1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddress()); 203 } 204 }; 205 } // end anonymous namespace. 206 207 //===----------------------------------------------------------------------===// 208 // Utilities 209 //===----------------------------------------------------------------------===// 210 211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 212 /// represents a value lvalue, this method emits the address of the lvalue, 213 /// then loads the result into DestPtr. 214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 215 LValue LV = CGF.EmitLValue(E); 216 217 // If the type of the l-value is atomic, then do an atomic load. 218 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 219 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 220 return; 221 } 222 223 EmitFinalDestCopy(E->getType(), LV); 224 } 225 226 /// \brief True if the given aggregate type requires special GC API calls. 227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 228 // Only record types have members that might require garbage collection. 229 const RecordType *RecordTy = T->getAs<RecordType>(); 230 if (!RecordTy) return false; 231 232 // Don't mess with non-trivial C++ types. 233 RecordDecl *Record = RecordTy->getDecl(); 234 if (isa<CXXRecordDecl>(Record) && 235 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 236 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 237 return false; 238 239 // Check whether the type has an object member. 240 return Record->hasObjectMember(); 241 } 242 243 /// \brief Perform the final move to DestPtr if for some reason 244 /// getReturnValueSlot() didn't use it directly. 245 /// 246 /// The idea is that you do something like this: 247 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 248 /// EmitMoveFromReturnSlot(E, Result); 249 /// 250 /// If nothing interferes, this will cause the result to be emitted 251 /// directly into the return value slot. Otherwise, a final move 252 /// will be performed. 253 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 254 if (shouldUseDestForReturnSlot()) { 255 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 256 // The possibility of undef rvalues complicates that a lot, 257 // though, so we can't really assert. 258 return; 259 } 260 261 // Otherwise, copy from there to the destination. 262 assert(Dest.getPointer() != src.getAggregatePointer()); 263 EmitFinalDestCopy(E->getType(), src); 264 } 265 266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 268 assert(src.isAggregate() && "value must be aggregate value!"); 269 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 270 EmitFinalDestCopy(type, srcLV); 271 } 272 273 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 274 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 275 // If Dest is ignored, then we're evaluating an aggregate expression 276 // in a context that doesn't care about the result. Note that loads 277 // from volatile l-values force the existence of a non-ignored 278 // destination. 279 if (Dest.isIgnored()) 280 return; 281 282 AggValueSlot srcAgg = 283 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 284 needsGC(type), AggValueSlot::IsAliased); 285 EmitCopy(type, Dest, srcAgg); 286 } 287 288 /// Perform a copy from the source into the destination. 289 /// 290 /// \param type - the type of the aggregate being copied; qualifiers are 291 /// ignored 292 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 293 const AggValueSlot &src) { 294 if (dest.requiresGCollection()) { 295 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 296 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 297 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 298 dest.getAddress(), 299 src.getAddress(), 300 size); 301 return; 302 } 303 304 // If the result of the assignment is used, copy the LHS there also. 305 // It's volatile if either side is. Use the minimum alignment of 306 // the two sides. 307 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 308 dest.isVolatile() || src.isVolatile()); 309 } 310 311 /// \brief Emit the initializer for a std::initializer_list initialized with a 312 /// real initializer list. 313 void 314 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 315 // Emit an array containing the elements. The array is externally destructed 316 // if the std::initializer_list object is. 317 ASTContext &Ctx = CGF.getContext(); 318 LValue Array = CGF.EmitLValue(E->getSubExpr()); 319 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 320 Address ArrayPtr = Array.getAddress(); 321 322 const ConstantArrayType *ArrayType = 323 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 324 assert(ArrayType && "std::initializer_list constructed from non-array"); 325 326 // FIXME: Perform the checks on the field types in SemaInit. 327 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 328 RecordDecl::field_iterator Field = Record->field_begin(); 329 if (Field == Record->field_end()) { 330 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 331 return; 332 } 333 334 // Start pointer. 335 if (!Field->getType()->isPointerType() || 336 !Ctx.hasSameType(Field->getType()->getPointeeType(), 337 ArrayType->getElementType())) { 338 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 339 return; 340 } 341 342 AggValueSlot Dest = EnsureSlot(E->getType()); 343 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 344 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 345 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 346 llvm::Value *IdxStart[] = { Zero, Zero }; 347 llvm::Value *ArrayStart = 348 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 349 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 350 ++Field; 351 352 if (Field == Record->field_end()) { 353 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 354 return; 355 } 356 357 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 358 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 359 if (Field->getType()->isPointerType() && 360 Ctx.hasSameType(Field->getType()->getPointeeType(), 361 ArrayType->getElementType())) { 362 // End pointer. 