1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
168   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
169   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
170   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
171     Visit(DAE->getExpr());
172   }
173   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
174     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
175     Visit(DIE->getExpr());
176   }
177   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
178   void VisitCXXConstructExpr(const CXXConstructExpr *E);
179   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
180   void VisitLambdaExpr(LambdaExpr *E);
181   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
182   void VisitExprWithCleanups(ExprWithCleanups *E);
183   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
184   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
185   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
186   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
187 
188   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
189     if (E->isGLValue()) {
190       LValue LV = CGF.EmitPseudoObjectLValue(E);
191       return EmitFinalDestCopy(E->getType(), LV);
192     }
193 
194     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
195   }
196 
197   void VisitVAArgExpr(VAArgExpr *E);
198 
199   void EmitInitializationToLValue(Expr *E, LValue Address);
200   void EmitNullInitializationToLValue(LValue Address);
201   //  case Expr::ChooseExprClass:
202   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
203   void VisitAtomicExpr(AtomicExpr *E) {
204     RValue Res = CGF.EmitAtomicExpr(E);
205     EmitFinalDestCopy(E->getType(), Res);
206   }
207 };
208 }  // end anonymous namespace.
209 
210 //===----------------------------------------------------------------------===//
211 //                                Utilities
212 //===----------------------------------------------------------------------===//
213 
214 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
215 /// represents a value lvalue, this method emits the address of the lvalue,
216 /// then loads the result into DestPtr.
217 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
218   LValue LV = CGF.EmitLValue(E);
219 
220   // If the type of the l-value is atomic, then do an atomic load.
221   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
222     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
223     return;
224   }
225 
226   EmitFinalDestCopy(E->getType(), LV);
227 }
228 
229 /// \brief True if the given aggregate type requires special GC API calls.
230 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
231   // Only record types have members that might require garbage collection.
232   const RecordType *RecordTy = T->getAs<RecordType>();
233   if (!RecordTy) return false;
234 
235   // Don't mess with non-trivial C++ types.
236   RecordDecl *Record = RecordTy->getDecl();
237   if (isa<CXXRecordDecl>(Record) &&
238       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
239        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
240     return false;
241 
242   // Check whether the type has an object member.
243   return Record->hasObjectMember();
244 }
245 
246 /// \brief Perform the final move to DestPtr if for some reason
247 /// getReturnValueSlot() didn't use it directly.
248 ///
249 /// The idea is that you do something like this:
250 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
251 ///   EmitMoveFromReturnSlot(E, Result);
252 ///
253 /// If nothing interferes, this will cause the result to be emitted
254 /// directly into the return value slot.  Otherwise, a final move
255 /// will be performed.
256 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
257   if (shouldUseDestForReturnSlot()) {
258     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
259     // The possibility of undef rvalues complicates that a lot,
260     // though, so we can't really assert.
261     return;
262   }
263 
264   // Otherwise, copy from there to the destination.
265   assert(Dest.getPointer() != src.getAggregatePointer());
266   EmitFinalDestCopy(E->getType(), src);
267 }
268 
269 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
270 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
271   assert(src.isAggregate() && "value must be aggregate value!");
272   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
273   EmitFinalDestCopy(type, srcLV);
274 }
275 
276 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
277 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
278   // If Dest is ignored, then we're evaluating an aggregate expression
279   // in a context that doesn't care about the result.  Note that loads
280   // from volatile l-values force the existence of a non-ignored
281   // destination.
282   if (Dest.isIgnored())
283     return;
284 
285   AggValueSlot srcAgg =
286     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
287                             needsGC(type), AggValueSlot::IsAliased);
288   EmitCopy(type, Dest, srcAgg);
289 }
290 
291 /// Perform a copy from the source into the destination.
292 ///
293 /// \param type - the type of the aggregate being copied; qualifiers are
294 ///   ignored
295 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
296                               const AggValueSlot &src) {
297   if (dest.requiresGCollection()) {
298     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
299     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
300     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
301                                                       dest.getAddress(),
302                                                       src.getAddress(),
303                                                       size);
304     return;
305   }
306 
307   // If the result of the assignment is used, copy the LHS there also.
308   // It's volatile if either side is.  Use the minimum alignment of
309   // the two sides.
310   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
311                         dest.isVolatile() || src.isVolatile());
312 }
313 
314 /// \brief Emit the initializer for a std::initializer_list initialized with a
315 /// real initializer list.
316 void
317 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
318   // Emit an array containing the elements.  The array is externally destructed
319   // if the std::initializer_list object is.
320   ASTContext &Ctx = CGF.getContext();
321   LValue Array = CGF.EmitLValue(E->getSubExpr());
322   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
323   Address ArrayPtr = Array.getAddress();
324 
325   const ConstantArrayType *ArrayType =
326       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
327   assert(ArrayType && "std::initializer_list constructed from non-array");
328 
329   // FIXME: Perform the checks on the field types in SemaInit.
330   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
331   RecordDecl::field_iterator Field = Record->field_begin();
332   if (Field == Record->field_end()) {
333     CGF.ErrorUnsupported(E, "weird std::initializer_list");
334     return;
335   }
336 
337   // Start pointer.
338   if (!Field->getType()->isPointerType() ||
339       !Ctx.hasSameType(Field->getType()->getPointeeType(),
340                        ArrayType->getElementType())) {
341     CGF.ErrorUnsupported(E, "weird std::initializer_list");
342     return;
343   }
344 
345   AggValueSlot Dest = EnsureSlot(E->getType());
346   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
347   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
348   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
349   llvm::Value *IdxStart[] = { Zero, Zero };
350   llvm::Value *ArrayStart =
351       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
352   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
353   ++Field;
354 
355   if (Field == Record->field_end()) {
356     CGF.ErrorUnsupported(E, "weird std::initializer_list");
357     return;
358   }
359 
360   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
361   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
362   if (Field->getType()->isPointerType() &&
363       Ctx.hasSameType(Field->getType()->getPointeeType(),
364                       ArrayType->getElementType())) {
365     // End pointer.
