1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
179   void VisitLambdaExpr(LambdaExpr *E);
180   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
181   void VisitExprWithCleanups(ExprWithCleanups *E);
182   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
183   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
184   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
185   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
186 
187   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
188     if (E->isGLValue()) {
189       LValue LV = CGF.EmitPseudoObjectLValue(E);
190       return EmitFinalDestCopy(E->getType(), LV);
191     }
192 
193     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
194   }
195 
196   void VisitVAArgExpr(VAArgExpr *E);
197 
198   void EmitInitializationToLValue(Expr *E, LValue Address);
199   void EmitNullInitializationToLValue(LValue Address);
200   //  case Expr::ChooseExprClass:
201   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
202   void VisitAtomicExpr(AtomicExpr *E) {
203     RValue Res = CGF.EmitAtomicExpr(E);
204     EmitFinalDestCopy(E->getType(), Res);
205   }
206 };
207 }  // end anonymous namespace.
208 
209 //===----------------------------------------------------------------------===//
210 //                                Utilities
211 //===----------------------------------------------------------------------===//
212 
213 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
214 /// represents a value lvalue, this method emits the address of the lvalue,
215 /// then loads the result into DestPtr.
216 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
217   LValue LV = CGF.EmitLValue(E);
218 
219   // If the type of the l-value is atomic, then do an atomic load.
220   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
221     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
222     return;
223   }
224 
225   EmitFinalDestCopy(E->getType(), LV);
226 }
227 
228 /// \brief True if the given aggregate type requires special GC API calls.
229 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
230   // Only record types have members that might require garbage collection.
231   const RecordType *RecordTy = T->getAs<RecordType>();
232   if (!RecordTy) return false;
233 
234   // Don't mess with non-trivial C++ types.
235   RecordDecl *Record = RecordTy->getDecl();
236   if (isa<CXXRecordDecl>(Record) &&
237       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
238        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
239     return false;
240 
241   // Check whether the type has an object member.
242   return Record->hasObjectMember();
243 }
244 
245 /// \brief Perform the final move to DestPtr if for some reason
246 /// getReturnValueSlot() didn't use it directly.
247 ///
248 /// The idea is that you do something like this:
249 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
250 ///   EmitMoveFromReturnSlot(E, Result);
251 ///
252 /// If nothing interferes, this will cause the result to be emitted
253 /// directly into the return value slot.  Otherwise, a final move
254 /// will be performed.
255 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
256   if (shouldUseDestForReturnSlot()) {
257     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
258     // The possibility of undef rvalues complicates that a lot,
259     // though, so we can't really assert.
260     return;
261   }
262 
263   // Otherwise, copy from there to the destination.
264   assert(Dest.getPointer() != src.getAggregatePointer());
265   EmitFinalDestCopy(E->getType(), src);
266 }
267 
268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
269 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
270   assert(src.isAggregate() && "value must be aggregate value!");
271   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
272   EmitFinalDestCopy(type, srcLV);
273 }
274 
275 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
276 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
277   // If Dest is ignored, then we're evaluating an aggregate expression
278   // in a context that doesn't care about the result.  Note that loads
279   // from volatile l-values force the existence of a non-ignored
280   // destination.
281   if (Dest.isIgnored())
282     return;
283 
284   AggValueSlot srcAgg =
285     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
286                             needsGC(type), AggValueSlot::IsAliased);
287   EmitCopy(type, Dest, srcAgg);
288 }
289 
290 /// Perform a copy from the source into the destination.
291 ///
292 /// \param type - the type of the aggregate being copied; qualifiers are
293 ///   ignored
294 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
295                               const AggValueSlot &src) {
296   if (dest.requiresGCollection()) {
297     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
298     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
299     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
300                                                       dest.getAddress(),
301                                                       src.getAddress(),
302                                                       size);
303     return;
304   }
305 
306   // If the result of the assignment is used, copy the LHS there also.
307   // It's volatile if either side is.  Use the minimum alignment of
308   // the two sides.
309   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
310                         dest.isVolatile() || src.isVolatile());
311 }
312 
313 /// \brief Emit the initializer for a std::initializer_list initialized with a
314 /// real initializer list.
315 void
316 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
317   // Emit an array containing the elements.  The array is externally destructed
318   // if the std::initializer_list object is.
319   ASTContext &Ctx = CGF.getContext();
320   LValue Array = CGF.EmitLValue(E->getSubExpr());
321   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
322   Address ArrayPtr = Array.getAddress();
323 
324   const ConstantArrayType *ArrayType =
325       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
326   assert(ArrayType && "std::initializer_list constructed from non-array");
327 
328   // FIXME: Perform the checks on the field types in SemaInit.
329   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
330   RecordDecl::field_iterator Field = Record->field_begin();
331   if (Field == Record->field_end()) {
332     CGF.ErrorUnsupported(E, "weird std::initializer_list");
333     return;
334   }
335 
336   // Start pointer.
337   if (!Field->getType()->isPointerType() ||
338       !Ctx.hasSameType(Field->getType()->getPointeeType(),
339                        ArrayType->getElementType())) {
340     CGF.ErrorUnsupported(E, "weird std::initializer_list");
341     return;
342   }
343 
344   AggValueSlot Dest = EnsureSlot(E->getType());
345   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
346   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
347   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
348   llvm::Value *IdxStart[] = { Zero, Zero };
349   llvm::Value *ArrayStart =
350       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
351   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
352   ++Field;
353 
354   if (Field == Record->field_end()) {
355     CGF.ErrorUnsupported(E, "weird std::initializer_list");
356     return;
357   }
358 
359   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
360   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
361   if (Field->getType()->isPointerType() &&
362       Ctx.hasSameType(Field->getType()->getPointeeType(),
363                       ArrayType->getElementType())) {
364     // End pointer.
