1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitExprWithCleanups(ExprWithCleanups *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 133 134 void VisitVAArgExpr(VAArgExpr *E); 135 136 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 137 void EmitNullInitializationToLValue(LValue Address, QualType T); 138 // case Expr::ChooseExprClass: 139 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 140 }; 141 } // end anonymous namespace. 142 143 //===----------------------------------------------------------------------===// 144 // Utilities 145 //===----------------------------------------------------------------------===// 146 147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 148 /// represents a value lvalue, this method emits the address of the lvalue, 149 /// then loads the result into DestPtr. 150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 151 LValue LV = CGF.EmitLValue(E); 152 EmitFinalDestCopy(E, LV); 153 } 154 155 /// \brief True if the given aggregate type requires special GC API calls. 156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 157 // Only record types have members that might require garbage collection. 158 const RecordType *RecordTy = T->getAs<RecordType>(); 159 if (!RecordTy) return false; 160 161 // Don't mess with non-trivial C++ types. 162 RecordDecl *Record = RecordTy->getDecl(); 163 if (isa<CXXRecordDecl>(Record) && 164 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 165 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 166 return false; 167 168 // Check whether the type has an object member. 169 return Record->hasObjectMember(); 170 } 171 172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 173 /// 174 /// The idea is that you do something like this: 175 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 176 /// EmitGCMove(E, Result); 177 /// If GC doesn't interfere, this will cause the result to be emitted 178 /// directly into the return value slot. If GC does interfere, a final 179 /// move will be performed. 180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 181 if (Dest.requiresGCollection()) { 182 std::pair<uint64_t, unsigned> TypeInfo = 183 CGF.getContext().getTypeInfo(E->getType()); 184 unsigned long size = TypeInfo.first/8; 185 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 186 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 187 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 188 Src.getAggregateAddr(), 189 SizeVal); 190 } 191 } 192 193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 195 assert(Src.isAggregate() && "value must be aggregate value!"); 196 197 // If Dest is ignored, then we're evaluating an aggregate expression 198 // in a context (like an expression statement) that doesn't care 199 // about the result. C says that an lvalue-to-rvalue conversion is 200 // performed in these cases; C++ says that it is not. In either 201 // case, we don't actually need to do anything unless the value is 202 // volatile. 203 if (Dest.isIgnored()) { 204 if (!Src.isVolatileQualified() || 205 CGF.CGM.getLangOptions().CPlusPlus || 206 (IgnoreResult && Ignore)) 207 return; 208 209 // If the source is volatile, we must read from it; to do that, we need 210 // some place to put it. 211 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 212 } 213 214 if (Dest.requiresGCollection()) { 215 std::pair<uint64_t, unsigned> TypeInfo = 216 CGF.getContext().getTypeInfo(E->getType()); 217 unsigned long size = TypeInfo.first/8; 218 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 219 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 220 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 221 Dest.getAddr(), 222 Src.getAggregateAddr(), 223 SizeVal); 224 return; 225 } 226 // If the result of the assignment is used, copy the LHS there also. 227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 228 // from the source as well, as we can't eliminate it if either operand 229 // is volatile, unless copy has volatile for both source and destination.. 230 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 231 Dest.isVolatile()|Src.isVolatileQualified()); 232 } 233 234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 236 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 237 238 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 239 Src.isVolatileQualified()), 240 Ignore); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Visitor Methods 245 //===----------------------------------------------------------------------===// 246 247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 248 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 249 } 250 251 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 252 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 253 Visit(E->getSubExpr()); 254 return; 255 } 256 257 switch (E->getCastKind()) { 258 case CK_Dynamic: { 259 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 