366     llvm::Value *IdxEnd[] = { Zero, Size };
367     llvm::Value *ArrayEnd =
368         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
369     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
370   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
371     // Length.
372     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
373   } else {
374     CGF.ErrorUnsupported(E, "weird std::initializer_list");
375     return;
376   }
377 }
378 
379 /// \brief Determine if E is a trivial array filler, that is, one that is
380 /// equivalent to zero-initialization.
381 static bool isTrivialFiller(Expr *E) {
382   if (!E)
383     return true;
384 
385   if (isa<ImplicitValueInitExpr>(E))
386     return true;
387 
388   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
389     if (ILE->getNumInits())
390       return false;
391     return isTrivialFiller(ILE->getArrayFiller());
392   }
393 
394   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
395     return Cons->getConstructor()->isDefaultConstructor() &&
396            Cons->getConstructor()->isTrivial();
397 
398   // FIXME: Are there other cases where we can avoid emitting an initializer?
399   return false;
400 }
401 
402 /// \brief Emit initialization of an array from an initializer list.
403 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
404                                    QualType elementType, InitListExpr *E) {
405   uint64_t NumInitElements = E->getNumInits();
406 
407   uint64_t NumArrayElements = AType->getNumElements();
408   assert(NumInitElements <= NumArrayElements);
409 
410   // DestPtr is an array*.  Construct an elementType* by drilling
411   // down a level.
412   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
413   llvm::Value *indices[] = { zero, zero };
414   llvm::Value *begin =
415     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
416 
417   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
418   CharUnits elementAlign =
419     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
420 
421   // Exception safety requires us to destroy all the
422   // already-constructed members if an initializer throws.
423   // For that, we'll need an EH cleanup.
424   QualType::DestructionKind dtorKind = elementType.isDestructedType();
425   Address endOfInit = Address::invalid();
426   EHScopeStack::stable_iterator cleanup;
427   llvm::Instruction *cleanupDominator = nullptr;
428   if (CGF.needsEHCleanup(dtorKind)) {
429     // In principle we could tell the cleanup where we are more
430     // directly, but the control flow can get so varied here that it
431     // would actually be quite complex.  Therefore we go through an
432     // alloca.
433     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
434                                      "arrayinit.endOfInit");
435     cleanupDominator = Builder.CreateStore(begin, endOfInit);
436     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
437                                          elementAlign,
438                                          CGF.getDestroyer(dtorKind));
439     cleanup = CGF.EHStack.stable_begin();
440 
441   // Otherwise, remember that we didn't need a cleanup.
442   } else {
443     dtorKind = QualType::DK_none;
444   }
445 
446   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
447 
448   // The 'current element to initialize'.  The invariants on this
449   // variable are complicated.  Essentially, after each iteration of
450   // the loop, it points to the last initialized element, except
451   // that it points to the beginning of the array before any
452   // elements have been initialized.
453   llvm::Value *element = begin;
454 
455   // Emit the explicit initializers.
456   for (uint64_t i = 0; i != NumInitElements; ++i) {
457     // Advance to the next element.
458     if (i > 0) {
459       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
460 
461       // Tell the cleanup that it needs to destroy up to this
462       // element.  TODO: some of these stores can be trivially
463       // observed to be unnecessary.
464       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
465     }
466 
467     LValue elementLV =
468       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
469     EmitInitializationToLValue(E->getInit(i), elementLV);
470   }
471 
472   // Check whether there's a non-trivial array-fill expression.
473   Expr *filler = E->getArrayFiller();
474   bool hasTrivialFiller = isTrivialFiller(filler);
475 
476   // Any remaining elements need to be zero-initialized, possibly
477   // using the filler expression.  We can skip this if the we're
478   // emitting to zeroed memory.
479   if (NumInitElements != NumArrayElements &&
480       !(Dest.isZeroed() && hasTrivialFiller &&
481         CGF.getTypes().isZeroInitializable(elementType))) {
482 
483     // Use an actual loop.  This is basically
484     //   do { *array++ = filler; } while (array != end);
485 
486     // Advance to the start of the rest of the array.
487     if (NumInitElements) {
488       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
489       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
490     }
491 
492     // Compute the end of the array.
493     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
494                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
495                                                  "arrayinit.end");
496 
497     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
498     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
499 
500     // Jump into the body.
501     CGF.EmitBlock(bodyBB);
502     llvm::PHINode *currentElement =
503       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
504     currentElement->addIncoming(element, entryBB);
505 
506     // Emit the actual filler expression.
507     LValue elementLV =
508       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
509     if (filler)
510       EmitInitializationToLValue(filler, elementLV);
511     else
512       EmitNullInitializationToLValue(elementLV);
513 
514     // Move on to the next element.
515     llvm::Value *nextElement =
516       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
517 
518     // Tell the EH cleanup that we finished with the last element.
519     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
520 
521     // Leave the loop if we're done.
522     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
523                                              "arrayinit.done");
524     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
525     Builder.CreateCondBr(done, endBB, bodyBB);
526     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
527 
528     CGF.EmitBlock(endBB);
529   }
530 
531   // Leave the partial-array cleanup if we entered one.