363 llvm::Value *IdxEnd[] = { Zero, Size }; 364 llvm::Value *ArrayEnd = 365 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 366 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 367 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 368 // Length. 369 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 370 } else { 371 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 372 return; 373 } 374 } 375 376 /// \brief Determine if E is a trivial array filler, that is, one that is 377 /// equivalent to zero-initialization. 378 static bool isTrivialFiller(Expr *E) { 379 if (!E) 380 return true; 381 382 if (isa<ImplicitValueInitExpr>(E)) 383 return true; 384 385 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 386 if (ILE->getNumInits()) 387 return false; 388 return isTrivialFiller(ILE->getArrayFiller()); 389 } 390 391 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 392 return Cons->getConstructor()->isDefaultConstructor() && 393 Cons->getConstructor()->isTrivial(); 394 395 // FIXME: Are there other cases where we can avoid emitting an initializer? 396 return false; 397 } 398 399 /// \brief Emit initialization of an array from an initializer list. 400 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 401 QualType elementType, InitListExpr *E) { 402 uint64_t NumInitElements = E->getNumInits(); 403 404 uint64_t NumArrayElements = AType->getNumElements(); 405 assert(NumInitElements <= NumArrayElements); 406 407 // DestPtr is an array*. Construct an elementType* by drilling 408 // down a level. 409 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 410 llvm::Value *indices[] = { zero, zero }; 411 llvm::Value *begin = 412 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 413 414 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 415 CharUnits elementAlign = 416 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 417 418 // Exception safety requires us to destroy all the 419 // already-constructed members if an initializer throws. 420 // For that, we'll need an EH cleanup. 421 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 422 Address endOfInit = Address::invalid(); 423 EHScopeStack::stable_iterator cleanup; 424 llvm::Instruction *cleanupDominator = nullptr; 425 if (CGF.needsEHCleanup(dtorKind)) { 426 // In principle we could tell the cleanup where we are more 427 // directly, but the control flow can get so varied here that it 428 // would actually be quite complex. Therefore we go through an 429 // alloca. 430 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 431 "arrayinit.endOfInit"); 432 cleanupDominator = Builder.CreateStore(begin, endOfInit); 433 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 434 elementAlign, 435 CGF.getDestroyer(dtorKind)); 436 cleanup = CGF.EHStack.stable_begin(); 437 438 // Otherwise, remember that we didn't need a cleanup. 439 } else { 440 dtorKind = QualType::DK_none; 441 } 442 443 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 444 445 // The 'current element to initialize'. The invariants on this 446 // variable are complicated. Essentially, after each iteration of 447 // the loop, it points to the last initialized element, except 448 // that it points to the beginning of the array before any 449 // elements have been initialized. 450 llvm::Value *element = begin; 451 452 // Emit the explicit initializers. 453 for (uint64_t i = 0; i != NumInitElements; ++i) { 454 // Advance to the next element. 455 if (i > 0) { 456 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 457 458 // Tell the cleanup that it needs to destroy up to this 459 // element. TODO: some of these stores can be trivially 460 // observed to be unnecessary. 461 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 462 } 463 464 LValue elementLV = 465 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 466 EmitInitializationToLValue(E->getInit(i), elementLV); 467 } 468 469 // Check whether there's a non-trivial array-fill expression. 470 Expr *filler = E->getArrayFiller(); 471 bool hasTrivialFiller = isTrivialFiller(filler); 472 473 // Any remaining elements need to be zero-initialized, possibly 474 // using the filler expression. We can skip this if the we're 475 // emitting to zeroed memory. 476 if (NumInitElements != NumArrayElements && 477 !(Dest.isZeroed() && hasTrivialFiller && 478 CGF.getTypes().isZeroInitializable(elementType))) { 479 480 // Use an actual loop. This is basically 481 // do { *array++ = filler; } while (array != end); 482 483 // Advance to the start of the rest of the array. 484 if (NumInitElements) { 485 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 486 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 487 } 488 489 // Compute the end of the array. 490 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 491 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 492 "arrayinit.end"); 493 494 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 495 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 496 497 // Jump into the body. 498 CGF.EmitBlock(bodyBB); 499 llvm::PHINode *currentElement = 500 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 501 currentElement->addIncoming(element, entryBB); 502 503 // Emit the actual filler expression. 504 LValue elementLV = 505 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 506 if (filler) 507 EmitInitializationToLValue(filler, elementLV); 508 else 509 EmitNullInitializationToLValue(elementLV); 510 511 // Move on to the next element. 512 llvm::Value *nextElement = 513 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 514 515 // Tell the EH cleanup that we finished with the last element. 