1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
78 
79   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
80 
81   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
82     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
83       return AggValueSlot::NeedsGCBarriers;
84     return AggValueSlot::DoesNotNeedGCBarriers;
85   }
86 
87   bool TypeRequiresGCollection(QualType T);
88 
89   //===--------------------------------------------------------------------===//
90   //                            Visitor Methods
91   //===--------------------------------------------------------------------===//
92 
93   void VisitStmt(Stmt *S) {
94     CGF.ErrorUnsupported(S, "aggregate expression");
95   }
96   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
97   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
98     Visit(GE->getResultExpr());
99   }
100   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
101   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
102     return Visit(E->getReplacement());
103   }
104 
105   // l-values.
106   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
107   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
108   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
109   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
110   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
111   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
112     EmitAggLoadOfLValue(E);
113   }
114   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitPredefinedExpr(const PredefinedExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120 
121   // Operators.
122   void VisitCastExpr(CastExpr *E);
123   void VisitCallExpr(const CallExpr *E);
124   void VisitStmtExpr(const StmtExpr *E);
125   void VisitBinaryOperator(const BinaryOperator *BO);
126   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
127   void VisitBinAssign(const BinaryOperator *E);
128   void VisitBinComma(const BinaryOperator *E);
129 
130   void VisitObjCMessageExpr(ObjCMessageExpr *E);
131   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
132     EmitAggLoadOfLValue(E);
133   }
134 
135   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
136   void VisitChooseExpr(const ChooseExpr *CE);
137   void VisitInitListExpr(InitListExpr *E);
138   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
139   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
140     Visit(DAE->getExpr());
141   }
142   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
143   void VisitCXXConstructExpr(const CXXConstructExpr *E);
144   void VisitExprWithCleanups(ExprWithCleanups *E);
145   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
146   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
147   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
148   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
149 
150   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
151     if (E->isGLValue()) {
152       LValue LV = CGF.EmitPseudoObjectLValue(E);
153       return EmitFinalDestCopy(E, LV);
154     }
155 
156     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
157   }
158 
159   void VisitVAArgExpr(VAArgExpr *E);
160 
161   void EmitInitializationToLValue(Expr *E, LValue Address);
162   void EmitNullInitializationToLValue(LValue Address);
163   //  case Expr::ChooseExprClass:
164   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
165   void VisitAtomicExpr(AtomicExpr *E) {
166     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
167   }
168 };
169 }  // end anonymous namespace.
170 
171 //===----------------------------------------------------------------------===//
172 //                                Utilities
173 //===----------------------------------------------------------------------===//
174 
175 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
176 /// represents a value lvalue, this method emits the address of the lvalue,
177 /// then loads the result into DestPtr.
178 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
179   LValue LV = CGF.EmitLValue(E);
180   EmitFinalDestCopy(E, LV);
181 }
182 
183 /// \brief True if the given aggregate type requires special GC API calls.
184 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
185   // Only record types have members that might require garbage collection.
186   const RecordType *RecordTy = T->getAs<RecordType>();
187   if (!RecordTy) return false;
188 
189   // Don't mess with non-trivial C++ types.
190   RecordDecl *Record = RecordTy->getDecl();
191   if (isa<CXXRecordDecl>(Record) &&
192       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
193        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
194     return false;
195 
196   // Check whether the type has an object member.
197   return Record->hasObjectMember();
198 }
199 
200 /// \brief Perform the final move to DestPtr if for some reason
201 /// getReturnValueSlot() didn't use it directly.
202 ///
203 /// The idea is that you do something like this:
204 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
205 ///   EmitMoveFromReturnSlot(E, Result);
206 ///
207 /// If nothing interferes, this will cause the result to be emitted
208 /// directly into the return value slot.  Otherwise, a final move
209 /// will be performed.
210 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
211   if (shouldUseDestForReturnSlot()) {
212     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
213     // The possibility of undef rvalues complicates that a lot,
214     // though, so we can't really assert.