532   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
533 }
534 
535 //===----------------------------------------------------------------------===//
536 //                            Visitor Methods
537 //===----------------------------------------------------------------------===//
538 
539 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
540   Visit(E->GetTemporaryExpr());
541 }
542 
543 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
544   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
545 }
546 
547 void
548 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
549   if (Dest.isPotentiallyAliased() &&
550       E->getType().isPODType(CGF.getContext())) {
551     // For a POD type, just emit a load of the lvalue + a copy, because our
552     // compound literal might alias the destination.
553     EmitAggLoadOfLValue(E);
554     return;
555   }
556 
557   AggValueSlot Slot = EnsureSlot(E->getType());
558   CGF.EmitAggExpr(E->getInitializer(), Slot);
559 }
560 
561 /// Attempt to look through various unimportant expressions to find a
562 /// cast of the given kind.
563 static Expr *findPeephole(Expr *op, CastKind kind) {
564   while (true) {
565     op = op->IgnoreParens();
566     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
567       if (castE->getCastKind() == kind)
568         return castE->getSubExpr();
569       if (castE->getCastKind() == CK_NoOp)
570         continue;
571     }
572     return nullptr;
573   }
574 }
575 
576 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
577   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
578     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
579   switch (E->getCastKind()) {
580   case CK_Dynamic: {
581     // FIXME: Can this actually happen? We have no test coverage for it.
582     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
583     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
584                                       CodeGenFunction::TCK_Load);
585     // FIXME: Do we also need to handle property references here?
586     if (LV.isSimple())
587       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
588     else
589       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
590 
591     if (!Dest.isIgnored())
592       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
593     break;
594   }
595 
596   case CK_ToUnion: {
597     // Evaluate even if the destination is ignored.
598     if (Dest.isIgnored()) {
599       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
600                       /*ignoreResult=*/true);
601       break;
602     }
603 
604     // GCC union extension
605     QualType Ty = E->getSubExpr()->getType();
606     Address CastPtr =
607       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
608     EmitInitializationToLValue(E->getSubExpr(),
609                                CGF.MakeAddrLValue(CastPtr, Ty));
610     break;
611   }
612 
613   case CK_DerivedToBase:
614   case CK_BaseToDerived:
615   case CK_UncheckedDerivedToBase: {
616     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
617                 "should have been unpacked before we got here");
618   }
619 
620   case CK_NonAtomicToAtomic:
621   case CK_AtomicToNonAtomic: {
622     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
623 
624     // Determine the atomic and value types.
625     QualType atomicType = E->getSubExpr()->getType();
626     QualType valueType = E->getType();
627     if (isToAtomic) std::swap(atomicType, valueType);
628 
629     assert(atomicType->isAtomicType());
630     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
631                           atomicType->castAs<AtomicType>()->getValueType()));
632 
633     // Just recurse normally if we're ignoring the result or the
634     // atomic type doesn't change representation.
635     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
636       return Visit(E->getSubExpr());
637     }
638 
639     CastKind peepholeTarget =
640       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
641 
642     // These two cases are reverses of each other; try to peephole them.
643     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
644       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
645                                                      E->getType()) &&
646            "peephole significantly changed types?");
647       return Visit(op);
648     }
649 
650     // If we're converting an r-value of non-atomic type to an r-value
651     // of atomic type, just emit directly into the relevant sub-object.
652     if (isToAtomic) {
653       AggValueSlot valueDest = Dest;
654       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
655         // Zero-initialize.  (Strictly speaking, we only need to intialize
656         // the padding at the end, but this is simpler.)
657         if (!Dest.isZeroed())
658           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
659 
660         // Build a GEP to refer to the subobject.
661         Address valueAddr =
662             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
663                                         CharUnits());
664         valueDest = AggValueSlot::forAddr(valueAddr,
665                                           valueDest.getQualifiers(),
666                                           valueDest.isExternallyDestructed(),
667                                           valueDest.requiresGCollection(),
668                                           valueDest.isPotentiallyAliased(),
669                                           AggValueSlot::IsZeroed);
670       }
671 
672       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
673       return;
674     }
675 
676     // Otherwise, we're converting an atomic type to a non-atomic type.
677     // Make an atomic temporary, emit into that, and then copy the value out.
678     AggValueSlot atomicSlot =
679       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
680     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
681 
682     Address valueAddr =
683       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
684     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
685     return EmitFinalDestCopy(valueType, rvalue);
686   }
687 
688   case CK_LValueToRValue:
689     // If we're loading from a volatile type, force the destination
690     // into existence.
