1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   CGBuilderTy &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitNonConstInit(InitListExpr *E);
52 
53   //===--------------------------------------------------------------------===//
54   //                            Visitor Methods
55   //===--------------------------------------------------------------------===//
56 
57   void VisitStmt(Stmt *S) {
58     CGF.ErrorUnsupported(S, "aggregate expression");
59   }
60   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
61   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
62 
63   // l-values.
64   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
65   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
66   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
67   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
68   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
69       { EmitAggLoadOfLValue(E); }
70 
71   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
72     EmitAggLoadOfLValue(E);
73   }
74 
75   // Operators.
76   //  case Expr::UnaryOperatorClass:
77   //  case Expr::CastExprClass:
78   void VisitCStyleCastExpr(CStyleCastExpr *E);
79   void VisitImplicitCastExpr(ImplicitCastExpr *E);
80   void VisitCallExpr(const CallExpr *E);
81   void VisitStmtExpr(const StmtExpr *E);
82   void VisitBinaryOperator(const BinaryOperator *BO);
83   void VisitBinAssign(const BinaryOperator *E);
84   void VisitOverloadExpr(const OverloadExpr *E);
85   void VisitBinComma(const BinaryOperator *E);
86 
87   void VisitObjCMessageExpr(ObjCMessageExpr *E);
88   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
89     EmitAggLoadOfLValue(E);
90   }
91   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
92   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
93 
94   void VisitConditionalOperator(const ConditionalOperator *CO);
95   void VisitInitListExpr(InitListExpr *E);
96   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
97     Visit(DAE->getExpr());
98   }
99   void VisitVAArgExpr(VAArgExpr *E);
100 
101   void EmitInitializationToLValue(Expr *E, LValue Address);
102   void EmitNullInitializationToLValue(LValue Address, QualType T);
103   //  case Expr::ChooseExprClass:
104 
105 };
106 }  // end anonymous namespace.
107 
108 //===----------------------------------------------------------------------===//
109 //                                Utilities
110 //===----------------------------------------------------------------------===//
111 
112 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
113 /// represents a value lvalue, this method emits the address of the lvalue,
114 /// then loads the result into DestPtr.
115 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
116   LValue LV = CGF.EmitLValue(E);
117   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
118   llvm::Value *SrcPtr = LV.getAddress();
119 
120   // If the result is ignored, don't copy from the value.
121   if (DestPtr == 0)
122     // FIXME: If the source is volatile, we must read from it.
123     return;
124 
125   CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
126 }
127 
128 //===----------------------------------------------------------------------===//
129 //                            Visitor Methods
130 //===----------------------------------------------------------------------===//
131 
132 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
133   // GCC union extension
134   if (E->getType()->isUnionType()) {
135     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
136     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0);
137     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
138     return;
139   }
140 
141   Visit(E->getSubExpr());
142 }
143 
144 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
145   assert(CGF.getContext().typesAreCompatible(
146                           E->getSubExpr()->getType().getUnqualifiedType(),
147                           E->getType().getUnqualifiedType()) &&
148          "Implicit cast types must be compatible");
149   Visit(E->getSubExpr());
150 }
151 
152 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
153   RValue RV = CGF.EmitCallExpr(E);
154   assert(RV.isAggregate() && "Return value must be aggregate value!");
155 
156   // If the result is ignored, don't copy from the value.
157   if (DestPtr == 0)
158     // FIXME: If the source is volatile, we must read from it.
159     return;
160 
161   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
162 }
163 
164 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
165   RValue RV = CGF.EmitObjCMessageExpr(E);
166   assert(RV.isAggregate() && "Return value must be aggregate value!");
167 
168   // If the result is ignored, don't copy from the value.
169   if (DestPtr == 0)
170     // FIXME: If the source is volatile, we must read from it.
171     return;
172 
173   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
174 }
175 
176 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
177   RValue RV = CGF.EmitObjCPropertyGet(E);
178   assert(RV.isAggregate() && "Return value must be aggregate value!");
179 
180   // If the result is ignored, don't copy from the value.
181   if (DestPtr == 0)
182     // FIXME: If the source is volatile, we must read from it.
183     return;
184 
185   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
186 }
187 
188 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
189   RValue RV = CGF.EmitObjCPropertyGet(E);
190   assert(RV.isAggregate() && "Return value must be aggregate value!");
191 
192   // If the result is ignored, don't copy from the value.
193   if (DestPtr == 0)
194     // FIXME: If the source is volatile, we must read from it.
195     return;
196 
197   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
198 }
199 
200 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) {
201   RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
202                                E->arg_end(CGF.getContext()));
203 
204   assert(RV.isAggregate() && "Return value must be aggregate value!");
205 
206   // If the result is ignored, don't copy from the value.
207   if (DestPtr == 0)
208     // FIXME: If the source is volatile, we must read from it.
