1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                        Aggregate Expression Emitter
33 //===----------------------------------------------------------------------===//
34 
35 namespace  {
36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37   CodeGenFunction &CGF;
38   CGBuilderTy &Builder;
39   AggValueSlot Dest;
40   bool IsResultUnused;
41 
42   AggValueSlot EnsureSlot(QualType T) {
43     if (!Dest.isIgnored()) return Dest;
44     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45   }
46   void EnsureDest(QualType T) {
47     if (!Dest.isIgnored()) return;
48     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49   }
50 
51   // Calls `Fn` with a valid return value slot, potentially creating a temporary
52   // to do so. If a temporary is created, an appropriate copy into `Dest` will
53   // be emitted, as will lifetime markers.
54   //
55   // The given function should take a ReturnValueSlot, and return an RValue that
56   // points to said slot.
57   void withReturnValueSlot(const Expr *E,
58                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63     IsResultUnused(IsResultUnused) { }
64 
65   //===--------------------------------------------------------------------===//
66   //                               Utilities
67   //===--------------------------------------------------------------------===//
68 
69   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70   /// represents a value lvalue, this method emits the address of the lvalue,
71   /// then loads the result into DestPtr.
72   void EmitAggLoadOfLValue(const Expr *E);
73 
74   enum ExprValueKind {
75     EVK_RValue,
76     EVK_NonRValue
77   };
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   /// SrcIsRValue is true if source comes from an RValue.
81   void EmitFinalDestCopy(QualType type, const LValue &src,
82                          ExprValueKind SrcValueKind = EVK_NonRValue);
83   void EmitFinalDestCopy(QualType type, RValue src);
84   void EmitCopy(QualType type, const AggValueSlot &dest,
85                 const AggValueSlot &src);
86 
87   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88 
89   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                      QualType ArrayQTy, InitListExpr *E);
91 
92   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94       return AggValueSlot::NeedsGCBarriers;
95     return AggValueSlot::DoesNotNeedGCBarriers;
96   }
97 
98   bool TypeRequiresGCollection(QualType T);
99 
100   //===--------------------------------------------------------------------===//
101   //                            Visitor Methods
102   //===--------------------------------------------------------------------===//
103 
104   void Visit(Expr *E) {
105     ApplyDebugLocation DL(CGF, E);
106     StmtVisitor<AggExprEmitter>::Visit(E);
107   }
108 
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitCoawaitExpr(CoawaitExpr *E) {
117     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118   }
119   void VisitCoyieldExpr(CoyieldExpr *E) {
120     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121   }
122   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125     return Visit(E->getReplacement());
126   }
127 
128   void VisitConstantExpr(ConstantExpr *E) {
129     return Visit(E->getSubExpr());
130   }
131 
132   // l-values.
133   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
134   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
135   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
136   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
137   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
138   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
139     EmitAggLoadOfLValue(E);
140   }
141   void VisitPredefinedExpr(const PredefinedExpr *E) {
142     EmitAggLoadOfLValue(E);
143   }
144 
145   // Operators.
146   void VisitCastExpr(CastExpr *E);
147   void VisitCallExpr(const CallExpr *E);
148   void VisitStmtExpr(const StmtExpr *E);
149   void VisitBinaryOperator(const BinaryOperator *BO);
150   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
151   void VisitBinAssign(const BinaryOperator *E);
152   void VisitBinComma(const BinaryOperator *E);
153   void VisitBinCmp(const BinaryOperator *E);
154   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
155     Visit(E->getSemanticForm());
156   }
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
168                               llvm::Value *outerBegin = nullptr);
169   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
170   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
171   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
172     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
173     Visit(DAE->getExpr());
174   }
175   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
176     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
177     Visit(DIE->getExpr());
178   }
179   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
180   void VisitCXXConstructExpr(const CXXConstructExpr *E);
181   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
182   void VisitLambdaExpr(LambdaExpr *E);
183   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
184   void VisitExprWithCleanups(ExprWithCleanups *E);
185   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
186   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
187   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
188   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
189 
190   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
191     if (E->isGLValue()) {
192       LValue LV = CGF.EmitPseudoObjectLValue(E);
193       return EmitFinalDestCopy(E->getType(), LV);
194     }
195 
196     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
197   }
198 
199   void VisitVAArgExpr(VAArgExpr *E);
200 
201   void EmitInitializationToLValue(Expr *E, LValue Address);
202   void EmitNullInitializationToLValue(LValue Address);
203   //  case Expr::ChooseExprClass:
204   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
205   void VisitAtomicExpr(AtomicExpr *E) {
206     RValue Res = CGF.EmitAtomicExpr(E);
207     EmitFinalDestCopy(E->getType(), Res);
208   }
209 };
210 }  // end anonymous namespace.
211 
212 //===----------------------------------------------------------------------===//
213 //                                Utilities
214 //===----------------------------------------------------------------------===//
215 
216 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
217 /// represents a value lvalue, this method emits the address of the lvalue,
218 /// then loads the result into DestPtr.
219 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
220   LValue LV = CGF.EmitLValue(E);
221 
222   // If the type of the l-value is atomic, then do an atomic load.
223   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
224     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
225     return;
226   }
227 
228   EmitFinalDestCopy(E->getType(), LV);
229 }
230 
231 /// True if the given aggregate type requires special GC API calls.
232 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
233   // Only record types have members that might require garbage collection.
234   const RecordType *RecordTy = T->getAs<RecordType>();
235   if (!RecordTy) return false;
236 
237   // Don't mess with non-trivial C++ types.
238   RecordDecl *Record = RecordTy->getDecl();
239   if (isa<CXXRecordDecl>(Record) &&
240       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
241        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
242     return false;
243 
244   // Check whether the type has an object member.
245   return Record->hasObjectMember();
246 }
247 
248 void AggExprEmitter::withReturnValueSlot(
249     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
250   QualType RetTy = E->getType();
251   bool RequiresDestruction =
252       Dest.isIgnored() &&
253       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
254 
255   // If it makes no observable difference, save a memcpy + temporary.
256   //
257   // We need to always provide our own temporary if destruction is required.
258   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
259   // its lifetime before we have the chance to emit a proper destructor call.
260   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
261                  (RequiresDestruction && !Dest.getAddress().isValid());
262 
263   Address RetAddr = Address::invalid();
264   Address RetAllocaAddr = Address::invalid();
265 
266   EHScopeStack::stable_iterator LifetimeEndBlock;
267   llvm::Value *LifetimeSizePtr = nullptr;
268   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
269   if (!UseTemp) {
270     RetAddr = Dest.getAddress();
271   } else {
272     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
273     uint64_t Size =
274         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
275     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
276     if (LifetimeSizePtr) {
277       LifetimeStartInst =
278           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
279       assert(LifetimeStartInst->getIntrinsicID() ==
280                  llvm::Intrinsic::lifetime_start &&
281              "Last insertion wasn't a lifetime.start?");
282 
283       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
284           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
285       LifetimeEndBlock = CGF.EHStack.stable_begin();
286     }
287   }
288 
289   RValue Src =
290       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
291 
292   if (RequiresDestruction)
293     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
294 
295   if (!UseTemp)
296     return;
297 
298   assert(Dest.getPointer() != Src.getAggregatePointer());
299   EmitFinalDestCopy(E->getType(), Src);
300 
301   if (!RequiresDestruction && LifetimeStartInst) {
302     // If there's no dtor to run, the copy was the last use of our temporary.
303     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
304     // eagerly.
