1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 78 79 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 80 81 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 82 if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T)) 83 return AggValueSlot::NeedsGCBarriers; 84 return AggValueSlot::DoesNotNeedGCBarriers; 85 } 86 87 bool TypeRequiresGCollection(QualType T); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 void VisitStmt(Stmt *S) { 94 CGF.ErrorUnsupported(S, "aggregate expression"); 95 } 96 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 97 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 98 Visit(GE->getResultExpr()); 99 } 100 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 101 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 102 return Visit(E->getReplacement()); 103 } 104 105 // l-values. 106 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 107 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 108 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 109 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 110 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 111 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 112 EmitAggLoadOfLValue(E); 113 } 114 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitPredefinedExpr(const PredefinedExpr *E) { 118 EmitAggLoadOfLValue(E); 119 } 120 121 // Operators. 122 void VisitCastExpr(CastExpr *E); 123 void VisitCallExpr(const CallExpr *E); 124 void VisitStmtExpr(const StmtExpr *E); 125 void VisitBinaryOperator(const BinaryOperator *BO); 126 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 127 void VisitBinAssign(const BinaryOperator *E); 128 void VisitBinComma(const BinaryOperator *E); 129 130 void VisitObjCMessageExpr(ObjCMessageExpr *E); 131 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 132 EmitAggLoadOfLValue(E); 133 } 134 135 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 136 void VisitChooseExpr(const ChooseExpr *CE); 137 void VisitInitListExpr(InitListExpr *E); 138 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 139 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 140 Visit(DAE->getExpr()); 141 } 142 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 143 void VisitCXXConstructExpr(const CXXConstructExpr *E); 144 void VisitExprWithCleanups(ExprWithCleanups *E); 145 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 146 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 147 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 148 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 149 150 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 151 if (E->isGLValue()) { 152 LValue LV = CGF.EmitPseudoObjectLValue(E); 153 return EmitFinalDestCopy(E, LV); 154 } 155 156 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 157 } 158 159 void VisitVAArgExpr(VAArgExpr *E); 160 161 void EmitInitializationToLValue(Expr *E, LValue Address); 162 void EmitNullInitializationToLValue(LValue Address); 163 // case Expr::ChooseExprClass: 164 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 165 void VisitAtomicExpr(AtomicExpr *E) { 166 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 167 } 168 }; 169 } // end anonymous namespace. 170 171 //===----------------------------------------------------------------------===// 172 // Utilities 173 //===----------------------------------------------------------------------===// 174 175 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 176 /// represents a value lvalue, this method emits the address of the lvalue, 177 /// then loads the result into DestPtr. 178 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 179 LValue LV = CGF.EmitLValue(E); 180 EmitFinalDestCopy(E, LV); 181 } 182 183 /// \brief True if the given aggregate type requires special GC API calls. 184 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 185 // Only record types have members that might require garbage collection. 186 const RecordType *RecordTy = T->getAs<RecordType>(); 187 if (!RecordTy) return false; 188 189 // Don't mess with non-trivial C++ types. 190 RecordDecl *Record = RecordTy->getDecl(); 191 if (isa<CXXRecordDecl>(Record) && 192 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 193 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 194 return false; 195 196 // Check whether the type has an object member. 197 return Record->hasObjectMember(); 198 } 199 200 /// \brief Perform the final move to DestPtr if for some reason 201 /// getReturnValueSlot() didn't use it directly. 202 /// 203 /// The idea is that you do something like this: 204 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 205 /// EmitMoveFromReturnSlot(E, Result); 206 /// 207 /// If nothing interferes, this will cause the result to be emitted 208 /// directly into the return value slot. Otherwise, a final move 209 /// will be performed. 