365     llvm::Value *IdxEnd[] = { Zero, Size };
366     llvm::Value *ArrayEnd =
367         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
368     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
369   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
370     // Length.
371     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
372   } else {
373     CGF.ErrorUnsupported(E, "weird std::initializer_list");
374     return;
375   }
376 }
377 
378 /// \brief Determine if E is a trivial array filler, that is, one that is
379 /// equivalent to zero-initialization.
380 static bool isTrivialFiller(Expr *E) {
381   if (!E)
382     return true;
383 
384   if (isa<ImplicitValueInitExpr>(E))
385     return true;
386 
387   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
388     if (ILE->getNumInits())
389       return false;
390     return isTrivialFiller(ILE->getArrayFiller());
391   }
392 
393   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
394     return Cons->getConstructor()->isDefaultConstructor() &&
395            Cons->getConstructor()->isTrivial();
396 
397   // FIXME: Are there other cases where we can avoid emitting an initializer?
398   return false;
399 }
400 
401 /// \brief Emit initialization of an array from an initializer list.
402 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
403                                    QualType elementType, InitListExpr *E) {
404   uint64_t NumInitElements = E->getNumInits();
405 
406   uint64_t NumArrayElements = AType->getNumElements();
407   assert(NumInitElements <= NumArrayElements);
408 
409   // DestPtr is an array*.  Construct an elementType* by drilling
410   // down a level.
411   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
412   llvm::Value *indices[] = { zero, zero };
413   llvm::Value *begin =
414     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
415 
416   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
417   CharUnits elementAlign =
418     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
419 
420   // Exception safety requires us to destroy all the
421   // already-constructed members if an initializer throws.
422   // For that, we'll need an EH cleanup.
423   QualType::DestructionKind dtorKind = elementType.isDestructedType();
424   Address endOfInit = Address::invalid();
425   EHScopeStack::stable_iterator cleanup;
426   llvm::Instruction *cleanupDominator = nullptr;
427   if (CGF.needsEHCleanup(dtorKind)) {
428     // In principle we could tell the cleanup where we are more
429     // directly, but the control flow can get so varied here that it
430     // would actually be quite complex.  Therefore we go through an
431     // alloca.
432     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
433                                      "arrayinit.endOfInit");
434     cleanupDominator = Builder.CreateStore(begin, endOfInit);
435     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
436                                          elementAlign,
437                                          CGF.getDestroyer(dtorKind));
438     cleanup = CGF.EHStack.stable_begin();
439 
440   // Otherwise, remember that we didn't need a cleanup.
441   } else {
442     dtorKind = QualType::DK_none;
443   }
444 
445   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
446 
447   // The 'current element to initialize'.  The invariants on this
448   // variable are complicated.  Essentially, after each iteration of
449   // the loop, it points to the last initialized element, except
450   // that it points to the beginning of the array before any
451   // elements have been initialized.
452   llvm::Value *element = begin;
453 
454   // Emit the explicit initializers.
455   for (uint64_t i = 0; i != NumInitElements; ++i) {
456     // Advance to the next element.
457     if (i > 0) {
458       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
459 
460       // Tell the cleanup that it needs to destroy up to this
461       // element.  TODO: some of these stores can be trivially
462       // observed to be unnecessary.
463       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
464     }
465 
466     LValue elementLV =
467       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
468     EmitInitializationToLValue(E->getInit(i), elementLV);
469   }
470 
471   // Check whether there's a non-trivial array-fill expression.
472   Expr *filler = E->getArrayFiller();
473   bool hasTrivialFiller = isTrivialFiller(filler);
474 
475   // Any remaining elements need to be zero-initialized, possibly
476   // using the filler expression.  We can skip this if the we're
477   // emitting to zeroed memory.
478   if (NumInitElements != NumArrayElements &&
479       !(Dest.isZeroed() && hasTrivialFiller &&
480         CGF.getTypes().isZeroInitializable(elementType))) {
481 
482     // Use an actual loop.  This is basically
483     //   do { *array++ = filler; } while (array != end);
484 
485     // Advance to the start of the rest of the array.
486     if (NumInitElements) {
487       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
488       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
489     }
490 
491     // Compute the end of the array.
492     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
493                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
494                                                  "arrayinit.end");
495 
496     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
497     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
498 
499     // Jump into the body.
500     CGF.EmitBlock(bodyBB);
501     llvm::PHINode *currentElement =
502       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
503     currentElement->addIncoming(element, entryBB);
504 
505     // Emit the actual filler expression.
506     LValue elementLV =
507       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
508     if (filler)
509       EmitInitializationToLValue(filler, elementLV);
510     else
511       EmitNullInitializationToLValue(elementLV);
512 
513     // Move on to the next element.
514     llvm::Value *nextElement =
515       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
516 
517     // Tell the EH cleanup that we finished with the last element.
518     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
519 
520     // Leave the loop if we're done.
521     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
522                                              "arrayinit.done");
523     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
524     Builder.CreateCondBr(done, endBB, bodyBB);
525     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
526 
527     CGF.EmitBlock(endBB);
528   }
529 
530   // Leave the partial-array cleanup if we entered one.