305     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
306     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
307   }
308 }
309 
310 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
311 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
312   assert(src.isAggregate() && "value must be aggregate value!");
313   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
314   EmitFinalDestCopy(type, srcLV, EVK_RValue);
315 }
316 
317 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
318 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
319                                        ExprValueKind SrcValueKind) {
320   // If Dest is ignored, then we're evaluating an aggregate expression
321   // in a context that doesn't care about the result.  Note that loads
322   // from volatile l-values force the existence of a non-ignored
323   // destination.
324   if (Dest.isIgnored())
325     return;
326 
327   // Copy non-trivial C structs here.
328   LValue DstLV = CGF.MakeAddrLValue(
329       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
330 
331   if (SrcValueKind == EVK_RValue) {
332     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
333       if (Dest.isPotentiallyAliased())
334         CGF.callCStructMoveAssignmentOperator(DstLV, src);
335       else
336         CGF.callCStructMoveConstructor(DstLV, src);
337       return;
338     }
339   } else {
340     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
341       if (Dest.isPotentiallyAliased())
342         CGF.callCStructCopyAssignmentOperator(DstLV, src);
343       else
344         CGF.callCStructCopyConstructor(DstLV, src);
345       return;
346     }
347   }
348 
349   AggValueSlot srcAgg = AggValueSlot::forLValue(
350       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
351       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
352   EmitCopy(type, Dest, srcAgg);
353 }
354 
355 /// Perform a copy from the source into the destination.
356 ///
357 /// \param type - the type of the aggregate being copied; qualifiers are
358 ///   ignored
359 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
360                               const AggValueSlot &src) {
361   if (dest.requiresGCollection()) {
362     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
363     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
364     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
365                                                       dest.getAddress(),
366                                                       src.getAddress(),
367                                                       size);
368     return;
369   }
370 
371   // If the result of the assignment is used, copy the LHS there also.
372   // It's volatile if either side is.  Use the minimum alignment of
373   // the two sides.
374   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
375   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
376   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
377                         dest.isVolatile() || src.isVolatile());
378 }
379 
380 /// Emit the initializer for a std::initializer_list initialized with a
381 /// real initializer list.
382 void
383 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
384   // Emit an array containing the elements.  The array is externally destructed
385   // if the std::initializer_list object is.
386   ASTContext &Ctx = CGF.getContext();
387   LValue Array = CGF.EmitLValue(E->getSubExpr());
388   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
389   Address ArrayPtr = Array.getAddress(CGF);
390 
391   const ConstantArrayType *ArrayType =
392       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
393   assert(ArrayType && "std::initializer_list constructed from non-array");
394 
395   // FIXME: Perform the checks on the field types in SemaInit.
396   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
397   RecordDecl::field_iterator Field = Record->field_begin();
398   if (Field == Record->field_end()) {
399     CGF.ErrorUnsupported(E, "weird std::initializer_list");
400     return;
401   }
402 
403   // Start pointer.
404   if (!Field->getType()->isPointerType() ||
405       !Ctx.hasSameType(Field->getType()->getPointeeType(),
406                        ArrayType->getElementType())) {
407     CGF.ErrorUnsupported(E, "weird std::initializer_list");
408     return;
409   }
410 
411   AggValueSlot Dest = EnsureSlot(E->getType());
412   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
413   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
414   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
415   llvm::Value *IdxStart[] = { Zero, Zero };
416   llvm::Value *ArrayStart =
417       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
418   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
419   ++Field;
420 
421   if (Field == Record->field_end()) {
422     CGF.ErrorUnsupported(E, "weird std::initializer_list");
423     return;
424   }
425 
426   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
427   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
428   if (Field->getType()->isPointerType() &&
429       Ctx.hasSameType(Field->getType()->getPointeeType(),
430                       ArrayType->getElementType())) {
431     // End pointer.
432     llvm::Value *IdxEnd[] = { Zero, Size };
433     llvm::Value *ArrayEnd =
434         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
435     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
436   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
437     // Length.
438     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
439   } else {
440     CGF.ErrorUnsupported(E, "weird std::initializer_list");
441     return;
442   }
443 }
444 
445 /// Determine if E is a trivial array filler, that is, one that is
446 /// equivalent to zero-initialization.
447 static bool isTrivialFiller(Expr *E) {
448   if (!E)
449     return true;
450 
451   if (isa<ImplicitValueInitExpr>(E))
452     return true;
453 
454   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
455     if (ILE->getNumInits())
456       return false;
457     return isTrivialFiller(ILE->getArrayFiller());
458   }
459 
460   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
461     return Cons->getConstructor()->isDefaultConstructor() &&
462            Cons->getConstructor()->isTrivial();
463 
464   // FIXME: Are there other cases where we can avoid emitting an initializer?
465   return false;
466 }
467 
468 /// Emit initialization of an array from an initializer list.
469 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
470                                    QualType ArrayQTy, InitListExpr *E) {
471   uint64_t NumInitElements = E->getNumInits();
472 
473   uint64_t NumArrayElements = AType->getNumElements();
474   assert(NumInitElements <= NumArrayElements);
475 
476   QualType elementType =
477       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
478 
479   // DestPtr is an array*.  Construct an elementType* by drilling
480   // down a level.
481   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
482   llvm::Value *indices[] = { zero, zero };
483   llvm::Value *begin =
484     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
485 
486   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
487   CharUnits elementAlign =
488     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
489 
490   // Consider initializing the array by copying from a global. For this to be
491   // more efficient than per-element initialization, the size of the elements
492   // with explicit initializers should be large enough.
493   if (NumInitElements * elementSize.getQuantity() > 16 &&
494       elementType.isTriviallyCopyableType(CGF.getContext())) {
495     CodeGen::CodeGenModule &CGM = CGF.CGM;
496     ConstantEmitter Emitter(CGF);
497     LangAS AS = ArrayQTy.getAddressSpace();
498     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
499       auto GV = new llvm::GlobalVariable(
500           CGM.getModule(), C->getType(),
501           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
502           llvm::GlobalValue::PrivateLinkage, C, "constinit",
503           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
504           CGM.getContext().getTargetAddressSpace(AS));
505       Emitter.finalize(GV);
506       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
507       GV->setAlignment(Align.getAsAlign());
508       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
509       return;
510     }
511   }
512 
513   // Exception safety requires us to destroy all the
514   // already-constructed members if an initializer throws.
515   // For that, we'll need an EH cleanup.
516   QualType::DestructionKind dtorKind = elementType.isDestructedType();
517   Address endOfInit = Address::invalid();
518   EHScopeStack::stable_iterator cleanup;
519   llvm::Instruction *cleanupDominator = nullptr;
520   if (CGF.needsEHCleanup(dtorKind)) {
521     // In principle we could tell the cleanup where we are more
522     // directly, but the control flow can get so varied here that it
523     // would actually be quite complex.  Therefore we go through an
524     // alloca.
525     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
526                                      "arrayinit.endOfInit");
527     cleanupDominator = Builder.CreateStore(begin, endOfInit);
528     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
529                                          elementAlign,
530                                          CGF.getDestroyer(dtorKind));
531     cleanup = CGF.EHStack.stable_begin();
532 
533   // Otherwise, remember that we didn't need a cleanup.
534   } else {
535     dtorKind = QualType::DK_none;
536   }
537 
538   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
539 
540   // The 'current element to initialize'.  The invariants on this
541   // variable are complicated.  Essentially, after each iteration of
542   // the loop, it points to the last initialized element, except
543   // that it points to the beginning of the array before any
544   // elements have been initialized.
545   llvm::Value *element = begin;
546 
547   // Emit the explicit initializers.