210 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 211 if (shouldUseDestForReturnSlot()) { 212 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 213 // The possibility of undef rvalues complicates that a lot, 214 // though, so we can't really assert. 215 return; 216 } 217 218 // Otherwise, do a final copy, 219 assert(Dest.getAddr() != Src.getAggregateAddr()); 220 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 221 } 222 223 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 224 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 225 assert(Src.isAggregate() && "value must be aggregate value!"); 226 227 // If Dest is ignored, then we're evaluating an aggregate expression 228 // in a context (like an expression statement) that doesn't care 229 // about the result. C says that an lvalue-to-rvalue conversion is 230 // performed in these cases; C++ says that it is not. In either 231 // case, we don't actually need to do anything unless the value is 232 // volatile. 233 if (Dest.isIgnored()) { 234 if (!Src.isVolatileQualified() || 235 CGF.CGM.getLangOptions().CPlusPlus || 236 (IgnoreResult && Ignore)) 237 return; 238 239 // If the source is volatile, we must read from it; to do that, we need 240 // some place to put it. 241 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 242 } 243 244 if (Dest.requiresGCollection()) { 245 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 246 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 247 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 248 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 249 Dest.getAddr(), 250 Src.getAggregateAddr(), 251 SizeVal); 252 return; 253 } 254 // If the result of the assignment is used, copy the LHS there also. 255 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 256 // from the source as well, as we can't eliminate it if either operand 257 // is volatile, unless copy has volatile for both source and destination.. 258 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 259 Dest.isVolatile()|Src.isVolatileQualified()); 260 } 261 262 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 263 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 264 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 265 266 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore); 267 } 268 269 //===----------------------------------------------------------------------===// 270 // Visitor Methods 271 //===----------------------------------------------------------------------===// 272 273 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 274 Visit(E->GetTemporaryExpr()); 275 } 276 277 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 278 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 279 } 280 281 void 282 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 283 if (E->getType().isPODType(CGF.getContext())) { 284 // For a POD type, just emit a load of the lvalue + a copy, because our 285 // compound literal might alias the destination. 286 // FIXME: This is a band-aid; the real problem appears to be in our handling 287 // of assignments, where we store directly into the LHS without checking 288 // whether anything in the RHS aliases. 289 EmitAggLoadOfLValue(E); 290 return; 291 } 292 293 AggValueSlot Slot = EnsureSlot(E->getType()); 294 CGF.EmitAggExpr(E->getInitializer(), Slot); 295 } 296 297 298 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 299 switch (E->getCastKind()) { 300 case CK_Dynamic: { 301 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 302 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 303 // FIXME: Do we also need to handle property references here? 304 if (LV.isSimple()) 305 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 306 else 307 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 308 309 if (!Dest.isIgnored()) 310 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 311 break; 312 } 313 314 case CK_ToUnion: { 315 if (Dest.isIgnored()) break; 316 317 // GCC union extension 318 QualType Ty = E->getSubExpr()->getType(); 319 QualType PtrTy = CGF.getContext().getPointerType(Ty); 320 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 321 CGF.ConvertType(PtrTy)); 322 EmitInitializationToLValue(E->getSubExpr(), 323 CGF.MakeAddrLValue(CastPtr, Ty)); 324 break; 325 } 326 327 case CK_DerivedToBase: 328 case CK_BaseToDerived: 329 case CK_UncheckedDerivedToBase: { 330 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 331 "should have been unpacked before we got here"); 332 } 333 334 case CK_LValueToRValue: // hope for downstream optimization 335 case CK_NoOp: 336 case CK_UserDefinedConversion: 337 case CK_ConstructorConversion: 338 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 339 E->getType()) && 340 "Implicit cast types must be compatible"); 341 Visit(E->getSubExpr()); 342 break; 343 344 case CK_LValueBitCast: 345 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 