531   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
532 }
533 
534 //===----------------------------------------------------------------------===//
535 //                            Visitor Methods
536 //===----------------------------------------------------------------------===//
537 
538 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
539   Visit(E->GetTemporaryExpr());
540 }
541 
542 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
543   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
544 }
545 
546 void
547 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
548   if (Dest.isPotentiallyAliased() &&
549       E->getType().isPODType(CGF.getContext())) {
550     // For a POD type, just emit a load of the lvalue + a copy, because our
551     // compound literal might alias the destination.
552     EmitAggLoadOfLValue(E);
553     return;
554   }
555 
556   AggValueSlot Slot = EnsureSlot(E->getType());
557   CGF.EmitAggExpr(E->getInitializer(), Slot);
558 }
559 
560 /// Attempt to look through various unimportant expressions to find a
561 /// cast of the given kind.
562 static Expr *findPeephole(Expr *op, CastKind kind) {
563   while (true) {
564     op = op->IgnoreParens();
565     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
566       if (castE->getCastKind() == kind)
567         return castE->getSubExpr();
568       if (castE->getCastKind() == CK_NoOp)
569         continue;
570     }
571     return nullptr;
572   }
573 }
574 
575 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
576   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
577     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
578   switch (E->getCastKind()) {
579   case CK_Dynamic: {
580     // FIXME: Can this actually happen? We have no test coverage for it.
581     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
582     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
583                                       CodeGenFunction::TCK_Load);
584     // FIXME: Do we also need to handle property references here?
585     if (LV.isSimple())
586       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
587     else
588       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
589 
590     if (!Dest.isIgnored())
591       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
592     break;
593   }
594 
595   case CK_ToUnion: {
596     // Evaluate even if the destination is ignored.
597     if (Dest.isIgnored()) {
598       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
599                       /*ignoreResult=*/true);
600       break;
601     }
602 
603     // GCC union extension
604     QualType Ty = E->getSubExpr()->getType();
605     Address CastPtr =
606       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
607     EmitInitializationToLValue(E->getSubExpr(),
608                                CGF.MakeAddrLValue(CastPtr, Ty));
609     break;
610   }
611 
612   case CK_DerivedToBase:
613   case CK_BaseToDerived:
614   case CK_UncheckedDerivedToBase: {
615     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
616                 "should have been unpacked before we got here");
617   }
618 
619   case CK_NonAtomicToAtomic:
620   case CK_AtomicToNonAtomic: {
621     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
622 
623     // Determine the atomic and value types.
624     QualType atomicType = E->getSubExpr()->getType();
625     QualType valueType = E->getType();
626     if (isToAtomic) std::swap(atomicType, valueType);
627 
628     assert(atomicType->isAtomicType());
629     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
630                           atomicType->castAs<AtomicType>()->getValueType()));
631 
632     // Just recurse normally if we're ignoring the result or the
633     // atomic type doesn't change representation.
634     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
635       return Visit(E->getSubExpr());
636     }
637 
638     CastKind peepholeTarget =
639       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
640 
641     // These two cases are reverses of each other; try to peephole them.
642     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
643       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
644                                                      E->getType()) &&
645            "peephole significantly changed types?");
646       return Visit(op);
647     }
648 
649     // If we're converting an r-value of non-atomic type to an r-value
650     // of atomic type, just emit directly into the relevant sub-object.
651     if (isToAtomic) {
652       AggValueSlot valueDest = Dest;
653       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
654         // Zero-initialize.  (Strictly speaking, we only need to intialize
655         // the padding at the end, but this is simpler.)
656         if (!Dest.isZeroed())
657           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
658 
659         // Build a GEP to refer to the subobject.
660         Address valueAddr =
661             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
662                                         CharUnits());
663         valueDest = AggValueSlot::forAddr(valueAddr,
664                                           valueDest.getQualifiers(),
665                                           valueDest.isExternallyDestructed(),
666                                           valueDest.requiresGCollection(),
667                                           valueDest.isPotentiallyAliased(),
668                                           AggValueSlot::IsZeroed);
669       }
670 
671       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
672       return;
673     }
674 
675     // Otherwise, we're converting an atomic type to a non-atomic type.
676     // Make an atomic temporary, emit into that, and then copy the value out.
677     AggValueSlot atomicSlot =
678       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
679     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
680 
681     Address valueAddr =
682       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
683     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
684     return EmitFinalDestCopy(valueType, rvalue);
685   }
686 
687   case CK_LValueToRValue:
688     // If we're loading from a volatile type, force the destination
689     // into existence.