548   for (uint64_t i = 0; i != NumInitElements; ++i) {
549     // Advance to the next element.
550     if (i > 0) {
551       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
552 
553       // Tell the cleanup that it needs to destroy up to this
554       // element.  TODO: some of these stores can be trivially
555       // observed to be unnecessary.
556       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
557     }
558 
559     LValue elementLV =
560       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
561     EmitInitializationToLValue(E->getInit(i), elementLV);
562   }
563 
564   // Check whether there's a non-trivial array-fill expression.
565   Expr *filler = E->getArrayFiller();
566   bool hasTrivialFiller = isTrivialFiller(filler);
567 
568   // Any remaining elements need to be zero-initialized, possibly
569   // using the filler expression.  We can skip this if the we're
570   // emitting to zeroed memory.
571   if (NumInitElements != NumArrayElements &&
572       !(Dest.isZeroed() && hasTrivialFiller &&
573         CGF.getTypes().isZeroInitializable(elementType))) {
574 
575     // Use an actual loop.  This is basically
576     //   do { *array++ = filler; } while (array != end);
577 
578     // Advance to the start of the rest of the array.
579     if (NumInitElements) {
580       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
581       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
582     }
583 
584     // Compute the end of the array.
585     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
586                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
587                                                  "arrayinit.end");
588 
589     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
590     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
591 
592     // Jump into the body.
593     CGF.EmitBlock(bodyBB);
594     llvm::PHINode *currentElement =
595       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
596     currentElement->addIncoming(element, entryBB);
597 
598     // Emit the actual filler expression.
599     {
600       // C++1z [class.temporary]p5:
601       //   when a default constructor is called to initialize an element of
602       //   an array with no corresponding initializer [...] the destruction of
603       //   every temporary created in a default argument is sequenced before
604       //   the construction of the next array element, if any
605       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
606       LValue elementLV =
607         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
608       if (filler)
609         EmitInitializationToLValue(filler, elementLV);
610       else
611         EmitNullInitializationToLValue(elementLV);
612     }
613 
614     // Move on to the next element.
615     llvm::Value *nextElement =
616       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
617 
618     // Tell the EH cleanup that we finished with the last element.
619     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
620 
621     // Leave the loop if we're done.
622     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
623                                              "arrayinit.done");
624     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
625     Builder.CreateCondBr(done, endBB, bodyBB);
626     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
627 
628     CGF.EmitBlock(endBB);
629   }
630 
631   // Leave the partial-array cleanup if we entered one.
632   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
633 }
634 
635 //===----------------------------------------------------------------------===//
636 //                            Visitor Methods
637 //===----------------------------------------------------------------------===//
638 
639 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
640   Visit(E->getSubExpr());
641 }
642 
643 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
644   // If this is a unique OVE, just visit its source expression.
645   if (e->isUnique())
646     Visit(e->getSourceExpr());
647   else
648     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
649 }
650 
651 void
652 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
653   if (Dest.isPotentiallyAliased() &&
654       E->getType().isPODType(CGF.getContext())) {
655     // For a POD type, just emit a load of the lvalue + a copy, because our
656     // compound literal might alias the destination.
657     EmitAggLoadOfLValue(E);
658     return;
659   }
660 
661   AggValueSlot Slot = EnsureSlot(E->getType());
662 
663   // Block-scope compound literals are destroyed at the end of the enclosing
664   // scope in C.
665   bool Destruct =
666       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
667   if (Destruct)
668     Slot.setExternallyDestructed();
669 
670   CGF.EmitAggExpr(E->getInitializer(), Slot);
671 
672   if (Destruct)
673     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
674       CGF.pushLifetimeExtendedDestroy(
675           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
676           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
677 }
678 
679 /// Attempt to look through various unimportant expressions to find a
680 /// cast of the given kind.
681 static Expr *findPeephole(Expr *op, CastKind kind) {
682   while (true) {
683     op = op->IgnoreParens();
684     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
685       if (castE->getCastKind() == kind)
686         return castE->getSubExpr();
687       if (castE->getCastKind() == CK_NoOp)
688         continue;
689     }
690     return nullptr;
691   }
692 }
693 
694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697   switch (E->getCastKind()) {
698   case CK_Dynamic: {
699     // FIXME: Can this actually happen? We have no test coverage for it.
700     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                       CodeGenFunction::TCK_Load);
703     // FIXME: Do we also need to handle property references here?
704     if (LV.isSimple())
705       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706     else
707       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708 
709     if (!Dest.isIgnored())
710       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711     break;
712   }
713 
714   case CK_ToUnion: {
715     // Evaluate even if the destination is ignored.
716     if (Dest.isIgnored()) {
717       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                       /*ignoreResult=*/true);
719       break;
720     }
721 
722     // GCC union extension
723     QualType Ty = E->getSubExpr()->getType();
724     Address CastPtr =
725       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726     EmitInitializationToLValue(E->getSubExpr(),
727                                CGF.MakeAddrLValue(CastPtr, Ty));
728     break;
729   }
730 
731   case CK_LValueToRValueBitCast: {
732     if (Dest.isIgnored()) {
733       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                       /*ignoreResult=*/true);
735       break;
736     }
737 
738     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739     Address SourceAddress =
740         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741     Address DestAddress =
742         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743     llvm::Value *SizeVal = llvm::ConstantInt::get(
744         CGF.SizeTy,
745         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747     break;
748   }
749 
750   case CK_DerivedToBase:
751   case CK_BaseToDerived:
752   case CK_UncheckedDerivedToBase: {
753     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                 "should have been unpacked before we got here");
755   }
756 
757   case CK_NonAtomicToAtomic:
758   case CK_AtomicToNonAtomic: {
759     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760 
761     // Determine the atomic and value types.
762     QualType atomicType = E->getSubExpr()->getType();
763     QualType valueType = E->getType();
764     if (isToAtomic) std::swap(atomicType, valueType);
765 
766     assert(atomicType->isAtomicType());
767     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                           atomicType->castAs<AtomicType>()->getValueType()));
769 
770     // Just recurse normally if we're ignoring the result or the
771     // atomic type doesn't change representation.
772     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773       return Visit(E->getSubExpr());
774     }
775 
776     CastKind peepholeTarget =
777       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778 
779     // These two cases are reverses of each other; try to peephole them.
780     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
781       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
782                                                      E->getType()) &&
783            "peephole significantly changed types?");
784       return Visit(op);
785     }
786 
787     // If we're converting an r-value of non-atomic type to an r-value
788     // of atomic type, just emit directly into the relevant sub-object.
789     if (isToAtomic) {
790       AggValueSlot valueDest = Dest;
791       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
792         // Zero-initialize.  (Strictly speaking, we only need to initialize
793         // the padding at the end, but this is simpler.)
794         if (!Dest.isZeroed())
795           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
796 
797         // Build a GEP to refer to the subobject.
798         Address valueAddr =
799             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
800         valueDest = AggValueSlot::forAddr(valueAddr,
801                                           valueDest.getQualifiers(),
802                                           valueDest.isExternallyDestructed(),
803                                           valueDest.requiresGCollection(),
804                                           valueDest.isPotentiallyAliased(),
805                                           AggValueSlot::DoesNotOverlap,
806                                           AggValueSlot::IsZeroed);
807       }
808 
809       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
810       return;
811     }
812 
813     // Otherwise, we're converting an atomic type to a non-atomic type.
814     // Make an atomic temporary, emit into that, and then copy the value out.
