1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 //===--------------------------------------------------------------------===// 53 // Visitor Methods 54 //===--------------------------------------------------------------------===// 55 56 void VisitStmt(Stmt *S) { 57 CGF.ErrorUnsupported(S, "aggregate expression"); 58 } 59 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 60 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 61 62 // l-values. 63 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 64 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 65 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 66 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 67 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 68 EmitAggLoadOfLValue(E); 69 } 70 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 71 EmitAggLoadOfLValue(E); 72 } 73 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 74 EmitAggLoadOfLValue(E); 75 } 76 void VisitPredefinedExpr(const PredefinedExpr *E) { 77 EmitAggLoadOfLValue(E); 78 } 79 80 // Operators. 81 // case Expr::UnaryOperatorClass: 82 // case Expr::CastExprClass: 83 void VisitCStyleCastExpr(CStyleCastExpr *E); 84 void VisitImplicitCastExpr(ImplicitCastExpr *E); 85 void VisitCallExpr(const CallExpr *E); 86 void VisitStmtExpr(const StmtExpr *E); 87 void VisitBinaryOperator(const BinaryOperator *BO); 88 void VisitBinAssign(const BinaryOperator *E); 89 void VisitBinComma(const BinaryOperator *E); 90 91 void VisitObjCMessageExpr(ObjCMessageExpr *E); 92 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 93 EmitAggLoadOfLValue(E); 94 } 95 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 96 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 97 98 void VisitConditionalOperator(const ConditionalOperator *CO); 99 void VisitInitListExpr(InitListExpr *E); 100 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 101 Visit(DAE->getExpr()); 102 } 103 void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E); 104 void VisitVAArgExpr(VAArgExpr *E); 105 106 void EmitInitializationToLValue(Expr *E, LValue Address); 107 void EmitNullInitializationToLValue(LValue Address, QualType T); 108 // case Expr::ChooseExprClass: 109 110 }; 111 } // end anonymous namespace. 112 113 //===----------------------------------------------------------------------===// 114 // Utilities 115 //===----------------------------------------------------------------------===// 116 117 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 118 /// represents a value lvalue, this method emits the address of the lvalue, 119 /// then loads the result into DestPtr. 120 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 121 LValue LV = CGF.EmitLValue(E); 122 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 123 llvm::Value *SrcPtr = LV.getAddress(); 124 125 // If the result is ignored, don't copy from the value. 126 if (DestPtr == 0) 127 // FIXME: If the source is volatile, we must read from it. 128 return; 129 130 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // Visitor Methods 135 //===----------------------------------------------------------------------===// 136 137 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 138 // GCC union extension 139 if (E->getType()->isUnionType()) { 140 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 141 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 142 *SD->field_begin(CGF.getContext()), 143 true, 0); 144 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 145 return; 146 } 147 148 Visit(E->getSubExpr()); 149 } 150 151 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 assert(CGF.getContext().typesAreCompatible( 153 E->getSubExpr()->getType().getUnqualifiedType(), 154 E->getType().getUnqualifiedType()) && 155 "Implicit cast types must be compatible"); 156 Visit(E->getSubExpr()); 157 } 158 159 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 160 RValue RV = CGF.EmitCallExpr(E); 161 assert(RV.isAggregate() && "Return value must be aggregate value!"); 162 163 // If the result is ignored, don't copy from the value. 164 if (DestPtr == 0) 165 // FIXME: If the source is volatile, we must read from it. 166 return; 167 168 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 169 } 170 171 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 172 RValue RV = CGF.EmitObjCMessageExpr(E); 173 assert(RV.isAggregate() && "Return value must be aggregate value!"); 174 175 // If the result is ignored, don't copy from the value. 176 if (DestPtr == 0) 177 // FIXME: If the source is volatile, we must read from it. 178 return; 179 180 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 181 } 182 183 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 184 RValue RV = CGF.EmitObjCPropertyGet(E); 185 assert(RV.isAggregate() && "Return value must be aggregate value!"); 186 187 // If the result is ignored, don't copy from the value. 188 if (DestPtr == 0) 189 // FIXME: If the source is volatile, we must read from it. 190 return; 191 192 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 193 } 194 195 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 196 RValue RV = CGF.EmitObjCPropertyGet(E); 197 assert(RV.isAggregate() && "Return value must be aggregate value!"); 198 199 // If the result is ignored, don't copy from the value. 