516 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 517 518 // Leave the loop if we're done. 519 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 520 "arrayinit.done"); 521 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 522 Builder.CreateCondBr(done, endBB, bodyBB); 523 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 524 525 CGF.EmitBlock(endBB); 526 } 527 528 // Leave the partial-array cleanup if we entered one. 529 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 530 } 531 532 //===----------------------------------------------------------------------===// 533 // Visitor Methods 534 //===----------------------------------------------------------------------===// 535 536 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 537 Visit(E->GetTemporaryExpr()); 538 } 539 540 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 541 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 542 } 543 544 void 545 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 546 if (Dest.isPotentiallyAliased() && 547 E->getType().isPODType(CGF.getContext())) { 548 // For a POD type, just emit a load of the lvalue + a copy, because our 549 // compound literal might alias the destination. 550 EmitAggLoadOfLValue(E); 551 return; 552 } 553 554 AggValueSlot Slot = EnsureSlot(E->getType()); 555 CGF.EmitAggExpr(E->getInitializer(), Slot); 556 } 557 558 /// Attempt to look through various unimportant expressions to find a 559 /// cast of the given kind. 560 static Expr *findPeephole(Expr *op, CastKind kind) { 561 while (true) { 562 op = op->IgnoreParens(); 563 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 564 if (castE->getCastKind() == kind) 565 return castE->getSubExpr(); 566 if (castE->getCastKind() == CK_NoOp) 567 continue; 568 } 569 return nullptr; 570 } 571 } 572 573 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 574 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 575 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 576 switch (E->getCastKind()) { 577 case CK_Dynamic: { 578 // FIXME: Can this actually happen? We have no test coverage for it. 579 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 580 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 581 CodeGenFunction::TCK_Load); 582 // FIXME: Do we also need to handle property references here? 583 if (LV.isSimple()) 584 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 585 else 586 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 587 588 if (!Dest.isIgnored()) 589 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 590 break; 591 } 592 593 case CK_ToUnion: { 594 // Evaluate even if the destination is ignored. 595 if (Dest.isIgnored()) { 596 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 597 /*ignoreResult=*/true); 598 break; 599 } 600 601 // GCC union extension 602 QualType Ty = E->getSubExpr()->getType(); 603 Address CastPtr = 604 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 605 EmitInitializationToLValue(E->getSubExpr(), 606 CGF.MakeAddrLValue(CastPtr, Ty)); 607 break; 608 } 609 610 case CK_DerivedToBase: 611 case CK_BaseToDerived: 612 case CK_UncheckedDerivedToBase: { 613 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 614 "should have been unpacked before we got here"); 615 } 616 617 case CK_NonAtomicToAtomic: 618 case CK_AtomicToNonAtomic: { 619 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 620 621 // Determine the atomic and value types. 622 QualType atomicType = E->getSubExpr()->getType(); 623 QualType valueType = E->getType(); 624 if (isToAtomic) std::swap(atomicType, valueType); 625 626 assert(atomicType->isAtomicType()); 627 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 628 atomicType->castAs<AtomicType>()->getValueType())); 629 630 // Just recurse normally if we're ignoring the result or the 631 // atomic type doesn't change representation. 632 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 633 return Visit(E->getSubExpr()); 634 } 635 636 CastKind peepholeTarget = 637 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 638 639 // These two cases are reverses of each other; try to peephole them. 640 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 641 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 642 E->getType()) && 643 "peephole significantly changed types?"); 644 return Visit(op); 645 } 646 647 // If we're converting an r-value of non-atomic type to an r-value 648 // of atomic type, just emit directly into the relevant sub-object. 649 if (isToAtomic) { 650 AggValueSlot valueDest = Dest; 651 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 652 // Zero-initialize. (Strictly speaking, we only need to intialize 653 // the padding at the end, but this is simpler.) 654 if (!Dest.isZeroed()) 655 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 656 657 // Build a GEP to refer to the subobject. 658 Address valueAddr = 659 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 660 CharUnits()); 661 valueDest = AggValueSlot::forAddr(valueAddr, 662 valueDest.getQualifiers(), 663 valueDest.isExternallyDestructed(), 664 valueDest.requiresGCollection(), 665 valueDest.isPotentiallyAliased(), 666 AggValueSlot::IsZeroed); 667 } 668 669 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 670 return; 671 } 672 673 // Otherwise, we're converting an atomic type to a non-atomic type. 674 // Make an atomic temporary, emit into that, and then copy the value out. 675 AggValueSlot atomicSlot = 676 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 677 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 678 679 Address valueAddr = 680 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 681 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 682 return EmitFinalDestCopy(valueType, rvalue); 683 } 684 685 case CK_LValueToRValue: 686 // If we're loading from a volatile type, force the destination 687 // into existence. 