815     AggValueSlot atomicSlot =
816       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
817     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
818 
819     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
820     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
821     return EmitFinalDestCopy(valueType, rvalue);
822   }
823   case CK_AddressSpaceConversion:
824      return Visit(E->getSubExpr());
825 
826   case CK_LValueToRValue:
827     // If we're loading from a volatile type, force the destination
828     // into existence.
829     if (E->getSubExpr()->getType().isVolatileQualified()) {
830       EnsureDest(E->getType());
831       return Visit(E->getSubExpr());
832     }
833 
834     LLVM_FALLTHROUGH;
835 
836 
837   case CK_NoOp:
838   case CK_UserDefinedConversion:
839   case CK_ConstructorConversion:
840     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
841                                                    E->getType()) &&
842            "Implicit cast types must be compatible");
843     Visit(E->getSubExpr());
844     break;
845 
846   case CK_LValueBitCast:
847     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
848 
849   case CK_Dependent:
850   case CK_BitCast:
851   case CK_ArrayToPointerDecay:
852   case CK_FunctionToPointerDecay:
853   case CK_NullToPointer:
854   case CK_NullToMemberPointer:
855   case CK_BaseToDerivedMemberPointer:
856   case CK_DerivedToBaseMemberPointer:
857   case CK_MemberPointerToBoolean:
858   case CK_ReinterpretMemberPointer:
859   case CK_IntegralToPointer:
860   case CK_PointerToIntegral:
861   case CK_PointerToBoolean:
862   case CK_ToVoid:
863   case CK_VectorSplat:
864   case CK_IntegralCast:
865   case CK_BooleanToSignedIntegral:
866   case CK_IntegralToBoolean:
867   case CK_IntegralToFloating:
868   case CK_FloatingToIntegral:
869   case CK_FloatingToBoolean:
870   case CK_FloatingCast:
871   case CK_CPointerToObjCPointerCast:
872   case CK_BlockPointerToObjCPointerCast:
873   case CK_AnyPointerToBlockPointerCast:
874   case CK_ObjCObjectLValueCast:
875   case CK_FloatingRealToComplex:
876   case CK_FloatingComplexToReal:
877   case CK_FloatingComplexToBoolean:
878   case CK_FloatingComplexCast:
879   case CK_FloatingComplexToIntegralComplex:
880   case CK_IntegralRealToComplex:
881   case CK_IntegralComplexToReal:
882   case CK_IntegralComplexToBoolean:
883   case CK_IntegralComplexCast:
884   case CK_IntegralComplexToFloatingComplex:
885   case CK_ARCProduceObject:
886   case CK_ARCConsumeObject:
887   case CK_ARCReclaimReturnedObject:
888   case CK_ARCExtendBlockObject:
889   case CK_CopyAndAutoreleaseBlockObject:
890   case CK_BuiltinFnToFnPtr:
891   case CK_ZeroToOCLOpaqueType:
892 
893   case CK_IntToOCLSampler:
894   case CK_FixedPointCast:
895   case CK_FixedPointToBoolean:
896   case CK_FixedPointToIntegral:
897   case CK_IntegralToFixedPoint:
898     llvm_unreachable("cast kind invalid for aggregate types");
899   }
900 }
901 
902 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
903   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
904     EmitAggLoadOfLValue(E);
905     return;
906   }
907 
908   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
909     return CGF.EmitCallExpr(E, Slot);
910   });
911 }
912 
913 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
914   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
915     return CGF.EmitObjCMessageExpr(E, Slot);
916   });
917 }
918 
919 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
920   CGF.EmitIgnoredExpr(E->getLHS());
921   Visit(E->getRHS());
922 }
923 
924 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
925   CodeGenFunction::StmtExprEvaluation eval(CGF);
926   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
927 }
928 
929 enum CompareKind {
930   CK_Less,
931   CK_Greater,
932   CK_Equal,
933 };
934 
935 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
936                                 const BinaryOperator *E, llvm::Value *LHS,
937                                 llvm::Value *RHS, CompareKind Kind,
938                                 const char *NameSuffix = "") {
939   QualType ArgTy = E->getLHS()->getType();
940   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
941     ArgTy = CT->getElementType();
942 
943   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
944     assert(Kind == CK_Equal &&
945            "member pointers may only be compared for equality");
946     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
947         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
948   }
949 
950   // Compute the comparison instructions for the specified comparison kind.
951   struct CmpInstInfo {
952     const char *Name;
953     llvm::CmpInst::Predicate FCmp;
954     llvm::CmpInst::Predicate SCmp;
955     llvm::CmpInst::Predicate UCmp;
956   };
957   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
958     using FI = llvm::FCmpInst;
959     using II = llvm::ICmpInst;
960     switch (Kind) {
961     case CK_Less:
962       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
963     case CK_Greater:
964       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
965     case CK_Equal:
966       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
967     }
968     llvm_unreachable("Unrecognised CompareKind enum");
969   }();
970 
971   if (ArgTy->hasFloatingRepresentation())
972     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
973                               llvm::Twine(InstInfo.Name) + NameSuffix);
974   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
975     auto Inst =
976         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
977     return Builder.CreateICmp(Inst, LHS, RHS,
978                               llvm::Twine(InstInfo.Name) + NameSuffix);
979   }
980 
981   llvm_unreachable("unsupported aggregate binary expression should have "
982                    "already been handled");
983 }
984 
985 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
986   using llvm::BasicBlock;
987   using llvm::PHINode;
988   using llvm::Value;
989   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
990                                       E->getRHS()->getType()));
991   const ComparisonCategoryInfo &CmpInfo =
992       CGF.getContext().CompCategories.getInfoForType(E->getType());
993   assert(CmpInfo.Record->isTriviallyCopyable() &&
994          "cannot copy non-trivially copyable aggregate");
995 
996   QualType ArgTy = E->getLHS()->getType();
997 
998   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
999       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1000       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1001     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1002   }
1003   bool IsComplex = ArgTy->isAnyComplexType();
1004 
1005   // Evaluate the operands to the expression and extract their values.
1006   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1007     RValue RV = CGF.EmitAnyExpr(E);
1008     if (RV.isScalar())
1009       return {RV.getScalarVal(), nullptr};
1010     if (RV.isAggregate())
1011       return {RV.getAggregatePointer(), nullptr};
1012     assert(RV.isComplex());
1013     return RV.getComplexVal();
1014   };
1015   auto LHSValues = EmitOperand(E->getLHS()),
1016        RHSValues = EmitOperand(E->getRHS());
1017 
1018   auto EmitCmp = [&](CompareKind K) {
1019     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1020                              K, IsComplex ? ".r" : "");
1021     if (!IsComplex)
1022       return Cmp;
1023     assert(K == CompareKind::CK_Equal);
1024     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1025                                  RHSValues.second, K, ".i");
1026     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1027   };
1028   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1029     return Builder.getInt(VInfo->getIntValue());
1030   };
1031 
1032   Value *Select;
1033   if (ArgTy->isNullPtrType()) {
1034     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1035   } else if (!CmpInfo.isPartial()) {
1036     Value *SelectOne =
1037         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1038                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1039     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1040                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1041                                   SelectOne, "sel.eq");
1042   } else {
1043     Value *SelectEq = Builder.CreateSelect(
1044         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1045         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1046     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1047                                            EmitCmpRes(CmpInfo.getGreater()),
1048                                            SelectEq, "sel.gt");
1049     Select = Builder.CreateSelect(
1050         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1051   }
1052   // Create the return value in the destination slot.
1053   EnsureDest(E->getType());
1054   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1055 
1056   // Emit the address of the first (and only) field in the comparison category
1057   // type, and initialize it from the constant integer value selected above.
1058   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1059       DestLV, *CmpInfo.Record->field_begin());
1060   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1061 
1062   // All done! The result is in the Dest slot.
