1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   llvm::Value *DestPtr;
36   bool VolatileDest;
37 public:
38   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
39     : CGF(cgf), Builder(CGF.Builder),
40       DestPtr(destPtr), VolatileDest(volatileDest) {
41   }
42 
43   //===--------------------------------------------------------------------===//
44   //                               Utilities
45   //===--------------------------------------------------------------------===//
46 
47   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
48   /// represents a value lvalue, this method emits the address of the lvalue,
49   /// then loads the result into DestPtr.
50   void EmitAggLoadOfLValue(const Expr *E);
51 
52   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
53   void EmitFinalDestCopy(const Expr *E, LValue Src);
54   void EmitFinalDestCopy(const Expr *E, RValue Src);
55 
56   //===--------------------------------------------------------------------===//
57   //                            Visitor Methods
58   //===--------------------------------------------------------------------===//
59 
60   void VisitStmt(Stmt *S) {
61     CGF.ErrorUnsupported(S, "aggregate expression");
62   }
63   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
64   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
65 
66   // l-values.
67   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
68   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
69   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
70   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
71   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
72     EmitAggLoadOfLValue(E);
73   }
74   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
75     EmitAggLoadOfLValue(E);
76   }
77   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
78     EmitAggLoadOfLValue(E);
79   }
80   void VisitPredefinedExpr(const PredefinedExpr *E) {
81     EmitAggLoadOfLValue(E);
82   }
83 
84   // Operators.
85   void VisitCStyleCastExpr(CStyleCastExpr *E);
86   void VisitImplicitCastExpr(ImplicitCastExpr *E);
87   void VisitCallExpr(const CallExpr *E);
88   void VisitStmtExpr(const StmtExpr *E);
89   void VisitBinaryOperator(const BinaryOperator *BO);
90   void VisitBinAssign(const BinaryOperator *E);
91   void VisitBinComma(const BinaryOperator *E);
92 
93   void VisitObjCMessageExpr(ObjCMessageExpr *E);
94   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
98   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
99 
100   void VisitConditionalOperator(const ConditionalOperator *CO);
101   void VisitInitListExpr(InitListExpr *E);
102   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
103     Visit(DAE->getExpr());
104   }
105   void VisitCXXConstructExpr(const CXXConstructExpr *E);
106   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
107 
108   void VisitVAArgExpr(VAArgExpr *E);
109 
110   void EmitInitializationToLValue(Expr *E, LValue Address);
111   void EmitNullInitializationToLValue(LValue Address, QualType T);
112   //  case Expr::ChooseExprClass:
113 
114 };
115 }  // end anonymous namespace.
116 
117 //===----------------------------------------------------------------------===//
118 //                                Utilities
119 //===----------------------------------------------------------------------===//
120 
121 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
122 /// represents a value lvalue, this method emits the address of the lvalue,
123 /// then loads the result into DestPtr.
124 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
125   LValue LV = CGF.EmitLValue(E);
126   EmitFinalDestCopy(E, LV);
127 }
128 
129 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
130 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src) {
131   assert(Src.isAggregate() && "value must be aggregate value!");
132 
133   // If the result is ignored, don't copy from the value.
134   if (DestPtr == 0) {
135     if (Src.isVolatileQualified())
136       // If the source is volatile, we must read from it; to do that, we need
137       // some place to put it.
138       DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
139     else
140       return;
141   }
142 
143   // If the result of the assignment is used, copy the LHS there also.
144   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
145   // from the source as well, as we can't eliminate it if either operand
146   // is volatile, unless copy has volatile for both source and destination..
147   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType());
148 }
149 
150 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
151 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src) {
152   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
153 
154   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
155                                             Src.isVolatileQualified()));
156 }
157 
158 //===----------------------------------------------------------------------===//
159 //                            Visitor Methods
160 //===----------------------------------------------------------------------===//
161 
162 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
163   // GCC union extension
164   if (E->getType()->isUnionType()) {
165     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
166     LValue FieldLoc = CGF.EmitLValueForField(DestPtr,
167                                              *SD->field_begin(CGF.getContext()),
168                                              true, 0);
169     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
170     return;
171   }
172 
173   Visit(E->getSubExpr());
174 }
175 
176 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
177   assert(CGF.getContext().typesAreCompatible(
178                           E->getSubExpr()->getType().getUnqualifiedType(),
179                           E->getType().getUnqualifiedType()) &&
180          "Implicit cast types must be compatible");
181   Visit(E->getSubExpr());
182 }
183 
184 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
185   RValue RV = CGF.EmitCallExpr(E);
186   EmitFinalDestCopy(E, RV);
187 }
188 
189 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
190   RValue RV = CGF.EmitObjCMessageExpr(E);
191   EmitFinalDestCopy(E, RV);
192 }
193 
194 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
195   RValue RV = CGF.EmitObjCPropertyGet(E);
196   EmitFinalDestCopy(E, RV);
197 }
198 
199 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
200   RValue RV = CGF.EmitObjCPropertyGet(E);
201   EmitFinalDestCopy(E, RV);
202 }
203 
204 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
205   CGF.EmitAnyExpr(E->getLHS());
206   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest);
207 }
208 
209 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
210   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
211 }
212 
213 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
214   CGF.ErrorUnsupported(E, "aggregate binary expression");
215 }
216 
217 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
218   // For an assignment to work, the value on the right has
219   // to be compatible with the value on the left.