346 break; 347 348 case CK_Dependent: 349 case CK_BitCast: 350 case CK_ArrayToPointerDecay: 351 case CK_FunctionToPointerDecay: 352 case CK_NullToPointer: 353 case CK_NullToMemberPointer: 354 case CK_BaseToDerivedMemberPointer: 355 case CK_DerivedToBaseMemberPointer: 356 case CK_MemberPointerToBoolean: 357 case CK_IntegralToPointer: 358 case CK_PointerToIntegral: 359 case CK_PointerToBoolean: 360 case CK_ToVoid: 361 case CK_VectorSplat: 362 case CK_IntegralCast: 363 case CK_IntegralToBoolean: 364 case CK_IntegralToFloating: 365 case CK_FloatingToIntegral: 366 case CK_FloatingToBoolean: 367 case CK_FloatingCast: 368 case CK_CPointerToObjCPointerCast: 369 case CK_BlockPointerToObjCPointerCast: 370 case CK_AnyPointerToBlockPointerCast: 371 case CK_ObjCObjectLValueCast: 372 case CK_FloatingRealToComplex: 373 case CK_FloatingComplexToReal: 374 case CK_FloatingComplexToBoolean: 375 case CK_FloatingComplexCast: 376 case CK_FloatingComplexToIntegralComplex: 377 case CK_IntegralRealToComplex: 378 case CK_IntegralComplexToReal: 379 case CK_IntegralComplexToBoolean: 380 case CK_IntegralComplexCast: 381 case CK_IntegralComplexToFloatingComplex: 382 case CK_ARCProduceObject: 383 case CK_ARCConsumeObject: 384 case CK_ARCReclaimReturnedObject: 385 case CK_ARCExtendBlockObject: 386 llvm_unreachable("cast kind invalid for aggregate types"); 387 } 388 } 389 390 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 391 if (E->getCallReturnType()->isReferenceType()) { 392 EmitAggLoadOfLValue(E); 393 return; 394 } 395 396 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 397 EmitMoveFromReturnSlot(E, RV); 398 } 399 400 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 401 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 402 EmitMoveFromReturnSlot(E, RV); 403 } 404 405 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 406 CGF.EmitIgnoredExpr(E->getLHS()); 407 Visit(E->getRHS()); 408 } 409 410 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 411 CodeGenFunction::StmtExprEvaluation eval(CGF); 412 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 413 } 414 415 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 416 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 417 VisitPointerToDataMemberBinaryOperator(E); 418 else 419 CGF.ErrorUnsupported(E, "aggregate binary expression"); 420 } 421 422 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 423 const BinaryOperator *E) { 424 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 425 EmitFinalDestCopy(E, LV); 426 } 427 428 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 429 // For an assignment to work, the value on the right has 430 // to be compatible with the value on the left. 431 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 432 E->getRHS()->getType()) 433 && "Invalid assignment"); 434 435 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 436 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 437 if (VD->hasAttr<BlocksAttr>() && 438 E->getRHS()->HasSideEffects(CGF.getContext())) { 439 // When __block variable on LHS, the RHS must be evaluated first 440 // as it may change the 'forwarding' field via call to Block_copy. 441 LValue RHS = CGF.EmitLValue(E->getRHS()); 442 LValue LHS = CGF.EmitLValue(E->getLHS()); 443 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 444 needsGC(E->getLHS()->getType()), 445 AggValueSlot::IsAliased); 446 EmitFinalDestCopy(E, RHS, true); 447 return; 448 } 449 450 LValue LHS = CGF.EmitLValue(E->getLHS()); 451 452 // Codegen the RHS so that it stores directly into the LHS. 453 AggValueSlot LHSSlot = 454 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 455 needsGC(E->getLHS()->getType()), 456 AggValueSlot::IsAliased); 457 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 458 EmitFinalDestCopy(E, LHS, true); 459 } 460 461 void AggExprEmitter:: 462 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 463 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 464 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 465 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 466 467 // Bind the common expression if necessary. 468 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 469 470 CodeGenFunction::ConditionalEvaluation eval(CGF); 471 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 472 473 // Save whether the destination's lifetime is externally managed. 474 bool isExternallyDestructed = Dest.isExternallyDestructed(); 475 476 eval.begin(CGF); 477 CGF.EmitBlock(LHSBlock); 478 Visit(E->getTrueExpr()); 479 eval.end(CGF); 480 481 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 482 CGF.Builder.CreateBr(ContBlock); 483 484 // If the result of an agg expression is unused, then the emission 485 // of the LHS might need to create a destination slot. That's fine 486 // with us, and we can safely emit the RHS into the same slot, but 487 // we shouldn't claim that it's already being destructed. 