1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/AST.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Function.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Intrinsics.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Aggregate Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 31 CodeGenFunction &CGF; 32 llvm::IRBuilder &Builder; 33 llvm::Value *DestPtr; 34 bool VolatileDest; 35 public: 36 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 37 : CGF(cgf), Builder(CGF.Builder), 38 DestPtr(destPtr), VolatileDest(volatileDest) { 39 } 40 41 //===--------------------------------------------------------------------===// 42 // Utilities 43 //===--------------------------------------------------------------------===// 44 45 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 46 /// represents a value lvalue, this method emits the address of the lvalue, 47 /// then loads the result into DestPtr. 48 void EmitAggLoadOfLValue(const Expr *E); 49 50 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 51 QualType EltTy); 52 53 void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty); 54 55 void EmitNonConstInit(InitListExpr *E); 56 57 //===--------------------------------------------------------------------===// 58 // Visitor Methods 59 //===--------------------------------------------------------------------===// 60 61 void VisitStmt(Stmt *S) { 62 CGF.WarnUnsupported(S, "aggregate expression"); 63 } 64 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 72 { EmitAggLoadOfLValue(E); } 73 74 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 78 // Operators. 79 // case Expr::UnaryOperatorClass: 80 // case Expr::CastExprClass: 81 void VisitImplicitCastExpr(ImplicitCastExpr *E); 82 void VisitCallExpr(const CallExpr *E); 83 void VisitStmtExpr(const StmtExpr *E); 84 void VisitBinaryOperator(const BinaryOperator *BO); 85 void VisitBinAssign(const BinaryOperator *E); 86 void VisitOverloadExpr(const OverloadExpr *E); 87 void VisitBinComma(const BinaryOperator *E); 88 89 90 void VisitConditionalOperator(const ConditionalOperator *CO); 91 void VisitInitListExpr(InitListExpr *E); 92 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 93 Visit(DAE->getExpr()); 94 } 95 void VisitVAArgExpr(VAArgExpr *E); 96 97 void EmitInitializationToLValue(Expr *E, LValue Address); 98 void EmitNullInitializationToLValue(LValue Address, QualType T); 99 // case Expr::ChooseExprClass: 100 101 }; 102 } // end anonymous namespace. 103 104 //===----------------------------------------------------------------------===// 105 // Utilities 106 //===----------------------------------------------------------------------===// 107 108 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 109 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 110 111 // Aggregate assignment turns into llvm.memset. 112 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 113 if (DestPtr->getType() != BP) 114 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 115 116 // Get size and alignment info for this aggregate. 117 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 118 119 // FIXME: Handle variable sized types. 120 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 121 122 llvm::Value *MemSetOps[4] = { 123 DestPtr, 124 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 125 // TypeInfo.first describes size in bits. 126 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 127 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 128 }; 129 130 Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4); 131 } 132 133 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr, 134 llvm::Value *SrcPtr, QualType Ty) { 135 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 136 137 // Aggregate assignment turns into llvm.memmove. 138 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 139 if (DestPtr->getType() != BP) 140 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 141 if (SrcPtr->getType() != BP) 142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 143 144 // Get size and alignment info for this aggregate. 145 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 146 147 // FIXME: Handle variable sized types. 148 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 149 150 llvm::Value *MemMoveOps[4] = { 151 DestPtr, SrcPtr, 152 // TypeInfo.first describes size in bits. 153 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 154 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 155 }; 156 157 Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4); 158 } 159 160 161 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 162 /// represents a value lvalue, this method emits the address of the lvalue, 163 /// then loads the result into DestPtr. 164 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 165 LValue LV = CGF.EmitLValue(E); 166 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 167 llvm::Value *SrcPtr = LV.getAddress(); 168 169 // If the result is ignored, don't copy from the value. 