690     if (E->getSubExpr()->getType().isVolatileQualified()) {
691       EnsureDest(E->getType());
692       return Visit(E->getSubExpr());
693     }
694 
695     // fallthrough
696 
697   case CK_NoOp:
698   case CK_UserDefinedConversion:
699   case CK_ConstructorConversion:
700     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
701                                                    E->getType()) &&
702            "Implicit cast types must be compatible");
703     Visit(E->getSubExpr());
704     break;
705 
706   case CK_LValueBitCast:
707     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
708 
709   case CK_Dependent:
710   case CK_BitCast:
711   case CK_ArrayToPointerDecay:
712   case CK_FunctionToPointerDecay:
713   case CK_NullToPointer:
714   case CK_NullToMemberPointer:
715   case CK_BaseToDerivedMemberPointer:
716   case CK_DerivedToBaseMemberPointer:
717   case CK_MemberPointerToBoolean:
718   case CK_ReinterpretMemberPointer:
719   case CK_IntegralToPointer:
720   case CK_PointerToIntegral:
721   case CK_PointerToBoolean:
722   case CK_ToVoid:
723   case CK_VectorSplat:
724   case CK_IntegralCast:
725   case CK_BooleanToSignedIntegral:
726   case CK_IntegralToBoolean:
727   case CK_IntegralToFloating:
728   case CK_FloatingToIntegral:
729   case CK_FloatingToBoolean:
730   case CK_FloatingCast:
731   case CK_CPointerToObjCPointerCast:
732   case CK_BlockPointerToObjCPointerCast:
733   case CK_AnyPointerToBlockPointerCast:
734   case CK_ObjCObjectLValueCast:
735   case CK_FloatingRealToComplex:
736   case CK_FloatingComplexToReal:
737   case CK_FloatingComplexToBoolean:
738   case CK_FloatingComplexCast:
739   case CK_FloatingComplexToIntegralComplex:
740   case CK_IntegralRealToComplex:
741   case CK_IntegralComplexToReal:
742   case CK_IntegralComplexToBoolean:
743   case CK_IntegralComplexCast:
744   case CK_IntegralComplexToFloatingComplex:
745   case CK_ARCProduceObject:
746   case CK_ARCConsumeObject:
747   case CK_ARCReclaimReturnedObject:
748   case CK_ARCExtendBlockObject:
749   case CK_CopyAndAutoreleaseBlockObject:
750   case CK_BuiltinFnToFnPtr:
751   case CK_ZeroToOCLEvent:
752   case CK_AddressSpaceConversion:
753   case CK_IntToOCLSampler:
754     llvm_unreachable("cast kind invalid for aggregate types");
755   }
756 }
757 
758 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
759   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
760     EmitAggLoadOfLValue(E);
761     return;
762   }
763 
764   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
765   EmitMoveFromReturnSlot(E, RV);
766 }
767 
768 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
769   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
770   EmitMoveFromReturnSlot(E, RV);
771 }
772 
773 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
774   CGF.EmitIgnoredExpr(E->getLHS());
775   Visit(E->getRHS());
776 }
777 
778 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
779   CodeGenFunction::StmtExprEvaluation eval(CGF);
780   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
781 }
782 
783 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
784   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
785     VisitPointerToDataMemberBinaryOperator(E);
786   else
787     CGF.ErrorUnsupported(E, "aggregate binary expression");
788 }
789 
790 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
791                                                     const BinaryOperator *E) {
792   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
793   EmitFinalDestCopy(E->getType(), LV);
794 }
795 
796 /// Is the value of the given expression possibly a reference to or
797 /// into a __block variable?
798 static bool isBlockVarRef(const Expr *E) {
799   // Make sure we look through parens.
800   E = E->IgnoreParens();
801 
802   // Check for a direct reference to a __block variable.
803   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
804     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
805     return (var && var->hasAttr<BlocksAttr>());
806   }
807 
808   // More complicated stuff.
809 
810   // Binary operators.
811   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
812     // For an assignment or pointer-to-member operation, just care
813     // about the LHS.
814     if (op->isAssignmentOp() || op->isPtrMemOp())
815       return isBlockVarRef(op->getLHS());
816 
817     // For a comma, just care about the RHS.
818     if (op->getOpcode() == BO_Comma)
819       return isBlockVarRef(op->getRHS());
820 
821     // FIXME: pointer arithmetic?
822     return false;
823 
824   // Check both sides of a conditional operator.
825   } else if (const AbstractConditionalOperator *op
826                = dyn_cast<AbstractConditionalOperator>(E)) {
827     return isBlockVarRef(op->getTrueExpr())
828         || isBlockVarRef(op->getFalseExpr());
829 
830   // OVEs are required to support BinaryConditionalOperators.
831   } else if (const OpaqueValueExpr *op
832                = dyn_cast<OpaqueValueExpr>(E)) {
833     if (const Expr *src = op->getSourceExpr())
834       return isBlockVarRef(src);
835 
836   // Casts are necessary to get things like (*(int*)&var) = foo().
837   // We don't really care about the kind of cast here, except
838   // we don't want to look through l2r casts, because it's okay
839   // to get the *value* in a __block variable.
840   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
841     if (cast->getCastKind() == CK_LValueToRValue)
842       return false;
843     return isBlockVarRef(cast->getSubExpr());
844 
845   // Handle unary operators.  Again, just aggressively look through
846   // it, ignoring the operation.
847   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
848     return isBlockVarRef(uop->getSubExpr());
849 
850   // Look into the base of a field access.
851   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
852     return isBlockVarRef(mem->getBase());
853 
854   // Look into the base of a subscript.
855   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
856     return isBlockVarRef(sub->getBase());
857   }
858 
859   return false;
860 }
861 
862 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
863   // For an assignment to work, the value on the right has
864   // to be compatible with the value on the left.
865   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
866                                                  E->getRHS()->getType())
867          && "Invalid assignment");
868 
869   // If the LHS might be a __block variable, and the RHS can
870   // potentially cause a block copy, we need to evaluate the RHS first
871   // so that the assignment goes the right place.
872   // This is pretty semantically fragile.
873   if (isBlockVarRef(E->getLHS()) &&
874       E->getRHS()->HasSideEffects(CGF.getContext())) {
875     // Ensure that we have a destination, and evaluate the RHS into that.