691     if (E->getSubExpr()->getType().isVolatileQualified()) {
692       EnsureDest(E->getType());
693       return Visit(E->getSubExpr());
694     }
695 
696     // fallthrough
697 
698   case CK_NoOp:
699   case CK_UserDefinedConversion:
700   case CK_ConstructorConversion:
701     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
702                                                    E->getType()) &&
703            "Implicit cast types must be compatible");
704     Visit(E->getSubExpr());
705     break;
706 
707   case CK_LValueBitCast:
708     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
709 
710   case CK_Dependent:
711   case CK_BitCast:
712   case CK_ArrayToPointerDecay:
713   case CK_FunctionToPointerDecay:
714   case CK_NullToPointer:
715   case CK_NullToMemberPointer:
716   case CK_BaseToDerivedMemberPointer:
717   case CK_DerivedToBaseMemberPointer:
718   case CK_MemberPointerToBoolean:
719   case CK_ReinterpretMemberPointer:
720   case CK_IntegralToPointer:
721   case CK_PointerToIntegral:
722   case CK_PointerToBoolean:
723   case CK_ToVoid:
724   case CK_VectorSplat:
725   case CK_IntegralCast:
726   case CK_BooleanToSignedIntegral:
727   case CK_IntegralToBoolean:
728   case CK_IntegralToFloating:
729   case CK_FloatingToIntegral:
730   case CK_FloatingToBoolean:
731   case CK_FloatingCast:
732   case CK_CPointerToObjCPointerCast:
733   case CK_BlockPointerToObjCPointerCast:
734   case CK_AnyPointerToBlockPointerCast:
735   case CK_ObjCObjectLValueCast:
736   case CK_FloatingRealToComplex:
737   case CK_FloatingComplexToReal:
738   case CK_FloatingComplexToBoolean:
739   case CK_FloatingComplexCast:
740   case CK_FloatingComplexToIntegralComplex:
741   case CK_IntegralRealToComplex:
742   case CK_IntegralComplexToReal:
743   case CK_IntegralComplexToBoolean:
744   case CK_IntegralComplexCast:
745   case CK_IntegralComplexToFloatingComplex:
746   case CK_ARCProduceObject:
747   case CK_ARCConsumeObject:
748   case CK_ARCReclaimReturnedObject:
749   case CK_ARCExtendBlockObject:
750   case CK_CopyAndAutoreleaseBlockObject:
751   case CK_BuiltinFnToFnPtr:
752   case CK_ZeroToOCLEvent:
753   case CK_AddressSpaceConversion:
754   case CK_IntToOCLSampler:
755     llvm_unreachable("cast kind invalid for aggregate types");
756   }
757 }
758 
759 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
760   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
761     EmitAggLoadOfLValue(E);
762     return;
763   }
764 
765   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
766   EmitMoveFromReturnSlot(E, RV);
767 }
768 
769 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
770   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
771   EmitMoveFromReturnSlot(E, RV);
772 }
773 
774 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
775   CGF.EmitIgnoredExpr(E->getLHS());
776   Visit(E->getRHS());
777 }
778 
779 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
780   CodeGenFunction::StmtExprEvaluation eval(CGF);
781   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
782 }
783 
784 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
785   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
786     VisitPointerToDataMemberBinaryOperator(E);
787   else
788     CGF.ErrorUnsupported(E, "aggregate binary expression");
789 }
790 
791 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
792                                                     const BinaryOperator *E) {
793   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
794   EmitFinalDestCopy(E->getType(), LV);
795 }
796 
797 /// Is the value of the given expression possibly a reference to or
798 /// into a __block variable?
799 static bool isBlockVarRef(const Expr *E) {
800   // Make sure we look through parens.
801   E = E->IgnoreParens();
802 
803   // Check for a direct reference to a __block variable.
804   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
805     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
806     return (var && var->hasAttr<BlocksAttr>());
807   }
808 
809   // More complicated stuff.
810 
811   // Binary operators.
812   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
813     // For an assignment or pointer-to-member operation, just care
814     // about the LHS.
815     if (op->isAssignmentOp() || op->isPtrMemOp())
816       return isBlockVarRef(op->getLHS());
817 
818     // For a comma, just care about the RHS.
819     if (op->getOpcode() == BO_Comma)
820       return isBlockVarRef(op->getRHS());
821 
822     // FIXME: pointer arithmetic?
823     return false;
824 
825   // Check both sides of a conditional operator.
826   } else if (const AbstractConditionalOperator *op
827                = dyn_cast<AbstractConditionalOperator>(E)) {
828     return isBlockVarRef(op->getTrueExpr())
829         || isBlockVarRef(op->getFalseExpr());
830 
831   // OVEs are required to support BinaryConditionalOperators.
832   } else if (const OpaqueValueExpr *op
833                = dyn_cast<OpaqueValueExpr>(E)) {
834     if (const Expr *src = op->getSourceExpr())
835       return isBlockVarRef(src);
836 
837   // Casts are necessary to get things like (*(int*)&var) = foo().
838   // We don't really care about the kind of cast here, except
839   // we don't want to look through l2r casts, because it's okay
840   // to get the *value* in a __block variable.
841   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
842     if (cast->getCastKind() == CK_LValueToRValue)
843       return false;
844     return isBlockVarRef(cast->getSubExpr());
845 
846   // Handle unary operators.  Again, just aggressively look through
847   // it, ignoring the operation.
848   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
849     return isBlockVarRef(uop->getSubExpr());
850 
851   // Look into the base of a field access.
852   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
853     return isBlockVarRef(mem->getBase());
854 
855   // Look into the base of a subscript.
856   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
857     return isBlockVarRef(sub->getBase());
858   }
859 
860   return false;
861 }
862 
863 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
864   // For an assignment to work, the value on the right has
865   // to be compatible with the value on the left.
866   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
867                                                  E->getRHS()->getType())
868          && "Invalid assignment");
869 
870   // If the LHS might be a __block variable, and the RHS can
871   // potentially cause a block copy, we need to evaluate the RHS first
872   // so that the assignment goes the right place.
873   // This is pretty semantically fragile.
874   if (isBlockVarRef(E->getLHS()) &&
875       E->getRHS()->HasSideEffects(CGF.getContext())) {
876     // Ensure that we have a destination, and evaluate the RHS into that.
877     EnsureDest(E->getRHS()->getType());
878     Visit(E->getRHS());
879 
880     // Now emit the LHS and copy into it.
881     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
882 
883     // That copy is an atomic copy if the LHS is atomic.
884     if (LHS.getType()->isAtomicType() ||
885         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
886       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
887       return;
888     }
889 
890     EmitCopy(E->getLHS()->getType(),
891              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
892                                      needsGC(E->getLHS()->getType()),
893                                      AggValueSlot::IsAliased),
894              Dest);
895     return;
896   }
897 
898   LValue LHS = CGF.EmitLValue(E->getLHS());
899 
900   // If we have an atomic type, evaluate into the destination and then
901   // do an atomic copy.