688 if (E->getSubExpr()->getType().isVolatileQualified()) { 689 EnsureDest(E->getType()); 690 return Visit(E->getSubExpr()); 691 } 692 693 // fallthrough 694 695 case CK_NoOp: 696 case CK_UserDefinedConversion: 697 case CK_ConstructorConversion: 698 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 699 E->getType()) && 700 "Implicit cast types must be compatible"); 701 Visit(E->getSubExpr()); 702 break; 703 704 case CK_LValueBitCast: 705 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 706 707 case CK_Dependent: 708 case CK_BitCast: 709 case CK_ArrayToPointerDecay: 710 case CK_FunctionToPointerDecay: 711 case CK_NullToPointer: 712 case CK_NullToMemberPointer: 713 case CK_BaseToDerivedMemberPointer: 714 case CK_DerivedToBaseMemberPointer: 715 case CK_MemberPointerToBoolean: 716 case CK_ReinterpretMemberPointer: 717 case CK_IntegralToPointer: 718 case CK_PointerToIntegral: 719 case CK_PointerToBoolean: 720 case CK_ToVoid: 721 case CK_VectorSplat: 722 case CK_IntegralCast: 723 case CK_IntegralToBoolean: 724 case CK_IntegralToFloating: 725 case CK_FloatingToIntegral: 726 case CK_FloatingToBoolean: 727 case CK_FloatingCast: 728 case CK_CPointerToObjCPointerCast: 729 case CK_BlockPointerToObjCPointerCast: 730 case CK_AnyPointerToBlockPointerCast: 731 case CK_ObjCObjectLValueCast: 732 case CK_FloatingRealToComplex: 733 case CK_FloatingComplexToReal: 734 case CK_FloatingComplexToBoolean: 735 case CK_FloatingComplexCast: 736 case CK_FloatingComplexToIntegralComplex: 737 case CK_IntegralRealToComplex: 738 case CK_IntegralComplexToReal: 739 case CK_IntegralComplexToBoolean: 740 case CK_IntegralComplexCast: 741 case CK_IntegralComplexToFloatingComplex: 742 case CK_ARCProduceObject: 743 case CK_ARCConsumeObject: 744 case CK_ARCReclaimReturnedObject: 745 case CK_ARCExtendBlockObject: 746 case CK_CopyAndAutoreleaseBlockObject: 747 case CK_BuiltinFnToFnPtr: 748 case CK_ZeroToOCLEvent: 749 case CK_AddressSpaceConversion: 750 llvm_unreachable("cast kind invalid for aggregate types"); 751 } 752 } 753 754 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 755 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 756 EmitAggLoadOfLValue(E); 757 return; 758 } 759 760 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 761 EmitMoveFromReturnSlot(E, RV); 762 } 763 764 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 765 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 766 EmitMoveFromReturnSlot(E, RV); 767 } 768 769 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 770 CGF.EmitIgnoredExpr(E->getLHS()); 771 Visit(E->getRHS()); 772 } 773 774 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 775 CodeGenFunction::StmtExprEvaluation eval(CGF); 776 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 777 } 778 779 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 780 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 781 VisitPointerToDataMemberBinaryOperator(E); 782 else 783 CGF.ErrorUnsupported(E, "aggregate binary expression"); 784 } 785 786 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 787 const BinaryOperator *E) { 788 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 789 EmitFinalDestCopy(E->getType(), LV); 790 } 791 792 /// Is the value of the given expression possibly a reference to or 793 /// into a __block variable? 794 static bool isBlockVarRef(const Expr *E) { 795 // Make sure we look through parens. 796 E = E->IgnoreParens(); 797 798 // Check for a direct reference to a __block variable. 799 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 800 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 801 return (var && var->hasAttr<BlocksAttr>()); 802 } 803 804 // More complicated stuff. 805 806 // Binary operators. 807 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 808 // For an assignment or pointer-to-member operation, just care 809 // about the LHS. 810 if (op->isAssignmentOp() || op->isPtrMemOp()) 811 return isBlockVarRef(op->getLHS()); 812 813 // For a comma, just care about the RHS. 814 if (op->getOpcode() == BO_Comma) 815 return isBlockVarRef(op->getRHS()); 816 817 // FIXME: pointer arithmetic? 818 return false; 819 820 // Check both sides of a conditional operator. 821 } else if (const AbstractConditionalOperator *op 822 = dyn_cast<AbstractConditionalOperator>(E)) { 823 return isBlockVarRef(op->getTrueExpr()) 824 || isBlockVarRef(op->getFalseExpr()); 825 826 // OVEs are required to support BinaryConditionalOperators. 827 } else if (const OpaqueValueExpr *op 828 = dyn_cast<OpaqueValueExpr>(E)) { 829 if (const Expr *src = op->getSourceExpr()) 830 return isBlockVarRef(src); 831 832 // Casts are necessary to get things like (*(int*)&var) = foo(). 833 // We don't really care about the kind of cast here, except 834 // we don't want to look through l2r casts, because it's okay 835 // to get the *value* in a __block variable. 836 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 837 if (cast->getCastKind() == CK_LValueToRValue) 838 return false; 839 return isBlockVarRef(cast->getSubExpr()); 840 841 // Handle unary operators. Again, just aggressively look through 842 // it, ignoring the operation. 843 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 844 return isBlockVarRef(uop->getSubExpr()); 845 846 // Look into the base of a field access. 847 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 848 return isBlockVarRef(mem->getBase()); 849 850 // Look into the base of a subscript. 851 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 852 return isBlockVarRef(sub->getBase()); 853 } 854 855 return false; 856 } 857 858 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 859 // For an assignment to work, the value on the right has 860 // to be compatible with the value on the left. 861 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 862 E->getRHS()->getType()) 863 && "Invalid assignment"); 864 865 // If the LHS might be a __block variable, and the RHS can 866 // potentially cause a block copy, we need to evaluate the RHS first 867 // so that the assignment goes the right place. 868 // This is pretty semantically fragile. 869 if (isBlockVarRef(E->getLHS()) && 870 E->getRHS()->HasSideEffects(CGF.getContext())) { 871 // Ensure that we have a destination, and evaluate the RHS into that. 872 EnsureDest(E->getRHS()->getType()); 873 Visit(E->getRHS()); 874 875 // Now emit the LHS and copy into it. 876 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 877 878 // That copy is an atomic copy if the LHS is atomic. 