 69 // Utilities 70 //===--------------------------------------------------------------------===// 71 72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 73 /// represents a value lvalue, this method emits the address of the lvalue, 74 /// then loads the result into DestPtr. 75 void EmitAggLoadOfLValue(const Expr *E); 76 77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 78 void EmitFinalDestCopy(QualType type, const LValue &src); 79 void EmitFinalDestCopy(QualType type, RValue src, 80 CharUnits srcAlignment = CharUnits::Zero()); 81 void EmitCopy(QualType type, const AggValueSlot &dest, 82 const AggValueSlot &src); 83 84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 85 86 void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); 87 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void VisitStmt(Stmt *S) { 103 CGF.ErrorUnsupported(S, "aggregate expression"); 104 } 105 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 106 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 107 Visit(GE->getResultExpr()); 108 } 109 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 110 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 111 return Visit(E->getReplacement()); 112 } 113 114 // l-values. 115 void VisitDeclRefExpr(DeclRefExpr *E) { 116 // For aggregates, we should always be able to emit the variable 117 // as an l-value unless it's a reference. This is due to the fact 118 // that we can't actually ever see a normal l2r conversion on an 119 // aggregate in C++, and in C there's no language standard 120 // actively preventing us from listing variables in the captures 121 // list of a block. 122 if (E->getDecl()->getType()->isReferenceType()) { 123 if (CodeGenFunction::ConstantEmission result 124 = CGF.tryEmitAsConstant(E)) { 125 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 126 return; 127 } 128 } 129 130 EmitAggLoadOfLValue(E); 131 } 132 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 153 void VisitObjCMessageExpr(ObjCMessageExpr *E); 154 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 155 EmitAggLoadOfLValue(E); 156 } 157 158 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 159 void VisitChooseExpr(const ChooseExpr *CE); 160 void VisitInitListExpr(InitListExpr *E); 161 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 162 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 163 Visit(DAE->getExpr()); 164 } 165 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 166 void VisitCXXConstructExpr(const CXXConstructExpr *E); 167 void VisitLambdaExpr(LambdaExpr *E); 168 void VisitExprWithCleanups(ExprWithCleanups *E); 169 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 170 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 171 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 172 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 173 174 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 175 if (E->isGLValue()) { 176 LValue LV = CGF.EmitPseudoObjectLValue(E); 177 return EmitFinalDestCopy(E->getType(), LV); 178 } 179 180 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 181 } 182 183 void VisitVAArgExpr(VAArgExpr *E); 184 185 void EmitInitializationToLValue(Expr *E, LValue Address); 186 void EmitNullInitializationToLValue(LValue Address); 187 // case Expr::ChooseExprClass: 188 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 189 void VisitAtomicExpr(AtomicExpr *E) { 190 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 191 } 192 }; 193 } // end anonymous namespace. 194 195 //===----------------------------------------------------------------------===// 196 // Utilities 197 //===----------------------------------------------------------------------===// 198 199 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 200 /// represents a value lvalue, this method emits the address of the lvalue, 201 /// then loads the result into DestPtr. 202 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 203 LValue LV = CGF.EmitLValue(E); 204 EmitFinalDestCopy(E->getType(), LV); 205 } 206 207 /// \brief True if the given aggregate type requires special GC API calls. 208 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 209 // Only record types have members that might require garbage collection. 210 const RecordType *RecordTy = T->getAs<RecordType>(); 211 if (!RecordTy) return false; 212 213 // Don't mess with non-trivial C++ types. 214 RecordDecl *Record = RecordTy->getDecl(); 215 if (isa<CXXRecordDecl>(Record) && 216 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 217 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 218 return false; 219 220 // Check whether the type has an object member. 221 return Record->hasObjectMember(); 222 } 223 224 /// \brief Perform the final move to DestPtr if for some reason 225 /// getReturnValueSlot() didn't use it directly. 226 /// 227 /// The idea is that you do something like this: 228 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 229 /// EmitMoveFromReturnSlot(E, Result); 230 /// 231 /// If nothing interferes, this will cause the result to be emitted 232 /// directly into the return value slot. Otherwise, a final move 233 /// will be performed. 234 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 235 if (shouldUseDestForReturnSlot()) { 236 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 237 // The possibility of undef rvalues complicates that a lot, 238 // though, so we can't really assert. 239 return; 240 } 241 242 // Otherwise, copy from there to the destination. 243 assert(Dest.getAddr() != src.getAggregateAddr()); 244 std::pair<CharUnits, CharUnits> typeInfo = 245 CGF.getContext().getTypeInfoInChars(E->getType()); 246 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 247 } 248 249 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 250 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 251 CharUnits srcAlign) { 252 assert(src.isAggregate() && "value must be aggregate value!"); 253 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 254 EmitFinalDestCopy(type, srcLV); 255 } 256 257 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 258 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 259 // If Dest is ignored, then we're evaluating an aggregate expression 260 // in a context that doesn't care about the result. Note that loads 261 // from volatile l-values force the existence of a non-ignored 262 // destination. 