488 Dest.setExternallyDestructed(isExternallyDestructed); 489 490 eval.begin(CGF); 491 CGF.EmitBlock(RHSBlock); 492 Visit(E->getFalseExpr()); 493 eval.end(CGF); 494 495 CGF.EmitBlock(ContBlock); 496 } 497 498 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 499 Visit(CE->getChosenSubExpr(CGF.getContext())); 500 } 501 502 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 503 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 504 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 505 506 if (!ArgPtr) { 507 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 508 return; 509 } 510 511 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 512 } 513 514 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 515 // Ensure that we have a slot, but if we already do, remember 516 // whether it was externally destructed. 517 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 518 Dest = EnsureSlot(E->getType()); 519 520 // We're going to push a destructor if there isn't already one. 521 Dest.setExternallyDestructed(); 522 523 Visit(E->getSubExpr()); 524 525 // Push that destructor we promised. 526 if (!wasExternallyDestructed) 527 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 528 } 529 530 void 531 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 532 AggValueSlot Slot = EnsureSlot(E->getType()); 533 CGF.EmitCXXConstructExpr(E, Slot); 534 } 535 536 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 537 CGF.enterFullExpression(E); 538 CodeGenFunction::RunCleanupsScope cleanups(CGF); 539 Visit(E->getSubExpr()); 540 } 541 542 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 543 QualType T = E->getType(); 544 AggValueSlot Slot = EnsureSlot(T); 545 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 546 } 547 548 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 549 QualType T = E->getType(); 550 AggValueSlot Slot = EnsureSlot(T); 551 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 552 } 553 554 /// isSimpleZero - If emitting this value will obviously just cause a store of 555 /// zero to memory, return true. This can return false if uncertain, so it just 556 /// handles simple cases. 557 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 558 E = E->IgnoreParens(); 559 560 // 0 561 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 562 return IL->getValue() == 0; 563 // +0.0 564 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 565 return FL->getValue().isPosZero(); 566 // int() 567 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 568 CGF.getTypes().isZeroInitializable(E->getType())) 569 return true; 570 // (int*)0 - Null pointer expressions. 571 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 572 return ICE->getCastKind() == CK_NullToPointer; 573 // '\0' 574 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 575 return CL->getValue() == 0; 576 577 // Otherwise, hard case: conservatively return false. 578 return false; 579 } 580 581 582 void 583 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 584 QualType type = LV.getType(); 585 // FIXME: Ignore result? 586 // FIXME: Are initializers affected by volatile? 587 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 588 // Storing "i32 0" to a zero'd memory location is a noop. 589 } else if (isa<ImplicitValueInitExpr>(E)) { 590 EmitNullInitializationToLValue(LV); 591 } else if (type->isReferenceType()) { 592 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 593 CGF.EmitStoreThroughLValue(RV, LV); 594 } else if (type->isAnyComplexType()) { 595 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 596 } else if (CGF.hasAggregateLLVMType(type)) { 597 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 598 AggValueSlot::IsDestructed, 599 AggValueSlot::DoesNotNeedGCBarriers, 600 AggValueSlot::IsNotAliased, 601 Dest.isZeroed())); 602 } else if (LV.isSimple()) { 603 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 604 } else { 605 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 606 } 607 } 608 609 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 610 QualType type = lv.getType(); 611 612 // If the destination slot is already zeroed out before the aggregate is 613 // copied into it, we don't have to emit any zeros here. 614 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 615 return; 616 617 if (!CGF.hasAggregateLLVMType(type)) { 618 // For non-aggregates, we can store zero 619 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 620 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 621 } else { 622 // There's a potential optimization opportunity in combining 623 // memsets; that would be easy for arrays, but relatively 624 // difficult for structures with the current code. 625 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 626 } 627 } 628 629 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 630 #if 0 631 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 632 // (Length of globals? Chunks of zeroed-out space?). 