215     return;
216   }
217 
218   // Otherwise, do a final copy,
219   assert(Dest.getAddr() != Src.getAggregateAddr());
220   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
221 }
222 
223 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
224 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
225   assert(Src.isAggregate() && "value must be aggregate value!");
226 
227   // If Dest is ignored, then we're evaluating an aggregate expression
228   // in a context (like an expression statement) that doesn't care
229   // about the result.  C says that an lvalue-to-rvalue conversion is
230   // performed in these cases; C++ says that it is not.  In either
231   // case, we don't actually need to do anything unless the value is
232   // volatile.
233   if (Dest.isIgnored()) {
234     if (!Src.isVolatileQualified() ||
235         CGF.CGM.getLangOptions().CPlusPlus ||
236         (IgnoreResult && Ignore))
237       return;
238 
239     // If the source is volatile, we must read from it; to do that, we need
240     // some place to put it.
241     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
242   }
243 
244   if (Dest.requiresGCollection()) {
245     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
246     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
247     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
248     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
249                                                       Dest.getAddr(),
250                                                       Src.getAggregateAddr(),
251                                                       SizeVal);
252     return;
253   }
254   // If the result of the assignment is used, copy the LHS there also.
255   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
256   // from the source as well, as we can't eliminate it if either operand
257   // is volatile, unless copy has volatile for both source and destination..
258   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
259                         Dest.isVolatile()|Src.isVolatileQualified());
260 }
261 
262 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
263 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
264   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
265 
266   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore);
267 }
268 
269 //===----------------------------------------------------------------------===//
270 //                            Visitor Methods
271 //===----------------------------------------------------------------------===//
272 
273 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
274   Visit(E->GetTemporaryExpr());
275 }
276 
277 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
278   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
279 }
280 
281 void
282 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
283   if (E->getType().isPODType(CGF.getContext())) {
284     // For a POD type, just emit a load of the lvalue + a copy, because our
285     // compound literal might alias the destination.
286     // FIXME: This is a band-aid; the real problem appears to be in our handling
287     // of assignments, where we store directly into the LHS without checking
288     // whether anything in the RHS aliases.
289     EmitAggLoadOfLValue(E);
290     return;
291   }
292 
293   AggValueSlot Slot = EnsureSlot(E->getType());
294   CGF.EmitAggExpr(E->getInitializer(), Slot);
295 }
296 
297 
298 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
299   switch (E->getCastKind()) {
300   case CK_Dynamic: {
301     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
302     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
303     // FIXME: Do we also need to handle property references here?
304     if (LV.isSimple())
305       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
306     else
307       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
308 
309     if (!Dest.isIgnored())
310       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
311     break;
312   }
313 
314   case CK_ToUnion: {
315     if (Dest.isIgnored()) break;
316 
317     // GCC union extension
318     QualType Ty = E->getSubExpr()->getType();
319     QualType PtrTy = CGF.getContext().getPointerType(Ty);
320     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
321                                                  CGF.ConvertType(PtrTy));
322     EmitInitializationToLValue(E->getSubExpr(),
323                                CGF.MakeAddrLValue(CastPtr, Ty));
324     break;
325   }
326 
327   case CK_DerivedToBase:
328   case CK_BaseToDerived:
329   case CK_UncheckedDerivedToBase: {
330     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
331                 "should have been unpacked before we got here");
332   }
333 
334   case CK_LValueToRValue: // hope for downstream optimization
335   case CK_NoOp:
336   case CK_UserDefinedConversion:
337   case CK_ConstructorConversion:
338     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
339                                                    E->getType()) &&
340            "Implicit cast types must be compatible");
341     Visit(E->getSubExpr());
342     break;
343 
344   case CK_LValueBitCast:
345     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
346     break;
347 
348   case CK_Dependent:
349   case CK_BitCast:
