1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 168 llvm::Value *outerBegin = nullptr); 169 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 170 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 171 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 172 Visit(DAE->getExpr()); 173 } 174 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 175 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 176 Visit(DIE->getExpr()); 177 } 178 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 179 void VisitCXXConstructExpr(const CXXConstructExpr *E); 180 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 181 void VisitLambdaExpr(LambdaExpr *E); 182 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 183 void VisitExprWithCleanups(ExprWithCleanups *E); 184 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 185 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 186 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 187 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 188 189 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 190 if (E->isGLValue()) { 191 LValue LV = CGF.EmitPseudoObjectLValue(E); 192 return EmitFinalDestCopy(E->getType(), LV); 193 } 194 195 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 196 } 197 198 void VisitVAArgExpr(VAArgExpr *E); 199 200 void EmitInitializationToLValue(Expr *E, LValue Address); 201 void EmitNullInitializationToLValue(LValue Address); 202 // case Expr::ChooseExprClass: 203 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 204 void VisitAtomicExpr(AtomicExpr *E) { 205 RValue Res = CGF.EmitAtomicExpr(E); 206 EmitFinalDestCopy(E->getType(), Res); 207 } 208 }; 209 } // end anonymous namespace. 210 211 //===----------------------------------------------------------------------===// 212 // Utilities 213 //===----------------------------------------------------------------------===// 214 215 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 216 /// represents a value lvalue, this method emits the address of the lvalue, 217 /// then loads the result into DestPtr. 218 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 219 LValue LV = CGF.EmitLValue(E); 220 221 // If the type of the l-value is atomic, then do an atomic load. 222 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 223 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 224 return; 225 } 226 227 EmitFinalDestCopy(E->getType(), LV); 228 } 229 230 /// \brief True if the given aggregate type requires special GC API calls. 231 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 232 // Only record types have members that might require garbage collection. 233 const RecordType *RecordTy = T->getAs<RecordType>(); 234 if (!RecordTy) return false; 235 236 // Don't mess with non-trivial C++ types. 237 RecordDecl *Record = RecordTy->getDecl(); 238 if (isa<CXXRecordDecl>(Record) && 239 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 240 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 241 return false; 242 243 // Check whether the type has an object member. 244 return Record->hasObjectMember(); 245 } 246 247 /// \brief Perform the final move to DestPtr if for some reason 248 /// getReturnValueSlot() didn't use it directly. 249 /// 250 /// The idea is that you do something like this: 251 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 252 /// EmitMoveFromReturnSlot(E, Result); 253 /// 254 /// If nothing interferes, this will cause the result to be emitted 255 /// directly into the return value slot. Otherwise, a final move 256 /// will be performed. 257 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 258 if (shouldUseDestForReturnSlot()) { 259 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 260 // The possibility of undef rvalues complicates that a lot, 261 // though, so we can't really assert. 262 return; 263 } 264 265 // Otherwise, copy from there to the destination. 266 assert(Dest.getPointer() != src.getAggregatePointer()); 267 EmitFinalDestCopy(E->getType(), src); 268 } 269 270 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 271 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 272 assert(src.isAggregate() && "value must be aggregate value!"); 273 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 274 EmitFinalDestCopy(type, srcLV); 275 } 276 277 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 278 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 279 // If Dest is ignored, then we're evaluating an aggregate expression 280 // in a context that doesn't care about the result. Note that loads 281 // from volatile l-values force the existence of a non-ignored 282 // destination. 283 if (Dest.isIgnored()) 284 return; 285 286 AggValueSlot srcAgg = 287 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 288 needsGC(type), AggValueSlot::IsAliased); 289 EmitCopy(type, Dest, srcAgg); 290 } 291 292 /// Perform a copy from the source into the destination. 293 /// 294 /// \param type - the type of the aggregate being copied; qualifiers are 295 /// ignored 296 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 297 const AggValueSlot &src) { 298 if (dest.requiresGCollection()) { 299 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 300 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 301 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 302 dest.getAddress(), 303 src.getAddress(), 304 size); 305 return; 306 } 307 308 // If the result of the assignment is used, copy the LHS there also. 309 // It's volatile if either side is. Use the minimum alignment of 310 // the two sides. 311 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 312 dest.isVolatile() || src.isVolatile()); 313 } 314 315 /// \brief Emit the initializer for a std::initializer_list initialized with a 316 /// real initializer list. 317 void 318 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 319 // Emit an array containing the elements. The array is externally destructed 320 // if the std::initializer_list object is. 321 ASTContext &Ctx = CGF.getContext(); 322 LValue Array = CGF.EmitLValue(E->getSubExpr()); 323 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 324 Address ArrayPtr = Array.getAddress(); 325 326 const ConstantArrayType *ArrayType = 327 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 328 assert(ArrayType && "std::initializer_list constructed from non-array"); 329 330 // FIXME: Perform the checks on the field types in SemaInit. 331 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 332 RecordDecl::field_iterator Field = Record->field_begin(); 333 if (Field == Record->field_end()) { 334 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 335 return; 336 } 337 338 // Start pointer. 