633 // 634 // If we can, prefer a copy from a global; this is a lot less code for long 635 // globals, and it's easier for the current optimizers to analyze. 636 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 637 llvm::GlobalVariable* GV = 638 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 639 llvm::GlobalValue::InternalLinkage, C, ""); 640 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 641 return; 642 } 643 #endif 644 if (E->hadArrayRangeDesignator()) 645 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 646 647 llvm::Value *DestPtr = Dest.getAddr(); 648 649 // Handle initialization of an array. 650 if (E->getType()->isArrayType()) { 651 llvm::PointerType *APType = 652 cast<llvm::PointerType>(DestPtr->getType()); 653 llvm::ArrayType *AType = 654 cast<llvm::ArrayType>(APType->getElementType()); 655 656 uint64_t NumInitElements = E->getNumInits(); 657 658 if (E->getNumInits() > 0) { 659 QualType T1 = E->getType(); 660 QualType T2 = E->getInit(0)->getType(); 661 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 662 EmitAggLoadOfLValue(E->getInit(0)); 663 return; 664 } 665 } 666 667 uint64_t NumArrayElements = AType->getNumElements(); 668 assert(NumInitElements <= NumArrayElements); 669 670 QualType elementType = E->getType().getCanonicalType(); 671 elementType = CGF.getContext().getQualifiedType( 672 cast<ArrayType>(elementType)->getElementType(), 673 elementType.getQualifiers() + Dest.getQualifiers()); 674 675 // DestPtr is an array*. Construct an elementType* by drilling 676 // down a level. 677 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 678 llvm::Value *indices[] = { zero, zero }; 679 llvm::Value *begin = 680 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 681 682 // Exception safety requires us to destroy all the 683 // already-constructed members if an initializer throws. 684 // For that, we'll need an EH cleanup. 685 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 686 llvm::AllocaInst *endOfInit = 0; 687 EHScopeStack::stable_iterator cleanup; 688 llvm::Instruction *cleanupDominator = 0; 689 if (CGF.needsEHCleanup(dtorKind)) { 690 // In principle we could tell the cleanup where we are more 691 // directly, but the control flow can get so varied here that it 692 // would actually be quite complex. Therefore we go through an 693 // alloca. 694 endOfInit = CGF.CreateTempAlloca(begin->getType(), 695 "arrayinit.endOfInit"); 696 cleanupDominator = Builder.CreateStore(begin, endOfInit); 697 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 698 CGF.getDestroyer(dtorKind)); 699 cleanup = CGF.EHStack.stable_begin(); 700 701 // Otherwise, remember that we didn't need a cleanup. 702 } else { 703 dtorKind = QualType::DK_none; 704 } 705 706 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 707 708 // The 'current element to initialize'. The invariants on this 709 // variable are complicated. Essentially, after each iteration of 710 // the loop, it points to the last initialized element, except 711 // that it points to the beginning of the array before any 712 // elements have been initialized. 713 llvm::Value *element = begin; 714 715 // Emit the explicit initializers. 716 for (uint64_t i = 0; i != NumInitElements; ++i) { 717 // Advance to the next element. 718 if (i > 0) { 719 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 720 721 // Tell the cleanup that it needs to destroy up to this 722 // element. TODO: some of these stores can be trivially 723 // observed to be unnecessary. 724 if (endOfInit) Builder.CreateStore(element, endOfInit); 725 } 726 727 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 728 EmitInitializationToLValue(E->getInit(i), elementLV); 729 } 730 731 // Check whether there's a non-trivial array-fill expression. 732 // Note that this will be a CXXConstructExpr even if the element 733 // type is an array (or array of array, etc.) of class type. 734 Expr *filler = E->getArrayFiller(); 735 bool hasTrivialFiller = true; 736 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 737 assert(cons->getConstructor()->isDefaultConstructor()); 738 hasTrivialFiller = cons->getConstructor()->isTrivial(); 739 } 740 741 // Any remaining elements need to be zero-initialized, possibly 742 // using the filler expression. We can skip this if the we're 743 // emitting to zeroed memory. 744 if (NumInitElements != NumArrayElements && 745 !(Dest.isZeroed() && hasTrivialFiller && 746 CGF.getTypes().isZeroInitializable(elementType))) { 747 748 // Use an actual loop. This is basically 749 // do { *array++ = filler; } while (array != end); 750 751 // Advance to the start of the rest of the array. 752 if (NumInitElements) { 753 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 754 if (endOfInit) Builder.CreateStore(element, endOfInit); 755 } 756 757 // Compute the end of the array. 