200 if (DestPtr == 0) 201 // FIXME: If the source is volatile, we must read from it. 202 return; 203 204 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 205 } 206 207 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 208 CGF.EmitAnyExpr(E->getLHS()); 209 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 210 } 211 212 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 213 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 214 } 215 216 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 217 CGF.ErrorUnsupported(E, "aggregate binary expression"); 218 } 219 220 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 221 // For an assignment to work, the value on the right has 222 // to be compatible with the value on the left. 223 assert(CGF.getContext().typesAreCompatible( 224 E->getLHS()->getType().getUnqualifiedType(), 225 E->getRHS()->getType().getUnqualifiedType()) 226 && "Invalid assignment"); 227 LValue LHS = CGF.EmitLValue(E->getLHS()); 228 229 // We have to special case property setters, otherwise we must have 230 // a simple lvalue (no aggregates inside vectors, bitfields). 231 if (LHS.isPropertyRef()) { 232 // FIXME: Volatility? 233 llvm::Value *AggLoc = DestPtr; 234 if (!AggLoc) 235 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 236 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 237 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 238 RValue::getAggregate(AggLoc)); 239 } 240 else if (LHS.isKVCRef()) { 241 // FIXME: Volatility? 242 llvm::Value *AggLoc = DestPtr; 243 if (!AggLoc) 244 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 245 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 246 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 247 RValue::getAggregate(AggLoc)); 248 } else { 249 // Codegen the RHS so that it stores directly into the LHS. 250 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 251 252 if (DestPtr == 0) 253 return; 254 255 // If the result of the assignment is used, copy the RHS there also. 256 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 257 } 258 } 259 260 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 261 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 262 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 263 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 264 265 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 266 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 267 268 CGF.EmitBlock(LHSBlock); 269 270 // Handle the GNU extension for missing LHS. 271 assert(E->getLHS() && "Must have LHS for aggregate value"); 272 273 Visit(E->getLHS()); 274 CGF.EmitBranch(ContBlock); 275 276 CGF.EmitBlock(RHSBlock); 277 278 Visit(E->getRHS()); 279 CGF.EmitBranch(ContBlock); 280 281 CGF.EmitBlock(ContBlock); 282 } 283 284 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 285 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 286 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 287 288 if (!ArgPtr) { 289 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 290 return; 291 } 292 293 if (DestPtr) 294 // FIXME: volatility 295 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 296 } 297 298 void 299 AggExprEmitter::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { 300 llvm::Value *This = 0; 301 302 if (DestPtr) 303 This = DestPtr; 304 else 305 This = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "tmp"); 306 307 CGF.EmitCXXTemporaryObjectExpr(This, E); 308 } 309 310 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 311 // FIXME: Are initializers affected by volatile? 312 if (isa<ImplicitValueInitExpr>(E)) { 313 EmitNullInitializationToLValue(LV, E->getType()); 314 } else if (E->getType()->isComplexType()) { 315 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 316 } else if (CGF.hasAggregateLLVMType(E->getType())) { 317 CGF.EmitAnyExpr(E, LV.getAddress(), false); 318 } else { 319 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 320 } 321 } 322 323 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 324 if (!CGF.hasAggregateLLVMType(T)) { 325 // For non-aggregates, we can store zero 326 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 327 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 328 } else { 329 // Otherwise, just memset the whole thing to zero. This is legal 330 // because in LLVM, all default initializers are guaranteed to have a 331 // bit pattern of all zeros. 332 // FIXME: That isn't true for member pointers! 333 // There's a potential optimization opportunity in combining 334 // memsets; that would be easy for arrays, but relatively 335 // difficult for structures with the current code. 336 CGF.EmitMemSetToZero(LV.getAddress(), T); 337 } 338 } 339 340 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 341 #if 0 342 // FIXME: Disabled while we figure out what to do about 343 // test/CodeGen/bitfield.c 344 // 345 // If we can, prefer a copy from a global; this is a lot less 346 // code for long globals, and it's easier for the current optimizers 347 // to analyze. 348 // FIXME: Should we really be doing this? Should we try to avoid 349 // cases where we emit a global with a lot of zeros? Should 350 // we try to avoid short globals? 351 if (E->isConstantInitializer(CGF.getContext(), 0)) { 352 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 353 llvm::GlobalVariable* GV = 354 new llvm::GlobalVariable(C->getType(), true, 355 llvm::GlobalValue::InternalLinkage, 356 C, "", &CGF.CGM.getModule(), 0); 357 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 358 return; 359 } 360 #endif 361 if (E->hadArrayRangeDesignator()) { 362 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 363 } 364 365 // Handle initialization of an array. 