170 if (DestPtr == 0) 171 // FIXME: If the source is volatile, we must read from it. 172 return; 173 174 EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 175 } 176 177 //===----------------------------------------------------------------------===// 178 // Visitor Methods 179 //===----------------------------------------------------------------------===// 180 181 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) 182 { 183 QualType STy = E->getSubExpr()->getType().getCanonicalType(); 184 QualType Ty = E->getType().getCanonicalType(); 185 186 assert(CGF.getContext().typesAreCompatible( 187 STy.getUnqualifiedType(), Ty.getUnqualifiedType()) 188 && "Implicit cast types must be compatible"); 189 190 Visit(E->getSubExpr()); 191 } 192 193 void AggExprEmitter::VisitCallExpr(const CallExpr *E) 194 { 195 RValue RV = CGF.EmitCallExpr(E); 196 assert(RV.isAggregate() && "Return value must be aggregate value!"); 197 198 // If the result is ignored, don't copy from the value. 199 if (DestPtr == 0) 200 // FIXME: If the source is volatile, we must read from it. 201 return; 202 203 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 204 } 205 206 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) 207 { 208 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 209 E->getNumArgs(CGF.getContext())); 210 assert(RV.isAggregate() && "Return value must be aggregate value!"); 211 212 // If the result is ignored, don't copy from the value. 213 if (DestPtr == 0) 214 // FIXME: If the source is volatile, we must read from it. 215 return; 216 217 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 218 } 219 220 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) 221 { 222 CGF.EmitAnyExpr(E->getLHS()); 223 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 224 } 225 226 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 227 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 228 } 229 230 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 231 CGF.WarnUnsupported(E, "aggregate binary expression"); 232 } 233 234 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 235 // For an assignment to work, the value on the right has 236 // to be compatible with the value on the left. 237 assert(CGF.getContext().typesAreCompatible( 238 E->getLHS()->getType().getUnqualifiedType(), 239 E->getRHS()->getType().getUnqualifiedType()) 240 && "Invalid assignment"); 241 LValue LHS = CGF.EmitLValue(E->getLHS()); 242 243 // Codegen the RHS so that it stores directly into the LHS. 244 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 245 246 if (DestPtr == 0) 247 return; 248 249 // If the result of the assignment is used, copy the RHS there also. 250 EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 251 } 252 253 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 254 llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?"); 255 llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:"); 256 llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont"); 257 258 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 259 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 260 261 CGF.EmitBlock(LHSBlock); 262 263 // Handle the GNU extension for missing LHS. 264 assert(E->getLHS() && "Must have LHS for aggregate value"); 265 266 Visit(E->getLHS()); 267 Builder.CreateBr(ContBlock); 268 LHSBlock = Builder.GetInsertBlock(); 269 270 CGF.EmitBlock(RHSBlock); 271 272 Visit(E->getRHS()); 273 Builder.CreateBr(ContBlock); 274 RHSBlock = Builder.GetInsertBlock(); 275 276 CGF.EmitBlock(ContBlock); 277 } 278 279 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 280 llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); 281 llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 282 if (DestPtr) 283 // FIXME: volatility 284 Builder.CreateStore(V, DestPtr); 285 } 286 287 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 288 289 const llvm::PointerType *APType = 290 cast<llvm::PointerType>(DestPtr->getType()); 291 const llvm::Type *DestType = APType->getElementType(); 292 293 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 294 unsigned NumInitElements = E->getNumInits(); 295 296 unsigned i; 297 for (i = 0; i != NumInitElements; ++i) { 298 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 299 Expr *Init = E->getInit(i); 300 if (isa<InitListExpr>(Init)) 301 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 302 else 303 // FIXME: volatility 304 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 305 } 306 307 // Emit remaining default initializers 308 unsigned NumArrayElements = AType->getNumElements(); 309 QualType QType = E->getInit(0)->getType(); 310 const llvm::Type *EType = AType->getElementType(); 311 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 312 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 313 if (EType->isSingleValueType()) 314 // FIXME: volatility 315 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 316 else 317 EmitAggregateClear(NextVal, QType); 318 } 319 } else 320 assert(false && "Invalid initializer"); 321 } 322 323 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 324 // FIXME: Are initializers affected by volatile? 