209     return;
210 
211   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
212 }
213 
214 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
215   CGF.EmitAnyExpr(E->getLHS());
216   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
217 }
218 
219 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
220   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
221 }
222 
223 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
224   CGF.ErrorUnsupported(E, "aggregate binary expression");
225 }
226 
227 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
228   // For an assignment to work, the value on the right has
229   // to be compatible with the value on the left.
230   assert(CGF.getContext().typesAreCompatible(
231              E->getLHS()->getType().getUnqualifiedType(),
232              E->getRHS()->getType().getUnqualifiedType())
233          && "Invalid assignment");
234   LValue LHS = CGF.EmitLValue(E->getLHS());
235 
236   // We have to special case property setters, otherwise we must have
237   // a simple lvalue (no aggregates inside vectors, bitfields).
238   if (LHS.isPropertyRef()) {
239     // FIXME: Volatility?
240     llvm::Value *AggLoc = DestPtr;
241     if (!AggLoc)
242       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
243     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
244     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
245                             RValue::getAggregate(AggLoc));
246   }
247   else if (LHS.isKVCRef()) {
248     // FIXME: Volatility?
249     llvm::Value *AggLoc = DestPtr;
250     if (!AggLoc)
251       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
252     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
253     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
254                             RValue::getAggregate(AggLoc));
255   } else {
256     // Codegen the RHS so that it stores directly into the LHS.
257     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
258 
259     if (DestPtr == 0)
260       return;
261 
262     // If the result of the assignment is used, copy the RHS there also.
263     CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
264   }
265 }
266 
267 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
268   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
269   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
270   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
271 
272   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
273   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
274 
275   CGF.EmitBlock(LHSBlock);
276 
277   // Handle the GNU extension for missing LHS.
278   assert(E->getLHS() && "Must have LHS for aggregate value");
279 
280   Visit(E->getLHS());
281   CGF.EmitBranch(ContBlock);
282 
283   CGF.EmitBlock(RHSBlock);
284 
285   Visit(E->getRHS());
286   CGF.EmitBranch(ContBlock);
287 
288   CGF.EmitBlock(ContBlock);
289 }
290 
291 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
292   llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress();
293   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
294 
295   if (!ArgPtr) {
296     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
297     return;
298   }
299 
300   if (DestPtr)
301     // FIXME: volatility
302     CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType());
303 }
304 
305 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
306   if (E->hadDesignators()) {
307     CGF.ErrorUnsupported(E, "initializer list with designators");
308     return;
309   }
310 
311   const llvm::PointerType *APType =
312     cast<llvm::PointerType>(DestPtr->getType());
313   const llvm::Type *DestType = APType->getElementType();
314 
315   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
316     unsigned NumInitElements = E->getNumInits();
317 
318     unsigned i;
319     for (i = 0; i != NumInitElements; ++i) {
320       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
321       Expr *Init = E->getInit(i);
322       if (isa<InitListExpr>(Init))
323         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
324       else
325         // FIXME: volatility
326         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
327     }
328 
329     // Emit remaining default initializers
330     unsigned NumArrayElements = AType->getNumElements();
331     QualType QType = E->getInit(0)->getType();
332     const llvm::Type *EType = AType->getElementType();
333     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
334       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
335       if (EType->isSingleValueType())
336         // FIXME: volatility
337         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
338       else
339         CGF.EmitAggregateClear(NextVal, QType);
340     }
341   } else
342     assert(false && "Invalid initializer");
343 }
344 
345 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
346   // FIXME: Are initializers affected by volatile?
347   if (E->getType()->isComplexType()) {
348     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
349   } else if (CGF.hasAggregateLLVMType(E->getType())) {
350     CGF.EmitAnyExpr(E, LV.getAddress(), false);
351   } else {
352     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
353   }
354 }
355 
356 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
357   if (!CGF.hasAggregateLLVMType(T)) {
358     // For non-aggregates, we can store zero
359     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
360     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
361   } else {
362     // Otherwise, just memset the whole thing to zero.  This is legal
363     // because in LLVM, all default initializers are guaranteed to have a
364     // bit pattern of all zeros.
365     // There's a potential optimization opportunity in combining
366     // memsets; that would be easy for arrays, but relatively
367     // difficult for structures with the current code.
368     const llvm::Type *SizeTy = llvm::Type::Int64Ty;
369     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset,
370                                                &SizeTy, 1);
371     uint64_t Size = CGF.getContext().getTypeSize(T);
372 
373     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
374     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
375     Builder.CreateCall4(MemSet, DestPtr,
376                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
377                         llvm::ConstantInt::get(SizeTy, Size/8),
378                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
379   }
380 }
381 
382 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
383   if (E->hadDesignators()) {
384     CGF.ErrorUnsupported(E, "initializer list with designators");
385     return;
386   }
387 
388 #if 0
389   // FIXME: Disabled while we figure out what to do about
390   // test/CodeGen/bitfield.c
391   //
392   // If we can, prefer a copy from a global; this is a lot less
393   // code for long globals, and it's easier for the current optimizers
394   // to analyze.