366 if (E->getType()->isArrayType()) { 367 const llvm::PointerType *APType = 368 cast<llvm::PointerType>(DestPtr->getType()); 369 const llvm::ArrayType *AType = 370 cast<llvm::ArrayType>(APType->getElementType()); 371 372 uint64_t NumInitElements = E->getNumInits(); 373 374 if (E->getNumInits() > 0) { 375 QualType T1 = E->getType(); 376 QualType T2 = E->getInit(0)->getType(); 377 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 378 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 379 EmitAggLoadOfLValue(E->getInit(0)); 380 return; 381 } 382 } 383 384 uint64_t NumArrayElements = AType->getNumElements(); 385 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 386 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 387 388 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 389 390 for (uint64_t i = 0; i != NumArrayElements; ++i) { 391 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 392 if (i < NumInitElements) 393 EmitInitializationToLValue(E->getInit(i), 394 LValue::MakeAddr(NextVal, CVRqualifier)); 395 else 396 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 397 ElementType); 398 } 399 return; 400 } 401 402 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 403 404 // Do struct initialization; this code just sets each individual member 405 // to the approprate value. This makes bitfield support automatic; 406 // the disadvantage is that the generated code is more difficult for 407 // the optimizer, especially with bitfields. 408 unsigned NumInitElements = E->getNumInits(); 409 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 410 unsigned CurInitVal = 0; 411 412 if (E->getType()->isUnionType()) { 413 // Only initialize one field of a union. The field itself is 414 // specified by the initializer list. 415 if (!E->getInitializedFieldInUnion()) { 416 // Empty union; we have nothing to do. 417 418 #ifndef NDEBUG 419 // Make sure that it's really an empty and not a failure of 420 // semantic analysis. 421 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 422 FieldEnd = SD->field_end(CGF.getContext()); 423 Field != FieldEnd; ++Field) 424 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 425 #endif 426 return; 427 } 428 429 // FIXME: volatility 430 FieldDecl *Field = E->getInitializedFieldInUnion(); 431 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 432 433 if (NumInitElements) { 434 // Store the initializer into the field 435 EmitInitializationToLValue(E->getInit(0), FieldLoc); 436 } else { 437 // Default-initialize to null 438 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 439 } 440 441 return; 442 } 443 444 // Here we iterate over the fields; this makes it simpler to both 445 // default-initialize fields and skip over unnamed fields. 446 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 447 FieldEnd = SD->field_end(CGF.getContext()); 448 Field != FieldEnd; ++Field) { 449 // We're done once we hit the flexible array member 450 if (Field->getType()->isIncompleteArrayType()) 451 break; 452 453 if (Field->isUnnamedBitfield()) 454 continue; 455 456 // FIXME: volatility 457 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 458 if (CurInitVal < NumInitElements) { 459 // Store the initializer into the field 460 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 461 } else { 462 // We're out of initalizers; default-initialize to null 463 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 464 } 465 } 466 } 467 468 //===----------------------------------------------------------------------===// 469 // Entry Points into this File 470 //===----------------------------------------------------------------------===// 471 472 /// EmitAggExpr - Emit the computation of the specified expression of 473 /// aggregate type. The result is computed into DestPtr. Note that if 474 /// DestPtr is null, the value of the aggregate expression is not needed. 475 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 476 bool VolatileDest) { 477 assert(E && hasAggregateLLVMType(E->getType()) && 478 "Invalid aggregate expression to emit"); 479 480 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 481 } 482 483 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 484 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 485 486 EmitMemSetToZero(DestPtr, Ty); 487 } 488 489 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 490 llvm::Value *SrcPtr, QualType Ty) { 491 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 492 493 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 494 // C99 6.5.16.1p3, which states "If the value being stored in an object is 495 // read from another object that overlaps in anyway the storage of the first 496 // object, then the overlap shall be exact and the two objects shall have 497 // qualified or unqualified versions of a compatible type." 498 // 499 // memcpy is not defined if the source and destination pointers are exactly 500 // equal, but other compilers do this optimization, and almost every memcpy 501 // implementation handles this case safely. If there is a libc that does not 502 // safely handle this, we can add a target hook. 503 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 504 if (DestPtr->getType() != BP) 505 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 506 if (SrcPtr->getType() != BP) 507 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 508 509 // Get size and alignment info for this aggregate. 510 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 511 512 // FIXME: Handle variable sized types. 513 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 514 515 Builder.CreateCall4(CGM.getMemCpyFn(), 516 DestPtr, SrcPtr, 517 // TypeInfo.first describes size in bits. 518 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 519 llvm::ConstantInt::get(llvm::Type::Int32Ty, 520 TypeInfo.second/8)); 521 } 522