350   case CK_ArrayToPointerDecay:
351   case CK_FunctionToPointerDecay:
352   case CK_NullToPointer:
353   case CK_NullToMemberPointer:
354   case CK_BaseToDerivedMemberPointer:
355   case CK_DerivedToBaseMemberPointer:
356   case CK_MemberPointerToBoolean:
357   case CK_IntegralToPointer:
358   case CK_PointerToIntegral:
359   case CK_PointerToBoolean:
360   case CK_ToVoid:
361   case CK_VectorSplat:
362   case CK_IntegralCast:
363   case CK_IntegralToBoolean:
364   case CK_IntegralToFloating:
365   case CK_FloatingToIntegral:
366   case CK_FloatingToBoolean:
367   case CK_FloatingCast:
368   case CK_CPointerToObjCPointerCast:
369   case CK_BlockPointerToObjCPointerCast:
370   case CK_AnyPointerToBlockPointerCast:
371   case CK_ObjCObjectLValueCast:
372   case CK_FloatingRealToComplex:
373   case CK_FloatingComplexToReal:
374   case CK_FloatingComplexToBoolean:
375   case CK_FloatingComplexCast:
376   case CK_FloatingComplexToIntegralComplex:
377   case CK_IntegralRealToComplex:
378   case CK_IntegralComplexToReal:
379   case CK_IntegralComplexToBoolean:
380   case CK_IntegralComplexCast:
381   case CK_IntegralComplexToFloatingComplex:
382   case CK_ARCProduceObject:
383   case CK_ARCConsumeObject:
384   case CK_ARCReclaimReturnedObject:
385   case CK_ARCExtendBlockObject:
386     llvm_unreachable("cast kind invalid for aggregate types");
387   }
388 }
389 
390 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
391   if (E->getCallReturnType()->isReferenceType()) {
392     EmitAggLoadOfLValue(E);
393     return;
394   }
395 
396   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
397   EmitMoveFromReturnSlot(E, RV);
398 }
399 
400 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
401   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
402   EmitMoveFromReturnSlot(E, RV);
403 }
404 
405 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
406   CGF.EmitIgnoredExpr(E->getLHS());
407   Visit(E->getRHS());
408 }
409 
410 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
411   CodeGenFunction::StmtExprEvaluation eval(CGF);
412   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
413 }
414 
415 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
416   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
417     VisitPointerToDataMemberBinaryOperator(E);
418   else
419     CGF.ErrorUnsupported(E, "aggregate binary expression");
420 }
421 
422 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
423                                                     const BinaryOperator *E) {
424   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
425   EmitFinalDestCopy(E, LV);
426 }
427 
428 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
429   // For an assignment to work, the value on the right has
430   // to be compatible with the value on the left.
431   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
432                                                  E->getRHS()->getType())
433          && "Invalid assignment");
434 
435   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
436     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
437       if (VD->hasAttr<BlocksAttr>() &&
438           E->getRHS()->HasSideEffects(CGF.getContext())) {
439         // When __block variable on LHS, the RHS must be evaluated first
440         // as it may change the 'forwarding' field via call to Block_copy.
441         LValue RHS = CGF.EmitLValue(E->getRHS());
442         LValue LHS = CGF.EmitLValue(E->getLHS());
443         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
444                                        needsGC(E->getLHS()->getType()),
445                                        AggValueSlot::IsAliased);
446         EmitFinalDestCopy(E, RHS, true);
447         return;
448       }
449 
450   LValue LHS = CGF.EmitLValue(E->getLHS());
451 
452   // Codegen the RHS so that it stores directly into the LHS.
453   AggValueSlot LHSSlot =
454     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
455                             needsGC(E->getLHS()->getType()),
456                             AggValueSlot::IsAliased);
457   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
458   EmitFinalDestCopy(E, LHS, true);
459 }
460 
461 void AggExprEmitter::
462 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
463   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
464   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
465   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
466 
467   // Bind the common expression if necessary.
468   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
469 
470   CodeGenFunction::ConditionalEvaluation eval(CGF);
471   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
472 
473   // Save whether the destination's lifetime is externally managed.
474   bool isExternallyDestructed = Dest.isExternallyDestructed();
475 
476   eval.begin(CGF);
477   CGF.EmitBlock(LHSBlock);
478   Visit(E->getTrueExpr());
479   eval.end(CGF);
480 
481   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
482   CGF.Builder.CreateBr(ContBlock);
483 
484   // If the result of an agg expression is unused, then the emission
485   // of the LHS might need to create a destination slot.  That's fine
486   // with us, and we can safely emit the RHS into the same slot, but
487   // we shouldn't claim that it's already being destructed.