339 if (!Field->getType()->isPointerType() || 340 !Ctx.hasSameType(Field->getType()->getPointeeType(), 341 ArrayType->getElementType())) { 342 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 343 return; 344 } 345 346 AggValueSlot Dest = EnsureSlot(E->getType()); 347 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 348 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 349 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 350 llvm::Value *IdxStart[] = { Zero, Zero }; 351 llvm::Value *ArrayStart = 352 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 353 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 354 ++Field; 355 356 if (Field == Record->field_end()) { 357 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 358 return; 359 } 360 361 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 362 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 363 if (Field->getType()->isPointerType() && 364 Ctx.hasSameType(Field->getType()->getPointeeType(), 365 ArrayType->getElementType())) { 366 // End pointer. 367 llvm::Value *IdxEnd[] = { Zero, Size }; 368 llvm::Value *ArrayEnd = 369 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 370 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 371 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 372 // Length. 373 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 374 } else { 375 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 376 return; 377 } 378 } 379 380 /// \brief Determine if E is a trivial array filler, that is, one that is 381 /// equivalent to zero-initialization. 382 static bool isTrivialFiller(Expr *E) { 383 if (!E) 384 return true; 385 386 if (isa<ImplicitValueInitExpr>(E)) 387 return true; 388 389 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 390 if (ILE->getNumInits()) 391 return false; 392 return isTrivialFiller(ILE->getArrayFiller()); 393 } 394 395 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 396 return Cons->getConstructor()->isDefaultConstructor() && 397 Cons->getConstructor()->isTrivial(); 398 399 // FIXME: Are there other cases where we can avoid emitting an initializer? 400 return false; 401 } 402 403 /// \brief Emit initialization of an array from an initializer list. 404 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 405 QualType elementType, InitListExpr *E) { 406 uint64_t NumInitElements = E->getNumInits(); 407 408 uint64_t NumArrayElements = AType->getNumElements(); 409 assert(NumInitElements <= NumArrayElements); 410 411 // DestPtr is an array*. Construct an elementType* by drilling 412 // down a level. 413 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 414 llvm::Value *indices[] = { zero, zero }; 415 llvm::Value *begin = 416 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 417 418 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 419 CharUnits elementAlign = 420 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 421 422 // Exception safety requires us to destroy all the 423 // already-constructed members if an initializer throws. 424 // For that, we'll need an EH cleanup. 425 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 426 Address endOfInit = Address::invalid(); 427 EHScopeStack::stable_iterator cleanup; 428 llvm::Instruction *cleanupDominator = nullptr; 429 if (CGF.needsEHCleanup(dtorKind)) { 430 // In principle we could tell the cleanup where we are more 431 // directly, but the control flow can get so varied here that it 432 // would actually be quite complex. Therefore we go through an 433 // alloca. 434 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 435 "arrayinit.endOfInit"); 436 cleanupDominator = Builder.CreateStore(begin, endOfInit); 437 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 438 elementAlign, 439 CGF.getDestroyer(dtorKind)); 440 cleanup = CGF.EHStack.stable_begin(); 441 442 // Otherwise, remember that we didn't need a cleanup. 443 } else { 444 dtorKind = QualType::DK_none; 445 } 446 447 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 448 449 // The 'current element to initialize'. The invariants on this 450 // variable are complicated. Essentially, after each iteration of 451 // the loop, it points to the last initialized element, except 452 // that it points to the beginning of the array before any 453 // elements have been initialized. 454 llvm::Value *element = begin; 455 456 // Emit the explicit initializers. 457 for (uint64_t i = 0; i != NumInitElements; ++i) { 458 // Advance to the next element. 459 if (i > 0) { 460 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 461 462 // Tell the cleanup that it needs to destroy up to this 463 // element. TODO: some of these stores can be trivially 464 // observed to be unnecessary. 465 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 466 } 467 468 LValue elementLV = 469 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 470 EmitInitializationToLValue(E->getInit(i), elementLV); 471 } 472 473 // Check whether there's a non-trivial array-fill expression. 474 Expr *filler = E->getArrayFiller(); 475 bool hasTrivialFiller = isTrivialFiller(filler); 476 477 // Any remaining elements need to be zero-initialized, possibly 478 // using the filler expression. We can skip this if the we're 479 // emitting to zeroed memory. 480 if (NumInitElements != NumArrayElements && 481 !(Dest.isZeroed() && hasTrivialFiller && 482 CGF.getTypes().isZeroInitializable(elementType))) { 483 484 // Use an actual loop. This is basically 485 // do { *array++ = filler; } while (array != end); 486 487 // Advance to the start of the rest of the array. 488 if (NumInitElements) { 489 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 490 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 491 } 492 493 // Compute the end of the array. 494 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 495 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 496 "arrayinit.end"); 497 498 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 499 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 500 501 // Jump into the body. 502 CGF.EmitBlock(bodyBB); 503 llvm::PHINode *currentElement = 504 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 505 currentElement->addIncoming(element, entryBB); 506 507 // Emit the actual filler expression. 508 LValue elementLV = 509 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 510 if (filler) 511 EmitInitializationToLValue(filler, elementLV); 512 else 513 EmitNullInitializationToLValue(elementLV); 514 515 // Move on to the next element. 516 llvm::Value *nextElement = 517 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 518 519 // Tell the EH cleanup that we finished with the last element. 