1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                      QualType ArrayQTy, InitListExpr *E);
92 
93   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95       return AggValueSlot::NeedsGCBarriers;
96     return AggValueSlot::DoesNotNeedGCBarriers;
97   }
98 
99   bool TypeRequiresGCollection(QualType T);
100 
101   //===--------------------------------------------------------------------===//
102   //                            Visitor Methods
103   //===--------------------------------------------------------------------===//
104 
105   void Visit(Expr *E) {
106     ApplyDebugLocation DL(CGF, E);
107     StmtVisitor<AggExprEmitter>::Visit(E);
108   }
109 
110   void VisitStmt(Stmt *S) {
111     CGF.ErrorUnsupported(S, "aggregate expression");
112   }
113   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
114   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115     Visit(GE->getResultExpr());
116   }
117   void VisitCoawaitExpr(CoawaitExpr *E) {
118     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119   }
120   void VisitCoyieldExpr(CoyieldExpr *E) {
121     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122   }
123   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
125   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126     return Visit(E->getReplacement());
127   }
128 
129   void VisitConstantExpr(ConstantExpr *E) {
130     return Visit(E->getSubExpr());
131   }
132 
133   // l-values.
134   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
135   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
136   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
137   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
138   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
139   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
140     EmitAggLoadOfLValue(E);
141   }
142   void VisitPredefinedExpr(const PredefinedExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145 
146   // Operators.
147   void VisitCastExpr(CastExpr *E);
148   void VisitCallExpr(const CallExpr *E);
149   void VisitStmtExpr(const StmtExpr *E);
150   void VisitBinaryOperator(const BinaryOperator *BO);
151   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
152   void VisitBinAssign(const BinaryOperator *E);
153   void VisitBinComma(const BinaryOperator *E);
154   void VisitBinCmp(const BinaryOperator *E);
155   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
156     Visit(E->getSemanticForm());
157   }
158 
159   void VisitObjCMessageExpr(ObjCMessageExpr *E);
160   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
161     EmitAggLoadOfLValue(E);
162   }
163 
164   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
165   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
166   void VisitChooseExpr(const ChooseExpr *CE);
167   void VisitInitListExpr(InitListExpr *E);
168   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
169                               llvm::Value *outerBegin = nullptr);
170   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
171   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
172   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
173     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
174     Visit(DAE->getExpr());
175   }
176   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
177     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
178     Visit(DIE->getExpr());
179   }
180   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
181   void VisitCXXConstructExpr(const CXXConstructExpr *E);
182   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
183   void VisitLambdaExpr(LambdaExpr *E);
184   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
185   void VisitExprWithCleanups(ExprWithCleanups *E);
186   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
187   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
188   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
189   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
190 
191   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
192     if (E->isGLValue()) {
193       LValue LV = CGF.EmitPseudoObjectLValue(E);
194       return EmitFinalDestCopy(E->getType(), LV);
195     }
196 
197     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
198   }
199 
200   void VisitVAArgExpr(VAArgExpr *E);
201 
202   void EmitInitializationToLValue(Expr *E, LValue Address);
203   void EmitNullInitializationToLValue(LValue Address);
204   //  case Expr::ChooseExprClass:
205   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
206   void VisitAtomicExpr(AtomicExpr *E) {
207     RValue Res = CGF.EmitAtomicExpr(E);
208     EmitFinalDestCopy(E->getType(), Res);
209   }
210 };
211 }  // end anonymous namespace.
212 
213 //===----------------------------------------------------------------------===//
214 //                                Utilities
215 //===----------------------------------------------------------------------===//
216 
217 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
218 /// represents a value lvalue, this method emits the address of the lvalue,
219 /// then loads the result into DestPtr.
220 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
221   LValue LV = CGF.EmitLValue(E);
222 
223   // If the type of the l-value is atomic, then do an atomic load.
224   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
225     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
226     return;
227   }
228 
229   EmitFinalDestCopy(E->getType(), LV);
230 }
231 
232 /// True if the given aggregate type requires special GC API calls.
233 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
234   // Only record types have members that might require garbage collection.
235   const RecordType *RecordTy = T->getAs<RecordType>();
236   if (!RecordTy) return false;
237 
238   // Don't mess with non-trivial C++ types.
239   RecordDecl *Record = RecordTy->getDecl();
240   if (isa<CXXRecordDecl>(Record) &&
241       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
242        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
243     return false;
244 
245   // Check whether the type has an object member.
246   return Record->hasObjectMember();
247 }
248 
249 void AggExprEmitter::withReturnValueSlot(
250     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
251   QualType RetTy = E->getType();
252   bool RequiresDestruction =
253       !Dest.isExternallyDestructed() &&
254       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
255 
256   // If it makes no observable difference, save a memcpy + temporary.
257   //
258   // We need to always provide our own temporary if destruction is required.
259   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
260   // its lifetime before we have the chance to emit a proper destructor call.
261   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
262                  (RequiresDestruction && !Dest.getAddress().isValid());
263 
264   Address RetAddr = Address::invalid();
265   Address RetAllocaAddr = Address::invalid();
266 
267   EHScopeStack::stable_iterator LifetimeEndBlock;
268   llvm::Value *LifetimeSizePtr = nullptr;
269   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
270   if (!UseTemp) {
271     RetAddr = Dest.getAddress();
272   } else {
273     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
274     uint64_t Size =
275         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
276     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
277     if (LifetimeSizePtr) {
278       LifetimeStartInst =
279           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
280       assert(LifetimeStartInst->getIntrinsicID() ==
281                  llvm::Intrinsic::lifetime_start &&
282              "Last insertion wasn't a lifetime.start?");
283 
284       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
285           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
286       LifetimeEndBlock = CGF.EHStack.stable_begin();
287     }
288   }
289 
290   RValue Src =
291       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
292                                Dest.isExternallyDestructed()));
293 
294   if (!UseTemp)
295     return;
296 
297   assert(Dest.getPointer() != Src.getAggregatePointer());
298   EmitFinalDestCopy(E->getType(), Src);
299 
300   if (!RequiresDestruction && LifetimeStartInst) {
301     // If there's no dtor to run, the copy was the last use of our temporary.
302     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
303     // eagerly.
304     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
305     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
306   }
307 }
308 
309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
311   assert(src.isAggregate() && "value must be aggregate value!");
312   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
313   EmitFinalDestCopy(type, srcLV, EVK_RValue);
314 }
315 
316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
317 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
318                                        ExprValueKind SrcValueKind) {
319   // If Dest is ignored, then we're evaluating an aggregate expression
320   // in a context that doesn't care about the result.  Note that loads
321   // from volatile l-values force the existence of a non-ignored
322   // destination.
323   if (Dest.isIgnored())
324     return;
325 
326   // Copy non-trivial C structs here.
327   LValue DstLV = CGF.MakeAddrLValue(
328       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
329 
330   if (SrcValueKind == EVK_RValue) {
331     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
332       if (Dest.isPotentiallyAliased())
333         CGF.callCStructMoveAssignmentOperator(DstLV, src);
334       else
335         CGF.callCStructMoveConstructor(DstLV, src);
336       return;
337     }
338   } else {
339     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
340       if (Dest.isPotentiallyAliased())
341         CGF.callCStructCopyAssignmentOperator(DstLV, src);
342       else
343         CGF.callCStructCopyConstructor(DstLV, src);
344       return;
345     }
346   }
347 
348   AggValueSlot srcAgg = AggValueSlot::forLValue(
349       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
350       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
351   EmitCopy(type, Dest, srcAgg);
352 }
353 
354 /// Perform a copy from the source into the destination.