263 if (Dest.isIgnored()) 264 return; 265 266 AggValueSlot srcAgg = 267 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 268 needsGC(type), AggValueSlot::IsAliased); 269 EmitCopy(type, Dest, srcAgg); 270 } 271 272 /// Perform a copy from the source into the destination. 273 /// 274 /// \param type - the type of the aggregate being copied; qualifiers are 275 /// ignored 276 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 277 const AggValueSlot &src) { 278 if (dest.requiresGCollection()) { 279 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 280 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 281 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 282 dest.getAddr(), 283 src.getAddr(), 284 size); 285 return; 286 } 287 288 // If the result of the assignment is used, copy the LHS there also. 289 // It's volatile if either side is. Use the minimum alignment of 290 // the two sides. 291 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 292 dest.isVolatile() || src.isVolatile(), 293 std::min(dest.getAlignment(), src.getAlignment())); 294 } 295 296 static QualType GetStdInitializerListElementType(QualType T) { 297 // Just assume that this is really std::initializer_list. 298 ClassTemplateSpecializationDecl *specialization = 299 cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); 300 return specialization->getTemplateArgs()[0].getAsType(); 301 } 302 303 /// \brief Prepare cleanup for the temporary array. 304 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, 305 QualType arrayType, 306 llvm::Value *addr, 307 const InitListExpr *initList) { 308 QualType::DestructionKind dtorKind = arrayType.isDestructedType(); 309 if (!dtorKind) 310 return; // Type doesn't need destroying. 311 if (dtorKind != QualType::DK_cxx_destructor) { 312 CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); 313 return; 314 } 315 316 CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); 317 CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, 318 /*EHCleanup=*/true); 319 } 320 321 /// \brief Emit the initializer for a std::initializer_list initialized with a 322 /// real initializer list. 323 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, 324 InitListExpr *initList) { 325 // We emit an array containing the elements, then have the init list point 326 // at the array. 327 ASTContext &ctx = CGF.getContext(); 328 unsigned numInits = initList->getNumInits(); 329 QualType element = GetStdInitializerListElementType(initList->getType()); 330 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 331 QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); 332 llvm::Type *LTy = CGF.ConvertTypeForMem(array); 333 llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); 334 alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); 335 alloc->setName(".initlist."); 336 337 EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); 338 339 // FIXME: The diagnostics are somewhat out of place here. 340 RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); 341 RecordDecl::field_iterator field = record->field_begin(); 342 if (field == record->field_end()) { 343 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 344 return; 345 } 346 347 QualType elementPtr = ctx.getPointerType(element.withConst()); 348 349 // Start pointer. 350 if (!ctx.hasSameType(field->getType(), elementPtr)) { 351 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 352 return; 353 } 354 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType()); 355 LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field); 356 llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); 357 CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); 358 ++field; 359 360 if (field == record->field_end()) { 361 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 362 return; 363 } 364 LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field); 365 if (ctx.hasSameType(field->getType(), elementPtr)) { 366 // End pointer. 367 llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); 368 CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); 369 } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { 370 // Length. 371 CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); 372 } else { 373 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 374 return; 375 } 376 377 if (!Dest.isExternallyDestructed()) 378 EmitStdInitializerListCleanup(CGF, array, alloc, initList); 379 } 380 381 /// \brief Emit initialization of an array from an initializer list. 382 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 383 QualType elementType, InitListExpr *E) { 384 uint64_t NumInitElements = E->getNumInits(); 385 386 uint64_t NumArrayElements = AType->getNumElements(); 387 assert(NumInitElements <= NumArrayElements); 388 389 // DestPtr is an array*. Construct an elementType* by drilling 390 // down a level. 391 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 392 llvm::Value *indices[] = { zero, zero }; 393 llvm::Value *begin = 394 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 395 396 // Exception safety requires us to destroy all the 397 // already-constructed members if an initializer throws. 398 // For that, we'll need an EH cleanup. 399 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 400 llvm::AllocaInst *endOfInit = 0; 401 EHScopeStack::stable_iterator cleanup; 402 llvm::Instruction *cleanupDominator = 0; 403 if (CGF.needsEHCleanup(dtorKind)) { 404 // In principle we could tell the cleanup where we are more 405 // directly, but the control flow can get so varied here that it 406 // would actually be quite complex. Therefore we go through an 407 // alloca. 408 endOfInit = CGF.CreateTempAlloca(begin->getType(), 409 "arrayinit.endOfInit"); 410 cleanupDominator = Builder.CreateStore(begin, endOfInit); 411 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 412 CGF.getDestroyer(dtorKind)); 413 cleanup = CGF.EHStack.stable_begin(); 414 415 // Otherwise, remember that we didn't need a cleanup. 