520 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 521 522 // Leave the loop if we're done. 523 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 524 "arrayinit.done"); 525 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 526 Builder.CreateCondBr(done, endBB, bodyBB); 527 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 528 529 CGF.EmitBlock(endBB); 530 } 531 532 // Leave the partial-array cleanup if we entered one. 533 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // Visitor Methods 538 //===----------------------------------------------------------------------===// 539 540 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 541 Visit(E->GetTemporaryExpr()); 542 } 543 544 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 545 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 546 } 547 548 void 549 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 550 if (Dest.isPotentiallyAliased() && 551 E->getType().isPODType(CGF.getContext())) { 552 // For a POD type, just emit a load of the lvalue + a copy, because our 553 // compound literal might alias the destination. 554 EmitAggLoadOfLValue(E); 555 return; 556 } 557 558 AggValueSlot Slot = EnsureSlot(E->getType()); 559 CGF.EmitAggExpr(E->getInitializer(), Slot); 560 } 561 562 /// Attempt to look through various unimportant expressions to find a 563 /// cast of the given kind. 564 static Expr *findPeephole(Expr *op, CastKind kind) { 565 while (true) { 566 op = op->IgnoreParens(); 567 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 568 if (castE->getCastKind() == kind) 569 return castE->getSubExpr(); 570 if (castE->getCastKind() == CK_NoOp) 571 continue; 572 } 573 return nullptr; 574 } 575 } 576 577 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 578 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 579 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 580 switch (E->getCastKind()) { 581 case CK_Dynamic: { 582 // FIXME: Can this actually happen? We have no test coverage for it. 583 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 584 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 585 CodeGenFunction::TCK_Load); 586 // FIXME: Do we also need to handle property references here? 587 if (LV.isSimple()) 588 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 589 else 590 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 591 592 if (!Dest.isIgnored()) 593 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 594 break; 595 } 596 597 case CK_ToUnion: { 598 // Evaluate even if the destination is ignored. 599 if (Dest.isIgnored()) { 600 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 601 /*ignoreResult=*/true); 602 break; 603 } 604 605 // GCC union extension 606 QualType Ty = E->getSubExpr()->getType(); 607 Address CastPtr = 608 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 609 EmitInitializationToLValue(E->getSubExpr(), 610 CGF.MakeAddrLValue(CastPtr, Ty)); 611 break; 612 } 613 614 case CK_DerivedToBase: 615 case CK_BaseToDerived: 616 case CK_UncheckedDerivedToBase: { 617 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 618 "should have been unpacked before we got here"); 619 } 620 621 case CK_NonAtomicToAtomic: 622 case CK_AtomicToNonAtomic: { 623 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 624 625 // Determine the atomic and value types. 626 QualType atomicType = E->getSubExpr()->getType(); 627 QualType valueType = E->getType(); 628 if (isToAtomic) std::swap(atomicType, valueType); 629 630 assert(atomicType->isAtomicType()); 631 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 632 atomicType->castAs<AtomicType>()->getValueType())); 633 634 // Just recurse normally if we're ignoring the result or the 635 // atomic type doesn't change representation. 636 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 637 return Visit(E->getSubExpr()); 638 } 639 640 CastKind peepholeTarget = 641 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 642 643 // These two cases are reverses of each other; try to peephole them. 644 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 645 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 646 E->getType()) && 647 "peephole significantly changed types?"); 648 return Visit(op); 649 } 650 651 // If we're converting an r-value of non-atomic type to an r-value 652 // of atomic type, just emit directly into the relevant sub-object. 653 if (isToAtomic) { 654 AggValueSlot valueDest = Dest; 655 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 656 // Zero-initialize. (Strictly speaking, we only need to intialize 657 // the padding at the end, but this is simpler.) 658 if (!Dest.isZeroed()) 659 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 660 661 // Build a GEP to refer to the subobject. 662 Address valueAddr = 663 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 664 CharUnits()); 665 valueDest = AggValueSlot::forAddr(valueAddr, 666 valueDest.getQualifiers(), 667 valueDest.isExternallyDestructed(), 668 valueDest.requiresGCollection(), 669 valueDest.isPotentiallyAliased(), 670 AggValueSlot::IsZeroed); 671 } 672 673 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 674 return; 675 } 676 677 // Otherwise, we're converting an atomic type to a non-atomic type. 678 // Make an atomic temporary, emit into that, and then copy the value out. 679 AggValueSlot atomicSlot = 680 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 681 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 682 683 Address valueAddr = 684 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 685 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 686 return EmitFinalDestCopy(valueType, rvalue); 687 } 688 689 case CK_LValueToRValue: 690 // If we're loading from a volatile type, force the destination 691 // into existence. 692 if (E->getSubExpr()->getType().isVolatileQualified()) { 693 EnsureDest(E->getType()); 694 return Visit(E->getSubExpr()); 695 } 696 697 // fallthrough 698 699 case CK_NoOp: 700 case CK_UserDefinedConversion: 701 case CK_ConstructorConversion: 702 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 703 E->getType()) && 704 "Implicit cast types must be compatible"); 705 Visit(E->getSubExpr()); 706 break; 707 708 case CK_LValueBitCast: 709 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 710 711 case CK_Dependent: 712 case CK_BitCast: 713 case CK_ArrayToPointerDecay: 714 case CK_FunctionToPointerDecay: 715 case CK_NullToPointer: 716 case CK_NullToMemberPointer: 717 case CK_BaseToDerivedMemberPointer: 718 case CK_DerivedToBaseMemberPointer: 719 case CK_MemberPointerToBoolean: 720 case CK_ReinterpretMemberPointer: 721 case CK_IntegralToPointer: 722 case CK_PointerToIntegral: 723 case CK_PointerToBoolean: 724 case CK_ToVoid: 725 case CK_VectorSplat: 726 case CK_IntegralCast: 727 case CK_BooleanToSignedIntegral: 728 case CK_IntegralToBoolean: 729 case CK_IntegralToFloating: 730 case