325 if (E->getType()->isComplexType()) { 326 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 327 } else if (CGF.hasAggregateLLVMType(E->getType())) { 328 CGF.EmitAnyExpr(E, LV.getAddress(), false); 329 } else { 330 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 331 } 332 } 333 334 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 335 if (!CGF.hasAggregateLLVMType(T)) { 336 // For non-aggregates, we can store zero 337 const llvm::Type *T = 338 cast<llvm::PointerType>(LV.getAddress()->getType())->getElementType(); 339 // FIXME: volatility 340 Builder.CreateStore(llvm::Constant::getNullValue(T), LV.getAddress()); 341 } else { 342 // Otherwise, just memset the whole thing to zero. This is legal 343 // because in LLVM, all default initializers are guaranteed to have a 344 // bit pattern of all zeros. 345 // There's a potential optimization opportunity in combining 346 // memsets; that would be easy for arrays, but relatively 347 // difficult for structures with the current code. 348 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64); 349 uint64_t Size = CGF.getContext().getTypeSize(T); 350 351 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 352 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 353 Builder.CreateCall4(MemSet, DestPtr, 354 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 355 llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8), 356 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 357 } 358 } 359 360 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 361 if (E->isConstantExpr(CGF.getContext(), 0)) { 362 // FIXME: call into const expr emitter so that we can emit 363 // a memcpy instead of storing the individual members. 364 // This is purely for perf; both codepaths lead to equivalent 365 // (although not necessarily identical) code. 366 // It's worth noting that LLVM keeps on getting smarter, though, 367 // so it might not be worth bothering. 368 } 369 370 // Handle initialization of an array. 371 if (E->getType()->isArrayType()) { 372 const llvm::PointerType *APType = 373 cast<llvm::PointerType>(DestPtr->getType()); 374 const llvm::ArrayType *AType = 375 cast<llvm::ArrayType>(APType->getElementType()); 376 377 uint64_t NumInitElements = E->getNumInits(); 378 379 if (E->getNumInits() > 0 && 380 E->getType().getCanonicalType().getUnqualifiedType() == 381 E->getInit(0)->getType().getCanonicalType().getUnqualifiedType()) { 382 EmitAggLoadOfLValue(E->getInit(0)); 383 return; 384 } 385 386 uint64_t NumArrayElements = AType->getNumElements(); 387 QualType ElementType = E->getType()->getAsArrayType()->getElementType(); 388 389 unsigned CVRqualifier = E->getType().getCanonicalType()->getAsArrayType() 390 ->getElementType().getCVRQualifiers(); 391 392 for (uint64_t i = 0; i != NumArrayElements; ++i) { 393 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 394 if (i < NumInitElements) 395 EmitInitializationToLValue(E->getInit(i), 396 LValue::MakeAddr(NextVal, CVRqualifier)); 397 else 398 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 399 ElementType); 400 } 401 return; 402 } 403 404 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 405 406 // Do struct initialization; this code just sets each individual member 407 // to the approprate value. This makes bitfield support automatic; 408 // the disadvantage is that the generated code is more difficult for 409 // the optimizer, especially with bitfields. 410 unsigned NumInitElements = E->getNumInits(); 411 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 412 unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember(); 413 unsigned CurInitVal = 0; 414 bool isUnion = E->getType()->isUnionType(); 415 416 // Here we iterate over the fields; this makes it simpler to both 417 // default-initialize fields and skip over unnamed fields. 418 for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) { 419 if (CurInitVal >= NumInitElements) { 420 // No more initializers; we're done. 421 break; 422 } 423 424 FieldDecl *CurField = SD->getMember(CurFieldNo); 425 if (CurField->getIdentifier() == 0) { 426 // Initializers can't initialize unnamed fields, e.g. "int : 20;" 427 continue; 428 } 429 // FIXME: volatility 430 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0); 431 if (CurInitVal < NumInitElements) { 432 // Store the initializer into the field 433 // This will probably have to get a bit smarter when we support 434 // designators in initializers 435 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 436 } else { 437 // We're out of initalizers; default-initialize to null 438 EmitNullInitializationToLValue(FieldLoc, CurField->getType()); 439 } 440 441 // Unions only initialize one field. 442 // (things can get weird with designators, but they aren't 443 // supported yet.) 444 if (E->getType()->isUnionType()) 445 break; 446 } 447 } 448 449 //===----------------------------------------------------------------------===// 450 // Entry Points into this File 451 //===----------------------------------------------------------------------===// 452 453 /// EmitAggExpr - Emit the computation of the specified expression of 454 /// aggregate type. The result is computed into DestPtr. Note that if 455 /// DestPtr is null, the value of the aggregate expression is not needed. 456 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 457 bool VolatileDest) { 458 assert(E && hasAggregateLLVMType(E->getType()) && 459 "Invalid aggregate expression to emit"); 460 461 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 462 } 463