416 } else { 417 dtorKind = QualType::DK_none; 418 } 419 420 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 421 422 // The 'current element to initialize'. The invariants on this 423 // variable are complicated. Essentially, after each iteration of 424 // the loop, it points to the last initialized element, except 425 // that it points to the beginning of the array before any 426 // elements have been initialized. 427 llvm::Value *element = begin; 428 429 // Emit the explicit initializers. 430 for (uint64_t i = 0; i != NumInitElements; ++i) { 431 // Advance to the next element. 432 if (i > 0) { 433 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 434 435 // Tell the cleanup that it needs to destroy up to this 436 // element. TODO: some of these stores can be trivially 437 // observed to be unnecessary. 438 if (endOfInit) Builder.CreateStore(element, endOfInit); 439 } 440 441 // If these are nested std::initializer_list inits, do them directly, 442 // because they are conceptually the same "location". 443 InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); 444 if (initList && initList->initializesStdInitializerList()) { 445 EmitStdInitializerList(element, initList); 446 } else { 447 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 448 EmitInitializationToLValue(E->getInit(i), elementLV); 449 } 450 } 451 452 // Check whether there's a non-trivial array-fill expression. 453 // Note that this will be a CXXConstructExpr even if the element 454 // type is an array (or array of array, etc.) of class type. 455 Expr *filler = E->getArrayFiller(); 456 bool hasTrivialFiller = true; 457 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 458 assert(cons->getConstructor()->isDefaultConstructor()); 459 hasTrivialFiller = cons->getConstructor()->isTrivial(); 460 } 461 462 // Any remaining elements need to be zero-initialized, possibly 463 // using the filler expression. We can skip this if the we're 464 // emitting to zeroed memory. 465 if (NumInitElements != NumArrayElements && 466 !(Dest.isZeroed() && hasTrivialFiller && 467 CGF.getTypes().isZeroInitializable(elementType))) { 468 469 // Use an actual loop. This is basically 470 // do { *array++ = filler; } while (array != end); 471 472 // Advance to the start of the rest of the array. 473 if (NumInitElements) { 474 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 475 if (endOfInit) Builder.CreateStore(element, endOfInit); 476 } 477 478 // Compute the end of the array. 479 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 480 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 481 "arrayinit.end"); 482 483 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 484 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 485 486 // Jump into the body. 487 CGF.EmitBlock(bodyBB); 488 llvm::PHINode *currentElement = 489 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 490 currentElement->addIncoming(element, entryBB); 491 492 // Emit the actual filler expression. 493 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 494 if (filler) 495 EmitInitializationToLValue(filler, elementLV); 496 else 497 EmitNullInitializationToLValue(elementLV); 498 499 // Move on to the next element. 500 llvm::Value *nextElement = 501 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 502 503 // Tell the EH cleanup that we finished with the last element. 504 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 505 506 // Leave the loop if we're done. 507 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 508 "arrayinit.done"); 509 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 510 Builder.CreateCondBr(done, endBB, bodyBB); 511 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 512 513 CGF.EmitBlock(endBB); 514 } 515 516 // Leave the partial-array cleanup if we entered one. 517 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 518 } 519 520 //===----------------------------------------------------------------------===// 521 // Visitor Methods 522 //===----------------------------------------------------------------------===// 523 524 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 525 Visit(E->GetTemporaryExpr()); 526 } 527 528 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 529 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 530 } 531 532 void 533 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 534 if (Dest.isPotentiallyAliased() && 535 E->getType().isPODType(CGF.getContext())) { 536 // For a POD type, just emit a load of the lvalue + a copy, because our 537 // compound literal might alias the destination. 538 EmitAggLoadOfLValue(E); 539 return; 540 } 541 542 AggValueSlot Slot = EnsureSlot(E->getType()); 543 CGF.EmitAggExpr(E->getInitializer(), Slot); 544 } 545 546 547 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 548 switch (E->getCastKind()) { 549 case CK_Dynamic: { 550 // FIXME: Can this actually happen? We have no test coverage for it. 551 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 552 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 553 CodeGenFunction::TCK_Load); 554 // FIXME: Do we also need to handle property references here? 555 if (LV.isSimple()) 556 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 557 else 558 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 559 560 if (!Dest.isIgnored()) 561 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 562 break; 563 } 564 565 case CK_ToUnion: { 566 if (Dest.isIgnored()) break; 567 568 // GCC union extension 569 QualType Ty = E->getSubExpr()->getType(); 570 QualType PtrTy = CGF.getContext().getPointerType(Ty); 571 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 572 CGF.ConvertType(PtrTy)); 573 EmitInitializationToLValue(E->getSubExpr(), 574 CGF.MakeAddrLValue(CastPtr, Ty)); 575 break; 576 } 577 578 case CK_DerivedToBase: 579 case CK_BaseToDerived: 580 case CK_UncheckedDerivedToBase: { 581 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 582 "should have been unpacked before we got here"); 583 } 584 585 case CK_LValueToRValue: 586 // If we're loading from a volatile type, force the destination 587 // into existence. 