CK_FloatingToIntegral: 731 case CK_FloatingToBoolean: 732 case CK_FloatingCast: 733 case CK_CPointerToObjCPointerCast: 734 case CK_BlockPointerToObjCPointerCast: 735 case CK_AnyPointerToBlockPointerCast: 736 case CK_ObjCObjectLValueCast: 737 case CK_FloatingRealToComplex: 738 case CK_FloatingComplexToReal: 739 case CK_FloatingComplexToBoolean: 740 case CK_FloatingComplexCast: 741 case CK_FloatingComplexToIntegralComplex: 742 case CK_IntegralRealToComplex: 743 case CK_IntegralComplexToReal: 744 case CK_IntegralComplexToBoolean: 745 case CK_IntegralComplexCast: 746 case CK_IntegralComplexToFloatingComplex: 747 case CK_ARCProduceObject: 748 case CK_ARCConsumeObject: 749 case CK_ARCReclaimReturnedObject: 750 case CK_ARCExtendBlockObject: 751 case CK_CopyAndAutoreleaseBlockObject: 752 case CK_BuiltinFnToFnPtr: 753 case CK_ZeroToOCLEvent: 754 case CK_AddressSpaceConversion: 755 case CK_IntToOCLSampler: 756 llvm_unreachable("cast kind invalid for aggregate types"); 757 } 758 } 759 760 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 761 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 762 EmitAggLoadOfLValue(E); 763 return; 764 } 765 766 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 767 EmitMoveFromReturnSlot(E, RV); 768 } 769 770 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 771 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 772 EmitMoveFromReturnSlot(E, RV); 773 } 774 775 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 776 CGF.EmitIgnoredExpr(E->getLHS()); 777 Visit(E->getRHS()); 778 } 779 780 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 781 CodeGenFunction::StmtExprEvaluation eval(CGF); 782 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 783 } 784 785 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 786 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 787 VisitPointerToDataMemberBinaryOperator(E); 788 else 789 CGF.ErrorUnsupported(E, "aggregate binary expression"); 790 } 791 792 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 793 const BinaryOperator *E) { 794 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 795 EmitFinalDestCopy(E->getType(), LV); 796 } 797 798 /// Is the value of the given expression possibly a reference to or 799 /// into a __block variable? 800 static bool isBlockVarRef(const Expr *E) { 801 // Make sure we look through parens. 802 E = E->IgnoreParens(); 803 804 // Check for a direct reference to a __block variable. 805 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 806 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 807 return (var && var->hasAttr<BlocksAttr>()); 808 } 809 810 // More complicated stuff. 811 812 // Binary operators. 813 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 814 // For an assignment or pointer-to-member operation, just care 815 // about the LHS. 816 if (op->isAssignmentOp() || op->isPtrMemOp()) 817 return isBlockVarRef(op->getLHS()); 818 819 // For a comma, just care about the RHS. 820 if (op->getOpcode() == BO_Comma) 821 return isBlockVarRef(op->getRHS()); 822 823 // FIXME: pointer arithmetic? 824 return false; 825 826 // Check both sides of a conditional operator. 827 } else if (const AbstractConditionalOperator *op 828 = dyn_cast<AbstractConditionalOperator>(E)) { 829 return isBlockVarRef(op->getTrueExpr()) 830 || isBlockVarRef(op->getFalseExpr()); 831 832 // OVEs are required to support BinaryConditionalOperators. 833 } else if (const OpaqueValueExpr *op 834 = dyn_cast<OpaqueValueExpr>(E)) { 835 if (const Expr *src = op->getSourceExpr()) 836 return isBlockVarRef(src); 837 838 // Casts are necessary to get things like (*(int*)&var) = foo(). 839 // We don't really care about the kind of cast here, except 840 // we don't want to look through l2r casts, because it's okay 841 // to get the *value* in a __block variable. 842 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 843 if (cast->getCastKind() == CK_LValueToRValue) 844 return false; 845 return isBlockVarRef(cast->getSubExpr()); 846 847 // Handle unary operators. Again, just aggressively look through 848 // it, ignoring the operation. 849 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 850 return isBlockVarRef(uop->getSubExpr()); 851 852 // Look into the base of a field access. 853 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 854 return isBlockVarRef(mem->getBase()); 855 856 // Look into the base of a subscript. 857 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 858 return isBlockVarRef(sub->getBase()); 859 } 860 861 return false; 862 } 863 864 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 865 // For an assignment to work, the value on the right has 866 // to be compatible with the value on the left. 867 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 868 E->getRHS()->getType()) 869 && "Invalid assignment"); 870 871 // If the LHS might be a __block variable, and the RHS can 872 // potentially cause a block copy, we need to evaluate the RHS first 873 // so that the assignment goes the right place. 874 // This is pretty semantically fragile. 875 if (isBlockVarRef(E->getLHS()) && 876 E->getRHS()->HasSideEffects(CGF.getContext())) { 877 // Ensure that we have a destination, and evaluate the RHS into that. 878 EnsureDest(E->getRHS()->getType()); 879 Visit(E->getRHS()); 880 881 // Now emit the LHS and copy into it. 882 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 883 884 // That copy is an atomic copy if the LHS is atomic. 885 if (LHS.getType()->isAtomicType() || 886 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 887 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 888 return; 889 } 890 891 EmitCopy(E->getLHS()->getType(), 892 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 893 needsGC(E->getLHS()->getType()), 894 AggValueSlot::IsAliased), 895 Dest); 896 return; 897 } 898 899 LValue LHS = CGF.EmitLValue(E->getLHS()); 900 901 // If we have an atomic type, evaluate into the destination and then 902 // do an atomic copy. 903 if (LHS.getType()->isAtomicType() || 904 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 905 EnsureDest(E->getRHS()->getType()); 906 Visit(E->getRHS()); 907 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 908 return; 909 } 910 911 // Codegen the RHS so that it stores directly into the LHS. 912 AggValueSlot LHSSlot = 913 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 914 needsGC(E->getLHS()->getType()), 915 AggValueSlot::IsAliased); 916 // A non-volatile aggregate destination might have volatile member. 917 if (!LHSSlot.isVolatile() && 918 CGF.hasVolatileMember(E->getLHS()->getType())) 919 LHSSlot.setVolatile(true); 920 921 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 922 923 // Copy into the destination if the assignment isn't ignored. 