260 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 261 // FIXME: Do we also need to handle property references here? 262 if (LV.isSimple()) 263 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 264 else 265 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 266 267 if (!Dest.isIgnored()) 268 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 269 break; 270 } 271 272 case CK_ToUnion: { 273 // GCC union extension 274 QualType Ty = E->getSubExpr()->getType(); 275 QualType PtrTy = CGF.getContext().getPointerType(Ty); 276 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 277 CGF.ConvertType(PtrTy)); 278 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 279 Ty); 280 break; 281 } 282 283 case CK_DerivedToBase: 284 case CK_BaseToDerived: 285 case CK_UncheckedDerivedToBase: { 286 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 287 "should have been unpacked before we got here"); 288 break; 289 } 290 291 case CK_GetObjCProperty: { 292 LValue LV = CGF.EmitLValue(E->getSubExpr()); 293 assert(LV.isPropertyRef()); 294 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 295 EmitGCMove(E, RV); 296 break; 297 } 298 299 case CK_LValueToRValue: // hope for downstream optimization 300 case CK_NoOp: 301 case CK_UserDefinedConversion: 302 case CK_ConstructorConversion: 303 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 304 E->getType()) && 305 "Implicit cast types must be compatible"); 306 Visit(E->getSubExpr()); 307 break; 308 309 case CK_LValueBitCast: 310 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 311 break; 312 313 case CK_ResolveUnknownAnyType: 314 EmitAggLoadOfLValue(E); 315 break; 316 317 case CK_Dependent: 318 case CK_BitCast: 319 case CK_ArrayToPointerDecay: 320 case CK_FunctionToPointerDecay: 321 case CK_NullToPointer: 322 case CK_NullToMemberPointer: 323 case CK_BaseToDerivedMemberPointer: 324 case CK_DerivedToBaseMemberPointer: 325 case CK_MemberPointerToBoolean: 326 case CK_IntegralToPointer: 327 case CK_PointerToIntegral: 328 case CK_PointerToBoolean: 329 case CK_ToVoid: 330 case CK_VectorSplat: 331 case CK_IntegralCast: 332 case CK_IntegralToBoolean: 333 case CK_IntegralToFloating: 334 case CK_FloatingToIntegral: 335 case CK_FloatingToBoolean: 336 case CK_FloatingCast: 337 case CK_AnyPointerToObjCPointerCast: 338 case CK_AnyPointerToBlockPointerCast: 339 case CK_ObjCObjectLValueCast: 340 case CK_FloatingRealToComplex: 341 case CK_FloatingComplexToReal: 342 case CK_FloatingComplexToBoolean: 343 case CK_FloatingComplexCast: 344 case CK_FloatingComplexToIntegralComplex: 345 case CK_IntegralRealToComplex: 346 case CK_IntegralComplexToReal: 347 case CK_IntegralComplexToBoolean: 348 case CK_IntegralComplexCast: 349 case CK_IntegralComplexToFloatingComplex: 350 llvm_unreachable("cast kind invalid for aggregate types"); 351 } 352 } 353 354 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 355 if (E->getCallReturnType()->isReferenceType()) { 356 EmitAggLoadOfLValue(E); 357 return; 358 } 359 360 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 361 EmitGCMove(E, RV); 362 } 363 364 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 365 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 366 EmitGCMove(E, RV); 367 } 368 369 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 370 llvm_unreachable("direct property access not surrounded by " 371 "lvalue-to-rvalue cast"); 372 } 373 374 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 375 CGF.EmitIgnoredExpr(E->getLHS()); 376 Visit(E->getRHS()); 377 } 378 379 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 380 CodeGenFunction::StmtExprEvaluation eval(CGF); 381 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 382 } 383 384 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 385 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 386 VisitPointerToDataMemberBinaryOperator(E); 387 else 388 CGF.ErrorUnsupported(E, "aggregate binary expression"); 389 } 390 391 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 392 const BinaryOperator *E) { 393 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 394 EmitFinalDestCopy(E, LV); 395 } 396 397 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 398 // For an assignment to work, the value on the right has 399 // to be compatible with the value on the left. 400 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 401 E->getRHS()->getType()) 402 && "Invalid assignment"); 403 404 // FIXME: __block variables need the RHS evaluated first! 405 LValue LHS = CGF.EmitLValue(E->getLHS()); 406 407 // We have to special case property setters, otherwise we must have 408 // a simple lvalue (no aggregates inside vectors, bitfields). 