588 if (E->getSubExpr()->getType().isVolatileQualified()) { 589 EnsureDest(E->getType()); 590 return Visit(E->getSubExpr()); 591 } 592 // fallthrough 593 594 case CK_NoOp: 595 case CK_AtomicToNonAtomic: 596 case CK_NonAtomicToAtomic: 597 case CK_UserDefinedConversion: 598 case CK_ConstructorConversion: 599 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 600 E->getType()) && 601 "Implicit cast types must be compatible"); 602 Visit(E->getSubExpr()); 603 break; 604 605 case CK_LValueBitCast: 606 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 607 608 case CK_Dependent: 609 case CK_BitCast: 610 case CK_ArrayToPointerDecay: 611 case CK_FunctionToPointerDecay: 612 case CK_NullToPointer: 613 case CK_NullToMemberPointer: 614 case CK_BaseToDerivedMemberPointer: 615 case CK_DerivedToBaseMemberPointer: 616 case CK_MemberPointerToBoolean: 617 case CK_ReinterpretMemberPointer: 618 case CK_IntegralToPointer: 619 case CK_PointerToIntegral: 620 case CK_PointerToBoolean: 621 case CK_ToVoid: 622 case CK_VectorSplat: 623 case CK_IntegralCast: 624 case CK_IntegralToBoolean: 625 case CK_IntegralToFloating: 626 case CK_FloatingToIntegral: 627 case CK_FloatingToBoolean: 628 case CK_FloatingCast: 629 case CK_CPointerToObjCPointerCast: 630 case CK_BlockPointerToObjCPointerCast: 631 case CK_AnyPointerToBlockPointerCast: 632 case CK_ObjCObjectLValueCast: 633 case CK_FloatingRealToComplex: 634 case CK_FloatingComplexToReal: 635 case CK_FloatingComplexToBoolean: 636 case CK_FloatingComplexCast: 637 case CK_FloatingComplexToIntegralComplex: 638 case CK_IntegralRealToComplex: 639 case CK_IntegralComplexToReal: 640 case CK_IntegralComplexToBoolean: 641 case CK_IntegralComplexCast: 642 case CK_IntegralComplexToFloatingComplex: 643 case CK_ARCProduceObject: 644 case CK_ARCConsumeObject: 645 case CK_ARCReclaimReturnedObject: 646 case CK_ARCExtendBlockObject: 647 case CK_CopyAndAutoreleaseBlockObject: 648 case CK_BuiltinFnToFnPtr: 649 case CK_ZeroToOCLEvent: 650 llvm_unreachable("cast kind invalid for aggregate types"); 651 } 652 } 653 654 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 655 if (E->getCallReturnType()->isReferenceType()) { 656 EmitAggLoadOfLValue(E); 657 return; 658 } 659 660 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 661 EmitMoveFromReturnSlot(E, RV); 662 } 663 664 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 665 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 666 EmitMoveFromReturnSlot(E, RV); 667 } 668 669 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 670 CGF.EmitIgnoredExpr(E->getLHS()); 671 Visit(E->getRHS()); 672 } 673 674 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 675 CodeGenFunction::StmtExprEvaluation eval(CGF); 676 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 677 } 678 679 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 680 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 681 VisitPointerToDataMemberBinaryOperator(E); 682 else 683 CGF.ErrorUnsupported(E, "aggregate binary expression"); 684 } 685 686 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 687 const BinaryOperator *E) { 688 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 689 EmitFinalDestCopy(E->getType(), LV); 690 } 691 692 /// Is the value of the given expression possibly a reference to or 693 /// into a __block variable? 694 static bool isBlockVarRef(const Expr *E) { 695 // Make sure we look through parens. 696 E = E->IgnoreParens(); 697 698 // Check for a direct reference to a __block variable. 699 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 700 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 701 return (var && var->hasAttr<BlocksAttr>()); 702 } 703 704 // More complicated stuff. 705 706 // Binary operators. 707 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 708 // For an assignment or pointer-to-member operation, just care 709 // about the LHS. 710 if (op->isAssignmentOp() || op->isPtrMemOp()) 711 return isBlockVarRef(op->getLHS()); 712 713 // For a comma, just care about the RHS. 714 if (op->getOpcode() == BO_Comma) 715 return isBlockVarRef(op->getRHS()); 716 717 // FIXME: pointer arithmetic? 718 return false; 719 720 // Check both sides of a conditional operator. 721 } else if (const AbstractConditionalOperator *op 722 = dyn_cast<AbstractConditionalOperator>(E)) { 723 return isBlockVarRef(op->getTrueExpr()) 724 || isBlockVarRef(op->getFalseExpr()); 725 726 // OVEs are required to support BinaryConditionalOperators. 727 } else if (const OpaqueValueExpr *op 728 = dyn_cast<OpaqueValueExpr>(E)) { 729 if (const Expr *src = op->getSourceExpr()) 730 return isBlockVarRef(src); 731 732 // Casts are necessary to get things like (*(int*)&var) = foo(). 733 // We don't really care about the kind of cast here, except 734 // we don't want to look through l2r casts, because it's okay 735 // to get the *value* in a __block variable. 736 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 737 if (cast->getCastKind() == CK_LValueToRValue) 738 return false; 739 return isBlockVarRef(cast->getSubExpr()); 740 741 // Handle unary operators. Again, just aggressively look through 742 // it, ignoring the operation. 743 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 744 return isBlockVarRef(uop->getSubExpr()); 745 746 // Look into the base of a field access. 747 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 748 return isBlockVarRef(mem->getBase()); 749 750 // Look into the base of a subscript. 751 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 752 return isBlockVarRef(sub->getBase()); 753 } 754 755 return false; 756 } 757 758 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 759 // For an assignment to work, the value on the right has 760 // to be compatible with the value on the left. 761 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 762 E->getRHS()->getType()) 763 && "Invalid assignment"); 764 765 // If the LHS might be a __block variable, and the RHS can 766 // potentially cause a block copy, we need to evaluate the RHS first 767 // so that the assignment goes the right place. 768 // This is pretty semantically fragile. 