876     EnsureDest(E->getRHS()->getType());
877     Visit(E->getRHS());
878 
879     // Now emit the LHS and copy into it.
880     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
881 
882     // That copy is an atomic copy if the LHS is atomic.
883     if (LHS.getType()->isAtomicType() ||
884         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
885       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
886       return;
887     }
888 
889     EmitCopy(E->getLHS()->getType(),
890              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
891                                      needsGC(E->getLHS()->getType()),
892                                      AggValueSlot::IsAliased),
893              Dest);
894     return;
895   }
896 
897   LValue LHS = CGF.EmitLValue(E->getLHS());
898 
899   // If we have an atomic type, evaluate into the destination and then
900   // do an atomic copy.
901   if (LHS.getType()->isAtomicType() ||
902       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
903     EnsureDest(E->getRHS()->getType());
904     Visit(E->getRHS());
905     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
906     return;
907   }
908 
909   // Codegen the RHS so that it stores directly into the LHS.
910   AggValueSlot LHSSlot =
911     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
912                             needsGC(E->getLHS()->getType()),
913                             AggValueSlot::IsAliased);
914   // A non-volatile aggregate destination might have volatile member.
915   if (!LHSSlot.isVolatile() &&
916       CGF.hasVolatileMember(E->getLHS()->getType()))
917     LHSSlot.setVolatile(true);
918 
919   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
920 
921   // Copy into the destination if the assignment isn't ignored.
922   EmitFinalDestCopy(E->getType(), LHS);
923 }
924 
925 void AggExprEmitter::
926 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
927   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
928   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
929   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
930 
931   // Bind the common expression if necessary.
932   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
933 
934   CodeGenFunction::ConditionalEvaluation eval(CGF);
935   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
936                            CGF.getProfileCount(E));
937 
938   // Save whether the destination's lifetime is externally managed.
939   bool isExternallyDestructed = Dest.isExternallyDestructed();
940 
941   eval.begin(CGF);
942   CGF.EmitBlock(LHSBlock);
943   CGF.incrementProfileCounter(E);
944   Visit(E->getTrueExpr());
945   eval.end(CGF);
946 
947   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
948   CGF.Builder.CreateBr(ContBlock);
949 
950   // If the result of an agg expression is unused, then the emission
951   // of the LHS might need to create a destination slot.  That's fine
952   // with us, and we can safely emit the RHS into the same slot, but
953   // we shouldn't claim that it's already being destructed.
954   Dest.setExternallyDestructed(isExternallyDestructed);
955 
956   eval.begin(CGF);
957   CGF.EmitBlock(RHSBlock);
958   Visit(E->getFalseExpr());
959   eval.end(CGF);
960 
961   CGF.EmitBlock(ContBlock);
962 }
963 
964 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
965   Visit(CE->getChosenSubExpr());
966 }
967 
968 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
969   Address ArgValue = Address::invalid();
970   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
971 
972   // If EmitVAArg fails, emit an error.
973   if (!ArgPtr.isValid()) {
974     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
975     return;
976   }
977 
978   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
979 }
980 
981 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
982   // Ensure that we have a slot, but if we already do, remember
983   // whether it was externally destructed.
984   bool wasExternallyDestructed = Dest.isExternallyDestructed();
985   EnsureDest(E->getType());
986 
987   // We're going to push a destructor if there isn't already one.
988   Dest.setExternallyDestructed();
989 
990   Visit(E->getSubExpr());
991 
992   // Push that destructor we promised.
993   if (!wasExternallyDestructed)
994     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
995 }
996 
997 void
998 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
999   AggValueSlot Slot = EnsureSlot(E->getType());
1000   CGF.EmitCXXConstructExpr(E, Slot);
1001 }
1002 
1003 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1004     const CXXInheritedCtorInitExpr *E) {
1005   AggValueSlot Slot = EnsureSlot(E->getType());
1006   CGF.EmitInheritedCXXConstructorCall(
1007       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1008       E->inheritedFromVBase(), E);
1009 }
1010 
1011 void
1012 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1013   AggValueSlot Slot = EnsureSlot(E->getType());
1014   CGF.EmitLambdaExpr(E, Slot);
1015 }
1016 
1017 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1018   CGF.enterFullExpression(E);
1019   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1020   Visit(E->getSubExpr());
1021 }
1022 
1023 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1024   QualType T = E->getType();
1025   AggValueSlot Slot = EnsureSlot(T);
1026   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1027 }
1028 
1029 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1030   QualType T = E->getType();
1031   AggValueSlot Slot = EnsureSlot(T);
1032   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1033 }
1034 
1035 /// isSimpleZero - If emitting this value will obviously just cause a store of
1036 /// zero to memory, return true.  This can return false if uncertain, so it just
1037 /// handles simple cases.
1038 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1039   E = E->IgnoreParens();
1040 
1041   // 0
1042   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1043     return IL->getValue() == 0;
1044   // +0.0
1045   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1046     return FL->getValue().isPosZero();
1047   // int()
1048   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1049       CGF.getTypes().isZeroInitializable(E->getType()))
1050     return true;
1051   // (int*)0 - Null pointer expressions.
1052   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1053     return ICE->getCastKind() == CK_NullToPointer;
1054   // '\0'
1055   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1056     return CL->getValue() == 0;
1057 
1058   // Otherwise, hard case: conservatively return false.