488   Dest.setExternallyDestructed(isExternallyDestructed);
489 
490   eval.begin(CGF);
491   CGF.EmitBlock(RHSBlock);
492   Visit(E->getFalseExpr());
493   eval.end(CGF);
494 
495   CGF.EmitBlock(ContBlock);
496 }
497 
498 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
499   Visit(CE->getChosenSubExpr(CGF.getContext()));
500 }
501 
502 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
503   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
504   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
505 
506   if (!ArgPtr) {
507     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
508     return;
509   }
510 
511   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
512 }
513 
514 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
515   // Ensure that we have a slot, but if we already do, remember
516   // whether it was externally destructed.
517   bool wasExternallyDestructed = Dest.isExternallyDestructed();
518   Dest = EnsureSlot(E->getType());
519 
520   // We're going to push a destructor if there isn't already one.
521   Dest.setExternallyDestructed();
522 
523   Visit(E->getSubExpr());
524 
525   // Push that destructor we promised.
526   if (!wasExternallyDestructed)
527     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
528 }
529 
530 void
531 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
532   AggValueSlot Slot = EnsureSlot(E->getType());
533   CGF.EmitCXXConstructExpr(E, Slot);
534 }
535 
536 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
537   CGF.enterFullExpression(E);
538   CodeGenFunction::RunCleanupsScope cleanups(CGF);
539   Visit(E->getSubExpr());
540 }
541 
542 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
543   QualType T = E->getType();
544   AggValueSlot Slot = EnsureSlot(T);
545   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
546 }
547 
548 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
549   QualType T = E->getType();
550   AggValueSlot Slot = EnsureSlot(T);
551   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
552 }
553 
554 /// isSimpleZero - If emitting this value will obviously just cause a store of
555 /// zero to memory, return true.  This can return false if uncertain, so it just
556 /// handles simple cases.
557 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
558   E = E->IgnoreParens();
559 
560   // 0
561   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
562     return IL->getValue() == 0;
563   // +0.0
564   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
565     return FL->getValue().isPosZero();
566   // int()
567   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
568       CGF.getTypes().isZeroInitializable(E->getType()))
569     return true;
570   // (int*)0 - Null pointer expressions.
571   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
572     return ICE->getCastKind() == CK_NullToPointer;
573   // '\0'
574   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
575     return CL->getValue() == 0;
576 
577   // Otherwise, hard case: conservatively return false.
578   return false;
579 }
580 
581 
582 void
583 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
584   QualType type = LV.getType();
585   // FIXME: Ignore result?
586   // FIXME: Are initializers affected by volatile?
587   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
588     // Storing "i32 0" to a zero'd memory location is a noop.
589   } else if (isa<ImplicitValueInitExpr>(E)) {
590     EmitNullInitializationToLValue(LV);
591   } else if (type->isReferenceType()) {
592     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
593     CGF.EmitStoreThroughLValue(RV, LV);
594   } else if (type->isAnyComplexType()) {
595     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
596   } else if (CGF.hasAggregateLLVMType(type)) {
597     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
598                                                AggValueSlot::IsDestructed,
599                                       AggValueSlot::DoesNotNeedGCBarriers,
600                                                AggValueSlot::IsNotAliased,
601                                                Dest.isZeroed()));
602   } else if (LV.isSimple()) {
603     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
604   } else {
605     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
606   }
607 }
608 
609 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
610   QualType type = lv.getType();
611 
612   // If the destination slot is already zeroed out before the aggregate is
613   // copied into it, we don't have to emit any zeros here.
614   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
615     return;
616 
617   if (!CGF.hasAggregateLLVMType(type)) {
618     // For non-aggregates, we can store zero
619     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
620     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
621   } else {
622     // There's a potential optimization opportunity in combining
623     // memsets; that would be easy for arrays, but relatively
624     // difficult for structures with the current code.
625     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
626   }
627 }
628 
629 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
630 #if 0
631   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
632   // (Length of globals? Chunks of zeroed-out space?).
633   //
634   // If we can, prefer a copy from a global; this is a lot less code for long
635   // globals, and it's easier for the current optimizers to analyze.