409 if (LHS.isPropertyRef()) { 410 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 411 QualType ArgType = RE->getSetterArgType(); 412 RValue Src; 413 if (ArgType->isReferenceType()) 414 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 415 else { 416 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 417 CGF.EmitAggExpr(E->getRHS(), Slot); 418 Src = Slot.asRValue(); 419 } 420 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 421 } else { 422 bool GCollection = false; 423 if (CGF.getContext().getLangOptions().getGCMode()) 424 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 425 426 // Codegen the RHS so that it stores directly into the LHS. 427 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 428 GCollection); 429 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 430 EmitFinalDestCopy(E, LHS, true); 431 } 432 } 433 434 void AggExprEmitter:: 435 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 436 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 437 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 438 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 439 440 // Bind the common expression if necessary. 441 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 442 443 CodeGenFunction::ConditionalEvaluation eval(CGF); 444 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 445 446 // Save whether the destination's lifetime is externally managed. 447 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 448 449 eval.begin(CGF); 450 CGF.EmitBlock(LHSBlock); 451 Visit(E->getTrueExpr()); 452 eval.end(CGF); 453 454 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 455 CGF.Builder.CreateBr(ContBlock); 456 457 // If the result of an agg expression is unused, then the emission 458 // of the LHS might need to create a destination slot. That's fine 459 // with us, and we can safely emit the RHS into the same slot, but 460 // we shouldn't claim that its lifetime is externally managed. 461 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 462 463 eval.begin(CGF); 464 CGF.EmitBlock(RHSBlock); 465 Visit(E->getFalseExpr()); 466 eval.end(CGF); 467 468 CGF.EmitBlock(ContBlock); 469 } 470 471 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 472 Visit(CE->getChosenSubExpr(CGF.getContext())); 473 } 474 475 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 476 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 477 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 478 479 if (!ArgPtr) { 480 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 481 return; 482 } 483 484 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 485 } 486 487 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 488 // Ensure that we have a slot, but if we already do, remember 489 // whether its lifetime was externally managed. 490 bool WasManaged = Dest.isLifetimeExternallyManaged(); 491 Dest = EnsureSlot(E->getType()); 492 Dest.setLifetimeExternallyManaged(); 493 494 Visit(E->getSubExpr()); 495 496 // Set up the temporary's destructor if its lifetime wasn't already 497 // being managed. 498 if (!WasManaged) 499 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 500 } 501 502 void 503 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 504 AggValueSlot Slot = EnsureSlot(E->getType()); 505 CGF.EmitCXXConstructExpr(E, Slot); 506 } 507 508 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 509 CGF.EmitExprWithCleanups(E, Dest); 510 } 511 512 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 513 QualType T = E->getType(); 514 AggValueSlot Slot = EnsureSlot(T); 515 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 516 } 517 518 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 519 QualType T = E->getType(); 520 AggValueSlot Slot = EnsureSlot(T); 521 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 522 } 523 524 /// isSimpleZero - If emitting this value will obviously just cause a store of 525 /// zero to memory, return true. This can return false if uncertain, so it just 526 /// handles simple cases. 527 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 528 // (0) 529 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 530 return isSimpleZero(PE->getSubExpr(), CGF); 531 // 0 532 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 533 return IL->getValue() == 0; 534 // +0.0 535 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 536 return FL->getValue().isPosZero(); 537 // int() 538 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 539 CGF.getTypes().isZeroInitializable(E->getType())) 540 return true; 541 // (int*)0 - Null pointer expressions. 542 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 543 return ICE->getCastKind() == CK_NullToPointer; 544 // '\0' 545 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 546 return CL->getValue() == 0; 547 548 // Otherwise, hard case: conservatively return false. 549 return false; 550 } 551 552 553 void 554 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 555 // FIXME: Ignore result? 556 // FIXME: Are initializers affected by volatile? 