924 EmitFinalDestCopy(E->getType(), LHS); 925 } 926 927 void AggExprEmitter:: 928 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 929 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 930 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 931 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 932 933 // Bind the common expression if necessary. 934 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 935 936 CodeGenFunction::ConditionalEvaluation eval(CGF); 937 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 938 CGF.getProfileCount(E)); 939 940 // Save whether the destination's lifetime is externally managed. 941 bool isExternallyDestructed = Dest.isExternallyDestructed(); 942 943 eval.begin(CGF); 944 CGF.EmitBlock(LHSBlock); 945 CGF.incrementProfileCounter(E); 946 Visit(E->getTrueExpr()); 947 eval.end(CGF); 948 949 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 950 CGF.Builder.CreateBr(ContBlock); 951 952 // If the result of an agg expression is unused, then the emission 953 // of the LHS might need to create a destination slot. That's fine 954 // with us, and we can safely emit the RHS into the same slot, but 955 // we shouldn't claim that it's already being destructed. 956 Dest.setExternallyDestructed(isExternallyDestructed); 957 958 eval.begin(CGF); 959 CGF.EmitBlock(RHSBlock); 960 Visit(E->getFalseExpr()); 961 eval.end(CGF); 962 963 CGF.EmitBlock(ContBlock); 964 } 965 966 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 967 Visit(CE->getChosenSubExpr()); 968 } 969 970 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 971 Address ArgValue = Address::invalid(); 972 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 973 974 // If EmitVAArg fails, emit an error. 975 if (!ArgPtr.isValid()) { 976 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 977 return; 978 } 979 980 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 981 } 982 983 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 984 // Ensure that we have a slot, but if we already do, remember 985 // whether it was externally destructed. 986 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 987 EnsureDest(E->getType()); 988 989 // We're going to push a destructor if there isn't already one. 990 Dest.setExternallyDestructed(); 991 992 Visit(E->getSubExpr()); 993 994 // Push that destructor we promised. 995 if (!wasExternallyDestructed) 996 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 997 } 998 999 void 1000 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1001 AggValueSlot Slot = EnsureSlot(E->getType()); 1002 CGF.EmitCXXConstructExpr(E, Slot); 1003 } 1004 1005 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1006 const CXXInheritedCtorInitExpr *E) { 1007 AggValueSlot Slot = EnsureSlot(E->getType()); 1008 CGF.EmitInheritedCXXConstructorCall( 1009 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1010 E->inheritedFromVBase(), E); 1011 } 1012 1013 void 1014 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1015 AggValueSlot Slot = EnsureSlot(E->getType()); 1016 CGF.EmitLambdaExpr(E, Slot); 1017 } 1018 1019 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1020 CGF.enterFullExpression(E); 1021 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1022 Visit(E->getSubExpr()); 1023 } 1024 1025 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1026 QualType T = E->getType(); 1027 AggValueSlot Slot = EnsureSlot(T); 1028 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1029 } 1030 1031 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1032 QualType T = E->getType(); 1033 AggValueSlot Slot = EnsureSlot(T); 1034 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1035 } 1036 1037 /// isSimpleZero - If emitting this value will obviously just cause a store of 1038 /// zero to memory, return true. This can return false if uncertain, so it just 1039 /// handles simple cases. 1040 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1041 E = E->IgnoreParens(); 1042 1043 // 0 1044 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1045 return IL->getValue() == 0; 1046 // +0.0 1047 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1048 return FL->getValue().isPosZero(); 1049 // int() 1050 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1051 CGF.getTypes().isZeroInitializable(E->getType())) 1052 return true; 1053 // (int*)0 - Null pointer expressions. 1054 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1055 return ICE->getCastKind() == CK_NullToPointer && 1056 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1057 // '\0' 1058 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1059 return CL->getValue() == 0; 1060 1061 // Otherwise, hard case: conservatively return false. 1062 return false; 1063 } 1064 1065 1066 void 1067 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1068 QualType type = LV.getType(); 1069 // FIXME: Ignore result? 1070 // FIXME: Are initializers affected by volatile? 1071 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1072 // Storing "i32 0" to a zero'd memory location is a noop. 1073 return; 1074 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1075 return EmitNullInitializationToLValue(LV); 1076 } else if (isa<NoInitExpr>(E)) { 1077 // Do nothing. 1078 return; 1079 } else if (type->isReferenceType()) { 1080 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1081 return CGF.EmitStoreThroughLValue(RV, LV); 1082 } 1083 1084 switch (CGF.getEvaluationKind(type)) { 1085 case TEK_Complex: 1086 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1087 return; 1088 case TEK_Aggregate: 1089 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1090 AggValueSlot::IsDestructed, 1091 AggValueSlot::DoesNotNeedGCBarriers, 1092 AggValueSlot::IsNotAliased, 1093 Dest.isZeroed())); 1094 return; 1095 case TEK_Scalar: 1096 if (LV.isSimple()) { 1097 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1098 } else { 1099 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1100 } 1101 return; 1102 } 1103 llvm_unreachable("bad evaluation kind"); 1104 } 1105 1106 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1107 QualType type = lv.getType(); 1108 1109 // If the destination slot is already zeroed out before the aggregate is 1110 // copied into it, we don't have to emit any zeros here. 1111 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1112 return; 1113 1114 if (CGF.hasScalarEvaluationKind(type)) { 1115 // For non-aggregates, we can store the appropriate null constant. 1116 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1117 // Note that the following is not equivalent to 1118 // EmitStoreThroughBitfieldLValue for ARC types. 