1059   return false;
1060 }
1061 
1062 
1063 void
1064 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1065   QualType type = LV.getType();
1066   // FIXME: Ignore result?
1067   // FIXME: Are initializers affected by volatile?
1068   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1069     // Storing "i32 0" to a zero'd memory location is a noop.
1070     return;
1071   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1072     return EmitNullInitializationToLValue(LV);
1073   } else if (isa<NoInitExpr>(E)) {
1074     // Do nothing.
1075     return;
1076   } else if (type->isReferenceType()) {
1077     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1078     return CGF.EmitStoreThroughLValue(RV, LV);
1079   }
1080 
1081   switch (CGF.getEvaluationKind(type)) {
1082   case TEK_Complex:
1083     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1084     return;
1085   case TEK_Aggregate:
1086     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1087                                                AggValueSlot::IsDestructed,
1088                                       AggValueSlot::DoesNotNeedGCBarriers,
1089                                                AggValueSlot::IsNotAliased,
1090                                                Dest.isZeroed()));
1091     return;
1092   case TEK_Scalar:
1093     if (LV.isSimple()) {
1094       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1095     } else {
1096       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1097     }
1098     return;
1099   }
1100   llvm_unreachable("bad evaluation kind");
1101 }
1102 
1103 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1104   QualType type = lv.getType();
1105 
1106   // If the destination slot is already zeroed out before the aggregate is
1107   // copied into it, we don't have to emit any zeros here.
1108   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1109     return;
1110 
1111   if (CGF.hasScalarEvaluationKind(type)) {
1112     // For non-aggregates, we can store the appropriate null constant.
1113     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1114     // Note that the following is not equivalent to
1115     // EmitStoreThroughBitfieldLValue for ARC types.
1116     if (lv.isBitField()) {
1117       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1118     } else {
1119       assert(lv.isSimple());
1120       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1121     }
1122   } else {
1123     // There's a potential optimization opportunity in combining
1124     // memsets; that would be easy for arrays, but relatively
1125     // difficult for structures with the current code.
1126     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1127   }
1128 }
1129 
1130 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1131 #if 0
1132   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1133   // (Length of globals? Chunks of zeroed-out space?).
1134   //
1135   // If we can, prefer a copy from a global; this is a lot less code for long
1136   // globals, and it's easier for the current optimizers to analyze.
1137   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1138     llvm::GlobalVariable* GV =
1139     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1140                              llvm::GlobalValue::InternalLinkage, C, "");
1141     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1142     return;
1143   }
1144 #endif
1145   if (E->hadArrayRangeDesignator())
1146     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1147 
1148   AggValueSlot Dest = EnsureSlot(E->getType());
1149 
1150   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1151 
1152   // Handle initialization of an array.
1153   if (E->getType()->isArrayType()) {
1154     if (E->isStringLiteralInit())
1155       return Visit(E->getInit(0));
1156 
1157     QualType elementType =
1158         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1159 
1160     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1161     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1162     return;
1163   }
1164 
1165   if (E->getType()->isAtomicType()) {
1166     // An _Atomic(T) object can be list-initialized from an expression
1167     // of the same type.
1168     assert(E->getNumInits() == 1 &&
1169            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1170                                                    E->getType()) &&
1171            "unexpected list initialization for atomic object");
1172     return Visit(E->getInit(0));
1173   }
1174 
1175   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1176 
1177   // Do struct initialization; this code just sets each individual member
1178   // to the approprate value.  This makes bitfield support automatic;
1179   // the disadvantage is that the generated code is more difficult for
1180   // the optimizer, especially with bitfields.
1181   unsigned NumInitElements = E->getNumInits();
1182   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1183 
1184   // We'll need to enter cleanup scopes in case any of the element
1185   // initializers throws an exception.
1186   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1187   llvm::Instruction *cleanupDominator = nullptr;
1188 
1189   unsigned curInitIndex = 0;
1190 
1191   // Emit initialization of base classes.
1192   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1193     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1194            "missing initializer for base class");
1195     for (auto &Base : CXXRD->bases()) {
1196       assert(!Base.isVirtual() && "should not see vbases here");
1197       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1198       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1199           Dest.getAddress(), CXXRD, BaseRD,
1200           /*isBaseVirtual*/ false);
1201       AggValueSlot AggSlot =
1202         AggValueSlot::forAddr(V, Qualifiers(),
1203                               AggValueSlot::IsDestructed,
1204                               AggValueSlot::DoesNotNeedGCBarriers,
1205                               AggValueSlot::IsNotAliased);
1206       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1207 
1208       if (QualType::DestructionKind dtorKind =
1209               Base.getType().isDestructedType()) {
1210         CGF.pushDestroy(dtorKind, V, Base.getType());
1211         cleanups.push_back(CGF.EHStack.stable_begin());
1212       }
1213     }
1214   }
1215 
1216   // Prepare a 'this' for CXXDefaultInitExprs.
1217   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1218 
1219   if (record->isUnion()) {
1220     // Only initialize one field of a union. The field itself is
1221     // specified by the initializer list.
1222     if (!E->getInitializedFieldInUnion()) {
1223       // Empty union; we have nothing to do.
1224 
1225 #ifndef NDEBUG
1226       // Make sure that it's really an empty and not a failure of
1227       // semantic analysis.