355 ///
356 /// \param type - the type of the aggregate being copied; qualifiers are
357 ///   ignored
358 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
359                               const AggValueSlot &src) {
360   if (dest.requiresGCollection()) {
361     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
362     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
363     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
364                                                       dest.getAddress(),
365                                                       src.getAddress(),
366                                                       size);
367     return;
368   }
369 
370   // If the result of the assignment is used, copy the LHS there also.
371   // It's volatile if either side is.  Use the minimum alignment of
372   // the two sides.
373   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
374   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
375   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
376                         dest.isVolatile() || src.isVolatile());
377 }
378 
379 /// Emit the initializer for a std::initializer_list initialized with a
380 /// real initializer list.
381 void
382 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
383   // Emit an array containing the elements.  The array is externally destructed
384   // if the std::initializer_list object is.
385   ASTContext &Ctx = CGF.getContext();
386   LValue Array = CGF.EmitLValue(E->getSubExpr());
387   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
388   Address ArrayPtr = Array.getAddress(CGF);
389 
390   const ConstantArrayType *ArrayType =
391       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
392   assert(ArrayType && "std::initializer_list constructed from non-array");
393 
394   // FIXME: Perform the checks on the field types in SemaInit.
395   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
396   RecordDecl::field_iterator Field = Record->field_begin();
397   if (Field == Record->field_end()) {
398     CGF.ErrorUnsupported(E, "weird std::initializer_list");
399     return;
400   }
401 
402   // Start pointer.
403   if (!Field->getType()->isPointerType() ||
404       !Ctx.hasSameType(Field->getType()->getPointeeType(),
405                        ArrayType->getElementType())) {
406     CGF.ErrorUnsupported(E, "weird std::initializer_list");
407     return;
408   }
409 
410   AggValueSlot Dest = EnsureSlot(E->getType());
411   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
412   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
413   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
414   llvm::Value *IdxStart[] = { Zero, Zero };
415   llvm::Value *ArrayStart =
416       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
417   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
418   ++Field;
419 
420   if (Field == Record->field_end()) {
421     CGF.ErrorUnsupported(E, "weird std::initializer_list");
422     return;
423   }
424 
425   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
426   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
427   if (Field->getType()->isPointerType() &&
428       Ctx.hasSameType(Field->getType()->getPointeeType(),
429                       ArrayType->getElementType())) {
430     // End pointer.
431     llvm::Value *IdxEnd[] = { Zero, Size };
432     llvm::Value *ArrayEnd =
433         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
434     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
435   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
436     // Length.
437     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
438   } else {
439     CGF.ErrorUnsupported(E, "weird std::initializer_list");
440     return;
441   }
442 }
443 
444 /// Determine if E is a trivial array filler, that is, one that is
445 /// equivalent to zero-initialization.
446 static bool isTrivialFiller(Expr *E) {
447   if (!E)
448     return true;
449 
450   if (isa<ImplicitValueInitExpr>(E))
451     return true;
452 
453   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
454     if (ILE->getNumInits())
455       return false;
456     return isTrivialFiller(ILE->getArrayFiller());
457   }
458 
459   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
460     return Cons->getConstructor()->isDefaultConstructor() &&
461            Cons->getConstructor()->isTrivial();
462 
463   // FIXME: Are there other cases where we can avoid emitting an initializer?
464   return false;
465 }
466 
467 /// Emit initialization of an array from an initializer list.
468 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
469                                    QualType ArrayQTy, InitListExpr *E) {
470   uint64_t NumInitElements = E->getNumInits();
471 
472   uint64_t NumArrayElements = AType->getNumElements();
473   assert(NumInitElements <= NumArrayElements);
474 
475   QualType elementType =
476       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
477 
478   // DestPtr is an array*.  Construct an elementType* by drilling
479   // down a level.
480   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
481   llvm::Value *indices[] = { zero, zero };
482   llvm::Value *begin =
483     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
484 
485   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
486   CharUnits elementAlign =
487     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
488 
489   // Consider initializing the array by copying from a global. For this to be
490   // more efficient than per-element initialization, the size of the elements
491   // with explicit initializers should be large enough.
492   if (NumInitElements * elementSize.getQuantity() > 16 &&
493       elementType.isTriviallyCopyableType(CGF.getContext())) {
494     CodeGen::CodeGenModule &CGM = CGF.CGM;
495     ConstantEmitter Emitter(CGF);
496     LangAS AS = ArrayQTy.getAddressSpace();
497     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
498       auto GV = new llvm::GlobalVariable(
499           CGM.getModule(), C->getType(),
500           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
501           llvm::GlobalValue::PrivateLinkage, C, "constinit",
502           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
503           CGM.getContext().getTargetAddressSpace(AS));
504       Emitter.finalize(GV);
505       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
506       GV->setAlignment(Align.getAsAlign());
507       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
508       return;
509     }
510   }
511 
512   // Exception safety requires us to destroy all the
513   // already-constructed members if an initializer throws.
514   // For that, we'll need an EH cleanup.
515   QualType::DestructionKind dtorKind = elementType.isDestructedType();
516   Address endOfInit = Address::invalid();
517   EHScopeStack::stable_iterator cleanup;
518   llvm::Instruction *cleanupDominator = nullptr;
519   if (CGF.needsEHCleanup(dtorKind)) {
520     // In principle we could tell the cleanup where we are more
521     // directly, but the control flow can get so varied here that it
522     // would actually be quite complex.  Therefore we go through an
523     // alloca.
524     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
525                                      "arrayinit.endOfInit");
526     cleanupDominator = Builder.CreateStore(begin, endOfInit);
527     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
528                                          elementAlign,
529                                          CGF.getDestroyer(dtorKind));
530     cleanup = CGF.EHStack.stable_begin();
531 
532   // Otherwise, remember that we didn't need a cleanup.
533   } else {
534     dtorKind = QualType::DK_none;
535   }
536 
537   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
538 
539   // The 'current element to initialize'.  The invariants on this
540   // variable are complicated.  Essentially, after each iteration of
541   // the loop, it points to the last initialized element, except
542   // that it points to the beginning of the array before any
543   // elements have been initialized.
544   llvm::Value *element = begin;
545 
546   // Emit the explicit initializers.
547   for (uint64_t i = 0; i != NumInitElements; ++i) {
548     // Advance to the next element.
549     if (i > 0) {
550       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
551 
552       // Tell the cleanup that it needs to destroy up to this
553       // element.  TODO: some of these stores can be trivially
554       // observed to be unnecessary.
555       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
556     }
557 
558     LValue elementLV =
559       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
560     EmitInitializationToLValue(E->getInit(i), elementLV);
561   }
562 
563   // Check whether there's a non-trivial array-fill expression.
564   Expr *filler = E->getArrayFiller();
565   bool hasTrivialFiller = isTrivialFiller(filler);
566 
567   // Any remaining elements need to be zero-initialized, possibly
568   // using the filler expression.  We can skip this if the we're
569   // emitting to zeroed memory.
570   if (NumInitElements != NumArrayElements &&
571       !(Dest.isZeroed() && hasTrivialFiller &&
572         CGF.getTypes().isZeroInitializable(elementType))) {
573 
574     // Use an actual loop.  This is basically
575     //   do { *array++ = filler; } while (array != end);
576 
577     // Advance to the start of the rest of the array.