1119 if (lv.isBitField()) { 1120 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1121 } else { 1122 assert(lv.isSimple()); 1123 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1124 } 1125 } else { 1126 // There's a potential optimization opportunity in combining 1127 // memsets; that would be easy for arrays, but relatively 1128 // difficult for structures with the current code. 1129 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1130 } 1131 } 1132 1133 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1134 #if 0 1135 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1136 // (Length of globals? Chunks of zeroed-out space?). 1137 // 1138 // If we can, prefer a copy from a global; this is a lot less code for long 1139 // globals, and it's easier for the current optimizers to analyze. 1140 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1141 llvm::GlobalVariable* GV = 1142 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1143 llvm::GlobalValue::InternalLinkage, C, ""); 1144 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1145 return; 1146 } 1147 #endif 1148 if (E->hadArrayRangeDesignator()) 1149 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1150 1151 if (E->isTransparent()) 1152 return Visit(E->getInit(0)); 1153 1154 AggValueSlot Dest = EnsureSlot(E->getType()); 1155 1156 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1157 1158 // Handle initialization of an array. 1159 if (E->getType()->isArrayType()) { 1160 QualType elementType = 1161 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1162 1163 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1164 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1165 return; 1166 } 1167 1168 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1169 1170 // Do struct initialization; this code just sets each individual member 1171 // to the approprate value. This makes bitfield support automatic; 1172 // the disadvantage is that the generated code is more difficult for 1173 // the optimizer, especially with bitfields. 1174 unsigned NumInitElements = E->getNumInits(); 1175 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1176 1177 // We'll need to enter cleanup scopes in case any of the element 1178 // initializers throws an exception. 1179 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1180 llvm::Instruction *cleanupDominator = nullptr; 1181 1182 unsigned curInitIndex = 0; 1183 1184 // Emit initialization of base classes. 1185 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1186 assert(E->getNumInits() >= CXXRD->getNumBases() && 1187 "missing initializer for base class"); 1188 for (auto &Base : CXXRD->bases()) { 1189 assert(!Base.isVirtual() && "should not see vbases here"); 1190 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1191 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1192 Dest.getAddress(), CXXRD, BaseRD, 1193 /*isBaseVirtual*/ false); 1194 AggValueSlot AggSlot = 1195 AggValueSlot::forAddr(V, Qualifiers(), 1196 AggValueSlot::IsDestructed, 1197 AggValueSlot::DoesNotNeedGCBarriers, 1198 AggValueSlot::IsNotAliased); 1199 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1200 1201 if (QualType::DestructionKind dtorKind = 1202 Base.getType().isDestructedType()) { 1203 CGF.pushDestroy(dtorKind, V, Base.getType()); 1204 cleanups.push_back(CGF.EHStack.stable_begin()); 1205 } 1206 } 1207 } 1208 1209 // Prepare a 'this' for CXXDefaultInitExprs. 1210 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1211 1212 if (record->isUnion()) { 1213 // Only initialize one field of a union. The field itself is 1214 // specified by the initializer list. 1215 if (!E->getInitializedFieldInUnion()) { 1216 // Empty union; we have nothing to do. 1217 1218 #ifndef NDEBUG 1219 // Make sure that it's really an empty and not a failure of 1220 // semantic analysis. 1221 for (const auto *Field : record->fields()) 1222 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1223 #endif 1224 return; 1225 } 1226 1227 // FIXME: volatility 1228 FieldDecl *Field = E->getInitializedFieldInUnion(); 1229 1230 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1231 if (NumInitElements) { 1232 // Store the initializer into the field 1233 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1234 } else { 1235 // Default-initialize to null. 1236 EmitNullInitializationToLValue(FieldLoc); 1237 } 1238 1239 return; 1240 } 1241 1242 // Here we iterate over the fields; this makes it simpler to both 1243 // default-initialize fields and skip over unnamed fields. 1244 for (const auto *field : record->fields()) { 1245 // We're done once we hit the flexible array member. 1246 if (field->getType()->isIncompleteArrayType()) 1247 break; 1248 1249 // Always skip anonymous bitfields. 1250 if (field->isUnnamedBitfield()) 1251 continue; 1252 1253 // We're done if we reach the end of the explicit initializers, we 1254 // have a zeroed object, and the rest of the fields are 1255 // zero-initializable. 1256 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1257 CGF.getTypes().isZeroInitializable(E->getType())) 1258 break; 1259 1260 1261 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1262 // We never generate write-barries for initialized fields. 1263 LV.setNonGC(true); 1264 1265 if (curInitIndex < NumInitElements) { 1266 // Store the initializer into the field. 1267 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1268 } else { 1269 // We're out of initalizers; default-initialize to null 1270 EmitNullInitializationToLValue(LV); 1271 } 1272 1273 // Push a destructor if necessary. 1274 // FIXME: if we have an array of structures, all explicitly 1275 // initialized, we can end up pushing a linear number of cleanups. 1276 bool pushedCleanup = false; 1277 if (QualType::DestructionKind dtorKind 1278 = field->getType().isDestructedType()) { 1279 assert(LV.isSimple()); 1280 if (CGF.needsEHCleanup(dtorKind)) { 1281 if (!cleanupDominator) 1282 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1283 CGF.Int8Ty, 1284 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1285 CharUnits::One()); // placeholder 1286 1287 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1288 CGF.getDestroyer(dtorKind), false); 1289 cleanups.push_back(CGF.EHStack.stable_begin()); 1290 pushedCleanup = true; 1291 } 1292 } 1293 1294 // If the GEP didn't get used because of a dead zero init or something 1295 // else, clean it up for -O0 builds and general tidiness. 1296 if (!pushedCleanup && LV.isSimple()) 1297 if (llvm::GetElementPtrInst *GEP = 1298 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1299 if (GEP->use_empty()) 1300 GEP->eraseFromParent(); 1301 } 1302 1303 // Deactivate all the partial cleanups in reverse order, which 1304 // generally means popping them. 1305 for (unsigned i = cleanups.size(); i != 0; --i) 1306 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1307 1308 // Destroy the placeholder if we made one. 1309 if (cleanupDominator) 1310 cleanupDominator->eraseFromParent(); 1311 } 1312 1313 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1314 llvm::Value *outerBegin) { 1315 // Emit the common subexpression. 