769 if (isBlockVarRef(E->getLHS()) && 770 E->getRHS()->HasSideEffects(CGF.getContext())) { 771 // Ensure that we have a destination, and evaluate the RHS into that. 772 EnsureDest(E->getRHS()->getType()); 773 Visit(E->getRHS()); 774 775 // Now emit the LHS and copy into it. 776 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 777 778 EmitCopy(E->getLHS()->getType(), 779 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 780 needsGC(E->getLHS()->getType()), 781 AggValueSlot::IsAliased), 782 Dest); 783 return; 784 } 785 786 LValue LHS = CGF.EmitLValue(E->getLHS()); 787 788 // Codegen the RHS so that it stores directly into the LHS. 789 AggValueSlot LHSSlot = 790 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 791 needsGC(E->getLHS()->getType()), 792 AggValueSlot::IsAliased); 793 // A non-volatile aggregate destination might have volatile member. 794 if (!LHSSlot.isVolatile() && 795 CGF.hasVolatileMember(E->getLHS()->getType())) 796 LHSSlot.setVolatile(true); 797 798 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 799 800 // Copy into the destination if the assignment isn't ignored. 801 EmitFinalDestCopy(E->getType(), LHS); 802 } 803 804 void AggExprEmitter:: 805 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 806 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 807 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 808 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 809 810 // Bind the common expression if necessary. 811 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 812 813 CodeGenFunction::ConditionalEvaluation eval(CGF); 814 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 815 816 // Save whether the destination's lifetime is externally managed. 817 bool isExternallyDestructed = Dest.isExternallyDestructed(); 818 819 eval.begin(CGF); 820 CGF.EmitBlock(LHSBlock); 821 Visit(E->getTrueExpr()); 822 eval.end(CGF); 823 824 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 825 CGF.Builder.CreateBr(ContBlock); 826 827 // If the result of an agg expression is unused, then the emission 828 // of the LHS might need to create a destination slot. That's fine 829 // with us, and we can safely emit the RHS into the same slot, but 830 // we shouldn't claim that it's already being destructed. 831 Dest.setExternallyDestructed(isExternallyDestructed); 832 833 eval.begin(CGF); 834 CGF.EmitBlock(RHSBlock); 835 Visit(E->getFalseExpr()); 836 eval.end(CGF); 837 838 CGF.EmitBlock(ContBlock); 839 } 840 841 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 842 Visit(CE->getChosenSubExpr(CGF.getContext())); 843 } 844 845 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 846 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 847 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 848 849 if (!ArgPtr) { 850 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 851 return; 852 } 853 854 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 855 } 856 857 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 858 // Ensure that we have a slot, but if we already do, remember 859 // whether it was externally destructed. 860 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 861 EnsureDest(E->getType()); 862 863 // We're going to push a destructor if there isn't already one. 864 Dest.setExternallyDestructed(); 865 866 Visit(E->getSubExpr()); 867 868 // Push that destructor we promised. 869 if (!wasExternallyDestructed) 870 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 871 } 872 873 void 874 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 875 AggValueSlot Slot = EnsureSlot(E->getType()); 876 CGF.EmitCXXConstructExpr(E, Slot); 877 } 878 879 void 880 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 881 AggValueSlot Slot = EnsureSlot(E->getType()); 882 CGF.EmitLambdaExpr(E, Slot); 883 } 884 885 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 886 CGF.enterFullExpression(E); 887 CodeGenFunction::RunCleanupsScope cleanups(CGF); 888 Visit(E->getSubExpr()); 889 } 890 891 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 892 QualType T = E->getType(); 893 AggValueSlot Slot = EnsureSlot(T); 894 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 895 } 896 897 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 898 QualType T = E->getType(); 899 AggValueSlot Slot = EnsureSlot(T); 900 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 901 } 902 903 /// isSimpleZero - If emitting this value will obviously just cause a store of 904 /// zero to memory, return true. This can return false if uncertain, so it just 905 /// handles simple cases. 906 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 907 E = E->IgnoreParens(); 908 909 // 0 910 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 911 return IL->getValue() == 0; 912 // +0.0 913 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 914 return FL->getValue().isPosZero(); 915 // int() 916 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 917 CGF.getTypes().isZeroInitializable(E->getType())) 918 return true; 919 // (int*)0 - Null pointer expressions. 920 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 921 return ICE->getCastKind() == CK_NullToPointer; 922 // '\0' 923 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 924 return CL->getValue() == 0; 925 926 // Otherwise, hard case: conservatively return false. 927 return false; 928 } 929 930 931 void 932 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 933 QualType type = LV.getType(); 934 // FIXME: Ignore result? 935 // FIXME: Are initializers affected by volatile? 936 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 937 // Storing "i32 0" to a zero'd memory location is a noop. 938 return; 939 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 940 return EmitNullInitializationToLValue(LV); 941 } else if (type->isReferenceType()) { 942 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 943 return CGF.EmitStoreThroughLValue(RV, LV); 944 } 945 946 switch (CGF.getEvaluationKind(type)) { 947 case TEK_Complex: 948 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 949 return; 950 case TEK_Aggregate: 951 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 952 AggValueSlot::IsDestructed, 953 AggValueSlot::DoesNotNeedGCBarriers, 954 AggValueSlot::IsNotAliased, 955 Dest.isZeroed())); 956 return; 957 case TEK_Scalar: 958 if (LV.isSimple()) { 959 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 960 } else { 961 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 962 } 963 return; 964 } 965 llvm_unreachable("bad evaluation kind"); 966 } 967 968 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 969 QualType type = lv.getType(); 970 971 // If the destination slot is already zeroed out before the aggregate is 972 // copied into it, we don't have to emit any zeros here. 973 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 974 return; 975 976 if (CGF.hasScalarEvaluationKind(type)) { 977 // For non-aggregates, we can store the appropriate null constant. 