557 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 558 // Storing "i32 0" to a zero'd memory location is a noop. 559 } else if (isa<ImplicitValueInitExpr>(E)) { 560 EmitNullInitializationToLValue(LV, T); 561 } else if (T->isReferenceType()) { 562 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 563 CGF.EmitStoreThroughLValue(RV, LV, T); 564 } else if (T->isAnyComplexType()) { 565 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 566 } else if (CGF.hasAggregateLLVMType(T)) { 567 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 568 false, Dest.isZeroed())); 569 } else { 570 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); 571 } 572 } 573 574 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 575 // If the destination slot is already zeroed out before the aggregate is 576 // copied into it, we don't have to emit any zeros here. 577 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 578 return; 579 580 if (!CGF.hasAggregateLLVMType(T)) { 581 // For non-aggregates, we can store zero 582 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 583 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 584 } else { 585 // There's a potential optimization opportunity in combining 586 // memsets; that would be easy for arrays, but relatively 587 // difficult for structures with the current code. 588 CGF.EmitNullInitialization(LV.getAddress(), T); 589 } 590 } 591 592 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 593 #if 0 594 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 595 // (Length of globals? Chunks of zeroed-out space?). 596 // 597 // If we can, prefer a copy from a global; this is a lot less code for long 598 // globals, and it's easier for the current optimizers to analyze. 599 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 600 llvm::GlobalVariable* GV = 601 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 602 llvm::GlobalValue::InternalLinkage, C, ""); 603 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 604 return; 605 } 606 #endif 607 if (E->hadArrayRangeDesignator()) 608 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 609 610 llvm::Value *DestPtr = Dest.getAddr(); 611 612 // Handle initialization of an array. 613 if (E->getType()->isArrayType()) { 614 const llvm::PointerType *APType = 615 cast<llvm::PointerType>(DestPtr->getType()); 616 const llvm::ArrayType *AType = 617 cast<llvm::ArrayType>(APType->getElementType()); 618 619 uint64_t NumInitElements = E->getNumInits(); 620 621 if (E->getNumInits() > 0) { 622 QualType T1 = E->getType(); 623 QualType T2 = E->getInit(0)->getType(); 624 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 625 EmitAggLoadOfLValue(E->getInit(0)); 626 return; 627 } 628 } 629 630 uint64_t NumArrayElements = AType->getNumElements(); 631 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 632 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 633 634 // FIXME: were we intentionally ignoring address spaces and GC attributes? 635 636 for (uint64_t i = 0; i != NumArrayElements; ++i) { 637 // If we're done emitting initializers and the destination is known-zeroed 638 // then we're done. 639 if (i == NumInitElements && 640 Dest.isZeroed() && 641 CGF.getTypes().isZeroInitializable(ElementType)) 642 break; 643 644 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 645 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 646 647 if (i < NumInitElements) 648 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 649 else 650 EmitNullInitializationToLValue(LV, ElementType); 651 652 // If the GEP didn't get used because of a dead zero init or something 653 // else, clean it up for -O0 builds and general tidiness. 654 if (llvm::GetElementPtrInst *GEP = 655 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 656 if (GEP->use_empty()) 657 GEP->eraseFromParent(); 658 } 659 return; 660 } 661 662 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 663 664 // Do struct initialization; this code just sets each individual member 665 // to the approprate value. This makes bitfield support automatic; 666 // the disadvantage is that the generated code is more difficult for 667 // the optimizer, especially with bitfields. 668 unsigned NumInitElements = E->getNumInits(); 669 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 670 671 if (E->getType()->isUnionType()) { 672 // Only initialize one field of a union. The field itself is 673 // specified by the initializer list. 674 if (!E->getInitializedFieldInUnion()) { 675 // Empty union; we have nothing to do. 676 677 #ifndef NDEBUG 678 // Make sure that it's really an empty and not a failure of 679 // semantic analysis. 680 for (RecordDecl::field_iterator Field = SD->field_begin(), 681 FieldEnd = SD->field_end(); 682 Field != FieldEnd; ++Field) 683 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 684 #endif 685 return; 686 } 687 688 // FIXME: volatility 689 FieldDecl *Field = E->getInitializedFieldInUnion(); 690 691 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 692 if (NumInitElements) { 693 // Store the initializer into the field 694 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 695 } else { 696 // Default-initialize to null. 697 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 698 } 699 700 return; 701 } 702 703 // Here we iterate over the fields; this makes it simpler to both 704 // default-initialize fields and skip over unnamed fields. 