578     if (NumInitElements) {
579       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
580       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
581     }
582 
583     // Compute the end of the array.
584     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
585                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
586                                                  "arrayinit.end");
587 
588     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
589     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
590 
591     // Jump into the body.
592     CGF.EmitBlock(bodyBB);
593     llvm::PHINode *currentElement =
594       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
595     currentElement->addIncoming(element, entryBB);
596 
597     // Emit the actual filler expression.
598     {
599       // C++1z [class.temporary]p5:
600       //   when a default constructor is called to initialize an element of
601       //   an array with no corresponding initializer [...] the destruction of
602       //   every temporary created in a default argument is sequenced before
603       //   the construction of the next array element, if any
604       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
605       LValue elementLV =
606         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
607       if (filler)
608         EmitInitializationToLValue(filler, elementLV);
609       else
610         EmitNullInitializationToLValue(elementLV);
611     }
612 
613     // Move on to the next element.
614     llvm::Value *nextElement =
615       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
616 
617     // Tell the EH cleanup that we finished with the last element.
618     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
619 
620     // Leave the loop if we're done.
621     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
622                                              "arrayinit.done");
623     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
624     Builder.CreateCondBr(done, endBB, bodyBB);
625     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
626 
627     CGF.EmitBlock(endBB);
628   }
629 
630   // Leave the partial-array cleanup if we entered one.
631   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //                            Visitor Methods
636 //===----------------------------------------------------------------------===//
637 
638 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
639   Visit(E->getSubExpr());
640 }
641 
642 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
643   // If this is a unique OVE, just visit its source expression.
644   if (e->isUnique())
645     Visit(e->getSourceExpr());
646   else
647     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
648 }
649 
650 void
651 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
652   if (Dest.isPotentiallyAliased() &&
653       E->getType().isPODType(CGF.getContext())) {
654     // For a POD type, just emit a load of the lvalue + a copy, because our
655     // compound literal might alias the destination.
656     EmitAggLoadOfLValue(E);
657     return;
658   }
659 
660   AggValueSlot Slot = EnsureSlot(E->getType());
661 
662   // Block-scope compound literals are destroyed at the end of the enclosing
663   // scope in C.
664   bool Destruct =
665       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
666   if (Destruct)
667     Slot.setExternallyDestructed();
668 
669   CGF.EmitAggExpr(E->getInitializer(), Slot);
670 
671   if (Destruct)
672     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
673       CGF.pushLifetimeExtendedDestroy(
674           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
675           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
676 }
677 
678 /// Attempt to look through various unimportant expressions to find a
679 /// cast of the given kind.
680 static Expr *findPeephole(Expr *op, CastKind kind) {
681   while (true) {
682     op = op->IgnoreParens();
683     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
684       if (castE->getCastKind() == kind)
685         return castE->getSubExpr();
686       if (castE->getCastKind() == CK_NoOp)
687         continue;
688     }
689     return nullptr;
690   }
691 }
692 
693 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
694   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
695     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
696   switch (E->getCastKind()) {
697   case CK_Dynamic: {
698     // FIXME: Can this actually happen? We have no test coverage for it.
699     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
700     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
701                                       CodeGenFunction::TCK_Load);
702     // FIXME: Do we also need to handle property references here?
703     if (LV.isSimple())
704       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
705     else
706       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
707 
708     if (!Dest.isIgnored())
709       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
710     break;
711   }
712 
713   case CK_ToUnion: {
714     // Evaluate even if the destination is ignored.
715     if (Dest.isIgnored()) {
716       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
717                       /*ignoreResult=*/true);
718       break;
719     }
720 
721     // GCC union extension
722     QualType Ty = E->getSubExpr()->getType();
723     Address CastPtr =
724       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
725     EmitInitializationToLValue(E->getSubExpr(),
726                                CGF.MakeAddrLValue(CastPtr, Ty));
727     break;
728   }
729 
730   case CK_LValueToRValueBitCast: {
731     if (Dest.isIgnored()) {
732       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
733                       /*ignoreResult=*/true);
734       break;
735     }
736 
737     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
738     Address SourceAddress =
739         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
740     Address DestAddress =
741         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
742     llvm::Value *SizeVal = llvm::ConstantInt::get(
743         CGF.SizeTy,
744         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
745     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
746     break;
747   }
748 
749   case CK_DerivedToBase:
750   case CK_BaseToDerived:
751   case CK_UncheckedDerivedToBase: {
752     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
753                 "should have been unpacked before we got here");
754   }
755 
756   case CK_NonAtomicToAtomic:
757   case CK_AtomicToNonAtomic: {
758     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
759 
760     // Determine the atomic and value types.
761     QualType atomicType = E->getSubExpr()->getType();
762     QualType valueType = E->getType();
763     if (isToAtomic) std::swap(atomicType, valueType);
764 
765     assert(atomicType->isAtomicType());
766     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
767                           atomicType->castAs<AtomicType>()->getValueType()));
768 
769     // Just recurse normally if we're ignoring the result or the
770     // atomic type doesn't change representation.
771     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
772       return Visit(E->getSubExpr());
773     }
774 
775     CastKind peepholeTarget =
776       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
777 
778     // These two cases are reverses of each other; try to peephole them.
779     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
780       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
781                                                      E->getType()) &&
782            "peephole significantly changed types?");
783       return Visit(op);
784     }
785 
786     // If we're converting an r-value of non-atomic type to an r-value
787     // of atomic type, just emit directly into the relevant sub-object.
788     if (isToAtomic) {
789       AggValueSlot valueDest = Dest;
790       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
791         // Zero-initialize.  (Strictly speaking, we only need to initialize
792         // the padding at the end, but this is simpler.)
793         if (!Dest.isZeroed())
794           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
795 
796         // Build a GEP to refer to the subobject.
797         Address valueAddr =
798             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
799         valueDest = AggValueSlot::forAddr(valueAddr,
800                                           valueDest.getQualifiers(),
801                                           valueDest.isExternallyDestructed(),
802                                           valueDest.requiresGCollection(),
803                                           valueDest.isPotentiallyAliased(),
804                                           AggValueSlot::DoesNotOverlap,
805                                           AggValueSlot::IsZeroed);
806       }
807 
808       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
809       return;
810     }
811 
812     // Otherwise, we're converting an atomic type to a non-atomic type.
813     // Make an atomic temporary, emit into that, and then copy the value out.
814     AggValueSlot atomicSlot =
815       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
816     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
817 
818     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
819     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
820     return EmitFinalDestCopy(valueType, rvalue);
821   }
822   case CK_AddressSpaceConversion:
823      return Visit(E->getSubExpr());
824 
825   case CK_LValueToRValue:
826     // If we're loading from a volatile type, force the destination
827     // into existence.
