1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 CGBuilderTy &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 //===--------------------------------------------------------------------===// 52 // Visitor Methods 53 //===--------------------------------------------------------------------===// 54 55 void VisitStmt(Stmt *S) { 56 CGF.ErrorUnsupported(S, "aggregate expression"); 57 } 58 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 59 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 60 61 // l-values. 62 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 63 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 64 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 65 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 66 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 67 { EmitAggLoadOfLValue(E); } 68 69 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 70 EmitAggLoadOfLValue(E); 71 } 72 73 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) 74 { EmitAggLoadOfLValue(E); } 75 76 // Operators. 77 // case Expr::UnaryOperatorClass: 78 // case Expr::CastExprClass: 79 void VisitCStyleCastExpr(CStyleCastExpr *E); 80 void VisitImplicitCastExpr(ImplicitCastExpr *E); 81 void VisitCallExpr(const CallExpr *E); 82 void VisitStmtExpr(const StmtExpr *E); 83 void VisitBinaryOperator(const BinaryOperator *BO); 84 void VisitBinAssign(const BinaryOperator *E); 85 void VisitBinComma(const BinaryOperator *E); 86 87 void VisitObjCMessageExpr(ObjCMessageExpr *E); 88 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 89 EmitAggLoadOfLValue(E); 90 } 91 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 92 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 93 94 void VisitConditionalOperator(const ConditionalOperator *CO); 95 void VisitInitListExpr(InitListExpr *E); 96 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 97 Visit(DAE->getExpr()); 98 } 99 void VisitVAArgExpr(VAArgExpr *E); 100 101 void EmitInitializationToLValue(Expr *E, LValue Address); 102 void EmitNullInitializationToLValue(LValue Address, QualType T); 103 // case Expr::ChooseExprClass: 104 105 }; 106 } // end anonymous namespace. 107 108 //===----------------------------------------------------------------------===// 109 // Utilities 110 //===----------------------------------------------------------------------===// 111 112 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 113 /// represents a value lvalue, this method emits the address of the lvalue, 114 /// then loads the result into DestPtr. 115 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 116 LValue LV = CGF.EmitLValue(E); 117 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 118 llvm::Value *SrcPtr = LV.getAddress(); 119 120 // If the result is ignored, don't copy from the value. 121 if (DestPtr == 0) 122 // FIXME: If the source is volatile, we must read from it. 123 return; 124 125 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 126 } 127 128 //===----------------------------------------------------------------------===// 129 // Visitor Methods 130 //===----------------------------------------------------------------------===// 131 132 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 133 // GCC union extension 134 if (E->getType()->isUnionType()) { 135 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 136 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 137 *SD->field_begin(CGF.getContext()), 138 true, 0); 139 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 140 return; 141 } 142 143 Visit(E->getSubExpr()); 144 } 145 146 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 147 assert(CGF.getContext().typesAreCompatible( 148 E->getSubExpr()->getType().getUnqualifiedType(), 149 E->getType().getUnqualifiedType()) && 150 "Implicit cast types must be compatible"); 151 Visit(E->getSubExpr()); 152 } 153 154 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 155 RValue RV = CGF.EmitCallExpr(E); 156 assert(RV.isAggregate() && "Return value must be aggregate value!"); 157 158 // If the result is ignored, don't copy from the value. 159 if (DestPtr == 0) 160 // FIXME: If the source is volatile, we must read from it. 161 return; 162 163 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 164 } 165 166 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 167 RValue RV = CGF.EmitObjCMessageExpr(E); 168 assert(RV.isAggregate() && "Return value must be aggregate value!"); 169 170 // If the result is ignored, don't copy from the value. 171 if (DestPtr == 0) 172 // FIXME: If the source is volatile, we must read from it. 173 return; 174 175 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 176 } 177 178 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 179 RValue RV = CGF.EmitObjCPropertyGet(E); 180 assert(RV.isAggregate() && "Return value must be aggregate value!"); 181 182 // If the result is ignored, don't copy from the value. 183 if (DestPtr == 0) 184 // FIXME: If the source is volatile, we must read from it. 185 return; 186 187 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 188 } 189 190 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 191 RValue RV = CGF.EmitObjCPropertyGet(E); 192 assert(RV.isAggregate() && "Return value must be aggregate value!"); 193 194 // If the result is ignored, don't copy from the value. 