1228       for (const auto *Field : record->fields())
1229         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1230 #endif
1231       return;
1232     }
1233 
1234     // FIXME: volatility
1235     FieldDecl *Field = E->getInitializedFieldInUnion();
1236 
1237     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1238     if (NumInitElements) {
1239       // Store the initializer into the field
1240       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1241     } else {
1242       // Default-initialize to null.
1243       EmitNullInitializationToLValue(FieldLoc);
1244     }
1245 
1246     return;
1247   }
1248 
1249   // Here we iterate over the fields; this makes it simpler to both
1250   // default-initialize fields and skip over unnamed fields.
1251   for (const auto *field : record->fields()) {
1252     // We're done once we hit the flexible array member.
1253     if (field->getType()->isIncompleteArrayType())
1254       break;
1255 
1256     // Always skip anonymous bitfields.
1257     if (field->isUnnamedBitfield())
1258       continue;
1259 
1260     // We're done if we reach the end of the explicit initializers, we
1261     // have a zeroed object, and the rest of the fields are
1262     // zero-initializable.
1263     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1264         CGF.getTypes().isZeroInitializable(E->getType()))
1265       break;
1266 
1267 
1268     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1269     // We never generate write-barries for initialized fields.
1270     LV.setNonGC(true);
1271 
1272     if (curInitIndex < NumInitElements) {
1273       // Store the initializer into the field.
1274       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1275     } else {
1276       // We're out of initalizers; default-initialize to null
1277       EmitNullInitializationToLValue(LV);
1278     }
1279 
1280     // Push a destructor if necessary.
1281     // FIXME: if we have an array of structures, all explicitly
1282     // initialized, we can end up pushing a linear number of cleanups.
1283     bool pushedCleanup = false;
1284     if (QualType::DestructionKind dtorKind
1285           = field->getType().isDestructedType()) {
1286       assert(LV.isSimple());
1287       if (CGF.needsEHCleanup(dtorKind)) {
1288         if (!cleanupDominator)
1289           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1290               CGF.Int8Ty,
1291               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1292               CharUnits::One()); // placeholder
1293 
1294         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1295                         CGF.getDestroyer(dtorKind), false);
1296         cleanups.push_back(CGF.EHStack.stable_begin());
1297         pushedCleanup = true;
1298       }
1299     }
1300 
1301     // If the GEP didn't get used because of a dead zero init or something
1302     // else, clean it up for -O0 builds and general tidiness.
1303     if (!pushedCleanup && LV.isSimple())
1304       if (llvm::GetElementPtrInst *GEP =
1305             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1306         if (GEP->use_empty())
1307           GEP->eraseFromParent();
1308   }
1309 
1310   // Deactivate all the partial cleanups in reverse order, which
1311   // generally means popping them.
1312   for (unsigned i = cleanups.size(); i != 0; --i)
1313     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1314 
1315   // Destroy the placeholder if we made one.
1316   if (cleanupDominator)
1317     cleanupDominator->eraseFromParent();
1318 }
1319 
1320 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1321   AggValueSlot Dest = EnsureSlot(E->getType());
1322 
1323   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1324   EmitInitializationToLValue(E->getBase(), DestLV);
1325   VisitInitListExpr(E->getUpdater());
1326 }
1327 
1328 //===----------------------------------------------------------------------===//
1329 //                        Entry Points into this File
1330 //===----------------------------------------------------------------------===//
1331 
1332 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1333 /// non-zero bytes that will be stored when outputting the initializer for the
1334 /// specified initializer expression.
1335 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1336   E = E->IgnoreParens();
1337 
1338   // 0 and 0.0 won't require any non-zero stores!
1339   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1340 
1341   // If this is an initlist expr, sum up the size of sizes of the (present)
1342   // elements.  If this is something weird, assume the whole thing is non-zero.
1343   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1344   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1345     return CGF.getContext().getTypeSizeInChars(E->getType());
1346 
1347   // InitListExprs for structs have to be handled carefully.  If there are
1348   // reference members, we need to consider the size of the reference, not the
1349   // referencee.  InitListExprs for unions and arrays can't have references.
1350   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1351     if (!RT->isUnionType()) {
1352       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1353       CharUnits NumNonZeroBytes = CharUnits::Zero();
1354 
1355       unsigned ILEElement = 0;
1356       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1357         while (ILEElement != CXXRD->getNumBases())
1358           NumNonZeroBytes +=
1359               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1360       for (const auto *Field : SD->fields()) {
1361         // We're done once we hit the flexible array member or run out of
1362         // InitListExpr elements.
1363         if (Field->getType()->isIncompleteArrayType() ||
1364             ILEElement == ILE->getNumInits())
1365           break;
1366         if (Field->isUnnamedBitfield())
1367           continue;
1368 
1369         const Expr *E = ILE->getInit(ILEElement++);
1370 
1371         // Reference values are always non-null and have the width of a pointer.
1372         if (Field->getType()->isReferenceType())
1373           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1374               CGF.getTarget().getPointerWidth(0));
1375         else
1376           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1377       }
1378 
1379       return NumNonZeroBytes;
1380     }
1381   }
1382 
1383 
1384   CharUnits NumNonZeroBytes = CharUnits::Zero();
1385   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1386     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1387   return NumNonZeroBytes;
1388 }
1389 
1390 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1391 /// zeros in it, emit a memset and avoid storing the individual zeros.
1392 ///
1393 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1394                                      CodeGenFunction &CGF) {
1395   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1396   // volatile stores.
1397   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1398     return;
1399 
1400   // C++ objects with a user-declared constructor don't need zero'ing.