828     if (E->getSubExpr()->getType().isVolatileQualified()) {
829       bool Destruct =
830           !Dest.isExternallyDestructed() &&
831           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
832       if (Destruct)
833         Dest.setExternallyDestructed();
834       EnsureDest(E->getType());
835       Visit(E->getSubExpr());
836 
837       if (Destruct)
838         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
839                         E->getType());
840 
841       return;
842     }
843 
844     LLVM_FALLTHROUGH;
845 
846 
847   case CK_NoOp:
848   case CK_UserDefinedConversion:
849   case CK_ConstructorConversion:
850     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
851                                                    E->getType()) &&
852            "Implicit cast types must be compatible");
853     Visit(E->getSubExpr());
854     break;
855 
856   case CK_LValueBitCast:
857     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
858 
859   case CK_Dependent:
860   case CK_BitCast:
861   case CK_ArrayToPointerDecay:
862   case CK_FunctionToPointerDecay:
863   case CK_NullToPointer:
864   case CK_NullToMemberPointer:
865   case CK_BaseToDerivedMemberPointer:
866   case CK_DerivedToBaseMemberPointer:
867   case CK_MemberPointerToBoolean:
868   case CK_ReinterpretMemberPointer:
869   case CK_IntegralToPointer:
870   case CK_PointerToIntegral:
871   case CK_PointerToBoolean:
872   case CK_ToVoid:
873   case CK_VectorSplat:
874   case CK_IntegralCast:
875   case CK_BooleanToSignedIntegral:
876   case CK_IntegralToBoolean:
877   case CK_IntegralToFloating:
878   case CK_FloatingToIntegral:
879   case CK_FloatingToBoolean:
880   case CK_FloatingCast:
881   case CK_CPointerToObjCPointerCast:
882   case CK_BlockPointerToObjCPointerCast:
883   case CK_AnyPointerToBlockPointerCast:
884   case CK_ObjCObjectLValueCast:
885   case CK_FloatingRealToComplex:
886   case CK_FloatingComplexToReal:
887   case CK_FloatingComplexToBoolean:
888   case CK_FloatingComplexCast:
889   case CK_FloatingComplexToIntegralComplex:
890   case CK_IntegralRealToComplex:
891   case CK_IntegralComplexToReal:
892   case CK_IntegralComplexToBoolean:
893   case CK_IntegralComplexCast:
894   case CK_IntegralComplexToFloatingComplex:
895   case CK_ARCProduceObject:
896   case CK_ARCConsumeObject:
897   case CK_ARCReclaimReturnedObject:
898   case CK_ARCExtendBlockObject:
899   case CK_CopyAndAutoreleaseBlockObject:
900   case CK_BuiltinFnToFnPtr:
901   case CK_ZeroToOCLOpaqueType:
902 
903   case CK_IntToOCLSampler:
904   case CK_FixedPointCast:
905   case CK_FixedPointToBoolean:
906   case CK_FixedPointToIntegral:
907   case CK_IntegralToFixedPoint:
908     llvm_unreachable("cast kind invalid for aggregate types");
909   }
910 }
911 
912 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
913   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
914     EmitAggLoadOfLValue(E);
915     return;
916   }
917 
918   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
919     return CGF.EmitCallExpr(E, Slot);
920   });
921 }
922 
923 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
924   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
925     return CGF.EmitObjCMessageExpr(E, Slot);
926   });
927 }
928 
929 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
930   CGF.EmitIgnoredExpr(E->getLHS());
931   Visit(E->getRHS());
932 }
933 
934 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
935   CodeGenFunction::StmtExprEvaluation eval(CGF);
936   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
937 }
938 
939 enum CompareKind {
940   CK_Less,
941   CK_Greater,
942   CK_Equal,
943 };
944 
945 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
946                                 const BinaryOperator *E, llvm::Value *LHS,
947                                 llvm::Value *RHS, CompareKind Kind,
948                                 const char *NameSuffix = "") {
949   QualType ArgTy = E->getLHS()->getType();
950   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
951     ArgTy = CT->getElementType();
952 
953   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
954     assert(Kind == CK_Equal &&
955            "member pointers may only be compared for equality");
956     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
957         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
958   }
959 
960   // Compute the comparison instructions for the specified comparison kind.
961   struct CmpInstInfo {
962     const char *Name;
963     llvm::CmpInst::Predicate FCmp;
964     llvm::CmpInst::Predicate SCmp;
965     llvm::CmpInst::Predicate UCmp;
966   };
967   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
968     using FI = llvm::FCmpInst;
969     using II = llvm::ICmpInst;
970     switch (Kind) {
971     case CK_Less:
972       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
973     case CK_Greater:
974       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
975     case CK_Equal:
976       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
977     }
978     llvm_unreachable("Unrecognised CompareKind enum");
979   }();
980 
981   if (ArgTy->hasFloatingRepresentation())
982     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
983                               llvm::Twine(InstInfo.Name) + NameSuffix);
984   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
985     auto Inst =
986         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
987     return Builder.CreateICmp(Inst, LHS, RHS,
988                               llvm::Twine(InstInfo.Name) + NameSuffix);
989   }
990 
991   llvm_unreachable("unsupported aggregate binary expression should have "
992                    "already been handled");
993 }
994 
995 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
996   using llvm::BasicBlock;
997   using llvm::PHINode;
998   using llvm::Value;
999   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1000                                       E->getRHS()->getType()));
1001   const ComparisonCategoryInfo &CmpInfo =
1002       CGF.getContext().CompCategories.getInfoForType(E->getType());
1003   assert(CmpInfo.Record->isTriviallyCopyable() &&
1004          "cannot copy non-trivially copyable aggregate");
1005 
1006   QualType ArgTy = E->getLHS()->getType();
1007 
1008   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1009       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1010       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1011     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1012   }
1013   bool IsComplex = ArgTy->isAnyComplexType();
1014 
1015   // Evaluate the operands to the expression and extract their values.
1016   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1017     RValue RV = CGF.EmitAnyExpr(E);
1018     if (RV.isScalar())
1019       return {RV.getScalarVal(), nullptr};
1020     if (RV.isAggregate())
1021       return {RV.getAggregatePointer(), nullptr};
1022     assert(RV.isComplex());
1023     return RV.getComplexVal();
1024   };
1025   auto LHSValues = EmitOperand(E->getLHS()),
1026        RHSValues = EmitOperand(E->getRHS());
1027 
1028   auto EmitCmp = [&](CompareKind K) {
1029     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1030                              K, IsComplex ? ".r" : "");
1031     if (!IsComplex)
1032       return Cmp;
1033     assert(K == CompareKind::CK_Equal);
1034     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1035                                  RHSValues.second, K, ".i");
1036     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1037   };
1038   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1039     return Builder.getInt(VInfo->getIntValue());
1040   };
1041 
1042   Value *Select;
1043   if (ArgTy->isNullPtrType()) {
1044     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1045   } else if (!CmpInfo.isPartial()) {
1046     Value *SelectOne =
1047         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1048                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1049     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1050                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1051                                   SelectOne, "sel.eq");
1052   } else {
1053     Value *SelectEq = Builder.CreateSelect(
1054         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1055         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1056     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1057                                            EmitCmpRes(CmpInfo.getGreater()),
1058                                            SelectEq, "sel.gt");
1059     Select = Builder.CreateSelect(
1060         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1061   }
1062   // Create the return value in the destination slot.
1063   EnsureDest(E->getType());
1064   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1065 
1066   // Emit the address of the first (and only) field in the comparison category
1067   // type, and initialize it from the constant integer value selected above.
1068   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1069       DestLV, *CmpInfo.Record->field_begin());
1070   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1071 
1072   // All done! The result is in the Dest slot.
1073 }
1074 
1075 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1076   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1077     VisitPointerToDataMemberBinaryOperator(E);
1078   else
1079     CGF.ErrorUnsupported(E, "aggregate binary expression");
1080 }
1081 
1082 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1083                                                     const BinaryOperator *E) {
1084   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1085   EmitFinalDestCopy(E->getType(), LV);
1086 }
1087 
1088 /// Is the value of the given expression possibly a reference to or
1089 /// into a __block variable?
1090 static bool isBlockVarRef(const Expr *E) {
1091   // Make sure we look through parens.