978 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 979 // Note that the following is not equivalent to 980 // EmitStoreThroughBitfieldLValue for ARC types. 981 if (lv.isBitField()) { 982 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 983 } else { 984 assert(lv.isSimple()); 985 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 986 } 987 } else { 988 // There's a potential optimization opportunity in combining 989 // memsets; that would be easy for arrays, but relatively 990 // difficult for structures with the current code. 991 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 992 } 993 } 994 995 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 996 #if 0 997 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 998 // (Length of globals? Chunks of zeroed-out space?). 999 // 1000 // If we can, prefer a copy from a global; this is a lot less code for long 1001 // globals, and it's easier for the current optimizers to analyze. 1002 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1003 llvm::GlobalVariable* GV = 1004 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1005 llvm::GlobalValue::InternalLinkage, C, ""); 1006 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1007 return; 1008 } 1009 #endif 1010 if (E->hadArrayRangeDesignator()) 1011 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1012 1013 if (E->initializesStdInitializerList()) { 1014 EmitStdInitializerList(Dest.getAddr(), E); 1015 return; 1016 } 1017 1018 AggValueSlot Dest = EnsureSlot(E->getType()); 1019 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1020 Dest.getAlignment()); 1021 1022 // Handle initialization of an array. 1023 if (E->getType()->isArrayType()) { 1024 if (E->isStringLiteralInit()) 1025 return Visit(E->getInit(0)); 1026 1027 QualType elementType = 1028 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1029 1030 llvm::PointerType *APType = 1031 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1032 llvm::ArrayType *AType = 1033 cast<llvm::ArrayType>(APType->getElementType()); 1034 1035 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1036 return; 1037 } 1038 1039 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1040 1041 // Do struct initialization; this code just sets each individual member 1042 // to the approprate value. This makes bitfield support automatic; 1043 // the disadvantage is that the generated code is more difficult for 1044 // the optimizer, especially with bitfields. 1045 unsigned NumInitElements = E->getNumInits(); 1046 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1047 1048 if (record->isUnion()) { 1049 // Only initialize one field of a union. The field itself is 1050 // specified by the initializer list. 1051 if (!E->getInitializedFieldInUnion()) { 1052 // Empty union; we have nothing to do. 1053 1054 #ifndef NDEBUG 1055 // Make sure that it's really an empty and not a failure of 1056 // semantic analysis. 1057 for (RecordDecl::field_iterator Field = record->field_begin(), 1058 FieldEnd = record->field_end(); 1059 Field != FieldEnd; ++Field) 1060 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1061 #endif 1062 return; 1063 } 1064 1065 // FIXME: volatility 1066 FieldDecl *Field = E->getInitializedFieldInUnion(); 1067 1068 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1069 if (NumInitElements) { 1070 // Store the initializer into the field 1071 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1072 } else { 1073 // Default-initialize to null. 1074 EmitNullInitializationToLValue(FieldLoc); 1075 } 1076 1077 return; 1078 } 1079 1080 // We'll need to enter cleanup scopes in case any of the member 1081 // initializers throw an exception. 1082 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1083 llvm::Instruction *cleanupDominator = 0; 1084 1085 // Here we iterate over the fields; this makes it simpler to both 1086 // default-initialize fields and skip over unnamed fields. 1087 unsigned curInitIndex = 0; 1088 for (RecordDecl::field_iterator field = record->field_begin(), 1089 fieldEnd = record->field_end(); 1090 field != fieldEnd; ++field) { 1091 // We're done once we hit the flexible array member. 1092 if (field->getType()->isIncompleteArrayType()) 1093 break; 1094 1095 // Always skip anonymous bitfields. 1096 if (field->isUnnamedBitfield()) 1097 continue; 1098 1099 // We're done if we reach the end of the explicit initializers, we 1100 // have a zeroed object, and the rest of the fields are 1101 // zero-initializable. 1102 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1103 CGF.getTypes().isZeroInitializable(E->getType())) 1104 break; 1105 1106 1107 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); 1108 // We never generate write-barries for initialized fields. 1109 LV.setNonGC(true); 1110 1111 if (curInitIndex < NumInitElements) { 1112 // Store the initializer into the field. 1113 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1114 } else { 1115 // We're out of initalizers; default-initialize to null 1116 EmitNullInitializationToLValue(LV); 1117 } 1118 1119 // Push a destructor if necessary. 1120 // FIXME: if we have an array of structures, all explicitly 1121 // initialized, we can end up pushing a linear number of cleanups. 1122 bool pushedCleanup = false; 1123 if (QualType::DestructionKind dtorKind 1124 = field->getType().isDestructedType()) { 1125 assert(LV.isSimple()); 1126 if (CGF.needsEHCleanup(dtorKind)) { 1127 if (!cleanupDominator) 1128 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1129 1130 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1131 CGF.getDestroyer(dtorKind), false); 1132 cleanups.push_back(CGF.EHStack.stable_begin()); 1133 pushedCleanup = true; 1134 } 1135 } 1136 1137 // If the GEP didn't get used because of a dead zero init or something 1138 // else, clean it up for -O0 builds and general tidiness. 