636   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
637     llvm::GlobalVariable* GV =
638     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
639                              llvm::GlobalValue::InternalLinkage, C, "");
640     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
641     return;
642   }
643 #endif
644   if (E->hadArrayRangeDesignator())
645     CGF.ErrorUnsupported(E, "GNU array range designator extension");
646 
647   llvm::Value *DestPtr = Dest.getAddr();
648 
649   // Handle initialization of an array.
650   if (E->getType()->isArrayType()) {
651     llvm::PointerType *APType =
652       cast<llvm::PointerType>(DestPtr->getType());
653     llvm::ArrayType *AType =
654       cast<llvm::ArrayType>(APType->getElementType());
655 
656     uint64_t NumInitElements = E->getNumInits();
657 
658     if (E->getNumInits() > 0) {
659       QualType T1 = E->getType();
660       QualType T2 = E->getInit(0)->getType();
661       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
662         EmitAggLoadOfLValue(E->getInit(0));
663         return;
664       }
665     }
666 
667     uint64_t NumArrayElements = AType->getNumElements();
668     assert(NumInitElements <= NumArrayElements);
669 
670     QualType elementType = E->getType().getCanonicalType();
671     elementType = CGF.getContext().getQualifiedType(
672                     cast<ArrayType>(elementType)->getElementType(),
673                     elementType.getQualifiers() + Dest.getQualifiers());
674 
675     // DestPtr is an array*.  Construct an elementType* by drilling
676     // down a level.
677     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
678     llvm::Value *indices[] = { zero, zero };
679     llvm::Value *begin =
680       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
681 
682     // Exception safety requires us to destroy all the
683     // already-constructed members if an initializer throws.
684     // For that, we'll need an EH cleanup.
685     QualType::DestructionKind dtorKind = elementType.isDestructedType();
686     llvm::AllocaInst *endOfInit = 0;
687     EHScopeStack::stable_iterator cleanup;
688     llvm::Instruction *cleanupDominator = 0;
689     if (CGF.needsEHCleanup(dtorKind)) {
690       // In principle we could tell the cleanup where we are more
691       // directly, but the control flow can get so varied here that it
692       // would actually be quite complex.  Therefore we go through an
693       // alloca.
694       endOfInit = CGF.CreateTempAlloca(begin->getType(),
695                                        "arrayinit.endOfInit");
696       cleanupDominator = Builder.CreateStore(begin, endOfInit);
697       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
698                                            CGF.getDestroyer(dtorKind));
699       cleanup = CGF.EHStack.stable_begin();
700 
701     // Otherwise, remember that we didn't need a cleanup.
702     } else {
703       dtorKind = QualType::DK_none;
704     }
705 
706     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
707 
708     // The 'current element to initialize'.  The invariants on this
709     // variable are complicated.  Essentially, after each iteration of
710     // the loop, it points to the last initialized element, except
711     // that it points to the beginning of the array before any
712     // elements have been initialized.
713     llvm::Value *element = begin;
714 
715     // Emit the explicit initializers.
716     for (uint64_t i = 0; i != NumInitElements; ++i) {
717       // Advance to the next element.
718       if (i > 0) {
719         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
720 
721         // Tell the cleanup that it needs to destroy up to this
722         // element.  TODO: some of these stores can be trivially
723         // observed to be unnecessary.
724         if (endOfInit) Builder.CreateStore(element, endOfInit);
725       }
726 
727       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
728       EmitInitializationToLValue(E->getInit(i), elementLV);
729     }
730 
731     // Check whether there's a non-trivial array-fill expression.
732     // Note that this will be a CXXConstructExpr even if the element
733     // type is an array (or array of array, etc.) of class type.
734     Expr *filler = E->getArrayFiller();
735     bool hasTrivialFiller = true;
736     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
737       assert(cons->getConstructor()->isDefaultConstructor());
738       hasTrivialFiller = cons->getConstructor()->isTrivial();
739     }
740 
741     // Any remaining elements need to be zero-initialized, possibly
742     // using the filler expression.  We can skip this if the we're
743     // emitting to zeroed memory.
744     if (NumInitElements != NumArrayElements &&
745         !(Dest.isZeroed() && hasTrivialFiller &&
746           CGF.getTypes().isZeroInitializable(elementType))) {
747 
748       // Use an actual loop.  This is basically
749       //   do { *array++ = filler; } while (array != end);
750 
751       // Advance to the start of the rest of the array.