902   if (LHS.getType()->isAtomicType() ||
903       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
904     EnsureDest(E->getRHS()->getType());
905     Visit(E->getRHS());
906     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
907     return;
908   }
909 
910   // Codegen the RHS so that it stores directly into the LHS.
911   AggValueSlot LHSSlot =
912     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
913                             needsGC(E->getLHS()->getType()),
914                             AggValueSlot::IsAliased);
915   // A non-volatile aggregate destination might have volatile member.
916   if (!LHSSlot.isVolatile() &&
917       CGF.hasVolatileMember(E->getLHS()->getType()))
918     LHSSlot.setVolatile(true);
919 
920   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
921 
922   // Copy into the destination if the assignment isn't ignored.
923   EmitFinalDestCopy(E->getType(), LHS);
924 }
925 
926 void AggExprEmitter::
927 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
928   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
929   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
930   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
931 
932   // Bind the common expression if necessary.
933   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
934 
935   CodeGenFunction::ConditionalEvaluation eval(CGF);
936   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
937                            CGF.getProfileCount(E));
938 
939   // Save whether the destination's lifetime is externally managed.
940   bool isExternallyDestructed = Dest.isExternallyDestructed();
941 
942   eval.begin(CGF);
943   CGF.EmitBlock(LHSBlock);
944   CGF.incrementProfileCounter(E);
945   Visit(E->getTrueExpr());
946   eval.end(CGF);
947 
948   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
949   CGF.Builder.CreateBr(ContBlock);
950 
951   // If the result of an agg expression is unused, then the emission
952   // of the LHS might need to create a destination slot.  That's fine
953   // with us, and we can safely emit the RHS into the same slot, but
954   // we shouldn't claim that it's already being destructed.
955   Dest.setExternallyDestructed(isExternallyDestructed);
956 
957   eval.begin(CGF);
958   CGF.EmitBlock(RHSBlock);
959   Visit(E->getFalseExpr());
960   eval.end(CGF);
961 
962   CGF.EmitBlock(ContBlock);
963 }
964 
965 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
966   Visit(CE->getChosenSubExpr());
967 }
968 
969 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
970   Address ArgValue = Address::invalid();
971   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
972 
973   // If EmitVAArg fails, emit an error.
974   if (!ArgPtr.isValid()) {
975     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
976     return;
977   }
978 
979   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
980 }
981 
982 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
983   // Ensure that we have a slot, but if we already do, remember
984   // whether it was externally destructed.
985   bool wasExternallyDestructed = Dest.isExternallyDestructed();
986   EnsureDest(E->getType());
987 
988   // We're going to push a destructor if there isn't already one.
989   Dest.setExternallyDestructed();
990 
991   Visit(E->getSubExpr());
992 
993   // Push that destructor we promised.
994   if (!wasExternallyDestructed)
995     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
996 }
997 
998 void
999 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1000   AggValueSlot Slot = EnsureSlot(E->getType());
1001   CGF.EmitCXXConstructExpr(E, Slot);
1002 }
1003 
1004 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1005     const CXXInheritedCtorInitExpr *E) {
1006   AggValueSlot Slot = EnsureSlot(E->getType());
1007   CGF.EmitInheritedCXXConstructorCall(
1008       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1009       E->inheritedFromVBase(), E);
1010 }
1011 
1012 void
1013 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1014   AggValueSlot Slot = EnsureSlot(E->getType());
1015   CGF.EmitLambdaExpr(E, Slot);
1016 }
1017 
1018 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1019   CGF.enterFullExpression(E);
1020   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1021   Visit(E->getSubExpr());
1022 }
1023 
1024 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1025   QualType T = E->getType();
1026   AggValueSlot Slot = EnsureSlot(T);
1027   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1028 }
1029 
1030 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1031   QualType T = E->getType();
1032   AggValueSlot Slot = EnsureSlot(T);
1033   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1034 }
1035 
1036 /// isSimpleZero - If emitting this value will obviously just cause a store of
1037 /// zero to memory, return true.  This can return false if uncertain, so it just
1038 /// handles simple cases.
1039 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1040   E = E->IgnoreParens();
1041 
1042   // 0
1043   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1044     return IL->getValue() == 0;
1045   // +0.0
1046   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1047     return FL->getValue().isPosZero();
1048   // int()
1049   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1050       CGF.getTypes().isZeroInitializable(E->getType()))
1051     return true;
1052   // (int*)0 - Null pointer expressions.
1053   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1054     return ICE->getCastKind() == CK_NullToPointer &&
1055         CGF.getTypes().isPointerZeroInitializable(E->getType());
1056   // '\0'
1057   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1058     return CL->getValue() == 0;
1059 
1060   // Otherwise, hard case: conservatively return false.
1061   return false;
1062 }
1063 
1064 
1065 void
1066 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1067   QualType type = LV.getType();
1068   // FIXME: Ignore result?
1069   // FIXME: Are initializers affected by volatile?
1070   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1071     // Storing "i32 0" to a zero'd memory location is a noop.
1072     return;
1073   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1074     return EmitNullInitializationToLValue(LV);
1075   } else if (isa<NoInitExpr>(E)) {
1076     // Do nothing.
1077     return;
1078   } else if (type->isReferenceType()) {
1079     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1080     return CGF.EmitStoreThroughLValue(RV, LV);
1081   }
1082 
1083   switch (CGF.getEvaluationKind(type)) {
1084   case TEK_Complex:
1085     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1086     return;
1087   case TEK_Aggregate:
1088     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1089                                                AggValueSlot::IsDestructed,
1090                                       AggValueSlot::DoesNotNeedGCBarriers,
1091                                                AggValueSlot::IsNotAliased,
1092                                                Dest.isZeroed()));
1093     return;
1094   case TEK_Scalar:
1095     if (LV.isSimple()) {
1096       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1097     } else {
1098       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1099     }
1100     return;
1101   }
1102   llvm_unreachable("bad evaluation kind");
1103 }
1104 
1105 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1106   QualType type = lv.getType();
1107 
1108   // If the destination slot is already zeroed out before the aggregate is
1109   // copied into it, we don't have to emit any zeros here.