758 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 759 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 760 "arrayinit.end"); 761 762 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 763 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 764 765 // Jump into the body. 766 CGF.EmitBlock(bodyBB); 767 llvm::PHINode *currentElement = 768 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 769 currentElement->addIncoming(element, entryBB); 770 771 // Emit the actual filler expression. 772 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 773 if (filler) 774 EmitInitializationToLValue(filler, elementLV); 775 else 776 EmitNullInitializationToLValue(elementLV); 777 778 // Move on to the next element. 779 llvm::Value *nextElement = 780 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 781 782 // Tell the EH cleanup that we finished with the last element. 783 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 784 785 // Leave the loop if we're done. 786 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 787 "arrayinit.done"); 788 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 789 Builder.CreateCondBr(done, endBB, bodyBB); 790 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 791 792 CGF.EmitBlock(endBB); 793 } 794 795 // Leave the partial-array cleanup if we entered one. 796 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 797 798 return; 799 } 800 801 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 802 803 // Do struct initialization; this code just sets each individual member 804 // to the approprate value. This makes bitfield support automatic; 805 // the disadvantage is that the generated code is more difficult for 806 // the optimizer, especially with bitfields. 807 unsigned NumInitElements = E->getNumInits(); 808 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 809 810 if (record->isUnion()) { 811 // Only initialize one field of a union. The field itself is 812 // specified by the initializer list. 813 if (!E->getInitializedFieldInUnion()) { 814 // Empty union; we have nothing to do. 815 816 #ifndef NDEBUG 817 // Make sure that it's really an empty and not a failure of 818 // semantic analysis. 819 for (RecordDecl::field_iterator Field = record->field_begin(), 820 FieldEnd = record->field_end(); 821 Field != FieldEnd; ++Field) 822 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 823 #endif 824 return; 825 } 826 827 // FIXME: volatility 828 FieldDecl *Field = E->getInitializedFieldInUnion(); 829 830 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 831 if (NumInitElements) { 832 // Store the initializer into the field 833 EmitInitializationToLValue(E->getInit(0), FieldLoc); 834 } else { 835 // Default-initialize to null. 836 EmitNullInitializationToLValue(FieldLoc); 837 } 838 839 return; 840 } 841 842 // We'll need to enter cleanup scopes in case any of the member 843 // initializers throw an exception. 844 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 845 llvm::Instruction *cleanupDominator = 0; 846 847 // Here we iterate over the fields; this makes it simpler to both 848 // default-initialize fields and skip over unnamed fields. 849 unsigned curInitIndex = 0; 850 for (RecordDecl::field_iterator field = record->field_begin(), 851 fieldEnd = record->field_end(); 852 field != fieldEnd; ++field) { 853 // We're done once we hit the flexible array member. 854 if (field->getType()->isIncompleteArrayType()) 855 break; 856 857 // Always skip anonymous bitfields. 858 if (field->isUnnamedBitfield()) 859 continue; 860 861 // We're done if we reach the end of the explicit initializers, we 862 // have a zeroed object, and the rest of the fields are 863 // zero-initializable. 864 if (curInitIndex == NumInitElements && Dest.isZeroed() && 865 CGF.getTypes().isZeroInitializable(E->getType())) 866 break; 867 868 // FIXME: volatility 869 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 870 // We never generate write-barries for initialized fields. 871 LV.setNonGC(true); 872 873 if (curInitIndex < NumInitElements) { 874 // Store the initializer into the field. 875 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 876 } else { 877 // We're out of initalizers; default-initialize to null 878 EmitNullInitializationToLValue(LV); 879 } 880 881 // Push a destructor if necessary. 882 // FIXME: if we have an array of structures, all explicitly 883 // initialized, we can end up pushing a linear number of cleanups. 884 bool pushedCleanup = false; 885 if (QualType::DestructionKind dtorKind 886 = field->getType().isDestructedType()) { 887 assert(LV.isSimple()); 888 if (CGF.needsEHCleanup(dtorKind)) { 889 if (!cleanupDominator) 890 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 891 892 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 893 CGF.getDestroyer(dtorKind), false); 894 cleanups.push_back(CGF.EHStack.stable_begin()); 895 pushedCleanup = true; 896 } 897 } 898 899 // If the GEP didn't get used because of a dead zero init or something 900 // else, clean it up for -O0 builds and general tidiness. 