1063 }
1064 
1065 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1066   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1067     VisitPointerToDataMemberBinaryOperator(E);
1068   else
1069     CGF.ErrorUnsupported(E, "aggregate binary expression");
1070 }
1071 
1072 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1073                                                     const BinaryOperator *E) {
1074   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1075   EmitFinalDestCopy(E->getType(), LV);
1076 }
1077 
1078 /// Is the value of the given expression possibly a reference to or
1079 /// into a __block variable?
1080 static bool isBlockVarRef(const Expr *E) {
1081   // Make sure we look through parens.
1082   E = E->IgnoreParens();
1083 
1084   // Check for a direct reference to a __block variable.
1085   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1086     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1087     return (var && var->hasAttr<BlocksAttr>());
1088   }
1089 
1090   // More complicated stuff.
1091 
1092   // Binary operators.
1093   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1094     // For an assignment or pointer-to-member operation, just care
1095     // about the LHS.
1096     if (op->isAssignmentOp() || op->isPtrMemOp())
1097       return isBlockVarRef(op->getLHS());
1098 
1099     // For a comma, just care about the RHS.
1100     if (op->getOpcode() == BO_Comma)
1101       return isBlockVarRef(op->getRHS());
1102 
1103     // FIXME: pointer arithmetic?
1104     return false;
1105 
1106   // Check both sides of a conditional operator.
1107   } else if (const AbstractConditionalOperator *op
1108                = dyn_cast<AbstractConditionalOperator>(E)) {
1109     return isBlockVarRef(op->getTrueExpr())
1110         || isBlockVarRef(op->getFalseExpr());
1111 
1112   // OVEs are required to support BinaryConditionalOperators.
1113   } else if (const OpaqueValueExpr *op
1114                = dyn_cast<OpaqueValueExpr>(E)) {
1115     if (const Expr *src = op->getSourceExpr())
1116       return isBlockVarRef(src);
1117 
1118   // Casts are necessary to get things like (*(int*)&var) = foo().
1119   // We don't really care about the kind of cast here, except
1120   // we don't want to look through l2r casts, because it's okay
1121   // to get the *value* in a __block variable.
1122   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1123     if (cast->getCastKind() == CK_LValueToRValue)
1124       return false;
1125     return isBlockVarRef(cast->getSubExpr());
1126 
1127   // Handle unary operators.  Again, just aggressively look through
1128   // it, ignoring the operation.
1129   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1130     return isBlockVarRef(uop->getSubExpr());
1131 
1132   // Look into the base of a field access.
1133   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1134     return isBlockVarRef(mem->getBase());
1135 
1136   // Look into the base of a subscript.
1137   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1138     return isBlockVarRef(sub->getBase());
1139   }
1140 
1141   return false;
1142 }
1143 
1144 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1145   // For an assignment to work, the value on the right has
1146   // to be compatible with the value on the left.
1147   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1148                                                  E->getRHS()->getType())
1149          && "Invalid assignment");
1150 
1151   // If the LHS might be a __block variable, and the RHS can
1152   // potentially cause a block copy, we need to evaluate the RHS first
1153   // so that the assignment goes the right place.
1154   // This is pretty semantically fragile.
1155   if (isBlockVarRef(E->getLHS()) &&
1156       E->getRHS()->HasSideEffects(CGF.getContext())) {
1157     // Ensure that we have a destination, and evaluate the RHS into that.
1158     EnsureDest(E->getRHS()->getType());
1159     Visit(E->getRHS());
1160 
1161     // Now emit the LHS and copy into it.
1162     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1163 
1164     // That copy is an atomic copy if the LHS is atomic.
1165     if (LHS.getType()->isAtomicType() ||
1166         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1167       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1168       return;
1169     }
1170 
1171     EmitCopy(E->getLHS()->getType(),
1172              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1173                                      needsGC(E->getLHS()->getType()),
1174                                      AggValueSlot::IsAliased,
1175                                      AggValueSlot::MayOverlap),
1176              Dest);
1177     return;
1178   }
1179 
1180   LValue LHS = CGF.EmitLValue(E->getLHS());
1181 
1182   // If we have an atomic type, evaluate into the destination and then
1183   // do an atomic copy.
1184   if (LHS.getType()->isAtomicType() ||
1185       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1186     EnsureDest(E->getRHS()->getType());
1187     Visit(E->getRHS());
1188     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1189     return;
1190   }
1191 
1192   // Codegen the RHS so that it stores directly into the LHS.
1193   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1194       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1195       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1196   // A non-volatile aggregate destination might have volatile member.
1197   if (!LHSSlot.isVolatile() &&
1198       CGF.hasVolatileMember(E->getLHS()->getType()))
1199     LHSSlot.setVolatile(true);
1200 
1201   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1202 
1203   // Copy into the destination if the assignment isn't ignored.
1204   EmitFinalDestCopy(E->getType(), LHS);
1205 }
1206 
1207 void AggExprEmitter::
1208 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1209   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1210   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1211   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1212 
1213   // Bind the common expression if necessary.
1214   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1215 
1216   CodeGenFunction::ConditionalEvaluation eval(CGF);
1217   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1218                            CGF.getProfileCount(E));
1219 
1220   // Save whether the destination's lifetime is externally managed.
1221   bool isExternallyDestructed = Dest.isExternallyDestructed();
1222 
1223   eval.begin(CGF);
1224   CGF.EmitBlock(LHSBlock);
1225   CGF.incrementProfileCounter(E);
1226   Visit(E->getTrueExpr());
1227   eval.end(CGF);
1228 
1229   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1230   CGF.Builder.CreateBr(ContBlock);
1231 
1232   // If the result of an agg expression is unused, then the emission
1233   // of the LHS might need to create a destination slot.  That's fine
1234   // with us, and we can safely emit the RHS into the same slot, but
1235   // we shouldn't claim that it's already being destructed.
1236   Dest.setExternallyDestructed(isExternallyDestructed);
1237 
1238   eval.begin(CGF);
1239   CGF.EmitBlock(RHSBlock);
1240   Visit(E->getFalseExpr());
1241   eval.end(CGF);
1242 
1243   CGF.EmitBlock(ContBlock);
1244 }
1245 
1246 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1247   Visit(CE->getChosenSubExpr());
1248 }
1249 
1250 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1251   Address ArgValue = Address::invalid();
1252   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1253 
1254   // If EmitVAArg fails, emit an error.
1255   if (!ArgPtr.isValid()) {
1256     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1257     return;
1258   }
1259 
1260   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1261 }
1262 
1263 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1264   // Ensure that we have a slot, but if we already do, remember
1265   // whether it was externally destructed.
1266   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1267   EnsureDest(E->getType());
1268 
1269   // We're going to push a destructor if there isn't already one.
1270   Dest.setExternallyDestructed();
1271 
1272   Visit(E->getSubExpr());
1273 
1274   // Push that destructor we promised.
1275   if (!wasExternallyDestructed)
1276     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1277 }
1278 
1279 void
1280 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1281   AggValueSlot Slot = EnsureSlot(E->getType());
1282   CGF.EmitCXXConstructExpr(E, Slot);
1283 }
1284 
1285 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1286     const CXXInheritedCtorInitExpr *E) {
1287   AggValueSlot Slot = EnsureSlot(E->getType());
1288   CGF.EmitInheritedCXXConstructorCall(
1289       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1290       E->inheritedFromVBase(), E);
1291 }
1292 
1293 void
1294 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1295   AggValueSlot Slot = EnsureSlot(E->getType());
1296   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1297 
1298   // We'll need to enter cleanup scopes in case any of the element
1299   // initializers throws an exception.