879 if (LHS.getType()->isAtomicType() || 880 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 881 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 882 return; 883 } 884 885 EmitCopy(E->getLHS()->getType(), 886 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 887 needsGC(E->getLHS()->getType()), 888 AggValueSlot::IsAliased), 889 Dest); 890 return; 891 } 892 893 LValue LHS = CGF.EmitLValue(E->getLHS()); 894 895 // If we have an atomic type, evaluate into the destination and then 896 // do an atomic copy. 897 if (LHS.getType()->isAtomicType() || 898 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 899 EnsureDest(E->getRHS()->getType()); 900 Visit(E->getRHS()); 901 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 902 return; 903 } 904 905 // Codegen the RHS so that it stores directly into the LHS. 906 AggValueSlot LHSSlot = 907 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 908 needsGC(E->getLHS()->getType()), 909 AggValueSlot::IsAliased); 910 // A non-volatile aggregate destination might have volatile member. 911 if (!LHSSlot.isVolatile() && 912 CGF.hasVolatileMember(E->getLHS()->getType())) 913 LHSSlot.setVolatile(true); 914 915 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 916 917 // Copy into the destination if the assignment isn't ignored. 918 EmitFinalDestCopy(E->getType(), LHS); 919 } 920 921 void AggExprEmitter:: 922 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 923 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 924 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 925 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 926 927 // Bind the common expression if necessary. 928 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 929 930 CodeGenFunction::ConditionalEvaluation eval(CGF); 931 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 932 CGF.getProfileCount(E)); 933 934 // Save whether the destination's lifetime is externally managed. 935 bool isExternallyDestructed = Dest.isExternallyDestructed(); 936 937 eval.begin(CGF); 938 CGF.EmitBlock(LHSBlock); 939 CGF.incrementProfileCounter(E); 940 Visit(E->getTrueExpr()); 941 eval.end(CGF); 942 943 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 944 CGF.Builder.CreateBr(ContBlock); 945 946 // If the result of an agg expression is unused, then the emission 947 // of the LHS might need to create a destination slot. That's fine 948 // with us, and we can safely emit the RHS into the same slot, but 949 // we shouldn't claim that it's already being destructed. 950 Dest.setExternallyDestructed(isExternallyDestructed); 951 952 eval.begin(CGF); 953 CGF.EmitBlock(RHSBlock); 954 Visit(E->getFalseExpr()); 955 eval.end(CGF); 956 957 CGF.EmitBlock(ContBlock); 958 } 959 960 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 961 Visit(CE->getChosenSubExpr()); 962 } 963 964 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 965 Address ArgValue = Address::invalid(); 966 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 967 968 if (!ArgPtr.isValid()) { 969 // If EmitVAArg fails, we fall back to the LLVM instruction. 970 llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(), 971 CGF.ConvertType(VE->getType())); 972 if (!Dest.isIgnored()) 973 Builder.CreateStore(Val, Dest.getAddress()); 974 return; 975 } 976 977 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 978 } 979 980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 981 // Ensure that we have a slot, but if we already do, remember 982 // whether it was externally destructed. 983 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 984 EnsureDest(E->getType()); 985 986 // We're going to push a destructor if there isn't already one. 987 Dest.setExternallyDestructed(); 988 989 Visit(E->getSubExpr()); 990 991 // Push that destructor we promised. 992 if (!wasExternallyDestructed) 993 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 994 } 995 996 void 997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 998 AggValueSlot Slot = EnsureSlot(E->getType()); 999 CGF.EmitCXXConstructExpr(E, Slot); 1000 } 1001 1002 void 1003 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1004 AggValueSlot Slot = EnsureSlot(E->getType()); 1005 CGF.EmitLambdaExpr(E, Slot); 1006 } 1007 1008 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1009 CGF.enterFullExpression(E); 1010 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1011 Visit(E->getSubExpr()); 1012 } 1013 1014 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1015 QualType T = E->getType(); 1016 AggValueSlot Slot = EnsureSlot(T); 1017 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1018 } 1019 1020 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1021 QualType T = E->getType(); 1022 AggValueSlot Slot = EnsureSlot(T); 1023 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1024 } 1025 1026 /// isSimpleZero - If emitting this value will obviously just cause a store of 1027 /// zero to memory, return true. This can return false if uncertain, so it just 1028 /// handles simple cases. 1029 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1030 E = E->IgnoreParens(); 1031 1032 // 0 1033 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1034 return IL->getValue() == 0; 1035 // +0.0 1036 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1037 return FL->getValue().isPosZero(); 1038 // int() 1039 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1040 CGF.getTypes().isZeroInitializable(E->getType())) 1041 return true; 1042 // (int*)0 - Null pointer expressions. 1043 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1044 return ICE->getCastKind() == CK_NullToPointer; 1045 // '\0' 1046 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1047 return CL->getValue() == 0; 1048 1049 // Otherwise, hard case: conservatively return false. 1050 return false; 1051 } 1052 1053 1054 void 1055 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1056 QualType type = LV.getType(); 1057 // FIXME: Ignore result? 