901 if (!pushedCleanup && LV.isSimple()) 902 if (llvm::GetElementPtrInst *GEP = 903 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 904 if (GEP->use_empty()) 905 GEP->eraseFromParent(); 906 } 907 908 // Deactivate all the partial cleanups in reverse order, which 909 // generally means popping them. 910 for (unsigned i = cleanups.size(); i != 0; --i) 911 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 912 913 // Destroy the placeholder if we made one. 914 if (cleanupDominator) 915 cleanupDominator->eraseFromParent(); 916 } 917 918 //===----------------------------------------------------------------------===// 919 // Entry Points into this File 920 //===----------------------------------------------------------------------===// 921 922 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 923 /// non-zero bytes that will be stored when outputting the initializer for the 924 /// specified initializer expression. 925 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 926 E = E->IgnoreParens(); 927 928 // 0 and 0.0 won't require any non-zero stores! 929 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 930 931 // If this is an initlist expr, sum up the size of sizes of the (present) 932 // elements. If this is something weird, assume the whole thing is non-zero. 933 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 934 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 935 return CGF.getContext().getTypeSizeInChars(E->getType()); 936 937 // InitListExprs for structs have to be handled carefully. If there are 938 // reference members, we need to consider the size of the reference, not the 939 // referencee. InitListExprs for unions and arrays can't have references. 940 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 941 if (!RT->isUnionType()) { 942 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 943 CharUnits NumNonZeroBytes = CharUnits::Zero(); 944 945 unsigned ILEElement = 0; 946 for (RecordDecl::field_iterator Field = SD->field_begin(), 947 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 948 // We're done once we hit the flexible array member or run out of 949 // InitListExpr elements. 950 if (Field->getType()->isIncompleteArrayType() || 951 ILEElement == ILE->getNumInits()) 952 break; 953 if (Field->isUnnamedBitfield()) 954 continue; 955 956 const Expr *E = ILE->getInit(ILEElement++); 957 958 // Reference values are always non-null and have the width of a pointer. 959 if (Field->getType()->isReferenceType()) 960 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 961 CGF.getContext().getTargetInfo().getPointerWidth(0)); 962 else 963 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 964 } 965 966 return NumNonZeroBytes; 967 } 968 } 969 970 971 CharUnits NumNonZeroBytes = CharUnits::Zero(); 972 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 973 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 974 return NumNonZeroBytes; 975 } 976 977 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 978 /// zeros in it, emit a memset and avoid storing the individual zeros. 979 /// 980 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 981 CodeGenFunction &CGF) { 982 // If the slot is already known to be zeroed, nothing to do. Don't mess with 983 // volatile stores. 984 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 985 986 // C++ objects with a user-declared constructor don't need zero'ing. 987 if (CGF.getContext().getLangOptions().CPlusPlus) 988 if (const RecordType *RT = CGF.getContext() 989 .getBaseElementType(E->getType())->getAs<RecordType>()) { 990 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 991 if (RD->hasUserDeclaredConstructor()) 992 return; 993 } 994 995 // If the type is 16-bytes or smaller, prefer individual stores over memset. 996 std::pair<CharUnits, CharUnits> TypeInfo = 997 CGF.getContext().getTypeInfoInChars(E->getType()); 998 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 999 return; 1000 1001 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1002 // we prefer to emit memset + individual stores for the rest. 1003 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1004 if (NumNonZeroBytes*4 > TypeInfo.first) 1005 return; 1006 1007 // Okay, it seems like a good idea to use an initial memset, emit the call. 1008 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1009 CharUnits Align = TypeInfo.second; 1010 1011 llvm::Value *Loc = Slot.getAddr(); 1012 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1013 1014 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1015 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1016 Align.getQuantity(), false); 1017 1018 // Tell the AggExprEmitter that the slot is known zero. 1019 Slot.setZeroed(); 1020 } 1021 1022 1023 1024 1025 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1026 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1027 /// the value of the aggregate expression is not needed. If VolatileDest is 1028 /// true, DestPtr cannot be 0. 