1092   E = E->IgnoreParens();
1093 
1094   // Check for a direct reference to a __block variable.
1095   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1096     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1097     return (var && var->hasAttr<BlocksAttr>());
1098   }
1099 
1100   // More complicated stuff.
1101 
1102   // Binary operators.
1103   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1104     // For an assignment or pointer-to-member operation, just care
1105     // about the LHS.
1106     if (op->isAssignmentOp() || op->isPtrMemOp())
1107       return isBlockVarRef(op->getLHS());
1108 
1109     // For a comma, just care about the RHS.
1110     if (op->getOpcode() == BO_Comma)
1111       return isBlockVarRef(op->getRHS());
1112 
1113     // FIXME: pointer arithmetic?
1114     return false;
1115 
1116   // Check both sides of a conditional operator.
1117   } else if (const AbstractConditionalOperator *op
1118                = dyn_cast<AbstractConditionalOperator>(E)) {
1119     return isBlockVarRef(op->getTrueExpr())
1120         || isBlockVarRef(op->getFalseExpr());
1121 
1122   // OVEs are required to support BinaryConditionalOperators.
1123   } else if (const OpaqueValueExpr *op
1124                = dyn_cast<OpaqueValueExpr>(E)) {
1125     if (const Expr *src = op->getSourceExpr())
1126       return isBlockVarRef(src);
1127 
1128   // Casts are necessary to get things like (*(int*)&var) = foo().
1129   // We don't really care about the kind of cast here, except
1130   // we don't want to look through l2r casts, because it's okay
1131   // to get the *value* in a __block variable.
1132   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1133     if (cast->getCastKind() == CK_LValueToRValue)
1134       return false;
1135     return isBlockVarRef(cast->getSubExpr());
1136 
1137   // Handle unary operators.  Again, just aggressively look through
1138   // it, ignoring the operation.
1139   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1140     return isBlockVarRef(uop->getSubExpr());
1141 
1142   // Look into the base of a field access.
1143   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1144     return isBlockVarRef(mem->getBase());
1145 
1146   // Look into the base of a subscript.
1147   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1148     return isBlockVarRef(sub->getBase());
1149   }
1150 
1151   return false;
1152 }
1153 
1154 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1155   // For an assignment to work, the value on the right has
1156   // to be compatible with the value on the left.
1157   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1158                                                  E->getRHS()->getType())
1159          && "Invalid assignment");
1160 
1161   // If the LHS might be a __block variable, and the RHS can
1162   // potentially cause a block copy, we need to evaluate the RHS first
1163   // so that the assignment goes the right place.
1164   // This is pretty semantically fragile.
1165   if (isBlockVarRef(E->getLHS()) &&
1166       E->getRHS()->HasSideEffects(CGF.getContext())) {
1167     // Ensure that we have a destination, and evaluate the RHS into that.
1168     EnsureDest(E->getRHS()->getType());
1169     Visit(E->getRHS());
1170 
1171     // Now emit the LHS and copy into it.
1172     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1173 
1174     // That copy is an atomic copy if the LHS is atomic.
1175     if (LHS.getType()->isAtomicType() ||
1176         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1177       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1178       return;
1179     }
1180 
1181     EmitCopy(E->getLHS()->getType(),
1182              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1183                                      needsGC(E->getLHS()->getType()),
1184                                      AggValueSlot::IsAliased,
1185                                      AggValueSlot::MayOverlap),
1186              Dest);
1187     return;
1188   }
1189 
1190   LValue LHS = CGF.EmitLValue(E->getLHS());
1191 
1192   // If we have an atomic type, evaluate into the destination and then
1193   // do an atomic copy.
1194   if (LHS.getType()->isAtomicType() ||
1195       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1196     EnsureDest(E->getRHS()->getType());
1197     Visit(E->getRHS());
1198     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1199     return;
1200   }
1201 
1202   // Codegen the RHS so that it stores directly into the LHS.
1203   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1204       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1205       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1206   // A non-volatile aggregate destination might have volatile member.
1207   if (!LHSSlot.isVolatile() &&
1208       CGF.hasVolatileMember(E->getLHS()->getType()))
1209     LHSSlot.setVolatile(true);
1210 
1211   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1212 
1213   // Copy into the destination if the assignment isn't ignored.
1214   EmitFinalDestCopy(E->getType(), LHS);
1215 }
1216 
1217 void AggExprEmitter::
1218 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1219   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1220   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1221   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1222 
1223   // Bind the common expression if necessary.
1224   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1225 
1226   CodeGenFunction::ConditionalEvaluation eval(CGF);
1227   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1228                            CGF.getProfileCount(E));
1229 
1230   // Save whether the destination's lifetime is externally managed.
1231   bool isExternallyDestructed = Dest.isExternallyDestructed();
1232 
1233   eval.begin(CGF);
1234   CGF.EmitBlock(LHSBlock);
1235   CGF.incrementProfileCounter(E);
1236   Visit(E->getTrueExpr());
1237   eval.end(CGF);
1238 
1239   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1240   CGF.Builder.CreateBr(ContBlock);
1241 
1242   // If the result of an agg expression is unused, then the emission
1243   // of the LHS might need to create a destination slot.  That's fine
1244   // with us, and we can safely emit the RHS into the same slot, but
1245   // we shouldn't claim that it's already being destructed.
1246   Dest.setExternallyDestructed(isExternallyDestructed);
1247 
1248   eval.begin(CGF);
1249   CGF.EmitBlock(RHSBlock);
1250   Visit(E->getFalseExpr());
1251   eval.end(CGF);
1252 
1253   CGF.EmitBlock(ContBlock);
1254 }
1255 
1256 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1257   Visit(CE->getChosenSubExpr());
1258 }
1259 
1260 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1261   Address ArgValue = Address::invalid();
1262   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1263 
1264   // If EmitVAArg fails, emit an error.
1265   if (!ArgPtr.isValid()) {
1266     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1267     return;
1268   }
1269 
1270   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1271 }
1272 
1273 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1274   // Ensure that we have a slot, but if we already do, remember
1275   // whether it was externally destructed.
1276   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1277   EnsureDest(E->getType());
1278 
1279   // We're going to push a destructor if there isn't already one.
1280   Dest.setExternallyDestructed();
1281 
1282   Visit(E->getSubExpr());
1283 
1284   // Push that destructor we promised.
1285   if (!wasExternallyDestructed)
1286     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1287 }
1288 
1289 void
1290 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1291   AggValueSlot Slot = EnsureSlot(E->getType());
1292   CGF.EmitCXXConstructExpr(E, Slot);
1293 }
1294 
1295 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1296     const CXXInheritedCtorInitExpr *E) {
1297   AggValueSlot Slot = EnsureSlot(E->getType());
1298   CGF.EmitInheritedCXXConstructorCall(
1299       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1300       E->inheritedFromVBase(), E);
1301 }
1302 
1303 void
1304 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1305   AggValueSlot Slot = EnsureSlot(E->getType());
1306   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1307 
1308   // We'll need to enter cleanup scopes in case any of the element
1309   // initializers throws an exception.
1310   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1311   llvm::Instruction *CleanupDominator = nullptr;
1312 
1313   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1314   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1315                                                e = E->capture_init_end();
1316        i != e; ++i, ++CurField) {
1317     // Emit initialization
1318     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1319     if (CurField->hasCapturedVLAType()) {
1320       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1321       continue;
1322     }
1323 
1324     EmitInitializationToLValue(*i, LV);
1325 
1326     // Push a destructor if necessary.