395   // FIXME: Should we really be doing this? Should we try to avoid
396   // cases where we emit a global with a lot of zeros?  Should
397   // we try to avoid short globals?
398   if (E->isConstantInitializer(CGF.getContext(), 0)) {
399     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
400     llvm::GlobalVariable* GV =
401     new llvm::GlobalVariable(C->getType(), true,
402                              llvm::GlobalValue::InternalLinkage,
403                              C, "", &CGF.CGM.getModule(), 0);
404     CGF.EmitAggregateCopy(DestPtr, GV, E->getType());
405     return;
406   }
407 #endif
408   // Handle initialization of an array.
409   if (E->getType()->isArrayType()) {
410     const llvm::PointerType *APType =
411       cast<llvm::PointerType>(DestPtr->getType());
412     const llvm::ArrayType *AType =
413       cast<llvm::ArrayType>(APType->getElementType());
414 
415     uint64_t NumInitElements = E->getNumInits();
416 
417     if (E->getNumInits() > 0) {
418       QualType T1 = E->getType();
419       QualType T2 = E->getInit(0)->getType();
420       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
421           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
422         EmitAggLoadOfLValue(E->getInit(0));
423         return;
424       }
425     }
426 
427     uint64_t NumArrayElements = AType->getNumElements();
428     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
429     ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType();
430 
431     unsigned CVRqualifier = ElementType.getCVRQualifiers();
432 
433     for (uint64_t i = 0; i != NumArrayElements; ++i) {
434       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
435       if (i < NumInitElements)
436         EmitInitializationToLValue(E->getInit(i),
437                                    LValue::MakeAddr(NextVal, CVRqualifier));
438       else
439         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
440                                        ElementType);
441     }
442     return;
443   }
444 
445   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
446 
447   // Do struct initialization; this code just sets each individual member
448   // to the approprate value.  This makes bitfield support automatic;
449   // the disadvantage is that the generated code is more difficult for
450   // the optimizer, especially with bitfields.
451   unsigned NumInitElements = E->getNumInits();
452   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
453   unsigned CurInitVal = 0;
454   bool isUnion = E->getType()->isUnionType();
455 
456   // Here we iterate over the fields; this makes it simpler to both
457   // default-initialize fields and skip over unnamed fields.
458   for (RecordDecl::field_iterator Field = SD->field_begin(),
459                                FieldEnd = SD->field_end();
460        Field != FieldEnd; ++Field) {
461     // We're done once we hit the flexible array member
462     if (Field->getType()->isIncompleteArrayType())
463       break;
464 
465     if (Field->getIdentifier() == 0) {
466       // Initializers can't initialize unnamed fields, e.g. "int : 20;"
467       continue;
468     }
469     // FIXME: volatility
470     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, isUnion,0);
471     if (CurInitVal < NumInitElements) {
472       // Store the initializer into the field
473       // This will probably have to get a bit smarter when we support
474       // designators in initializers
475       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
476     } else {
477       // We're out of initalizers; default-initialize to null
478       EmitNullInitializationToLValue(FieldLoc, Field->getType());
479     }
480 
481     // Unions only initialize one field.
482     // (things can get weird with designators, but they aren't
483     // supported yet.)
484     if (isUnion)
485       break;
486   }
487 }
488 
489 //===----------------------------------------------------------------------===//
490 //                        Entry Points into this File
491 //===----------------------------------------------------------------------===//
492 
493 /// EmitAggExpr - Emit the computation of the specified expression of
494 /// aggregate type.  The result is computed into DestPtr.  Note that if
495 /// DestPtr is null, the value of the aggregate expression is not needed.
496 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
497                                   bool VolatileDest) {
498   assert(E && hasAggregateLLVMType(E->getType()) &&
499          "Invalid aggregate expression to emit");
500 
501   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
502 }
503 
504 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
505   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
506 
507   EmitMemSetToZero(DestPtr, Ty);
508 }
509 
510 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
511                                         llvm::Value *SrcPtr, QualType Ty) {
512   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
513 
514   // Aggregate assignment turns into llvm.memmove.
515   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
516   if (DestPtr->getType() != BP)
517     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
518   if (SrcPtr->getType() != BP)
519     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
520 
521   // Get size and alignment info for this aggregate.
522   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
523 
524   // FIXME: Handle variable sized types.
525   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
526 
527   Builder.CreateCall4(CGM.getMemMoveFn(),
528                       DestPtr, SrcPtr,
529                       // TypeInfo.first describes size in bits.
530                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
531                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
532                                              TypeInfo.second/8));
533 }
534