1300   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1301   llvm::Instruction *CleanupDominator = nullptr;
1302 
1303   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1304   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1305                                                e = E->capture_init_end();
1306        i != e; ++i, ++CurField) {
1307     // Emit initialization
1308     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1309     if (CurField->hasCapturedVLAType()) {
1310       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1311       continue;
1312     }
1313 
1314     EmitInitializationToLValue(*i, LV);
1315 
1316     // Push a destructor if necessary.
1317     if (QualType::DestructionKind DtorKind =
1318             CurField->getType().isDestructedType()) {
1319       assert(LV.isSimple());
1320       if (CGF.needsEHCleanup(DtorKind)) {
1321         if (!CleanupDominator)
1322           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1323               CGF.Int8Ty,
1324               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1325               CharUnits::One()); // placeholder
1326 
1327         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1328                         CGF.getDestroyer(DtorKind), false);
1329         Cleanups.push_back(CGF.EHStack.stable_begin());
1330       }
1331     }
1332   }
1333 
1334   // Deactivate all the partial cleanups in reverse order, which
1335   // generally means popping them.
1336   for (unsigned i = Cleanups.size(); i != 0; --i)
1337     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1338 
1339   // Destroy the placeholder if we made one.
1340   if (CleanupDominator)
1341     CleanupDominator->eraseFromParent();
1342 }
1343 
1344 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1345   CGF.enterFullExpression(E);
1346   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1347   Visit(E->getSubExpr());
1348 }
1349 
1350 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1351   QualType T = E->getType();
1352   AggValueSlot Slot = EnsureSlot(T);
1353   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1354 }
1355 
1356 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1357   QualType T = E->getType();
1358   AggValueSlot Slot = EnsureSlot(T);
1359   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1360 }
1361 
1362 /// isSimpleZero - If emitting this value will obviously just cause a store of
1363 /// zero to memory, return true.  This can return false if uncertain, so it just
1364 /// handles simple cases.
1365 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1366   E = E->IgnoreParens();
1367 
1368   // 0
1369   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1370     return IL->getValue() == 0;
1371   // +0.0
1372   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1373     return FL->getValue().isPosZero();
1374   // int()
1375   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1376       CGF.getTypes().isZeroInitializable(E->getType()))
1377     return true;
1378   // (int*)0 - Null pointer expressions.
1379   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1380     return ICE->getCastKind() == CK_NullToPointer &&
1381            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1382            !E->HasSideEffects(CGF.getContext());
1383   // '\0'
1384   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1385     return CL->getValue() == 0;
1386 
1387   // Otherwise, hard case: conservatively return false.
1388   return false;
1389 }
1390 
1391 
1392 void
1393 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1394   QualType type = LV.getType();
1395   // FIXME: Ignore result?
1396   // FIXME: Are initializers affected by volatile?
1397   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1398     // Storing "i32 0" to a zero'd memory location is a noop.
1399     return;
1400   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1401     return EmitNullInitializationToLValue(LV);
1402   } else if (isa<NoInitExpr>(E)) {
1403     // Do nothing.
1404     return;
1405   } else if (type->isReferenceType()) {
1406     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1407     return CGF.EmitStoreThroughLValue(RV, LV);
1408   }
1409 
1410   switch (CGF.getEvaluationKind(type)) {
1411   case TEK_Complex:
1412     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1413     return;
1414   case TEK_Aggregate:
1415     CGF.EmitAggExpr(
1416         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1417                                    AggValueSlot::DoesNotNeedGCBarriers,
1418                                    AggValueSlot::IsNotAliased,
1419                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1420     return;
1421   case TEK_Scalar:
1422     if (LV.isSimple()) {
1423       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1424     } else {
1425       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1426     }
1427     return;
1428   }
1429   llvm_unreachable("bad evaluation kind");
1430 }
1431 
1432 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1433   QualType type = lv.getType();
1434 
1435   // If the destination slot is already zeroed out before the aggregate is
1436   // copied into it, we don't have to emit any zeros here.
1437   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1438     return;
1439 
1440   if (CGF.hasScalarEvaluationKind(type)) {
1441     // For non-aggregates, we can store the appropriate null constant.
1442     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1443     // Note that the following is not equivalent to
1444     // EmitStoreThroughBitfieldLValue for ARC types.
1445     if (lv.isBitField()) {
1446       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1447     } else {
1448       assert(lv.isSimple());
1449       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1450     }
1451   } else {
1452     // There's a potential optimization opportunity in combining
1453     // memsets; that would be easy for arrays, but relatively
1454     // difficult for structures with the current code.
1455     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1456   }
1457 }
1458 
1459 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1460 #if 0
1461   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1462   // (Length of globals? Chunks of zeroed-out space?).
1463   //
1464   // If we can, prefer a copy from a global; this is a lot less code for long
1465   // globals, and it's easier for the current optimizers to analyze.
1466   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1467     llvm::GlobalVariable* GV =
1468     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1469                              llvm::GlobalValue::InternalLinkage, C, "");
1470     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1471     return;
1472   }
1473 #endif
1474   if (E->hadArrayRangeDesignator())
1475     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1476 
1477   if (E->isTransparent())
1478     return Visit(E->getInit(0));
1479 
1480   AggValueSlot Dest = EnsureSlot(E->getType());
1481 
1482   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1483 
1484   // Handle initialization of an array.
1485   if (E->getType()->isArrayType()) {
1486     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1487     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1488     return;
1489   }
1490 
1491   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1492 
1493   // Do struct initialization; this code just sets each individual member
1494   // to the approprate value.  This makes bitfield support automatic;
1495   // the disadvantage is that the generated code is more difficult for
1496   // the optimizer, especially with bitfields.
1497   unsigned NumInitElements = E->getNumInits();
1498   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1499 
1500   // We'll need to enter cleanup scopes in case any of the element
1501   // initializers throws an exception.
1502   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1503   llvm::Instruction *cleanupDominator = nullptr;
1504   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1505     cleanups.push_back(cleanup);
1506     if (!cleanupDominator) // create placeholder once needed
1507       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1508           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1509           CharUnits::One());
1510   };
1511 
1512   unsigned curInitIndex = 0;
1513 
1514   // Emit initialization of base classes.
1515   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1516     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1517            "missing initializer for base class");
1518     for (auto &Base : CXXRD->bases()) {
1519       assert(!Base.isVirtual() && "should not see vbases here");
1520       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1521       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1522           Dest.getAddress(), CXXRD, BaseRD,
1523           /*isBaseVirtual*/ false);
1524       AggValueSlot AggSlot = AggValueSlot::forAddr(
1525           V, Qualifiers(),
1526           AggValueSlot::IsDestructed,
1527           AggValueSlot::DoesNotNeedGCBarriers,
1528           AggValueSlot::IsNotAliased,
1529           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1530       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1531 
1532       if (QualType::DestructionKind dtorKind =
1533               Base.getType().isDestructedType()) {
1534         CGF.pushDestroy(dtorKind, V, Base.getType());
1535         addCleanup(CGF.EHStack.stable_begin());
1536       }
1537     }
1538   }
1539 
1540   // Prepare a 'this' for CXXDefaultInitExprs.
1541   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1542 
1543   if (record->isUnion()) {
1544     // Only initialize one field of a union. The field itself is
1545     // specified by the initializer list.
1546     if (!E->getInitializedFieldInUnion()) {
1547       // Empty union; we have nothing to do.