1327     if (QualType::DestructionKind DtorKind =
1328             CurField->getType().isDestructedType()) {
1329       assert(LV.isSimple());
1330       if (CGF.needsEHCleanup(DtorKind)) {
1331         if (!CleanupDominator)
1332           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1333               CGF.Int8Ty,
1334               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1335               CharUnits::One()); // placeholder
1336 
1337         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1338                         CGF.getDestroyer(DtorKind), false);
1339         Cleanups.push_back(CGF.EHStack.stable_begin());
1340       }
1341     }
1342   }
1343 
1344   // Deactivate all the partial cleanups in reverse order, which
1345   // generally means popping them.
1346   for (unsigned i = Cleanups.size(); i != 0; --i)
1347     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1348 
1349   // Destroy the placeholder if we made one.
1350   if (CleanupDominator)
1351     CleanupDominator->eraseFromParent();
1352 }
1353 
1354 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1355   CGF.enterFullExpression(E);
1356   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1357   Visit(E->getSubExpr());
1358 }
1359 
1360 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1361   QualType T = E->getType();
1362   AggValueSlot Slot = EnsureSlot(T);
1363   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1364 }
1365 
1366 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1367   QualType T = E->getType();
1368   AggValueSlot Slot = EnsureSlot(T);
1369   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1370 }
1371 
1372 /// isSimpleZero - If emitting this value will obviously just cause a store of
1373 /// zero to memory, return true.  This can return false if uncertain, so it just
1374 /// handles simple cases.
1375 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1376   E = E->IgnoreParens();
1377 
1378   // 0
1379   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1380     return IL->getValue() == 0;
1381   // +0.0
1382   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1383     return FL->getValue().isPosZero();
1384   // int()
1385   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1386       CGF.getTypes().isZeroInitializable(E->getType()))
1387     return true;
1388   // (int*)0 - Null pointer expressions.
1389   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1390     return ICE->getCastKind() == CK_NullToPointer &&
1391            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1392            !E->HasSideEffects(CGF.getContext());
1393   // '\0'
1394   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1395     return CL->getValue() == 0;
1396 
1397   // Otherwise, hard case: conservatively return false.
1398   return false;
1399 }
1400 
1401 
1402 void
1403 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1404   QualType type = LV.getType();
1405   // FIXME: Ignore result?
1406   // FIXME: Are initializers affected by volatile?
1407   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1408     // Storing "i32 0" to a zero'd memory location is a noop.
1409     return;
1410   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1411     return EmitNullInitializationToLValue(LV);
1412   } else if (isa<NoInitExpr>(E)) {
1413     // Do nothing.
1414     return;
1415   } else if (type->isReferenceType()) {
1416     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1417     return CGF.EmitStoreThroughLValue(RV, LV);
1418   }
1419 
1420   switch (CGF.getEvaluationKind(type)) {
1421   case TEK_Complex:
1422     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1423     return;
1424   case TEK_Aggregate:
1425     CGF.EmitAggExpr(
1426         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1427                                    AggValueSlot::DoesNotNeedGCBarriers,
1428                                    AggValueSlot::IsNotAliased,
1429                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1430     return;
1431   case TEK_Scalar:
1432     if (LV.isSimple()) {
1433       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1434     } else {
1435       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1436     }
1437     return;
1438   }
1439   llvm_unreachable("bad evaluation kind");
1440 }
1441 
1442 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1443   QualType type = lv.getType();
1444 
1445   // If the destination slot is already zeroed out before the aggregate is
1446   // copied into it, we don't have to emit any zeros here.
1447   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1448     return;
1449 
1450   if (CGF.hasScalarEvaluationKind(type)) {
1451     // For non-aggregates, we can store the appropriate null constant.
1452     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1453     // Note that the following is not equivalent to
1454     // EmitStoreThroughBitfieldLValue for ARC types.
1455     if (lv.isBitField()) {
1456       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1457     } else {
1458       assert(lv.isSimple());
1459       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1460     }
1461   } else {
1462     // There's a potential optimization opportunity in combining
1463     // memsets; that would be easy for arrays, but relatively
1464     // difficult for structures with the current code.
1465     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1466   }
1467 }
1468 
1469 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1470 #if 0
1471   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1472   // (Length of globals? Chunks of zeroed-out space?).
1473   //
1474   // If we can, prefer a copy from a global; this is a lot less code for long
1475   // globals, and it's easier for the current optimizers to analyze.
1476   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1477     llvm::GlobalVariable* GV =
1478     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1479                              llvm::GlobalValue::InternalLinkage, C, "");
1480     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1481     return;
1482   }
1483 #endif
1484   if (E->hadArrayRangeDesignator())
1485     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1486 
1487   if (E->isTransparent())
1488     return Visit(E->getInit(0));
1489 
1490   AggValueSlot Dest = EnsureSlot(E->getType());
1491 
1492   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1493 
1494   // Handle initialization of an array.
1495   if (E->getType()->isArrayType()) {
1496     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1497     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1498     return;
1499   }
1500 
1501   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1502 
1503   // Do struct initialization; this code just sets each individual member
1504   // to the approprate value.  This makes bitfield support automatic;
1505   // the disadvantage is that the generated code is more difficult for
1506   // the optimizer, especially with bitfields.
1507   unsigned NumInitElements = E->getNumInits();
1508   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1509 
1510   // We'll need to enter cleanup scopes in case any of the element
1511   // initializers throws an exception.
1512   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1513   llvm::Instruction *cleanupDominator = nullptr;
1514   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1515     cleanups.push_back(cleanup);
1516     if (!cleanupDominator) // create placeholder once needed
1517       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1518           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1519           CharUnits::One());
1520   };
1521 
1522   unsigned curInitIndex = 0;
1523 
1524   // Emit initialization of base classes.
1525   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1526     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1527            "missing initializer for base class");
1528     for (auto &Base : CXXRD->bases()) {
1529       assert(!Base.isVirtual() && "should not see vbases here");
1530       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1531       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1532           Dest.getAddress(), CXXRD, BaseRD,
1533           /*isBaseVirtual*/ false);
1534       AggValueSlot AggSlot = AggValueSlot::forAddr(
1535           V, Qualifiers(),
1536           AggValueSlot::IsDestructed,
1537           AggValueSlot::DoesNotNeedGCBarriers,
1538           AggValueSlot::IsNotAliased,
1539           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1540       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1541 
1542       if (QualType::DestructionKind dtorKind =
1543               Base.getType().isDestructedType()) {
1544         CGF.pushDestroy(dtorKind, V, Base.getType());
1545         addCleanup(CGF.EHStack.stable_begin());
1546       }
1547     }
1548   }
1549 
1550   // Prepare a 'this' for CXXDefaultInitExprs.
1551   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1552 
1553   if (record->isUnion()) {
1554     // Only initialize one field of a union. The field itself is
1555     // specified by the initializer list.
1556     if (!E->getInitializedFieldInUnion()) {
1557       // Empty union; we have nothing to do.
1558 
1559 #ifndef NDEBUG
1560       // Make sure that it's really an empty and not a failure of
1561       // semantic analysis.
1562       for (const auto *Field : record->fields())
1563         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1564 #endif
1565       return;
1566     }
1567 
1568     // FIXME: volatility
1569     FieldDecl *Field = E->getInitializedFieldInUnion();
1570 
1571     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1572     if (NumInitElements) {
1573       // Store the initializer into the field
1574       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1575     } else {
1576       // Default-initialize to null.