220   assert(CGF.getContext().typesAreCompatible(
221              E->getLHS()->getType().getUnqualifiedType(),
222              E->getRHS()->getType().getUnqualifiedType())
223          && "Invalid assignment");
224   LValue LHS = CGF.EmitLValue(E->getLHS());
225 
226   // We have to special case property setters, otherwise we must have
227   // a simple lvalue (no aggregates inside vectors, bitfields).
228   if (LHS.isPropertyRef()) {
229     // FIXME: Volatility?
230     llvm::Value *AggLoc = DestPtr;
231     if (!AggLoc)
232       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
233     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
234     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
235                             RValue::getAggregate(AggLoc));
236   }
237   else if (LHS.isKVCRef()) {
238     // FIXME: Volatility?
239     llvm::Value *AggLoc = DestPtr;
240     if (!AggLoc)
241       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
242     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
243     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
244                             RValue::getAggregate(AggLoc));
245   } else {
246     // Codegen the RHS so that it stores directly into the LHS.
247     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
248     EmitFinalDestCopy(E, LHS);
249   }
250 }
251 
252 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
253   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
254   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
255   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
256 
257   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
258   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
259 
260   CGF.EmitBlock(LHSBlock);
261 
262   // Handle the GNU extension for missing LHS.
263   assert(E->getLHS() && "Must have LHS for aggregate value");
264 
265   Visit(E->getLHS());
266   CGF.EmitBranch(ContBlock);
267 
268   CGF.EmitBlock(RHSBlock);
269 
270   Visit(E->getRHS());
271   CGF.EmitBranch(ContBlock);
272 
273   CGF.EmitBlock(ContBlock);
274 }
275 
276 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
277   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
278   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
279 
280   if (!ArgPtr) {
281     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
282     return;
283   }
284 
285   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
286 }
287 
288 void
289 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
290   llvm::Value *V = DestPtr;
291 
292   if (!V) {
293     assert(isa<CXXTempVarDecl>(E->getVarDecl()) &&
294            "Must have a temp var decl when there's no destination!");
295 
296     V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()),
297                              "tmpvar");
298   }
299 
300   CGF.EmitCXXConstructExpr(V, E);
301 }
302 
303 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
304   // FIXME: Do something with the temporaries!
305   Visit(E->getSubExpr());
306 }
307 
308 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
309   // FIXME: Are initializers affected by volatile?
310   if (isa<ImplicitValueInitExpr>(E)) {
311     EmitNullInitializationToLValue(LV, E->getType());
312   } else if (E->getType()->isComplexType()) {
313     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
314   } else if (CGF.hasAggregateLLVMType(E->getType())) {
315     CGF.EmitAnyExpr(E, LV.getAddress(), false);
316   } else {
317     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
318   }
319 }
320 
321 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
322   if (!CGF.hasAggregateLLVMType(T)) {
323     // For non-aggregates, we can store zero
324     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
325     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
326   } else {
327     // Otherwise, just memset the whole thing to zero.  This is legal
328     // because in LLVM, all default initializers are guaranteed to have a
329     // bit pattern of all zeros.
330     // FIXME: That isn't true for member pointers!
331     // There's a potential optimization opportunity in combining
332     // memsets; that would be easy for arrays, but relatively
333     // difficult for structures with the current code.
334     CGF.EmitMemSetToZero(LV.getAddress(), T);
335   }
336 }
337 
338 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
339 #if 0
340   // FIXME: Disabled while we figure out what to do about
341   // test/CodeGen/bitfield.c
342   //
343   // If we can, prefer a copy from a global; this is a lot less code for long
344   // globals, and it's easier for the current optimizers to analyze.
345   // FIXME: Should we really be doing this? Should we try to avoid cases where
346   // we emit a global with a lot of zeros?  Should we try to avoid short
347   // globals?
348   if (E->isConstantInitializer(CGF.getContext(), 0)) {
349     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
350     llvm::GlobalVariable* GV =
351     new llvm::GlobalVariable(C->getType(), true,
352                              llvm::GlobalValue::InternalLinkage,
353                              C, "", &CGF.CGM.getModule(), 0);
354     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
355     return;
356   }
357 #endif
358   if (E->hadArrayRangeDesignator()) {
359     CGF.ErrorUnsupported(E, "GNU array range designator extension");
360   }
361 
362   // Handle initialization of an array.