1029 /// 1030 /// \param IsInitializer - true if this evaluation is initializing an 1031 /// object whose lifetime is already being managed. 1032 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1033 bool IgnoreResult) { 1034 assert(E && hasAggregateLLVMType(E->getType()) && 1035 "Invalid aggregate expression to emit"); 1036 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1037 "slot has bits but no address"); 1038 1039 // Optimize the slot if possible. 1040 CheckAggExprForMemSetUse(Slot, E, *this); 1041 1042 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1043 } 1044 1045 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1046 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1047 llvm::Value *Temp = CreateMemTemp(E->getType()); 1048 LValue LV = MakeAddrLValue(Temp, E->getType()); 1049 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1050 AggValueSlot::DoesNotNeedGCBarriers, 1051 AggValueSlot::IsNotAliased)); 1052 return LV; 1053 } 1054 1055 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1056 llvm::Value *SrcPtr, QualType Ty, 1057 bool isVolatile) { 1058 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1059 1060 if (getContext().getLangOptions().CPlusPlus) { 1061 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1062 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1063 assert((Record->hasTrivialCopyConstructor() || 1064 Record->hasTrivialCopyAssignment() || 1065 Record->hasTrivialMoveConstructor() || 1066 Record->hasTrivialMoveAssignment()) && 1067 "Trying to aggregate-copy a type without a trivial copy " 1068 "constructor or assignment operator"); 1069 // Ignore empty classes in C++. 1070 if (Record->isEmpty()) 1071 return; 1072 } 1073 } 1074 1075 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1076 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1077 // read from another object that overlaps in anyway the storage of the first 1078 // object, then the overlap shall be exact and the two objects shall have 1079 // qualified or unqualified versions of a compatible type." 1080 // 1081 // memcpy is not defined if the source and destination pointers are exactly 1082 // equal, but other compilers do this optimization, and almost every memcpy 1083 // implementation handles this case safely. If there is a libc that does not 1084 // safely handle this, we can add a target hook. 1085 1086 // Get size and alignment info for this aggregate. 1087 std::pair<CharUnits, CharUnits> TypeInfo = 1088 getContext().getTypeInfoInChars(Ty); 1089 1090 // FIXME: Handle variable sized types. 1091 1092 // FIXME: If we have a volatile struct, the optimizer can remove what might 1093 // appear to be `extra' memory ops: 1094 // 1095 // volatile struct { int i; } a, b; 1096 // 1097 // int main() { 1098 // a = b; 1099 // a = b; 1100 // } 1101 // 1102 // we need to use a different call here. We use isVolatile to indicate when 1103 // either the source or the destination is volatile. 1104 1105 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1106 llvm::Type *DBP = 1107 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1108 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1109 1110 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1111 llvm::Type *SBP = 1112 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1113 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1114 1115 // Don't do any of the memmove_collectable tests if GC isn't set. 1116 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { 1117 // fall through 1118 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1119 RecordDecl *Record = RecordTy->getDecl(); 1120 if (Record->hasObjectMember()) { 1121 CharUnits size = TypeInfo.first; 1122 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1123 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1124 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1125 SizeVal); 1126 return; 1127 } 1128 } else if (Ty->isArrayType()) { 1129 QualType BaseType = getContext().getBaseElementType(Ty); 1130 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1131 if (RecordTy->getDecl()->hasObjectMember()) { 1132 CharUnits size = TypeInfo.first; 1133 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1134 llvm::Value *SizeVal = 1135 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1136 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1137 SizeVal); 1138 return; 1139 } 1140 } 1141 } 1142 1143 Builder.CreateMemCpy(DestPtr, SrcPtr, 1144 llvm::ConstantInt::get(IntPtrTy, 1145 TypeInfo.first.getQuantity()), 1146 TypeInfo.second.getQuantity(), isVolatile); 1147 } 1148