1548 
1549 #ifndef NDEBUG
1550       // Make sure that it's really an empty and not a failure of
1551       // semantic analysis.
1552       for (const auto *Field : record->fields())
1553         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1554 #endif
1555       return;
1556     }
1557 
1558     // FIXME: volatility
1559     FieldDecl *Field = E->getInitializedFieldInUnion();
1560 
1561     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1562     if (NumInitElements) {
1563       // Store the initializer into the field
1564       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1565     } else {
1566       // Default-initialize to null.
1567       EmitNullInitializationToLValue(FieldLoc);
1568     }
1569 
1570     return;
1571   }
1572 
1573   // Here we iterate over the fields; this makes it simpler to both
1574   // default-initialize fields and skip over unnamed fields.
1575   for (const auto *field : record->fields()) {
1576     // We're done once we hit the flexible array member.
1577     if (field->getType()->isIncompleteArrayType())
1578       break;
1579 
1580     // Always skip anonymous bitfields.
1581     if (field->isUnnamedBitfield())
1582       continue;
1583 
1584     // We're done if we reach the end of the explicit initializers, we
1585     // have a zeroed object, and the rest of the fields are
1586     // zero-initializable.
1587     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1588         CGF.getTypes().isZeroInitializable(E->getType()))
1589       break;
1590 
1591 
1592     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1593     // We never generate write-barries for initialized fields.
1594     LV.setNonGC(true);
1595 
1596     if (curInitIndex < NumInitElements) {
1597       // Store the initializer into the field.
1598       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1599     } else {
1600       // We're out of initializers; default-initialize to null
1601       EmitNullInitializationToLValue(LV);
1602     }
1603 
1604     // Push a destructor if necessary.
1605     // FIXME: if we have an array of structures, all explicitly
1606     // initialized, we can end up pushing a linear number of cleanups.
1607     bool pushedCleanup = false;
1608     if (QualType::DestructionKind dtorKind
1609           = field->getType().isDestructedType()) {
1610       assert(LV.isSimple());
1611       if (CGF.needsEHCleanup(dtorKind)) {
1612         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1613                         CGF.getDestroyer(dtorKind), false);
1614         addCleanup(CGF.EHStack.stable_begin());
1615         pushedCleanup = true;
1616       }
1617     }
1618 
1619     // If the GEP didn't get used because of a dead zero init or something
1620     // else, clean it up for -O0 builds and general tidiness.
1621     if (!pushedCleanup && LV.isSimple())
1622       if (llvm::GetElementPtrInst *GEP =
1623               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1624         if (GEP->use_empty())
1625           GEP->eraseFromParent();
1626   }
1627 
1628   // Deactivate all the partial cleanups in reverse order, which
1629   // generally means popping them.
1630   assert((cleanupDominator || cleanups.empty()) &&
1631          "Missing cleanupDominator before deactivating cleanup blocks");
1632   for (unsigned i = cleanups.size(); i != 0; --i)
1633     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1634 
1635   // Destroy the placeholder if we made one.
1636   if (cleanupDominator)
1637     cleanupDominator->eraseFromParent();
1638 }
1639 
1640 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1641                                             llvm::Value *outerBegin) {
1642   // Emit the common subexpression.
1643   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1644 
1645   Address destPtr = EnsureSlot(E->getType()).getAddress();
1646   uint64_t numElements = E->getArraySize().getZExtValue();
1647 
1648   if (!numElements)
1649     return;
1650 
1651   // destPtr is an array*. Construct an elementType* by drilling down a level.
1652   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1653   llvm::Value *indices[] = {zero, zero};
1654   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1655                                                  "arrayinit.begin");
1656 
1657   // Prepare to special-case multidimensional array initialization: we avoid
1658   // emitting multiple destructor loops in that case.
1659   if (!outerBegin)
1660     outerBegin = begin;
1661   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1662 
1663   QualType elementType =
1664       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1665   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1666   CharUnits elementAlign =
1667       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1668 
1669   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1670   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1671 
1672   // Jump into the body.
1673   CGF.EmitBlock(bodyBB);
1674   llvm::PHINode *index =
1675       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1676   index->addIncoming(zero, entryBB);
1677   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1678 
1679   // Prepare for a cleanup.
1680   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1681   EHScopeStack::stable_iterator cleanup;
1682   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1683     if (outerBegin->getType() != element->getType())
1684       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1685     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1686                                        elementAlign,
1687                                        CGF.getDestroyer(dtorKind));
1688     cleanup = CGF.EHStack.stable_begin();
1689   } else {
1690     dtorKind = QualType::DK_none;
1691   }
1692 
1693   // Emit the actual filler expression.
1694   {
1695     // Temporaries created in an array initialization loop are destroyed
1696     // at the end of each iteration.
1697     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1698     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1699     LValue elementLV =
1700         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1701 
1702     if (InnerLoop) {
1703       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1704       auto elementSlot = AggValueSlot::forLValue(
1705           elementLV, CGF, AggValueSlot::IsDestructed,
1706           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1707           AggValueSlot::DoesNotOverlap);
1708       AggExprEmitter(CGF, elementSlot, false)
1709           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1710     } else
1711       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1712   }
1713 
1714   // Move on to the next element.
1715   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1716       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1717   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1718 
1719   // Leave the loop if we're done.
1720   llvm::Value *done = Builder.CreateICmpEQ(
1721       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1722       "arrayinit.done");
1723   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1724   Builder.CreateCondBr(done, endBB, bodyBB);
1725 
1726   CGF.EmitBlock(endBB);
1727 
1728   // Leave the partial-array cleanup if we entered one.
1729   if (dtorKind)
1730     CGF.DeactivateCleanupBlock(cleanup, index);
1731 }
1732 
1733 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1734   AggValueSlot Dest = EnsureSlot(E->getType());
1735 
1736   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1737   EmitInitializationToLValue(E->getBase(), DestLV);
1738   VisitInitListExpr(E->getUpdater());
1739 }
1740 
1741 //===----------------------------------------------------------------------===//
1742 //                        Entry Points into this File
1743 //===----------------------------------------------------------------------===//
1744 
1745 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1746 /// non-zero bytes that will be stored when outputting the initializer for the
1747 /// specified initializer expression.
1748 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1749   E = E->IgnoreParens();
1750 
1751   // 0 and 0.0 won't require any non-zero stores!
1752   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1753 
1754   // If this is an initlist expr, sum up the size of sizes of the (present)
1755   // elements.  If this is something weird, assume the whole thing is non-zero.
1756   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1757   while (ILE && ILE->isTransparent())
1758     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1759   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1760     return CGF.getContext().getTypeSizeInChars(E->getType());
1761 
1762   // InitListExprs for structs have to be handled carefully.  If there are
1763   // reference members, we need to consider the size of the reference, not the
1764   // referencee.  InitListExprs for unions and arrays can't have references.
1765   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1766     if (!RT->isUnionType()) {
1767       RecordDecl *SD = RT->getDecl();
1768       CharUnits NumNonZeroBytes = CharUnits::Zero();
1769 
1770       unsigned ILEElement = 0;
1771       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1772         while (ILEElement != CXXRD->getNumBases())
1773           NumNonZeroBytes +=
1774               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1775       for (const auto *Field : SD->fields()) {
1776         // We're done once we hit the flexible array member or run out of
1777         // InitListExpr elements.
1778         if (Field->getType()->isIncompleteArrayType() ||
1779             ILEElement == ILE->getNumInits())
1780           break;
1781         if (Field->isUnnamedBitfield())
1782           continue;
1783 
1784         const Expr *E = ILE->getInit(ILEElement++);
1785 
1786         // Reference values are always non-null and have the width of a pointer.