1110   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1111     return;
1112 
1113   if (CGF.hasScalarEvaluationKind(type)) {
1114     // For non-aggregates, we can store the appropriate null constant.
1115     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1116     // Note that the following is not equivalent to
1117     // EmitStoreThroughBitfieldLValue for ARC types.
1118     if (lv.isBitField()) {
1119       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1120     } else {
1121       assert(lv.isSimple());
1122       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1123     }
1124   } else {
1125     // There's a potential optimization opportunity in combining
1126     // memsets; that would be easy for arrays, but relatively
1127     // difficult for structures with the current code.
1128     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1129   }
1130 }
1131 
1132 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1133 #if 0
1134   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1135   // (Length of globals? Chunks of zeroed-out space?).
1136   //
1137   // If we can, prefer a copy from a global; this is a lot less code for long
1138   // globals, and it's easier for the current optimizers to analyze.
1139   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1140     llvm::GlobalVariable* GV =
1141     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1142                              llvm::GlobalValue::InternalLinkage, C, "");
1143     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1144     return;
1145   }
1146 #endif
1147   if (E->hadArrayRangeDesignator())
1148     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1149 
1150   if (E->isTransparent())
1151     return Visit(E->getInit(0));
1152 
1153   AggValueSlot Dest = EnsureSlot(E->getType());
1154 
1155   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1156 
1157   // Handle initialization of an array.
1158   if (E->getType()->isArrayType()) {
1159     QualType elementType =
1160         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1161 
1162     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1163     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1164     return;
1165   }
1166 
1167   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1168 
1169   // Do struct initialization; this code just sets each individual member
1170   // to the approprate value.  This makes bitfield support automatic;
1171   // the disadvantage is that the generated code is more difficult for
1172   // the optimizer, especially with bitfields.
1173   unsigned NumInitElements = E->getNumInits();
1174   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1175 
1176   // We'll need to enter cleanup scopes in case any of the element
1177   // initializers throws an exception.
1178   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1179   llvm::Instruction *cleanupDominator = nullptr;
1180 
1181   unsigned curInitIndex = 0;
1182 
1183   // Emit initialization of base classes.
1184   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1185     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1186            "missing initializer for base class");
1187     for (auto &Base : CXXRD->bases()) {
1188       assert(!Base.isVirtual() && "should not see vbases here");
1189       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1190       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1191           Dest.getAddress(), CXXRD, BaseRD,
1192           /*isBaseVirtual*/ false);
1193       AggValueSlot AggSlot =
1194         AggValueSlot::forAddr(V, Qualifiers(),
1195                               AggValueSlot::IsDestructed,
1196                               AggValueSlot::DoesNotNeedGCBarriers,
1197                               AggValueSlot::IsNotAliased);
1198       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1199 
1200       if (QualType::DestructionKind dtorKind =
1201               Base.getType().isDestructedType()) {
1202         CGF.pushDestroy(dtorKind, V, Base.getType());
1203         cleanups.push_back(CGF.EHStack.stable_begin());
1204       }
1205     }
1206   }
1207 
1208   // Prepare a 'this' for CXXDefaultInitExprs.
1209   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1210 
1211   if (record->isUnion()) {
1212     // Only initialize one field of a union. The field itself is
1213     // specified by the initializer list.
1214     if (!E->getInitializedFieldInUnion()) {
1215       // Empty union; we have nothing to do.
1216 
1217 #ifndef NDEBUG
1218       // Make sure that it's really an empty and not a failure of
1219       // semantic analysis.
1220       for (const auto *Field : record->fields())
1221         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1222 #endif
1223       return;
1224     }
1225 
1226     // FIXME: volatility
1227     FieldDecl *Field = E->getInitializedFieldInUnion();
1228 
1229     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1230     if (NumInitElements) {
1231       // Store the initializer into the field
1232       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1233     } else {
1234       // Default-initialize to null.
1235       EmitNullInitializationToLValue(FieldLoc);
1236     }
1237 
1238     return;
1239   }
1240 
1241   // Here we iterate over the fields; this makes it simpler to both
1242   // default-initialize fields and skip over unnamed fields.
1243   for (const auto *field : record->fields()) {
1244     // We're done once we hit the flexible array member.
1245     if (field->getType()->isIncompleteArrayType())
1246       break;
1247 
1248     // Always skip anonymous bitfields.
1249     if (field->isUnnamedBitfield())
1250       continue;
1251 
1252     // We're done if we reach the end of the explicit initializers, we
1253     // have a zeroed object, and the rest of the fields are
1254     // zero-initializable.
1255     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1256         CGF.getTypes().isZeroInitializable(E->getType()))
1257       break;
1258 
1259 
1260     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1261     // We never generate write-barries for initialized fields.
1262     LV.setNonGC(true);
1263 
1264     if (curInitIndex < NumInitElements) {
1265       // Store the initializer into the field.
1266       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1267     } else {
1268       // We're out of initalizers; default-initialize to null
1269       EmitNullInitializationToLValue(LV);
1270     }
1271 
1272     // Push a destructor if necessary.
1273     // FIXME: if we have an array of structures, all explicitly
1274     // initialized, we can end up pushing a linear number of cleanups.