1139 if (!pushedCleanup && LV.isSimple()) 1140 if (llvm::GetElementPtrInst *GEP = 1141 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1142 if (GEP->use_empty()) 1143 GEP->eraseFromParent(); 1144 } 1145 1146 // Deactivate all the partial cleanups in reverse order, which 1147 // generally means popping them. 1148 for (unsigned i = cleanups.size(); i != 0; --i) 1149 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1150 1151 // Destroy the placeholder if we made one. 1152 if (cleanupDominator) 1153 cleanupDominator->eraseFromParent(); 1154 } 1155 1156 //===----------------------------------------------------------------------===// 1157 // Entry Points into this File 1158 //===----------------------------------------------------------------------===// 1159 1160 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1161 /// non-zero bytes that will be stored when outputting the initializer for the 1162 /// specified initializer expression. 1163 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1164 E = E->IgnoreParens(); 1165 1166 // 0 and 0.0 won't require any non-zero stores! 1167 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1168 1169 // If this is an initlist expr, sum up the size of sizes of the (present) 1170 // elements. If this is something weird, assume the whole thing is non-zero. 1171 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1172 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1173 return CGF.getContext().getTypeSizeInChars(E->getType()); 1174 1175 // InitListExprs for structs have to be handled carefully. If there are 1176 // reference members, we need to consider the size of the reference, not the 1177 // referencee. InitListExprs for unions and arrays can't have references. 1178 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1179 if (!RT->isUnionType()) { 1180 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1181 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1182 1183 unsigned ILEElement = 0; 1184 for (RecordDecl::field_iterator Field = SD->field_begin(), 1185 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1186 // We're done once we hit the flexible array member or run out of 1187 // InitListExpr elements. 1188 if (Field->getType()->isIncompleteArrayType() || 1189 ILEElement == ILE->getNumInits()) 1190 break; 1191 if (Field->isUnnamedBitfield()) 1192 continue; 1193 1194 const Expr *E = ILE->getInit(ILEElement++); 1195 1196 // Reference values are always non-null and have the width of a pointer. 1197 if (Field->getType()->isReferenceType()) 1198 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1199 CGF.getContext().getTargetInfo().getPointerWidth(0)); 1200 else 1201 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1202 } 1203 1204 return NumNonZeroBytes; 1205 } 1206 } 1207 1208 1209 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1210 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1211 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1212 return NumNonZeroBytes; 1213 } 1214 1215 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1216 /// zeros in it, emit a memset and avoid storing the individual zeros. 1217 /// 1218 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1219 CodeGenFunction &CGF) { 1220 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1221 // volatile stores. 1222 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1223 1224 // C++ objects with a user-declared constructor don't need zero'ing. 1225 if (CGF.getLangOpts().CPlusPlus) 1226 if (const RecordType *RT = CGF.getContext() 1227 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1228 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1229 if (RD->hasUserDeclaredConstructor()) 1230 return; 1231 } 1232 1233 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1234 std::pair<CharUnits, CharUnits> TypeInfo = 1235 CGF.getContext().getTypeInfoInChars(E->getType()); 1236 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1237 return; 1238 1239 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1240 // we prefer to emit memset + individual stores for the rest. 1241 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1242 if (NumNonZeroBytes*4 > TypeInfo.first) 1243 return; 1244 1245 // Okay, it seems like a good idea to use an initial memset, emit the call. 1246 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1247 CharUnits Align = TypeInfo.second; 1248 1249 llvm::Value *Loc = Slot.getAddr(); 1250 1251 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1252 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1253 Align.getQuantity(), false); 1254 1255 // Tell the AggExprEmitter that the slot is known zero. 1256 Slot.setZeroed(); 1257 } 1258 1259 1260 1261 1262 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1263 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1264 /// the value of the aggregate expression is not needed. If VolatileDest is 1265 /// true, DestPtr cannot be 0. 1266 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1267 assert(E && hasAggregateEvaluationKind(E->getType()) && 1268 "Invalid aggregate expression to emit"); 1269 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1270 "slot has bits but no address"); 1271 1272 // Optimize the slot if possible. 1273 CheckAggExprForMemSetUse(Slot, E, *this); 1274 1275 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1276 } 1277 1278 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1279 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1280 llvm::Value *Temp = CreateMemTemp(E->getType()); 1281 LValue LV = MakeAddrLValue(Temp, E->getType()); 1282 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1283 AggValueSlot::DoesNotNeedGCBarriers, 1284 AggValueSlot::IsNotAliased)); 1285 return LV; 1286 } 1287 1288 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1289 llvm::Value *SrcPtr, QualType Ty, 1290 bool isVolatile, 1291 CharUnits alignment, 1292 bool isAssignment) { 1293 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1294 1295 if (getLangOpts().CPlusPlus) { 1296 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1297 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1298 assert((Record->hasTrivialCopyConstructor() || 1299 Record->hasTrivialCopyAssignment() || 1300 Record->hasTrivialMoveConstructor() || 1301 Record->hasTrivialMoveAssignment()) && 1302 "Trying to aggregate-copy a type without a trivial copy/move " 1303 "constructor or assignment operator"); 1304 // Ignore empty classes in C++. 