705 unsigned CurInitVal = 0; 706 for (RecordDecl::field_iterator Field = SD->field_begin(), 707 FieldEnd = SD->field_end(); 708 Field != FieldEnd; ++Field) { 709 // We're done once we hit the flexible array member 710 if (Field->getType()->isIncompleteArrayType()) 711 break; 712 713 if (Field->isUnnamedBitfield()) 714 continue; 715 716 // Don't emit GEP before a noop store of zero. 717 if (CurInitVal == NumInitElements && Dest.isZeroed() && 718 CGF.getTypes().isZeroInitializable(E->getType())) 719 break; 720 721 // FIXME: volatility 722 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 723 // We never generate write-barries for initialized fields. 724 FieldLoc.setNonGC(true); 725 726 if (CurInitVal < NumInitElements) { 727 // Store the initializer into the field. 728 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 729 Field->getType()); 730 } else { 731 // We're out of initalizers; default-initialize to null 732 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 733 } 734 735 // If the GEP didn't get used because of a dead zero init or something 736 // else, clean it up for -O0 builds and general tidiness. 737 if (FieldLoc.isSimple()) 738 if (llvm::GetElementPtrInst *GEP = 739 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 740 if (GEP->use_empty()) 741 GEP->eraseFromParent(); 742 } 743 } 744 745 //===----------------------------------------------------------------------===// 746 // Entry Points into this File 747 //===----------------------------------------------------------------------===// 748 749 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 750 /// non-zero bytes that will be stored when outputting the initializer for the 751 /// specified initializer expression. 752 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 753 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 754 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 755 756 // 0 and 0.0 won't require any non-zero stores! 757 if (isSimpleZero(E, CGF)) return 0; 758 759 // If this is an initlist expr, sum up the size of sizes of the (present) 760 // elements. If this is something weird, assume the whole thing is non-zero. 761 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 762 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 763 return CGF.getContext().getTypeSize(E->getType())/8; 764 765 // InitListExprs for structs have to be handled carefully. If there are 766 // reference members, we need to consider the size of the reference, not the 767 // referencee. InitListExprs for unions and arrays can't have references. 768 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 769 if (!RT->isUnionType()) { 770 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 771 uint64_t NumNonZeroBytes = 0; 772 773 unsigned ILEElement = 0; 774 for (RecordDecl::field_iterator Field = SD->field_begin(), 775 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 776 // We're done once we hit the flexible array member or run out of 777 // InitListExpr elements. 778 if (Field->getType()->isIncompleteArrayType() || 779 ILEElement == ILE->getNumInits()) 780 break; 781 if (Field->isUnnamedBitfield()) 782 continue; 783 784 const Expr *E = ILE->getInit(ILEElement++); 785 786 // Reference values are always non-null and have the width of a pointer. 787 if (Field->getType()->isReferenceType()) 788 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 789 else 790 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 791 } 792 793 return NumNonZeroBytes; 794 } 795 } 796 797 798 uint64_t NumNonZeroBytes = 0; 799 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 800 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 801 return NumNonZeroBytes; 802 } 803 804 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 805 /// zeros in it, emit a memset and avoid storing the individual zeros. 806 /// 807 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 808 CodeGenFunction &CGF) { 809 // If the slot is already known to be zeroed, nothing to do. Don't mess with 810 // volatile stores. 811 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 812 813 // If the type is 16-bytes or smaller, prefer individual stores over memset. 