1787         if (Field->getType()->isReferenceType())
1788           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1789               CGF.getTarget().getPointerWidth(0));
1790         else
1791           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1792       }
1793 
1794       return NumNonZeroBytes;
1795     }
1796   }
1797 
1798 
1799   CharUnits NumNonZeroBytes = CharUnits::Zero();
1800   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1801     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1802   return NumNonZeroBytes;
1803 }
1804 
1805 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1806 /// zeros in it, emit a memset and avoid storing the individual zeros.
1807 ///
1808 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1809                                      CodeGenFunction &CGF) {
1810   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1811   // volatile stores.
1812   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1813     return;
1814 
1815   // C++ objects with a user-declared constructor don't need zero'ing.
1816   if (CGF.getLangOpts().CPlusPlus)
1817     if (const RecordType *RT = CGF.getContext()
1818                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1819       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1820       if (RD->hasUserDeclaredConstructor())
1821         return;
1822     }
1823 
1824   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1825   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1826   if (Size <= CharUnits::fromQuantity(16))
1827     return;
1828 
1829   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1830   // we prefer to emit memset + individual stores for the rest.
1831   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1832   if (NumNonZeroBytes*4 > Size)
1833     return;
1834 
1835   // Okay, it seems like a good idea to use an initial memset, emit the call.
1836   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1837 
1838   Address Loc = Slot.getAddress();
1839   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1840   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1841 
1842   // Tell the AggExprEmitter that the slot is known zero.
1843   Slot.setZeroed();
1844 }
1845 
1846 
1847 
1848 
1849 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1850 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1851 /// the value of the aggregate expression is not needed.  If VolatileDest is
1852 /// true, DestPtr cannot be 0.
1853 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1854   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1855          "Invalid aggregate expression to emit");
1856   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1857          "slot has bits but no address");
1858 
1859   // Optimize the slot if possible.
1860   CheckAggExprForMemSetUse(Slot, E, *this);
1861 
1862   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1863 }
1864 
1865 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1866   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1867   Address Temp = CreateMemTemp(E->getType());
1868   LValue LV = MakeAddrLValue(Temp, E->getType());
1869   EmitAggExpr(E, AggValueSlot::forLValue(
1870                      LV, *this, AggValueSlot::IsNotDestructed,
1871                      AggValueSlot::DoesNotNeedGCBarriers,
1872                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1873   return LV;
1874 }
1875 
1876 AggValueSlot::Overlap_t
1877 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1878   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1879     return AggValueSlot::DoesNotOverlap;
1880 
1881   // If the field lies entirely within the enclosing class's nvsize, its tail
1882   // padding cannot overlap any already-initialized object. (The only subobjects
1883   // with greater addresses that might already be initialized are vbases.)
1884   const RecordDecl *ClassRD = FD->getParent();
1885   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1886   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1887           getContext().getTypeSize(FD->getType()) <=
1888       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1889     return AggValueSlot::DoesNotOverlap;
1890 
1891   // The tail padding may contain values we need to preserve.
1892   return AggValueSlot::MayOverlap;
1893 }
1894 
1895 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1896     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1897   // If the most-derived object is a field declared with [[no_unique_address]],
1898   // the tail padding of any virtual base could be reused for other subobjects
1899   // of that field's class.
1900   if (IsVirtual)
1901     return AggValueSlot::MayOverlap;
1902 
1903   // If the base class is laid out entirely within the nvsize of the derived
1904   // class, its tail padding cannot yet be initialized, so we can issue
1905   // stores at the full width of the base class.
1906   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1907   if (Layout.getBaseClassOffset(BaseRD) +
1908           getContext().getASTRecordLayout(BaseRD).getSize() <=
1909       Layout.getNonVirtualSize())
1910     return AggValueSlot::DoesNotOverlap;
1911 
1912   // The tail padding may contain values we need to preserve.
1913   return AggValueSlot::MayOverlap;
1914 }
1915 
1916 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1917                                         AggValueSlot::Overlap_t MayOverlap,
1918                                         bool isVolatile) {
1919   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1920 
1921   Address DestPtr = Dest.getAddress(*this);
1922   Address SrcPtr = Src.getAddress(*this);
1923 
1924   if (getLangOpts().CPlusPlus) {
1925     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1926       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1927       assert((Record->hasTrivialCopyConstructor() ||
1928               Record->hasTrivialCopyAssignment() ||
1929               Record->hasTrivialMoveConstructor() ||
1930               Record->hasTrivialMoveAssignment() ||
1931               Record->isUnion()) &&
1932              "Trying to aggregate-copy a type without a trivial copy/move "
1933              "constructor or assignment operator");
1934       // Ignore empty classes in C++.
1935       if (Record->isEmpty())
1936         return;
1937     }
1938   }
1939 
1940   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1941   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1942   // read from another object that overlaps in anyway the storage of the first
1943   // object, then the overlap shall be exact and the two objects shall have
1944   // qualified or unqualified versions of a compatible type."
1945   //
1946   // memcpy is not defined if the source and destination pointers are exactly
1947   // equal, but other compilers do this optimization, and almost every memcpy
1948   // implementation handles this case safely.  If there is a libc that does not
1949   // safely handle this, we can add a target hook.
1950 
1951   // Get data size info for this aggregate. Don't copy the tail padding if this
1952   // might be a potentially-overlapping subobject, since the tail padding might
1953   // be occupied by a different object. Otherwise, copying it is fine.
1954   std::pair<CharUnits, CharUnits> TypeInfo;
1955   if (MayOverlap)
1956     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1957   else
1958     TypeInfo = getContext().getTypeInfoInChars(Ty);
1959 
1960   llvm::Value *SizeVal = nullptr;
1961   if (TypeInfo.first.isZero()) {
1962     // But note that getTypeInfo returns 0 for a VLA.
1963     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1964             getContext().getAsArrayType(Ty))) {
1965       QualType BaseEltTy;
1966       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1967       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1968       assert(!TypeInfo.first.isZero());
1969       SizeVal = Builder.CreateNUWMul(
1970           SizeVal,
1971           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1972     }
1973   }
1974   if (!SizeVal) {
1975     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1976   }
1977 
1978   // FIXME: If we have a volatile struct, the optimizer can remove what might
1979   // appear to be `extra' memory ops:
1980   //
1981   // volatile struct { int i; } a, b;
1982   //
1983   // int main() {
1984   //   a = b;
1985   //   a = b;
1986   // }
1987   //
1988   // we need to use a different call here.  We use isVolatile to indicate when
1989   // either the source or the destination is volatile.
1990 
1991   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1992   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1993 
1994   // Don't do any of the memmove_collectable tests if GC isn't set.
1995   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1996     // fall through
1997   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1998     RecordDecl *Record = RecordTy->getDecl();
1999     if (Record->hasObjectMember()) {
2000       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2001                                                     SizeVal);
2002       return;
2003     }
2004   } else if (Ty->isArrayType()) {
2005     QualType BaseType = getContext().getBaseElementType(Ty);
2006     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2007       if (RecordTy->getDecl()->hasObjectMember()) {
2008         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2009                                                       SizeVal);
2010         return;
2011       }
2012     }
2013   }
2014 
2015   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2016 
2017   // Determine the metadata to describe the position of any padding in this
2018   // memcpy, as well as the TBAA tags for the members of the struct, in case
2019   // the optimizer wishes to expand it in to scalar memory operations.
2020   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2021     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2022 
2023   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2024     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2025         Dest.getTBAAInfo(), Src.getTBAAInfo());
2026     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2027   }
2028 }
2029