1058 // FIXME: Are initializers affected by volatile? 1059 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1060 // Storing "i32 0" to a zero'd memory location is a noop. 1061 return; 1062 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1063 return EmitNullInitializationToLValue(LV); 1064 } else if (isa<NoInitExpr>(E)) { 1065 // Do nothing. 1066 return; 1067 } else if (type->isReferenceType()) { 1068 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1069 return CGF.EmitStoreThroughLValue(RV, LV); 1070 } 1071 1072 switch (CGF.getEvaluationKind(type)) { 1073 case TEK_Complex: 1074 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1075 return; 1076 case TEK_Aggregate: 1077 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1078 AggValueSlot::IsDestructed, 1079 AggValueSlot::DoesNotNeedGCBarriers, 1080 AggValueSlot::IsNotAliased, 1081 Dest.isZeroed())); 1082 return; 1083 case TEK_Scalar: 1084 if (LV.isSimple()) { 1085 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1086 } else { 1087 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1088 } 1089 return; 1090 } 1091 llvm_unreachable("bad evaluation kind"); 1092 } 1093 1094 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1095 QualType type = lv.getType(); 1096 1097 // If the destination slot is already zeroed out before the aggregate is 1098 // copied into it, we don't have to emit any zeros here. 1099 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1100 return; 1101 1102 if (CGF.hasScalarEvaluationKind(type)) { 1103 // For non-aggregates, we can store the appropriate null constant. 1104 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1105 // Note that the following is not equivalent to 1106 // EmitStoreThroughBitfieldLValue for ARC types. 1107 if (lv.isBitField()) { 1108 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1109 } else { 1110 assert(lv.isSimple()); 1111 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1112 } 1113 } else { 1114 // There's a potential optimization opportunity in combining 1115 // memsets; that would be easy for arrays, but relatively 1116 // difficult for structures with the current code. 1117 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1118 } 1119 } 1120 1121 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1122 #if 0 1123 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1124 // (Length of globals? Chunks of zeroed-out space?). 1125 // 1126 // If we can, prefer a copy from a global; this is a lot less code for long 1127 // globals, and it's easier for the current optimizers to analyze. 1128 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1129 llvm::GlobalVariable* GV = 1130 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1131 llvm::GlobalValue::InternalLinkage, C, ""); 1132 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1133 return; 1134 } 1135 #endif 1136 if (E->hadArrayRangeDesignator()) 1137 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1138 1139 AggValueSlot Dest = EnsureSlot(E->getType()); 1140 1141 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1142 1143 // Handle initialization of an array. 1144 if (E->getType()->isArrayType()) { 1145 if (E->isStringLiteralInit()) 1146 return Visit(E->getInit(0)); 1147 1148 QualType elementType = 1149 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1150 1151 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1152 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1153 return; 1154 } 1155 1156 if (E->getType()->isAtomicType()) { 1157 // An _Atomic(T) object can be list-initialized from an expression 1158 // of the same type. 1159 assert(E->getNumInits() == 1 && 1160 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1161 E->getType()) && 1162 "unexpected list initialization for atomic object"); 1163 return Visit(E->getInit(0)); 1164 } 1165 1166 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1167 1168 // Do struct initialization; this code just sets each individual member 1169 // to the approprate value. This makes bitfield support automatic; 1170 // the disadvantage is that the generated code is more difficult for 1171 // the optimizer, especially with bitfields. 1172 unsigned NumInitElements = E->getNumInits(); 1173 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1174 1175 // Prepare a 'this' for CXXDefaultInitExprs. 1176 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1177 1178 if (record->isUnion()) { 1179 // Only initialize one field of a union. The field itself is 1180 // specified by the initializer list. 1181 if (!E->getInitializedFieldInUnion()) { 1182 // Empty union; we have nothing to do. 1183 1184 #ifndef NDEBUG 1185 // Make sure that it's really an empty and not a failure of 1186 // semantic analysis. 1187 for (const auto *Field : record->fields()) 1188 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1189 #endif 1190 return; 1191 } 1192 1193 // FIXME: volatility 1194 FieldDecl *Field = E->getInitializedFieldInUnion(); 1195 1196 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1197 if (NumInitElements) { 1198 // Store the initializer into the field 1199 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1200 } else { 1201 // Default-initialize to null. 1202 EmitNullInitializationToLValue(FieldLoc); 1203 } 1204 1205 return; 1206 } 1207 1208 // We'll need to enter cleanup scopes in case any of the member 1209 // initializers throw an exception. 1210 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1211 llvm::Instruction *cleanupDominator = nullptr; 1212 1213 // Here we iterate over the fields; this makes it simpler to both 1214 // default-initialize fields and skip over unnamed fields. 1215 unsigned curInitIndex = 0; 1216 for (const auto *field : record->fields()) { 1217 // We're done once we hit the flexible array member. 1218 if (field->getType()->isIncompleteArrayType()) 1219 break; 1220 1221 // Always skip anonymous bitfields. 