195 if (DestPtr == 0) 196 // FIXME: If the source is volatile, we must read from it. 197 return; 198 199 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 200 } 201 202 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 203 CGF.EmitAnyExpr(E->getLHS()); 204 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 205 } 206 207 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 208 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 209 } 210 211 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 212 CGF.ErrorUnsupported(E, "aggregate binary expression"); 213 } 214 215 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 216 // For an assignment to work, the value on the right has 217 // to be compatible with the value on the left. 218 assert(CGF.getContext().typesAreCompatible( 219 E->getLHS()->getType().getUnqualifiedType(), 220 E->getRHS()->getType().getUnqualifiedType()) 221 && "Invalid assignment"); 222 LValue LHS = CGF.EmitLValue(E->getLHS()); 223 224 // We have to special case property setters, otherwise we must have 225 // a simple lvalue (no aggregates inside vectors, bitfields). 226 if (LHS.isPropertyRef()) { 227 // FIXME: Volatility? 228 llvm::Value *AggLoc = DestPtr; 229 if (!AggLoc) 230 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 231 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 232 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 233 RValue::getAggregate(AggLoc)); 234 } 235 else if (LHS.isKVCRef()) { 236 // FIXME: Volatility? 237 llvm::Value *AggLoc = DestPtr; 238 if (!AggLoc) 239 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 240 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 241 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 242 RValue::getAggregate(AggLoc)); 243 } else { 244 // Codegen the RHS so that it stores directly into the LHS. 245 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 246 247 if (DestPtr == 0) 248 return; 249 250 // If the result of the assignment is used, copy the RHS there also. 251 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 252 } 253 } 254 255 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 256 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 257 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 258 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 259 260 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 261 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 262 263 CGF.EmitBlock(LHSBlock); 264 265 // Handle the GNU extension for missing LHS. 266 assert(E->getLHS() && "Must have LHS for aggregate value"); 267 268 Visit(E->getLHS()); 269 CGF.EmitBranch(ContBlock); 270 271 CGF.EmitBlock(RHSBlock); 272 273 Visit(E->getRHS()); 274 CGF.EmitBranch(ContBlock); 275 276 CGF.EmitBlock(ContBlock); 277 } 278 279 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 280 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 281 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 282 283 if (!ArgPtr) { 284 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 285 return; 286 } 287 288 if (DestPtr) 289 // FIXME: volatility 290 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 291 } 292 293 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 294 // FIXME: Are initializers affected by volatile? 295 if (isa<ImplicitValueInitExpr>(E)) { 296 EmitNullInitializationToLValue(LV, E->getType()); 297 } else if (E->getType()->isComplexType()) { 298 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 299 } else if (CGF.hasAggregateLLVMType(E->getType())) { 300 CGF.EmitAnyExpr(E, LV.getAddress(), false); 301 } else { 302 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 303 } 304 } 305 306 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 307 if (!CGF.hasAggregateLLVMType(T)) { 308 // For non-aggregates, we can store zero 309 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 310 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 311 } else { 312 // Otherwise, just memset the whole thing to zero. This is legal 313 // because in LLVM, all default initializers are guaranteed to have a 314 // bit pattern of all zeros. 315 // FIXME: That isn't true for member pointers! 316 // There's a potential optimization opportunity in combining 317 // memsets; that would be easy for arrays, but relatively 318 // difficult for structures with the current code. 319 CGF.EmitMemSetToZero(LV.getAddress(), T); 320 } 321 } 322 323 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 324 #if 0 325 // FIXME: Disabled while we figure out what to do about 326 // test/CodeGen/bitfield.c 327 // 328 // If we can, prefer a copy from a global; this is a lot less 329 // code for long globals, and it's easier for the current optimizers 330 // to analyze. 331 // FIXME: Should we really be doing this? Should we try to avoid 332 // cases where we emit a global with a lot of zeros? Should 333 // we try to avoid short globals? 334 if (E->isConstantInitializer(CGF.getContext(), 0)) { 335 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 336 llvm::GlobalVariable* GV = 337 new llvm::GlobalVariable(C->getType(), true, 338 llvm::GlobalValue::InternalLinkage, 339 C, "", &CGF.CGM.getModule(), 0); 340 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 341 return; 342 } 343 #endif 344 if (E->hadArrayRangeDesignator()) { 345 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 346 } 347 348 // Handle initialization of an array. 