1275     bool pushedCleanup = false;
1276     if (QualType::DestructionKind dtorKind
1277           = field->getType().isDestructedType()) {
1278       assert(LV.isSimple());
1279       if (CGF.needsEHCleanup(dtorKind)) {
1280         if (!cleanupDominator)
1281           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1282               CGF.Int8Ty,
1283               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1284               CharUnits::One()); // placeholder
1285 
1286         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1287                         CGF.getDestroyer(dtorKind), false);
1288         cleanups.push_back(CGF.EHStack.stable_begin());
1289         pushedCleanup = true;
1290       }
1291     }
1292 
1293     // If the GEP didn't get used because of a dead zero init or something
1294     // else, clean it up for -O0 builds and general tidiness.
1295     if (!pushedCleanup && LV.isSimple())
1296       if (llvm::GetElementPtrInst *GEP =
1297             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1298         if (GEP->use_empty())
1299           GEP->eraseFromParent();
1300   }
1301 
1302   // Deactivate all the partial cleanups in reverse order, which
1303   // generally means popping them.
1304   for (unsigned i = cleanups.size(); i != 0; --i)
1305     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1306 
1307   // Destroy the placeholder if we made one.
1308   if (cleanupDominator)
1309     cleanupDominator->eraseFromParent();
1310 }
1311 
1312 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
1313   // Emit the common subexpression.
1314   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1315 
1316   Address destPtr = EnsureSlot(E->getType()).getAddress();
1317   uint64_t numElements = E->getArraySize().getZExtValue();
1318 
1319   if (!numElements)
1320     return;
1321 
1322   // FIXME: Dig through nested ArrayInitLoopExprs to find the overall array
1323   // size, and only emit a single loop for a multidimensional array.
1324 
1325   // destPtr is an array*. Construct an elementType* by drilling down a level.
1326   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1327   llvm::Value *indices[] = {zero, zero};
1328   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1329                                                  "arrayinit.begin");
1330 
1331   QualType elementType = E->getSubExpr()->getType();
1332   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1333   CharUnits elementAlign =
1334       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1335 
1336   // Prepare for a cleanup.
1337   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1338   Address endOfInit = Address::invalid();
1339   EHScopeStack::stable_iterator cleanup;
1340   llvm::Instruction *cleanupDominator = nullptr;
1341   if (CGF.needsEHCleanup(dtorKind)) {
1342     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
1343                                      "arrayinit.endOfInit");
1344     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
1345                                          elementAlign,
1346                                          CGF.getDestroyer(dtorKind));
1347     cleanup = CGF.EHStack.stable_begin();
1348   } else {
1349     dtorKind = QualType::DK_none;
1350   }
1351 
1352   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1353   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1354 
1355   // Jump into the body.
1356   CGF.EmitBlock(bodyBB);
1357   llvm::PHINode *index =
1358       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1359   index->addIncoming(zero, entryBB);
1360   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1361 
1362   // Tell the EH cleanup that we finished with the last element.
1363   if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
1364 
1365   // Emit the actual filler expression.
1366   {
1367     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1368     LValue elementLV =
1369         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1370     EmitInitializationToLValue(E->getSubExpr(), elementLV);
1371   }
1372 
1373   // Move on to the next element.
1374   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1375       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1376   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1377 
1378   // Leave the loop if we're done.
1379   llvm::Value *done = Builder.CreateICmpEQ(
1380       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1381       "arrayinit.done");
1382   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1383   Builder.CreateCondBr(done, endBB, bodyBB);
1384 
1385   CGF.EmitBlock(endBB);
1386 
1387   // Leave the partial-array cleanup if we entered one.
1388   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
1389 }
1390 
1391 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1392   AggValueSlot Dest = EnsureSlot(E->getType());
1393 
1394   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1395   EmitInitializationToLValue(E->getBase(), DestLV);
1396   VisitInitListExpr(E->getUpdater());
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 //                        Entry Points into this File
1401 //===----------------------------------------------------------------------===//
1402 
1403 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1404 /// non-zero bytes that will be stored when outputting the initializer for the
1405 /// specified initializer expression.
1406 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1407   E = E->IgnoreParens();
1408 
1409   // 0 and 0.0 won't require any non-zero stores!
1410   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1411 
1412   // If this is an initlist expr, sum up the size of sizes of the (present)
1413   // elements.  If this is something weird, assume the whole thing is non-zero.
1414   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1415   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1416     return CGF.getContext().getTypeSizeInChars(E->getType());
1417 
1418   // InitListExprs for structs have to be handled carefully.  If there are
1419   // reference members, we need to consider the size of the reference, not the
1420   // referencee.  InitListExprs for unions and arrays can't have references.
1421   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1422     if (!RT->isUnionType()) {
1423       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1424       CharUnits NumNonZeroBytes = CharUnits::Zero();
1425 
1426       unsigned ILEElement = 0;
1427       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1428         while (ILEElement != CXXRD->getNumBases())
1429           NumNonZeroBytes +=
1430               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1431       for (const auto *Field : SD->fields()) {
1432         // We're done once we hit the flexible array member or run out of
1433         // InitListExpr elements.
1434         if (Field->getType()->isIncompleteArrayType() ||
1435             ILEElement == ILE->getNumInits())
1436           break;
1437         if (Field->isUnnamedBitfield())
1438           continue;
1439 
1440         const Expr *E = ILE->getInit(ILEElement++);
1441 
1442         // Reference values are always non-null and have the width of a pointer.
1443         if (Field->getType()->isReferenceType())
1444           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1445               CGF.getTarget().getPointerWidth(0));
1446         else
1447           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1448       }
1449 
1450       return NumNonZeroBytes;
1451     }
1452   }
1453 
1454 
1455   CharUnits NumNonZeroBytes = CharUnits::Zero();
1456   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1457     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1458   return NumNonZeroBytes;
1459 }
1460 
1461 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1462 /// zeros in it, emit a memset and avoid storing the individual zeros.