1222 if (field->isUnnamedBitfield()) 1223 continue; 1224 1225 // We're done if we reach the end of the explicit initializers, we 1226 // have a zeroed object, and the rest of the fields are 1227 // zero-initializable. 1228 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1229 CGF.getTypes().isZeroInitializable(E->getType())) 1230 break; 1231 1232 1233 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1234 // We never generate write-barries for initialized fields. 1235 LV.setNonGC(true); 1236 1237 if (curInitIndex < NumInitElements) { 1238 // Store the initializer into the field. 1239 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1240 } else { 1241 // We're out of initalizers; default-initialize to null 1242 EmitNullInitializationToLValue(LV); 1243 } 1244 1245 // Push a destructor if necessary. 1246 // FIXME: if we have an array of structures, all explicitly 1247 // initialized, we can end up pushing a linear number of cleanups. 1248 bool pushedCleanup = false; 1249 if (QualType::DestructionKind dtorKind 1250 = field->getType().isDestructedType()) { 1251 assert(LV.isSimple()); 1252 if (CGF.needsEHCleanup(dtorKind)) { 1253 if (!cleanupDominator) 1254 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1255 CGF.Int8Ty, 1256 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1257 CharUnits::One()); // placeholder 1258 1259 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1260 CGF.getDestroyer(dtorKind), false); 1261 cleanups.push_back(CGF.EHStack.stable_begin()); 1262 pushedCleanup = true; 1263 } 1264 } 1265 1266 // If the GEP didn't get used because of a dead zero init or something 1267 // else, clean it up for -O0 builds and general tidiness. 1268 if (!pushedCleanup && LV.isSimple()) 1269 if (llvm::GetElementPtrInst *GEP = 1270 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1271 if (GEP->use_empty()) 1272 GEP->eraseFromParent(); 1273 } 1274 1275 // Deactivate all the partial cleanups in reverse order, which 1276 // generally means popping them. 1277 for (unsigned i = cleanups.size(); i != 0; --i) 1278 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1279 1280 // Destroy the placeholder if we made one. 1281 if (cleanupDominator) 1282 cleanupDominator->eraseFromParent(); 1283 } 1284 1285 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1286 AggValueSlot Dest = EnsureSlot(E->getType()); 1287 1288 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1289 EmitInitializationToLValue(E->getBase(), DestLV); 1290 VisitInitListExpr(E->getUpdater()); 1291 } 1292 1293 //===----------------------------------------------------------------------===// 1294 // Entry Points into this File 1295 //===----------------------------------------------------------------------===// 1296 1297 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1298 /// non-zero bytes that will be stored when outputting the initializer for the 1299 /// specified initializer expression. 1300 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1301 E = E->IgnoreParens(); 1302 1303 // 0 and 0.0 won't require any non-zero stores! 1304 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1305 1306 // If this is an initlist expr, sum up the size of sizes of the (present) 1307 // elements. If this is something weird, assume the whole thing is non-zero. 1308 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1309 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1310 return CGF.getContext().getTypeSizeInChars(E->getType()); 1311 1312 // InitListExprs for structs have to be handled carefully. If there are 1313 // reference members, we need to consider the size of the reference, not the 1314 // referencee. InitListExprs for unions and arrays can't have references. 1315 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1316 if (!RT->isUnionType()) { 1317 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1318 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1319 1320 unsigned ILEElement = 0; 1321 for (const auto *Field : SD->fields()) { 1322 // We're done once we hit the flexible array member or run out of 1323 // InitListExpr elements. 1324 if (Field->getType()->isIncompleteArrayType() || 1325 ILEElement == ILE->getNumInits()) 1326 break; 1327 if (Field->isUnnamedBitfield()) 1328 continue; 1329 1330 const Expr *E = ILE->getInit(ILEElement++); 1331 1332 // Reference values are always non-null and have the width of a pointer. 1333 if (Field->getType()->isReferenceType()) 1334 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1335 CGF.getTarget().getPointerWidth(0)); 1336 else 1337 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1338 } 1339 1340 return NumNonZeroBytes; 1341 } 1342 } 1343 1344 1345 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1346 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1347 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1348 return NumNonZeroBytes; 1349 } 1350 1351 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1352 /// zeros in it, emit a memset and avoid storing the individual zeros. 1353 /// 1354 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1355 CodeGenFunction &CGF) { 1356 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1357 // volatile stores. 1358 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1359 return; 1360 1361 // C++ objects with a user-declared constructor don't need zero'ing. 1362 if (CGF.getLangOpts().CPlusPlus) 1363 if (const RecordType *RT = CGF.getContext() 1364 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1365 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1366 if (RD->hasUserDeclaredConstructor()) 1367 return; 1368 } 1369 1370 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1371 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1372 if (Size <= CharUnits::fromQuantity(16)) 1373 return; 1374 1375 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1376 // we prefer to emit memset + individual stores for the rest. 1377 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1378 if (NumNonZeroBytes*4 > Size) 1379 return; 1380 1381 // Okay, it seems like a good idea to use an initial memset, emit the call. 1382 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1383 1384 Address Loc = Slot.getAddress(); 1385 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1386 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1387 1388 // Tell the AggExprEmitter that the slot is known zero. 1389 Slot.setZeroed(); 1390 } 1391 1392 1393 1394 1395 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1396 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1397 /// the value of the aggregate expression is not needed. If VolatileDest is 1398 /// true, DestPtr cannot be 0. 