1401   if (CGF.getLangOpts().CPlusPlus)
1402     if (const RecordType *RT = CGF.getContext()
1403                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1404       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1405       if (RD->hasUserDeclaredConstructor())
1406         return;
1407     }
1408 
1409   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1410   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1411   if (Size <= CharUnits::fromQuantity(16))
1412     return;
1413 
1414   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1415   // we prefer to emit memset + individual stores for the rest.
1416   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1417   if (NumNonZeroBytes*4 > Size)
1418     return;
1419 
1420   // Okay, it seems like a good idea to use an initial memset, emit the call.
1421   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1422 
1423   Address Loc = Slot.getAddress();
1424   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1425   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1426 
1427   // Tell the AggExprEmitter that the slot is known zero.
1428   Slot.setZeroed();
1429 }
1430 
1431 
1432 
1433 
1434 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1435 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1436 /// the value of the aggregate expression is not needed.  If VolatileDest is
1437 /// true, DestPtr cannot be 0.
1438 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1439   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1440          "Invalid aggregate expression to emit");
1441   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1442          "slot has bits but no address");
1443 
1444   // Optimize the slot if possible.
1445   CheckAggExprForMemSetUse(Slot, E, *this);
1446 
1447   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1448 }
1449 
1450 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1451   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1452   Address Temp = CreateMemTemp(E->getType());
1453   LValue LV = MakeAddrLValue(Temp, E->getType());
1454   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1455                                          AggValueSlot::DoesNotNeedGCBarriers,
1456                                          AggValueSlot::IsNotAliased));
1457   return LV;
1458 }
1459 
1460 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1461                                         Address SrcPtr, QualType Ty,
1462                                         bool isVolatile,
1463                                         bool isAssignment) {
1464   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1465 
1466   if (getLangOpts().CPlusPlus) {
1467     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1468       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1469       assert((Record->hasTrivialCopyConstructor() ||
1470               Record->hasTrivialCopyAssignment() ||
1471               Record->hasTrivialMoveConstructor() ||
1472               Record->hasTrivialMoveAssignment() ||
1473               Record->isUnion()) &&
1474              "Trying to aggregate-copy a type without a trivial copy/move "
1475              "constructor or assignment operator");
1476       // Ignore empty classes in C++.
1477       if (Record->isEmpty())
1478         return;
1479     }
1480   }
1481 
1482   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1483   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1484   // read from another object that overlaps in anyway the storage of the first
1485   // object, then the overlap shall be exact and the two objects shall have
1486   // qualified or unqualified versions of a compatible type."
1487   //
1488   // memcpy is not defined if the source and destination pointers are exactly
1489   // equal, but other compilers do this optimization, and almost every memcpy
1490   // implementation handles this case safely.  If there is a libc that does not
1491   // safely handle this, we can add a target hook.
1492 
1493   // Get data size info for this aggregate. If this is an assignment,
1494   // don't copy the tail padding, because we might be assigning into a
1495   // base subobject where the tail padding is claimed.  Otherwise,
1496   // copying it is fine.
1497   std::pair<CharUnits, CharUnits> TypeInfo;
1498   if (isAssignment)
1499     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1500   else
1501     TypeInfo = getContext().getTypeInfoInChars(Ty);
1502 
1503   llvm::Value *SizeVal = nullptr;
1504   if (TypeInfo.first.isZero()) {
1505     // But note that getTypeInfo returns 0 for a VLA.
1506     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1507             getContext().getAsArrayType(Ty))) {
1508       QualType BaseEltTy;
1509       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1510       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1511       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1512       if (!isAssignment)
1513         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1514       assert(!TypeInfo.first.isZero());
1515       SizeVal = Builder.CreateNUWMul(
1516           SizeVal,
1517           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1518       if (!isAssignment) {
1519         SizeVal = Builder.CreateNUWSub(
1520             SizeVal,
1521             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1522         SizeVal = Builder.CreateNUWAdd(
1523             SizeVal, llvm::ConstantInt::get(
1524                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1525       }
1526     }
1527   }
1528   if (!SizeVal) {
1529     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1530   }
1531 
1532   // FIXME: If we have a volatile struct, the optimizer can remove what might
1533   // appear to be `extra' memory ops:
1534   //
1535   // volatile struct { int i; } a, b;
1536   //
1537   // int main() {
1538   //   a = b;
1539   //   a = b;
1540   // }
1541   //
1542   // we need to use a different call here.  We use isVolatile to indicate when
1543   // either the source or the destination is volatile.
1544 
1545   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1546   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1547 
1548   // Don't do any of the memmove_collectable tests if GC isn't set.
1549   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1550     // fall through
1551   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1552     RecordDecl *Record = RecordTy->getDecl();
1553     if (Record->hasObjectMember()) {
1554       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1555                                                     SizeVal);
1556       return;
1557     }
1558   } else if (Ty->isArrayType()) {
1559     QualType BaseType = getContext().getBaseElementType(Ty);
1560     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1561       if (RecordTy->getDecl()->hasObjectMember()) {
1562         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1563                                                       SizeVal);
1564         return;
1565       }
1566     }
1567   }
1568 
1569   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1570 
1571   // Determine the metadata to describe the position of any padding in this
1572   // memcpy, as well as the TBAA tags for the members of the struct, in case
1573   // the optimizer wishes to expand it in to scalar memory operations.
1574   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1575     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1576 }
1577