1463 ///
1464 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1465                                      CodeGenFunction &CGF) {
1466   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1467   // volatile stores.
1468   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1469     return;
1470 
1471   // C++ objects with a user-declared constructor don't need zero'ing.
1472   if (CGF.getLangOpts().CPlusPlus)
1473     if (const RecordType *RT = CGF.getContext()
1474                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1475       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1476       if (RD->hasUserDeclaredConstructor())
1477         return;
1478     }
1479 
1480   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1481   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1482   if (Size <= CharUnits::fromQuantity(16))
1483     return;
1484 
1485   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1486   // we prefer to emit memset + individual stores for the rest.
1487   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1488   if (NumNonZeroBytes*4 > Size)
1489     return;
1490 
1491   // Okay, it seems like a good idea to use an initial memset, emit the call.
1492   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1493 
1494   Address Loc = Slot.getAddress();
1495   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1496   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1497 
1498   // Tell the AggExprEmitter that the slot is known zero.
1499   Slot.setZeroed();
1500 }
1501 
1502 
1503 
1504 
1505 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1506 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1507 /// the value of the aggregate expression is not needed.  If VolatileDest is
1508 /// true, DestPtr cannot be 0.
1509 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1510   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1511          "Invalid aggregate expression to emit");
1512   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1513          "slot has bits but no address");
1514 
1515   // Optimize the slot if possible.
1516   CheckAggExprForMemSetUse(Slot, E, *this);
1517 
1518   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1519 }
1520 
1521 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1522   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1523   Address Temp = CreateMemTemp(E->getType());
1524   LValue LV = MakeAddrLValue(Temp, E->getType());
1525   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1526                                          AggValueSlot::DoesNotNeedGCBarriers,
1527                                          AggValueSlot::IsNotAliased));
1528   return LV;
1529 }
1530 
1531 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1532                                         Address SrcPtr, QualType Ty,
1533                                         bool isVolatile,
1534                                         bool isAssignment) {
1535   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1536 
1537   if (getLangOpts().CPlusPlus) {
1538     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1539       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1540       assert((Record->hasTrivialCopyConstructor() ||
1541               Record->hasTrivialCopyAssignment() ||
1542               Record->hasTrivialMoveConstructor() ||
1543               Record->hasTrivialMoveAssignment() ||
1544               Record->isUnion()) &&
1545              "Trying to aggregate-copy a type without a trivial copy/move "
1546              "constructor or assignment operator");
1547       // Ignore empty classes in C++.
1548       if (Record->isEmpty())
1549         return;
1550     }
1551   }
1552 
1553   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1554   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1555   // read from another object that overlaps in anyway the storage of the first
1556   // object, then the overlap shall be exact and the two objects shall have
1557   // qualified or unqualified versions of a compatible type."
1558   //
1559   // memcpy is not defined if the source and destination pointers are exactly
1560   // equal, but other compilers do this optimization, and almost every memcpy
1561   // implementation handles this case safely.  If there is a libc that does not
1562   // safely handle this, we can add a target hook.
1563 
1564   // Get data size info for this aggregate. If this is an assignment,
1565   // don't copy the tail padding, because we might be assigning into a
1566   // base subobject where the tail padding is claimed.  Otherwise,
1567   // copying it is fine.
1568   std::pair<CharUnits, CharUnits> TypeInfo;
1569   if (isAssignment)
1570     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1571   else
1572     TypeInfo = getContext().getTypeInfoInChars(Ty);
1573 
1574   llvm::Value *SizeVal = nullptr;
1575   if (TypeInfo.first.isZero()) {
1576     // But note that getTypeInfo returns 0 for a VLA.
1577     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1578             getContext().getAsArrayType(Ty))) {
1579       QualType BaseEltTy;
1580       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1581       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1582       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1583       if (!isAssignment)
1584         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1585       assert(!TypeInfo.first.isZero());
1586       SizeVal = Builder.CreateNUWMul(
1587           SizeVal,
1588           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1589       if (!isAssignment) {
1590         SizeVal = Builder.CreateNUWSub(
1591             SizeVal,
1592             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1593         SizeVal = Builder.CreateNUWAdd(
1594             SizeVal, llvm::ConstantInt::get(
1595                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1596       }
1597     }
1598   }
1599   if (!SizeVal) {
1600     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1601   }
1602 
1603   // FIXME: If we have a volatile struct, the optimizer can remove what might
1604   // appear to be `extra' memory ops:
1605   //
1606   // volatile struct { int i; } a, b;
1607   //
1608   // int main() {
1609   //   a = b;
1610   //   a = b;
1611   // }
1612   //
1613   // we need to use a different call here.  We use isVolatile to indicate when
1614   // either the source or the destination is volatile.
1615 
1616   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1617   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1618 
1619   // Don't do any of the memmove_collectable tests if GC isn't set.
1620   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1621     // fall through
1622   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1623     RecordDecl *Record = RecordTy->getDecl();
1624     if (Record->hasObjectMember()) {
1625       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1626                                                     SizeVal);
1627       return;
1628     }
1629   } else if (Ty->isArrayType()) {
1630     QualType BaseType = getContext().getBaseElementType(Ty);
1631     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1632       if (RecordTy->getDecl()->hasObjectMember()) {
1633         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1634                                                       SizeVal);
1635         return;
1636       }
1637     }
1638   }
1639 
1640   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1641 
1642   // Determine the metadata to describe the position of any padding in this
1643   // memcpy, as well as the TBAA tags for the members of the struct, in case
1644   // the optimizer wishes to expand it in to scalar memory operations.
1645   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1646     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1647 }
1648