752       if (NumInitElements) {
753         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
754         if (endOfInit) Builder.CreateStore(element, endOfInit);
755       }
756 
757       // Compute the end of the array.
758       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
759                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
760                                                    "arrayinit.end");
761 
762       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
763       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
764 
765       // Jump into the body.
766       CGF.EmitBlock(bodyBB);
767       llvm::PHINode *currentElement =
768         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
769       currentElement->addIncoming(element, entryBB);
770 
771       // Emit the actual filler expression.
772       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
773       if (filler)
774         EmitInitializationToLValue(filler, elementLV);
775       else
776         EmitNullInitializationToLValue(elementLV);
777 
778       // Move on to the next element.
779       llvm::Value *nextElement =
780         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
781 
782       // Tell the EH cleanup that we finished with the last element.
783       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
784 
785       // Leave the loop if we're done.
786       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
787                                                "arrayinit.done");
788       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
789       Builder.CreateCondBr(done, endBB, bodyBB);
790       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
791 
792       CGF.EmitBlock(endBB);
793     }
794 
795     // Leave the partial-array cleanup if we entered one.
796     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
797 
798     return;
799   }
800 
801   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
802 
803   // Do struct initialization; this code just sets each individual member
804   // to the approprate value.  This makes bitfield support automatic;
805   // the disadvantage is that the generated code is more difficult for
806   // the optimizer, especially with bitfields.
807   unsigned NumInitElements = E->getNumInits();
808   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
809 
810   if (record->isUnion()) {
811     // Only initialize one field of a union. The field itself is
812     // specified by the initializer list.
813     if (!E->getInitializedFieldInUnion()) {
814       // Empty union; we have nothing to do.
815 
816 #ifndef NDEBUG
817       // Make sure that it's really an empty and not a failure of
818       // semantic analysis.
819       for (RecordDecl::field_iterator Field = record->field_begin(),
820                                    FieldEnd = record->field_end();
821            Field != FieldEnd; ++Field)
822         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
823 #endif
824       return;
825     }
826 
827     // FIXME: volatility
828     FieldDecl *Field = E->getInitializedFieldInUnion();
829 
830     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
831     if (NumInitElements) {
832       // Store the initializer into the field
833       EmitInitializationToLValue(E->getInit(0), FieldLoc);
834     } else {
835       // Default-initialize to null.
836       EmitNullInitializationToLValue(FieldLoc);
837     }
838 
839     return;
840   }
841 
842   // We'll need to enter cleanup scopes in case any of the member
843   // initializers throw an exception.
844   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
845   llvm::Instruction *cleanupDominator = 0;
846 
847   // Here we iterate over the fields; this makes it simpler to both
848   // default-initialize fields and skip over unnamed fields.
849   unsigned curInitIndex = 0;
850   for (RecordDecl::field_iterator field = record->field_begin(),
851                                fieldEnd = record->field_end();
852        field != fieldEnd; ++field) {
853     // We're done once we hit the flexible array member.
854     if (field->getType()->isIncompleteArrayType())
855       break;
856 
857     // Always skip anonymous bitfields.
858     if (field->isUnnamedBitfield())
859       continue;
860 
861     // We're done if we reach the end of the explicit initializers, we
862     // have a zeroed object, and the rest of the fields are
863     // zero-initializable.
864     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
865         CGF.getTypes().isZeroInitializable(E->getType()))
866       break;
867 
868     // FIXME: volatility
869     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
870     // We never generate write-barries for initialized fields.
871     LV.setNonGC(true);
872 
873     if (curInitIndex < NumInitElements) {
874       // Store the initializer into the field.
875       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
876     } else {
877       // We're out of initalizers; default-initialize to null
878       EmitNullInitializationToLValue(LV);
879     }
880 
881     // Push a destructor if necessary.
882     // FIXME: if we have an array of structures, all explicitly
883     // initialized, we can end up pushing a linear number of cleanups.