1399 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1400 assert(E && hasAggregateEvaluationKind(E->getType()) && 1401 "Invalid aggregate expression to emit"); 1402 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1403 "slot has bits but no address"); 1404 1405 // Optimize the slot if possible. 1406 CheckAggExprForMemSetUse(Slot, E, *this); 1407 1408 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1409 } 1410 1411 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1412 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1413 Address Temp = CreateMemTemp(E->getType()); 1414 LValue LV = MakeAddrLValue(Temp, E->getType()); 1415 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1416 AggValueSlot::DoesNotNeedGCBarriers, 1417 AggValueSlot::IsNotAliased)); 1418 return LV; 1419 } 1420 1421 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1422 Address SrcPtr, QualType Ty, 1423 bool isVolatile, 1424 bool isAssignment) { 1425 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1426 1427 if (getLangOpts().CPlusPlus) { 1428 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1429 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1430 assert((Record->hasTrivialCopyConstructor() || 1431 Record->hasTrivialCopyAssignment() || 1432 Record->hasTrivialMoveConstructor() || 1433 Record->hasTrivialMoveAssignment() || 1434 Record->isUnion()) && 1435 "Trying to aggregate-copy a type without a trivial copy/move " 1436 "constructor or assignment operator"); 1437 // Ignore empty classes in C++. 1438 if (Record->isEmpty()) 1439 return; 1440 } 1441 } 1442 1443 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1444 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1445 // read from another object that overlaps in anyway the storage of the first 1446 // object, then the overlap shall be exact and the two objects shall have 1447 // qualified or unqualified versions of a compatible type." 1448 // 1449 // memcpy is not defined if the source and destination pointers are exactly 1450 // equal, but other compilers do this optimization, and almost every memcpy 1451 // implementation handles this case safely. If there is a libc that does not 1452 // safely handle this, we can add a target hook. 1453 1454 // Get data size info for this aggregate. If this is an assignment, 1455 // don't copy the tail padding, because we might be assigning into a 1456 // base subobject where the tail padding is claimed. Otherwise, 1457 // copying it is fine. 1458 std::pair<CharUnits, CharUnits> TypeInfo; 1459 if (isAssignment) 1460 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1461 else 1462 TypeInfo = getContext().getTypeInfoInChars(Ty); 1463 1464 llvm::Value *SizeVal = nullptr; 1465 if (TypeInfo.first.isZero()) { 1466 // But note that getTypeInfo returns 0 for a VLA. 1467 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1468 getContext().getAsArrayType(Ty))) { 1469 QualType BaseEltTy; 1470 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1471 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1472 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1473 if (!isAssignment) 1474 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1475 assert(!TypeInfo.first.isZero()); 1476 SizeVal = Builder.CreateNUWMul( 1477 SizeVal, 1478 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1479 if (!isAssignment) { 1480 SizeVal = Builder.CreateNUWSub( 1481 SizeVal, 1482 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1483 SizeVal = Builder.CreateNUWAdd( 1484 SizeVal, llvm::ConstantInt::get( 1485 SizeTy, LastElementTypeInfo.first.getQuantity())); 1486 } 1487 } 1488 } 1489 if (!SizeVal) { 1490 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1491 } 1492 1493 // FIXME: If we have a volatile struct, the optimizer can remove what might 1494 // appear to be `extra' memory ops: 1495 // 1496 // volatile struct { int i; } a, b; 1497 // 1498 // int main() { 1499 // a = b; 1500 // a = b; 1501 // } 1502 // 1503 // we need to use a different call here. We use isVolatile to indicate when 1504 // either the source or the destination is volatile. 1505 1506 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1507 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1508 1509 // Don't do any of the memmove_collectable tests if GC isn't set. 1510 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1511 // fall through 1512 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1513 RecordDecl *Record = RecordTy->getDecl(); 1514 if (Record->hasObjectMember()) { 1515 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1516 SizeVal); 1517 return; 1518 } 1519 } else if (Ty->isArrayType()) { 1520 QualType BaseType = getContext().getBaseElementType(Ty); 1521 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1522 if (RecordTy->getDecl()->hasObjectMember()) { 1523 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1524 SizeVal); 1525 return; 1526 } 1527 } 1528 } 1529 1530 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1531 1532 // Determine the metadata to describe the position of any padding in this 1533 // memcpy, as well as the TBAA tags for the members of the struct, in case 1534 // the optimizer wishes to expand it in to scalar memory operations. 1535 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1536 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1537 } 1538