363   if (E->getType()->isArrayType()) {
364     const llvm::PointerType *APType =
365       cast<llvm::PointerType>(DestPtr->getType());
366     const llvm::ArrayType *AType =
367       cast<llvm::ArrayType>(APType->getElementType());
368 
369     uint64_t NumInitElements = E->getNumInits();
370 
371     if (E->getNumInits() > 0) {
372       QualType T1 = E->getType();
373       QualType T2 = E->getInit(0)->getType();
374       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
375           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
376         EmitAggLoadOfLValue(E->getInit(0));
377         return;
378       }
379     }
380 
381     uint64_t NumArrayElements = AType->getNumElements();
382     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
383     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
384 
385     unsigned CVRqualifier = ElementType.getCVRQualifiers();
386 
387     for (uint64_t i = 0; i != NumArrayElements; ++i) {
388       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
389       if (i < NumInitElements)
390         EmitInitializationToLValue(E->getInit(i),
391                                    LValue::MakeAddr(NextVal, CVRqualifier));
392       else
393         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
394                                        ElementType);
395     }
396     return;
397   }
398 
399   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
400 
401   // Do struct initialization; this code just sets each individual member
402   // to the approprate value.  This makes bitfield support automatic;
403   // the disadvantage is that the generated code is more difficult for
404   // the optimizer, especially with bitfields.
405   unsigned NumInitElements = E->getNumInits();
406   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
407   unsigned CurInitVal = 0;
408 
409   if (E->getType()->isUnionType()) {
410     // Only initialize one field of a union. The field itself is
411     // specified by the initializer list.
412     if (!E->getInitializedFieldInUnion()) {
413       // Empty union; we have nothing to do.
414 
415 #ifndef NDEBUG
416       // Make sure that it's really an empty and not a failure of
417       // semantic analysis.
418       for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
419                                    FieldEnd = SD->field_end(CGF.getContext());
420            Field != FieldEnd; ++Field)
421         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
422 #endif
423       return;
424     }
425 
426     // FIXME: volatility
427     FieldDecl *Field = E->getInitializedFieldInUnion();
428     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
429 
430     if (NumInitElements) {
431       // Store the initializer into the field
432       EmitInitializationToLValue(E->getInit(0), FieldLoc);
433     } else {
434       // Default-initialize to null
435       EmitNullInitializationToLValue(FieldLoc, Field->getType());
436     }
437 
438     return;
439   }
440 
441   // Here we iterate over the fields; this makes it simpler to both
442   // default-initialize fields and skip over unnamed fields.
443   for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
444                                FieldEnd = SD->field_end(CGF.getContext());
445        Field != FieldEnd; ++Field) {
446     // We're done once we hit the flexible array member
447     if (Field->getType()->isIncompleteArrayType())
448       break;
449 
450     if (Field->isUnnamedBitfield())
451       continue;
452 
453     // FIXME: volatility
454     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
455     if (CurInitVal < NumInitElements) {
456       // Store the initializer into the field
457       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
458     } else {
459       // We're out of initalizers; default-initialize to null
460       EmitNullInitializationToLValue(FieldLoc, Field->getType());
461     }
462   }
463 }
464 
465 //===----------------------------------------------------------------------===//
466 //                        Entry Points into this File
467 //===----------------------------------------------------------------------===//
468 
469 /// EmitAggExpr - Emit the computation of the specified expression of
470 /// aggregate type.  The result is computed into DestPtr.  Note that if
471 /// DestPtr is null, the value of the aggregate expression is not needed.
472 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
473                                   bool VolatileDest) {
474   assert(E && hasAggregateLLVMType(E->getType()) &&
475          "Invalid aggregate expression to emit");
476 
477   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
478 }
479 
480 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
481   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
482 
483   EmitMemSetToZero(DestPtr, Ty);
484 }
485 
486 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
487                                         llvm::Value *SrcPtr, QualType Ty) {
488   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
489 
490   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
491   // C99 6.5.16.1p3, which states "If the value being stored in an object is
492   // read from another object that overlaps in anyway the storage of the first
493   // object, then the overlap shall be exact and the two objects shall have
494   // qualified or unqualified versions of a compatible type."
495   //
496   // memcpy is not defined if the source and destination pointers are exactly
497   // equal, but other compilers do this optimization, and almost every memcpy
498   // implementation handles this case safely.  If there is a libc that does not
499   // safely handle this, we can add a target hook.
500   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
501   if (DestPtr->getType() != BP)
502     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
503   if (SrcPtr->getType() != BP)
504     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
505 
506   // Get size and alignment info for this aggregate.
507   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
508 
509   // FIXME: Handle variable sized types.
510   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
511 
512   // FIXME: If we have a volatile struct, the optimizer can remove what might
513   // appear to be `extra' memory ops:
514   //
515   // volatile struct { int i; } a, b;
516   //
517   // int main() {
518   //   a = b;
519   //   a = b;
520   // }
521   //
522   // either, we need to use a differnt call here, or the backend needs to be
523   // taught to not do this.
524   Builder.CreateCall4(CGM.getMemCpyFn(),
525                       DestPtr, SrcPtr,
526                       // TypeInfo.first describes size in bits.
527                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
528                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
529                                              TypeInfo.second/8));
530 }
531