1316 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1317 1318 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1319 uint64_t numElements = E->getArraySize().getZExtValue(); 1320 1321 if (!numElements) 1322 return; 1323 1324 // destPtr is an array*. Construct an elementType* by drilling down a level. 1325 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1326 llvm::Value *indices[] = {zero, zero}; 1327 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1328 "arrayinit.begin"); 1329 1330 // Prepare to special-case multidimensional array initialization: we avoid 1331 // emitting multiple destructor loops in that case. 1332 if (!outerBegin) 1333 outerBegin = begin; 1334 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1335 1336 QualType elementType = 1337 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1338 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1339 CharUnits elementAlign = 1340 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1341 1342 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1343 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1344 1345 // Jump into the body. 1346 CGF.EmitBlock(bodyBB); 1347 llvm::PHINode *index = 1348 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1349 index->addIncoming(zero, entryBB); 1350 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1351 1352 // Prepare for a cleanup. 1353 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1354 EHScopeStack::stable_iterator cleanup; 1355 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1356 if (outerBegin->getType() != element->getType()) 1357 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1358 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1359 elementAlign, 1360 CGF.getDestroyer(dtorKind)); 1361 cleanup = CGF.EHStack.stable_begin(); 1362 } else { 1363 dtorKind = QualType::DK_none; 1364 } 1365 1366 // Emit the actual filler expression. 1367 { 1368 // Temporaries created in an array initialization loop are destroyed 1369 // at the end of each iteration. 1370 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1371 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1372 LValue elementLV = 1373 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1374 1375 if (InnerLoop) { 1376 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1377 auto elementSlot = AggValueSlot::forLValue( 1378 elementLV, AggValueSlot::IsDestructed, 1379 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1380 AggExprEmitter(CGF, elementSlot, false) 1381 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1382 } else 1383 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1384 } 1385 1386 // Move on to the next element. 1387 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1388 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1389 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1390 1391 // Leave the loop if we're done. 1392 llvm::Value *done = Builder.CreateICmpEQ( 1393 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1394 "arrayinit.done"); 1395 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1396 Builder.CreateCondBr(done, endBB, bodyBB); 1397 1398 CGF.EmitBlock(endBB); 1399 1400 // Leave the partial-array cleanup if we entered one. 1401 if (dtorKind) 1402 CGF.DeactivateCleanupBlock(cleanup, index); 1403 } 1404 1405 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1406 AggValueSlot Dest = EnsureSlot(E->getType()); 1407 1408 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1409 EmitInitializationToLValue(E->getBase(), DestLV); 1410 VisitInitListExpr(E->getUpdater()); 1411 } 1412 1413 //===----------------------------------------------------------------------===// 1414 // Entry Points into this File 1415 //===----------------------------------------------------------------------===// 1416 1417 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1418 /// non-zero bytes that will be stored when outputting the initializer for the 1419 /// specified initializer expression. 1420 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1421 E = E->IgnoreParens(); 1422 1423 // 0 and 0.0 won't require any non-zero stores! 1424 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1425 1426 // If this is an initlist expr, sum up the size of sizes of the (present) 1427 // elements. If this is something weird, assume the whole thing is non-zero. 1428 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1429 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1430 return CGF.getContext().getTypeSizeInChars(E->getType()); 1431 1432 // InitListExprs for structs have to be handled carefully. If there are 1433 // reference members, we need to consider the size of the reference, not the 1434 // referencee. InitListExprs for unions and arrays can't have references. 1435 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1436 if (!RT->isUnionType()) { 1437 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1438 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1439 1440 unsigned ILEElement = 0; 1441 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1442 while (ILEElement != CXXRD->getNumBases()) 1443 NumNonZeroBytes += 1444 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1445 for (const auto *Field : SD->fields()) { 1446 // We're done once we hit the flexible array member or run out of 1447 // InitListExpr elements. 1448 if (Field->getType()->isIncompleteArrayType() || 1449 ILEElement == ILE->getNumInits()) 1450 break; 1451 if (Field->isUnnamedBitfield()) 1452 continue; 1453 1454 const Expr *E = ILE->getInit(ILEElement++); 1455 1456 // Reference values are always non-null and have the width of a pointer. 1457 if (Field->getType()->isReferenceType()) 1458 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1459 CGF.getTarget().getPointerWidth(0)); 1460 else 1461 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1462 } 1463 1464 return NumNonZeroBytes; 1465 } 1466 } 1467 1468 1469 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1470 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1471 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1472 return NumNonZeroBytes; 1473 } 1474 1475 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1476 /// zeros in it, emit a memset and avoid storing the individual zeros. 1477 /// 1478 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1479 CodeGenFunction &CGF) { 1480 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1481 // volatile stores. 