1577       EmitNullInitializationToLValue(FieldLoc);
1578     }
1579 
1580     return;
1581   }
1582 
1583   // Here we iterate over the fields; this makes it simpler to both
1584   // default-initialize fields and skip over unnamed fields.
1585   for (const auto *field : record->fields()) {
1586     // We're done once we hit the flexible array member.
1587     if (field->getType()->isIncompleteArrayType())
1588       break;
1589 
1590     // Always skip anonymous bitfields.
1591     if (field->isUnnamedBitfield())
1592       continue;
1593 
1594     // We're done if we reach the end of the explicit initializers, we
1595     // have a zeroed object, and the rest of the fields are
1596     // zero-initializable.
1597     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1598         CGF.getTypes().isZeroInitializable(E->getType()))
1599       break;
1600 
1601 
1602     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1603     // We never generate write-barries for initialized fields.
1604     LV.setNonGC(true);
1605 
1606     if (curInitIndex < NumInitElements) {
1607       // Store the initializer into the field.
1608       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1609     } else {
1610       // We're out of initializers; default-initialize to null
1611       EmitNullInitializationToLValue(LV);
1612     }
1613 
1614     // Push a destructor if necessary.
1615     // FIXME: if we have an array of structures, all explicitly
1616     // initialized, we can end up pushing a linear number of cleanups.
1617     bool pushedCleanup = false;
1618     if (QualType::DestructionKind dtorKind
1619           = field->getType().isDestructedType()) {
1620       assert(LV.isSimple());
1621       if (CGF.needsEHCleanup(dtorKind)) {
1622         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1623                         CGF.getDestroyer(dtorKind), false);
1624         addCleanup(CGF.EHStack.stable_begin());
1625         pushedCleanup = true;
1626       }
1627     }
1628 
1629     // If the GEP didn't get used because of a dead zero init or something
1630     // else, clean it up for -O0 builds and general tidiness.
1631     if (!pushedCleanup && LV.isSimple())
1632       if (llvm::GetElementPtrInst *GEP =
1633               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1634         if (GEP->use_empty())
1635           GEP->eraseFromParent();
1636   }
1637 
1638   // Deactivate all the partial cleanups in reverse order, which
1639   // generally means popping them.
1640   assert((cleanupDominator || cleanups.empty()) &&
1641          "Missing cleanupDominator before deactivating cleanup blocks");
1642   for (unsigned i = cleanups.size(); i != 0; --i)
1643     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1644 
1645   // Destroy the placeholder if we made one.
1646   if (cleanupDominator)
1647     cleanupDominator->eraseFromParent();
1648 }
1649 
1650 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1651                                             llvm::Value *outerBegin) {
1652   // Emit the common subexpression.
1653   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1654 
1655   Address destPtr = EnsureSlot(E->getType()).getAddress();
1656   uint64_t numElements = E->getArraySize().getZExtValue();
1657 
1658   if (!numElements)
1659     return;
1660 
1661   // destPtr is an array*. Construct an elementType* by drilling down a level.
1662   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1663   llvm::Value *indices[] = {zero, zero};
1664   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1665                                                  "arrayinit.begin");
1666 
1667   // Prepare to special-case multidimensional array initialization: we avoid
1668   // emitting multiple destructor loops in that case.
1669   if (!outerBegin)
1670     outerBegin = begin;
1671   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1672 
1673   QualType elementType =
1674       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1675   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1676   CharUnits elementAlign =
1677       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1678 
1679   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1680   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1681 
1682   // Jump into the body.
1683   CGF.EmitBlock(bodyBB);
1684   llvm::PHINode *index =
1685       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1686   index->addIncoming(zero, entryBB);
1687   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1688 
1689   // Prepare for a cleanup.
1690   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1691   EHScopeStack::stable_iterator cleanup;
1692   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1693     if (outerBegin->getType() != element->getType())
1694       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1695     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1696                                        elementAlign,
1697                                        CGF.getDestroyer(dtorKind));
1698     cleanup = CGF.EHStack.stable_begin();
1699   } else {
1700     dtorKind = QualType::DK_none;
1701   }
1702 
1703   // Emit the actual filler expression.
1704   {
1705     // Temporaries created in an array initialization loop are destroyed
1706     // at the end of each iteration.
1707     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1708     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1709     LValue elementLV =
1710         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1711 
1712     if (InnerLoop) {
1713       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1714       auto elementSlot = AggValueSlot::forLValue(
1715           elementLV, CGF, AggValueSlot::IsDestructed,
1716           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1717           AggValueSlot::DoesNotOverlap);
1718       AggExprEmitter(CGF, elementSlot, false)
1719           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1720     } else
1721       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1722   }
1723 
1724   // Move on to the next element.
1725   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1726       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1727   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1728 
1729   // Leave the loop if we're done.
1730   llvm::Value *done = Builder.CreateICmpEQ(
1731       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1732       "arrayinit.done");
1733   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1734   Builder.CreateCondBr(done, endBB, bodyBB);
1735 
1736   CGF.EmitBlock(endBB);
1737 
1738   // Leave the partial-array cleanup if we entered one.
1739   if (dtorKind)
1740     CGF.DeactivateCleanupBlock(cleanup, index);
1741 }
1742 
1743 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1744   AggValueSlot Dest = EnsureSlot(E->getType());
1745 
1746   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1747   EmitInitializationToLValue(E->getBase(), DestLV);
1748   VisitInitListExpr(E->getUpdater());
1749 }
1750 
1751 //===----------------------------------------------------------------------===//
1752 //                        Entry Points into this File
1753 //===----------------------------------------------------------------------===//
1754 
1755 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1756 /// non-zero bytes that will be stored when outputting the initializer for the
1757 /// specified initializer expression.
1758 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1759   E = E->IgnoreParens();
1760 
1761   // 0 and 0.0 won't require any non-zero stores!
1762   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1763 
1764   // If this is an initlist expr, sum up the size of sizes of the (present)
1765   // elements.  If this is something weird, assume the whole thing is non-zero.
1766   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1767   while (ILE && ILE->isTransparent())
1768     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1769   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1770     return CGF.getContext().getTypeSizeInChars(E->getType());
1771 
1772   // InitListExprs for structs have to be handled carefully.  If there are
1773   // reference members, we need to consider the size of the reference, not the
1774   // referencee.  InitListExprs for unions and arrays can't have references.
1775   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1776     if (!RT->isUnionType()) {
1777       RecordDecl *SD = RT->getDecl();
1778       CharUnits NumNonZeroBytes = CharUnits::Zero();
1779 
1780       unsigned ILEElement = 0;
1781       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1782         while (ILEElement != CXXRD->getNumBases())
1783           NumNonZeroBytes +=
1784               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1785       for (const auto *Field : SD->fields()) {
1786         // We're done once we hit the flexible array member or run out of
1787         // InitListExpr elements.
1788         if (Field->getType()->isIncompleteArrayType() ||
1789             ILEElement == ILE->getNumInits())
1790           break;
1791         if (Field->isUnnamedBitfield())
1792           continue;
1793 
1794         const Expr *E = ILE->getInit(ILEElement++);
1795 
1796         // Reference values are always non-null and have the width of a pointer.
1797         if (Field->getType()->isReferenceType())
1798           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1799               CGF.getTarget().getPointerWidth(0));
1800         else
1801           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1802       }
1803 
1804       return NumNonZeroBytes;
1805     }
1806   }
1807 
1808 
1809   CharUnits NumNonZeroBytes = CharUnits::Zero();
1810   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1811     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1812   return NumNonZeroBytes;
1813 }
1814 
1815 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1816 /// zeros in it, emit a memset and avoid storing the individual zeros.