884     bool pushedCleanup = false;
885     if (QualType::DestructionKind dtorKind
886           = field->getType().isDestructedType()) {
887       assert(LV.isSimple());
888       if (CGF.needsEHCleanup(dtorKind)) {
889         if (!cleanupDominator)
890           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
891 
892         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
893                         CGF.getDestroyer(dtorKind), false);
894         cleanups.push_back(CGF.EHStack.stable_begin());
895         pushedCleanup = true;
896       }
897     }
898 
899     // If the GEP didn't get used because of a dead zero init or something
900     // else, clean it up for -O0 builds and general tidiness.
901     if (!pushedCleanup && LV.isSimple())
902       if (llvm::GetElementPtrInst *GEP =
903             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
904         if (GEP->use_empty())
905           GEP->eraseFromParent();
906   }
907 
908   // Deactivate all the partial cleanups in reverse order, which
909   // generally means popping them.
910   for (unsigned i = cleanups.size(); i != 0; --i)
911     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
912 
913   // Destroy the placeholder if we made one.
914   if (cleanupDominator)
915     cleanupDominator->eraseFromParent();
916 }
917 
918 //===----------------------------------------------------------------------===//
919 //                        Entry Points into this File
920 //===----------------------------------------------------------------------===//
921 
922 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
923 /// non-zero bytes that will be stored when outputting the initializer for the
924 /// specified initializer expression.
925 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
926   E = E->IgnoreParens();
927 
928   // 0 and 0.0 won't require any non-zero stores!
929   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
930 
931   // If this is an initlist expr, sum up the size of sizes of the (present)
932   // elements.  If this is something weird, assume the whole thing is non-zero.
933   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
934   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
935     return CGF.getContext().getTypeSizeInChars(E->getType());
936 
937   // InitListExprs for structs have to be handled carefully.  If there are
938   // reference members, we need to consider the size of the reference, not the
939   // referencee.  InitListExprs for unions and arrays can't have references.
940   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
941     if (!RT->isUnionType()) {
942       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
943       CharUnits NumNonZeroBytes = CharUnits::Zero();
944 
945       unsigned ILEElement = 0;
946       for (RecordDecl::field_iterator Field = SD->field_begin(),
947            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
948         // We're done once we hit the flexible array member or run out of
949         // InitListExpr elements.
950         if (Field->getType()->isIncompleteArrayType() ||
951             ILEElement == ILE->getNumInits())
952           break;
953         if (Field->isUnnamedBitfield())
954           continue;
955 
956         const Expr *E = ILE->getInit(ILEElement++);
957 
958         // Reference values are always non-null and have the width of a pointer.
959         if (Field->getType()->isReferenceType())
960           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
961               CGF.getContext().getTargetInfo().getPointerWidth(0));
962         else
963           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
964       }
965 
966       return NumNonZeroBytes;
967     }
968   }
969 
970 
971   CharUnits NumNonZeroBytes = CharUnits::Zero();
972   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
973     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
974   return NumNonZeroBytes;
975 }
976 
977 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
978 /// zeros in it, emit a memset and avoid storing the individual zeros.
979 ///
980 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
981                                      CodeGenFunction &CGF) {
982   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
983   // volatile stores.
984   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
985 
986   // C++ objects with a user-declared constructor don't need zero'ing.
987   if (CGF.getContext().getLangOptions().CPlusPlus)
988     if (const RecordType *RT = CGF.getContext()
989                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
990       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
991       if (RD->hasUserDeclaredConstructor())
992         return;
993     }
994 
995   // If the type is 16-bytes or smaller, prefer individual stores over memset.
996   std::pair<CharUnits, CharUnits> TypeInfo =
997     CGF.getContext().getTypeInfoInChars(E->getType());
998   if (TypeInfo.first <= CharUnits::fromQuantity(16))
999     return;
1000 
1001   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1002   // we prefer to emit memset + individual stores for the rest.
1003   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1004   if (NumNonZeroBytes*4 > TypeInfo.first)
1005     return;
1006 
1007   // Okay, it seems like a good idea to use an initial memset, emit the call.
1008   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1009   CharUnits Align = TypeInfo.second;
1010 
1011   llvm::Value *Loc = Slot.getAddr();
1012   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1013 
1014   Loc = CGF.Builder.CreateBitCast(Loc, BP);
1015   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1016                            Align.getQuantity(), false);
1017 
1018   // Tell the AggExprEmitter that the slot is known zero.