1482 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1483 return; 1484 1485 // C++ objects with a user-declared constructor don't need zero'ing. 1486 if (CGF.getLangOpts().CPlusPlus) 1487 if (const RecordType *RT = CGF.getContext() 1488 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1489 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1490 if (RD->hasUserDeclaredConstructor()) 1491 return; 1492 } 1493 1494 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1495 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1496 if (Size <= CharUnits::fromQuantity(16)) 1497 return; 1498 1499 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1500 // we prefer to emit memset + individual stores for the rest. 1501 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1502 if (NumNonZeroBytes*4 > Size) 1503 return; 1504 1505 // Okay, it seems like a good idea to use an initial memset, emit the call. 1506 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1507 1508 Address Loc = Slot.getAddress(); 1509 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1510 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1511 1512 // Tell the AggExprEmitter that the slot is known zero. 1513 Slot.setZeroed(); 1514 } 1515 1516 1517 1518 1519 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1520 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1521 /// the value of the aggregate expression is not needed. If VolatileDest is 1522 /// true, DestPtr cannot be 0. 1523 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1524 assert(E && hasAggregateEvaluationKind(E->getType()) && 1525 "Invalid aggregate expression to emit"); 1526 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1527 "slot has bits but no address"); 1528 1529 // Optimize the slot if possible. 1530 CheckAggExprForMemSetUse(Slot, E, *this); 1531 1532 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1533 } 1534 1535 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1536 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1537 Address Temp = CreateMemTemp(E->getType()); 1538 LValue LV = MakeAddrLValue(Temp, E->getType()); 1539 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1540 AggValueSlot::DoesNotNeedGCBarriers, 1541 AggValueSlot::IsNotAliased)); 1542 return LV; 1543 } 1544 1545 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1546 Address SrcPtr, QualType Ty, 1547 bool isVolatile, 1548 bool isAssignment) { 1549 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1550 1551 if (getLangOpts().CPlusPlus) { 1552 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1553 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1554 assert((Record->hasTrivialCopyConstructor() || 1555 Record->hasTrivialCopyAssignment() || 1556 Record->hasTrivialMoveConstructor() || 1557 Record->hasTrivialMoveAssignment() || 1558 Record->isUnion()) && 1559 "Trying to aggregate-copy a type without a trivial copy/move " 1560 "constructor or assignment operator"); 1561 // Ignore empty classes in C++. 1562 if (Record->isEmpty()) 1563 return; 1564 } 1565 } 1566 1567 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1568 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1569 // read from another object that overlaps in anyway the storage of the first 1570 // object, then the overlap shall be exact and the two objects shall have 1571 // qualified or unqualified versions of a compatible type." 1572 // 1573 // memcpy is not defined if the source and destination pointers are exactly 1574 // equal, but other compilers do this optimization, and almost every memcpy 1575 // implementation handles this case safely. If there is a libc that does not 1576 // safely handle this, we can add a target hook. 1577 1578 // Get data size info for this aggregate. If this is an assignment, 1579 // don't copy the tail padding, because we might be assigning into a 1580 // base subobject where the tail padding is claimed. Otherwise, 1581 // copying it is fine. 1582 std::pair<CharUnits, CharUnits> TypeInfo; 1583 if (isAssignment) 1584 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1585 else 1586 TypeInfo = getContext().getTypeInfoInChars(Ty); 1587 1588 llvm::Value *SizeVal = nullptr; 1589 if (TypeInfo.first.isZero()) { 1590 // But note that getTypeInfo returns 0 for a VLA. 1591 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1592 getContext().getAsArrayType(Ty))) { 1593 QualType BaseEltTy; 1594 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1595 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1596 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1597 if (!isAssignment) 1598 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1599 assert(!TypeInfo.first.isZero()); 1600 SizeVal = Builder.CreateNUWMul( 1601 SizeVal, 1602 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1603 if (!isAssignment) { 1604 SizeVal = Builder.CreateNUWSub( 1605 SizeVal, 1606 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1607 SizeVal = Builder.CreateNUWAdd( 1608 SizeVal, llvm::ConstantInt::get( 1609 SizeTy, LastElementTypeInfo.first.getQuantity())); 1610 } 1611 } 1612 } 1613 if (!SizeVal) { 1614 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1615 } 1616 1617 // FIXME: If we have a volatile struct, the optimizer can remove what might 1618 // appear to be `extra' memory ops: 1619 // 1620 // volatile struct { int i; } a, b; 1621 // 1622 // int main() { 1623 // a = b; 1624 // a = b; 1625 // } 1626 // 1627 // we need to use a different call here. We use isVolatile to indicate when 1628 // either the source or the destination is volatile. 1629 1630 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1631 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1632 1633 // Don't do any of the memmove_collectable tests if GC isn't set. 1634 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1635 // fall through 1636 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1637 RecordDecl *Record = RecordTy->getDecl(); 1638 if (Record->hasObjectMember()) { 1639 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1640 SizeVal); 1641 return; 1642 } 1643 } else if (Ty->isArrayType()) { 1644 QualType BaseType = getContext().getBaseElementType(Ty); 1645 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1646 if (RecordTy->getDecl()->hasObjectMember()) { 1647 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1648 SizeVal); 1649 return; 1650 } 1651 } 1652 } 1653 1654 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1655 1656 // Determine the metadata to describe the position of any padding in this 1657 // memcpy, as well as the TBAA tags for the members of the struct, in case 1658 // the optimizer wishes to expand it in to scalar memory operations. 1659 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1660 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1661 } 1662