349 if (E->getType()->isArrayType()) { 350 const llvm::PointerType *APType = 351 cast<llvm::PointerType>(DestPtr->getType()); 352 const llvm::ArrayType *AType = 353 cast<llvm::ArrayType>(APType->getElementType()); 354 355 uint64_t NumInitElements = E->getNumInits(); 356 357 if (E->getNumInits() > 0) { 358 QualType T1 = E->getType(); 359 QualType T2 = E->getInit(0)->getType(); 360 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 361 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 362 EmitAggLoadOfLValue(E->getInit(0)); 363 return; 364 } 365 } 366 367 uint64_t NumArrayElements = AType->getNumElements(); 368 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 369 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 370 371 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 372 373 for (uint64_t i = 0; i != NumArrayElements; ++i) { 374 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 375 if (i < NumInitElements) 376 EmitInitializationToLValue(E->getInit(i), 377 LValue::MakeAddr(NextVal, CVRqualifier)); 378 else 379 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 380 ElementType); 381 } 382 return; 383 } 384 385 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 386 387 // Do struct initialization; this code just sets each individual member 388 // to the approprate value. This makes bitfield support automatic; 389 // the disadvantage is that the generated code is more difficult for 390 // the optimizer, especially with bitfields. 391 unsigned NumInitElements = E->getNumInits(); 392 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 393 unsigned CurInitVal = 0; 394 395 if (E->getType()->isUnionType()) { 396 // Only initialize one field of a union. The field itself is 397 // specified by the initializer list. 398 if (!E->getInitializedFieldInUnion()) { 399 // Empty union; we have nothing to do. 400 401 #ifndef NDEBUG 402 // Make sure that it's really an empty and not a failure of 403 // semantic analysis. 404 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 405 FieldEnd = SD->field_end(CGF.getContext()); 406 Field != FieldEnd; ++Field) 407 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 408 #endif 409 return; 410 } 411 412 // FIXME: volatility 413 FieldDecl *Field = E->getInitializedFieldInUnion(); 414 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 415 416 if (NumInitElements) { 417 // Store the initializer into the field 418 EmitInitializationToLValue(E->getInit(0), FieldLoc); 419 } else { 420 // Default-initialize to null 421 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 422 } 423 424 return; 425 } 426 427 // Here we iterate over the fields; this makes it simpler to both 428 // default-initialize fields and skip over unnamed fields. 429 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 430 FieldEnd = SD->field_end(CGF.getContext()); 431 Field != FieldEnd; ++Field) { 432 // We're done once we hit the flexible array member 433 if (Field->getType()->isIncompleteArrayType()) 434 break; 435 436 if (Field->isUnnamedBitfield()) 437 continue; 438 439 // FIXME: volatility 440 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 441 if (CurInitVal < NumInitElements) { 442 // Store the initializer into the field 443 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 444 } else { 445 // We're out of initalizers; default-initialize to null 446 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 447 } 448 } 449 } 450 451 //===----------------------------------------------------------------------===// 452 // Entry Points into this File 453 //===----------------------------------------------------------------------===// 454 455 /// EmitAggExpr - Emit the computation of the specified expression of 456 /// aggregate type. The result is computed into DestPtr. Note that if 457 /// DestPtr is null, the value of the aggregate expression is not needed. 458 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 459 bool VolatileDest) { 460 assert(E && hasAggregateLLVMType(E->getType()) && 461 "Invalid aggregate expression to emit"); 462 463 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 464 } 465 466 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 467 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 468 469 EmitMemSetToZero(DestPtr, Ty); 470 } 471 472 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 473 llvm::Value *SrcPtr, QualType Ty) { 474 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 475 476 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 477 // C99 6.5.16.1p3, which states "If the value being stored in an object is 478 // read from another object that overlaps in anyway the storage of the first 479 // object, then the overlap shall be exact and the two objects shall have 480 // qualified or unqualified versions of a compatible type." 481 // 482 // memcpy is not defined if the source and destination pointers are exactly 483 // equal, but other compilers do this optimization, and almost every memcpy 484 // implementation handles this case safely. If there is a libc that does not 485 // safely handle this, we can add a target hook. 486 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 487 if (DestPtr->getType() != BP) 488 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 489 if (SrcPtr->getType() != BP) 490 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 491 492 // Get size and alignment info for this aggregate. 493 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 494 495 // FIXME: Handle variable sized types. 496 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 497 498 Builder.CreateCall4(CGM.getMemCpyFn(), 499 DestPtr, SrcPtr, 500 // TypeInfo.first describes size in bits. 501 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 502 llvm::ConstantInt::get(llvm::Type::Int32Ty, 503 TypeInfo.second/8)); 504 } 505