1305 if (Record->isEmpty()) 1306 return; 1307 } 1308 } 1309 1310 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1311 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1312 // read from another object that overlaps in anyway the storage of the first 1313 // object, then the overlap shall be exact and the two objects shall have 1314 // qualified or unqualified versions of a compatible type." 1315 // 1316 // memcpy is not defined if the source and destination pointers are exactly 1317 // equal, but other compilers do this optimization, and almost every memcpy 1318 // implementation handles this case safely. If there is a libc that does not 1319 // safely handle this, we can add a target hook. 1320 1321 // Get data size and alignment info for this aggregate. If this is an 1322 // assignment don't copy the tail padding. Otherwise copying it is fine. 1323 std::pair<CharUnits, CharUnits> TypeInfo; 1324 if (isAssignment) 1325 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1326 else 1327 TypeInfo = getContext().getTypeInfoInChars(Ty); 1328 1329 if (alignment.isZero()) 1330 alignment = TypeInfo.second; 1331 1332 // FIXME: Handle variable sized types. 1333 1334 // FIXME: If we have a volatile struct, the optimizer can remove what might 1335 // appear to be `extra' memory ops: 1336 // 1337 // volatile struct { int i; } a, b; 1338 // 1339 // int main() { 1340 // a = b; 1341 // a = b; 1342 // } 1343 // 1344 // we need to use a different call here. We use isVolatile to indicate when 1345 // either the source or the destination is volatile. 1346 1347 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1348 llvm::Type *DBP = 1349 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1350 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1351 1352 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1353 llvm::Type *SBP = 1354 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1355 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1356 1357 // Don't do any of the memmove_collectable tests if GC isn't set. 1358 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1359 // fall through 1360 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1361 RecordDecl *Record = RecordTy->getDecl(); 1362 if (Record->hasObjectMember()) { 1363 CharUnits size = TypeInfo.first; 1364 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1365 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1366 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1367 SizeVal); 1368 return; 1369 } 1370 } else if (Ty->isArrayType()) { 1371 QualType BaseType = getContext().getBaseElementType(Ty); 1372 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1373 if (RecordTy->getDecl()->hasObjectMember()) { 1374 CharUnits size = TypeInfo.first; 1375 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1376 llvm::Value *SizeVal = 1377 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1378 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1379 SizeVal); 1380 return; 1381 } 1382 } 1383 } 1384 1385 // Determine the metadata to describe the position of any padding in this 1386 // memcpy, as well as the TBAA tags for the members of the struct, in case 1387 // the optimizer wishes to expand it in to scalar memory operations. 1388 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1389 1390 Builder.CreateMemCpy(DestPtr, SrcPtr, 1391 llvm::ConstantInt::get(IntPtrTy, 1392 TypeInfo.first.getQuantity()), 1393 alignment.getQuantity(), isVolatile, 1394 /*TBAATag=*/0, TBAAStructTag); 1395 } 1396 1397 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, 1398 const Expr *init) { 1399 const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); 1400 if (cleanups) 1401 init = cleanups->getSubExpr(); 1402 1403 if (isa<InitListExpr>(init) && 1404 cast<InitListExpr>(init)->initializesStdInitializerList()) { 1405 // We initialized this std::initializer_list with an initializer list. 1406 // A backing array was created. Push a cleanup for it. 1407 EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); 1408 } 1409 } 1410 1411 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, 1412 llvm::Value *arrayStart, 1413 const InitListExpr *init) { 1414 // Check if there are any recursive cleanups to do, i.e. if we have 1415 // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; 1416 // then we need to destroy the inner array as well. 1417 for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { 1418 const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); 1419 if (!subInit || !subInit->initializesStdInitializerList()) 1420 continue; 1421 1422 // This one needs to be destroyed. Get the address of the std::init_list. 1423 llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); 1424 llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, 1425 "std.initlist"); 1426 CGF.EmitStdInitializerListCleanup(loc, subInit); 1427 } 1428 } 1429 1430 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, 1431 const InitListExpr *init) { 1432 ASTContext &ctx = getContext(); 1433 QualType element = GetStdInitializerListElementType(init->getType()); 1434 unsigned numInits = init->getNumInits(); 1435 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 1436 QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); 1437 QualType arrayPtr = ctx.getPointerType(array); 1438 llvm::Type *arrayPtrType = ConvertType(arrayPtr); 1439 1440 // lvalue is the location of a std::initializer_list, which as its first 1441 // element has a pointer to the array we want to destroy. 1442 llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); 1443 llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); 1444 1445 ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); 1446 1447 llvm::Value *arrayAddress = 1448 Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); 1449 ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); 1450 } 1451