814 std::pair<uint64_t, unsigned> TypeInfo = 815 CGF.getContext().getTypeInfo(E->getType()); 816 if (TypeInfo.first/8 <= 16) 817 return; 818 819 // Check to see if over 3/4 of the initializer are known to be zero. If so, 820 // we prefer to emit memset + individual stores for the rest. 821 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 822 if (NumNonZeroBytes*4 > TypeInfo.first/8) 823 return; 824 825 // Okay, it seems like a good idea to use an initial memset, emit the call. 826 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 827 unsigned Align = TypeInfo.second/8; 828 829 llvm::Value *Loc = Slot.getAddr(); 830 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 831 832 Loc = CGF.Builder.CreateBitCast(Loc, BP); 833 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false); 834 835 // Tell the AggExprEmitter that the slot is known zero. 836 Slot.setZeroed(); 837 } 838 839 840 841 842 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 843 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 844 /// the value of the aggregate expression is not needed. If VolatileDest is 845 /// true, DestPtr cannot be 0. 846 /// 847 /// \param IsInitializer - true if this evaluation is initializing an 848 /// object whose lifetime is already being managed. 849 // 850 // FIXME: Take Qualifiers object. 851 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 852 bool IgnoreResult) { 853 assert(E && hasAggregateLLVMType(E->getType()) && 854 "Invalid aggregate expression to emit"); 855 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 856 "slot has bits but no address"); 857 858 // Optimize the slot if possible. 859 CheckAggExprForMemSetUse(Slot, E, *this); 860 861 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 862 } 863 864 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 865 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 866 llvm::Value *Temp = CreateMemTemp(E->getType()); 867 LValue LV = MakeAddrLValue(Temp, E->getType()); 868 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 869 return LV; 870 } 871 872 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 873 llvm::Value *SrcPtr, QualType Ty, 874 bool isVolatile) { 875 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 876 877 if (getContext().getLangOptions().CPlusPlus) { 878 if (const RecordType *RT = Ty->getAs<RecordType>()) { 879 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 880 assert((Record->hasTrivialCopyConstructor() || 881 Record->hasTrivialCopyAssignment()) && 882 "Trying to aggregate-copy a type without a trivial copy " 883 "constructor or assignment operator"); 884 // Ignore empty classes in C++. 885 if (Record->isEmpty()) 886 return; 887 } 888 } 889 890 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 891 // C99 6.5.16.1p3, which states "If the value being stored in an object is 892 // read from another object that overlaps in anyway the storage of the first 893 // object, then the overlap shall be exact and the two objects shall have 894 // qualified or unqualified versions of a compatible type." 895 // 896 // memcpy is not defined if the source and destination pointers are exactly 897 // equal, but other compilers do this optimization, and almost every memcpy 898 // implementation handles this case safely. If there is a libc that does not 899 // safely handle this, we can add a target hook. 900 901 // Get size and alignment info for this aggregate. 902 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 903 904 // FIXME: Handle variable sized types. 905 906 // FIXME: If we have a volatile struct, the optimizer can remove what might 907 // appear to be `extra' memory ops: 908 // 909 // volatile struct { int i; } a, b; 910 // 911 // int main() { 912 // a = b; 913 // a = b; 914 // } 915 // 916 // we need to use a different call here. We use isVolatile to indicate when 917 // either the source or the destination is volatile. 918 919 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 920 const llvm::Type *DBP = 921 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 922 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 923 924 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 925 const llvm::Type *SBP = 926 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 927 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 928 929 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 930 RecordDecl *Record = RecordTy->getDecl(); 931 if (Record->hasObjectMember()) { 932 unsigned long size = TypeInfo.first/8; 933 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 934 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 935 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 936 SizeVal); 937 return; 938 } 939 } else if (getContext().getAsArrayType(Ty)) { 940 QualType BaseType = getContext().getBaseElementType(Ty); 941 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 942 if (RecordTy->getDecl()->hasObjectMember()) { 943 unsigned long size = TypeInfo.first/8; 944 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 945 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 946 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 947 SizeVal); 948 return; 949 } 950 } 951 } 952 953 Builder.CreateMemCpy(DestPtr, SrcPtr, 954 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 955 TypeInfo.second/8, isVolatile); 956 } 957