1019   Slot.setZeroed();
1020 }
1021 
1022 
1023 
1024 
1025 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1026 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1027 /// the value of the aggregate expression is not needed.  If VolatileDest is
1028 /// true, DestPtr cannot be 0.
1029 ///
1030 /// \param IsInitializer - true if this evaluation is initializing an
1031 /// object whose lifetime is already being managed.
1032 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1033                                   bool IgnoreResult) {
1034   assert(E && hasAggregateLLVMType(E->getType()) &&
1035          "Invalid aggregate expression to emit");
1036   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1037          "slot has bits but no address");
1038 
1039   // Optimize the slot if possible.
1040   CheckAggExprForMemSetUse(Slot, E, *this);
1041 
1042   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1043 }
1044 
1045 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1046   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1047   llvm::Value *Temp = CreateMemTemp(E->getType());
1048   LValue LV = MakeAddrLValue(Temp, E->getType());
1049   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1050                                          AggValueSlot::DoesNotNeedGCBarriers,
1051                                          AggValueSlot::IsNotAliased));
1052   return LV;
1053 }
1054 
1055 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1056                                         llvm::Value *SrcPtr, QualType Ty,
1057                                         bool isVolatile) {
1058   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1059 
1060   if (getContext().getLangOptions().CPlusPlus) {
1061     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1062       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1063       assert((Record->hasTrivialCopyConstructor() ||
1064               Record->hasTrivialCopyAssignment() ||
1065               Record->hasTrivialMoveConstructor() ||
1066               Record->hasTrivialMoveAssignment()) &&
1067              "Trying to aggregate-copy a type without a trivial copy "
1068              "constructor or assignment operator");
1069       // Ignore empty classes in C++.
1070       if (Record->isEmpty())
1071         return;
1072     }
1073   }
1074 
1075   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1076   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1077   // read from another object that overlaps in anyway the storage of the first
1078   // object, then the overlap shall be exact and the two objects shall have
1079   // qualified or unqualified versions of a compatible type."
1080   //
1081   // memcpy is not defined if the source and destination pointers are exactly
1082   // equal, but other compilers do this optimization, and almost every memcpy
1083   // implementation handles this case safely.  If there is a libc that does not
1084   // safely handle this, we can add a target hook.
1085 
1086   // Get size and alignment info for this aggregate.
1087   std::pair<CharUnits, CharUnits> TypeInfo =
1088     getContext().getTypeInfoInChars(Ty);
1089 
1090   // FIXME: Handle variable sized types.
1091 
1092   // FIXME: If we have a volatile struct, the optimizer can remove what might
1093   // appear to be `extra' memory ops:
1094   //
1095   // volatile struct { int i; } a, b;
1096   //
1097   // int main() {
1098   //   a = b;
1099   //   a = b;
1100   // }
1101   //
1102   // we need to use a different call here.  We use isVolatile to indicate when
1103   // either the source or the destination is volatile.
1104 
1105   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1106   llvm::Type *DBP =
1107     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1108   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1109 
1110   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1111   llvm::Type *SBP =
1112     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1113   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1114 
1115   // Don't do any of the memmove_collectable tests if GC isn't set.
1116   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1117     // fall through
1118   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1119     RecordDecl *Record = RecordTy->getDecl();
1120     if (Record->hasObjectMember()) {
1121       CharUnits size = TypeInfo.first;
1122       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1123       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1124       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1125                                                     SizeVal);
1126       return;
1127     }
1128   } else if (Ty->isArrayType()) {
1129     QualType BaseType = getContext().getBaseElementType(Ty);
1130     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1131       if (RecordTy->getDecl()->hasObjectMember()) {
1132         CharUnits size = TypeInfo.first;
1133         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1134         llvm::Value *SizeVal =
1135           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1136         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1137                                                       SizeVal);
1138         return;
1139       }
1140     }
1141   }
1142 
1143   Builder.CreateMemCpy(DestPtr, SrcPtr,
1144                        llvm::ConstantInt::get(IntPtrTy,
1145                                               TypeInfo.first.getQuantity()),
1146                        TypeInfo.second.getQuantity(), isVolatile);
1147 }
1148