1817 ///
1818 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1819                                      CodeGenFunction &CGF) {
1820   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1821   // volatile stores.
1822   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1823     return;
1824 
1825   // C++ objects with a user-declared constructor don't need zero'ing.
1826   if (CGF.getLangOpts().CPlusPlus)
1827     if (const RecordType *RT = CGF.getContext()
1828                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1829       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1830       if (RD->hasUserDeclaredConstructor())
1831         return;
1832     }
1833 
1834   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1835   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1836   if (Size <= CharUnits::fromQuantity(16))
1837     return;
1838 
1839   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1840   // we prefer to emit memset + individual stores for the rest.
1841   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1842   if (NumNonZeroBytes*4 > Size)
1843     return;
1844 
1845   // Okay, it seems like a good idea to use an initial memset, emit the call.
1846   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1847 
1848   Address Loc = Slot.getAddress();
1849   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1850   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1851 
1852   // Tell the AggExprEmitter that the slot is known zero.
1853   Slot.setZeroed();
1854 }
1855 
1856 
1857 
1858 
1859 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1860 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1861 /// the value of the aggregate expression is not needed.  If VolatileDest is
1862 /// true, DestPtr cannot be 0.
1863 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1864   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1865          "Invalid aggregate expression to emit");
1866   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1867          "slot has bits but no address");
1868 
1869   // Optimize the slot if possible.
1870   CheckAggExprForMemSetUse(Slot, E, *this);
1871 
1872   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1873 }
1874 
1875 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1876   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1877   Address Temp = CreateMemTemp(E->getType());
1878   LValue LV = MakeAddrLValue(Temp, E->getType());
1879   EmitAggExpr(E, AggValueSlot::forLValue(
1880                      LV, *this, AggValueSlot::IsNotDestructed,
1881                      AggValueSlot::DoesNotNeedGCBarriers,
1882                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1883   return LV;
1884 }
1885 
1886 AggValueSlot::Overlap_t
1887 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1888   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1889     return AggValueSlot::DoesNotOverlap;
1890 
1891   // If the field lies entirely within the enclosing class's nvsize, its tail
1892   // padding cannot overlap any already-initialized object. (The only subobjects
1893   // with greater addresses that might already be initialized are vbases.)
1894   const RecordDecl *ClassRD = FD->getParent();
1895   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1896   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1897           getContext().getTypeSize(FD->getType()) <=
1898       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1899     return AggValueSlot::DoesNotOverlap;
1900 
1901   // The tail padding may contain values we need to preserve.
1902   return AggValueSlot::MayOverlap;
1903 }
1904 
1905 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1906     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1907   // If the most-derived object is a field declared with [[no_unique_address]],
1908   // the tail padding of any virtual base could be reused for other subobjects
1909   // of that field's class.
1910   if (IsVirtual)
1911     return AggValueSlot::MayOverlap;
1912 
1913   // If the base class is laid out entirely within the nvsize of the derived
1914   // class, its tail padding cannot yet be initialized, so we can issue
1915   // stores at the full width of the base class.
1916   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1917   if (Layout.getBaseClassOffset(BaseRD) +
1918           getContext().getASTRecordLayout(BaseRD).getSize() <=
1919       Layout.getNonVirtualSize())
1920     return AggValueSlot::DoesNotOverlap;
1921 
1922   // The tail padding may contain values we need to preserve.
1923   return AggValueSlot::MayOverlap;
1924 }
1925 
1926 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1927                                         AggValueSlot::Overlap_t MayOverlap,
1928                                         bool isVolatile) {
1929   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1930 
1931   Address DestPtr = Dest.getAddress(*this);
1932   Address SrcPtr = Src.getAddress(*this);
1933 
1934   if (getLangOpts().CPlusPlus) {
1935     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1936       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1937       assert((Record->hasTrivialCopyConstructor() ||
1938               Record->hasTrivialCopyAssignment() ||
1939               Record->hasTrivialMoveConstructor() ||
1940               Record->hasTrivialMoveAssignment() ||
1941               Record->isUnion()) &&
1942              "Trying to aggregate-copy a type without a trivial copy/move "
1943              "constructor or assignment operator");
1944       // Ignore empty classes in C++.
1945       if (Record->isEmpty())
1946         return;
1947     }
1948   }
1949 
1950   if (getLangOpts().CUDAIsDevice) {
1951     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
1952       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
1953                                                                   Src))
1954         return;
1955     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
1956       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
1957                                                                   Src))
1958         return;
1959     }
1960   }
1961 
1962   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1963   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1964   // read from another object that overlaps in anyway the storage of the first
1965   // object, then the overlap shall be exact and the two objects shall have
1966   // qualified or unqualified versions of a compatible type."
1967   //
1968   // memcpy is not defined if the source and destination pointers are exactly
1969   // equal, but other compilers do this optimization, and almost every memcpy
1970   // implementation handles this case safely.  If there is a libc that does not
1971   // safely handle this, we can add a target hook.
1972 
1973   // Get data size info for this aggregate. Don't copy the tail padding if this
1974   // might be a potentially-overlapping subobject, since the tail padding might
1975   // be occupied by a different object. Otherwise, copying it is fine.
1976   std::pair<CharUnits, CharUnits> TypeInfo;
1977   if (MayOverlap)
1978     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1979   else
1980     TypeInfo = getContext().getTypeInfoInChars(Ty);
1981 
1982   llvm::Value *SizeVal = nullptr;
1983   if (TypeInfo.first.isZero()) {
1984     // But note that getTypeInfo returns 0 for a VLA.
1985     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1986             getContext().getAsArrayType(Ty))) {
1987       QualType BaseEltTy;
1988       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1989       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1990       assert(!TypeInfo.first.isZero());
1991       SizeVal = Builder.CreateNUWMul(
1992           SizeVal,
1993           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1994     }
1995   }
1996   if (!SizeVal) {
1997     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1998   }
1999 
2000   // FIXME: If we have a volatile struct, the optimizer can remove what might
2001   // appear to be `extra' memory ops:
2002   //
2003   // volatile struct { int i; } a, b;
2004   //
2005   // int main() {
2006   //   a = b;
2007   //   a = b;
2008   // }
2009   //
2010   // we need to use a different call here.  We use isVolatile to indicate when
2011   // either the source or the destination is volatile.
2012 
2013   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2014   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2015 
2016   // Don't do any of the memmove_collectable tests if GC isn't set.
2017   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2018     // fall through
2019   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2020     RecordDecl *Record = RecordTy->getDecl();
2021     if (Record->hasObjectMember()) {
2022       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2023                                                     SizeVal);
2024       return;
2025     }
2026   } else if (Ty->isArrayType()) {
2027     QualType BaseType = getContext().getBaseElementType(Ty);
2028     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2029       if (RecordTy->getDecl()->hasObjectMember()) {
2030         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2031                                                       SizeVal);
2032         return;
2033       }
2034     }
2035   }
2036 
2037   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2038 
2039   // Determine the metadata to describe the position of any padding in this
2040   // memcpy, as well as the TBAA tags for the members of the struct, in case
2041   // the optimizer wishes to expand it in to scalar memory operations.
2042   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2043     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2044 
2045   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2046     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2047         Dest.getTBAAInfo(), Src.getTBAAInfo());
2048     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2049   }
2050 }
2051