1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   llvm::Value *DestPtr;
37   bool VolatileDest;
38   bool IgnoreResult;
39   bool IsInitializer;
40   bool RequiresGCollection;
41 public:
42   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
43                  bool ignore, bool isinit, bool requiresGCollection)
44     : CGF(cgf), Builder(CGF.Builder),
45       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
46       IsInitializer(isinit), RequiresGCollection(requiresGCollection) {
47   }
48 
49   //===--------------------------------------------------------------------===//
50   //                               Utilities
51   //===--------------------------------------------------------------------===//
52 
53   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
54   /// represents a value lvalue, this method emits the address of the lvalue,
55   /// then loads the result into DestPtr.
56   void EmitAggLoadOfLValue(const Expr *E);
57 
58   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
59   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
60   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
61 
62   //===--------------------------------------------------------------------===//
63   //                            Visitor Methods
64   //===--------------------------------------------------------------------===//
65 
66   void VisitStmt(Stmt *S) {
67     CGF.ErrorUnsupported(S, "aggregate expression");
68   }
69   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
70   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
71 
72   // l-values.
73   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
74   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
75   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
76   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
77   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
78     EmitAggLoadOfLValue(E);
79   }
80   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
81     EmitAggLoadOfLValue(E);
82   }
83   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
84     EmitAggLoadOfLValue(E);
85   }
86   void VisitPredefinedExpr(const PredefinedExpr *E) {
87     EmitAggLoadOfLValue(E);
88   }
89 
90   // Operators.
91   void VisitCastExpr(CastExpr *E);
92   void VisitCallExpr(const CallExpr *E);
93   void VisitStmtExpr(const StmtExpr *E);
94   void VisitBinaryOperator(const BinaryOperator *BO);
95   void VisitBinAssign(const BinaryOperator *E);
96   void VisitBinComma(const BinaryOperator *E);
97 
98   void VisitObjCMessageExpr(ObjCMessageExpr *E);
99   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
100     EmitAggLoadOfLValue(E);
101   }
102   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
103   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
104 
105   void VisitConditionalOperator(const ConditionalOperator *CO);
106   void VisitChooseExpr(const ChooseExpr *CE);
107   void VisitInitListExpr(InitListExpr *E);
108   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
109     Visit(DAE->getExpr());
110   }
111   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
112   void VisitCXXConstructExpr(const CXXConstructExpr *E);
113   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
114 
115   void VisitVAArgExpr(VAArgExpr *E);
116 
117   void EmitInitializationToLValue(Expr *E, LValue Address);
118   void EmitNullInitializationToLValue(LValue Address, QualType T);
119   //  case Expr::ChooseExprClass:
120 
121 };
122 }  // end anonymous namespace.
123 
124 //===----------------------------------------------------------------------===//
125 //                                Utilities
126 //===----------------------------------------------------------------------===//
127 
128 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
129 /// represents a value lvalue, this method emits the address of the lvalue,
130 /// then loads the result into DestPtr.
131 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
132   LValue LV = CGF.EmitLValue(E);
133   EmitFinalDestCopy(E, LV);
134 }
135 
136 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
137 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
138   assert(Src.isAggregate() && "value must be aggregate value!");
139 
140   // If the result is ignored, don't copy from the value.
141   if (DestPtr == 0) {
142     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
143       return;
144     // If the source is volatile, we must read from it; to do that, we need
145     // some place to put it.
146     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
147   }
148 
149   if (RequiresGCollection) {
150     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
151                                               DestPtr, Src.getAggregateAddr(),
152                                               E->getType());
153     return;
154   }
155   // If the result of the assignment is used, copy the LHS there also.
156   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
157   // from the source as well, as we can't eliminate it if either operand
158   // is volatile, unless copy has volatile for both source and destination..
159   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
160                         VolatileDest|Src.isVolatileQualified());
161 }
162 
163 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
164 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
165   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
166 
167   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
168                                             Src.isVolatileQualified()),
169                     Ignore);
170 }
171 
172 //===----------------------------------------------------------------------===//
173 //                            Visitor Methods
174 //===----------------------------------------------------------------------===//
175 
176 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
177   switch (E->getCastKind()) {
178   default: assert(0 && "Unhandled cast kind!");
179 
180   case CastExpr::CK_ToUnion: {
181     // GCC union extension
182     QualType PtrTy =
183     CGF.getContext().getPointerType(E->getSubExpr()->getType());
184     llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
185                                                  CGF.ConvertType(PtrTy));
186     EmitInitializationToLValue(E->getSubExpr(),
187                                LValue::MakeAddr(CastPtr, Qualifiers()));
188     break;
189   }
190 
191   // FIXME: Remove the CK_Unknown check here.
192   case CastExpr::CK_Unknown:
193   case CastExpr::CK_NoOp:
194   case CastExpr::CK_UserDefinedConversion:
195   case CastExpr::CK_ConstructorConversion:
196     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
197                                                    E->getType()) &&
198            "Implicit cast types must be compatible");
199     Visit(E->getSubExpr());
200     break;
201   }
202 }
203 
204 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
205   if (E->getCallReturnType()->isReferenceType()) {
206     EmitAggLoadOfLValue(E);
207     return;
208   }
209 
210   RValue RV = CGF.EmitCallExpr(E);
211   EmitFinalDestCopy(E, RV);
212 }
213 
214 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
215   RValue RV = CGF.EmitObjCMessageExpr(E);
216   EmitFinalDestCopy(E, RV);
217 }
218 
219 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
220   RValue RV = CGF.EmitObjCPropertyGet(E);
221   EmitFinalDestCopy(E, RV);
222 }
223 
224 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
225                                    ObjCImplicitSetterGetterRefExpr *E) {
226   RValue RV = CGF.EmitObjCPropertyGet(E);
227   EmitFinalDestCopy(E, RV);
228 }
229 
230 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
231   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
232   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
233                   /*IgnoreResult=*/false, IsInitializer);
234 }
235 
236 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
237   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
238 }
239 
240 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
241   CGF.ErrorUnsupported(E, "aggregate binary expression");
242 }
243 
244 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
245   // For an assignment to work, the value on the right has
246   // to be compatible with the value on the left.
247   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
248                                                  E->getRHS()->getType())
249          && "Invalid assignment");
250   LValue LHS = CGF.EmitLValue(E->getLHS());
251 
252   // We have to special case property setters, otherwise we must have
253   // a simple lvalue (no aggregates inside vectors, bitfields).
254   if (LHS.isPropertyRef()) {
255     llvm::Value *AggLoc = DestPtr;
256     if (!AggLoc)
257       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
258     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
259     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
260                             RValue::getAggregate(AggLoc, VolatileDest));
261   } else if (LHS.isKVCRef()) {
262     llvm::Value *AggLoc = DestPtr;
263     if (!AggLoc)
264       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
265     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
266     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
267                             RValue::getAggregate(AggLoc, VolatileDest));
268   } else {
269     bool RequiresGCollection = false;
270     if (CGF.getContext().getLangOptions().NeXTRuntime) {
271       QualType LHSTy = E->getLHS()->getType();
272       if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
273         RequiresGCollection = FDTTy->getDecl()->hasObjectMember();
274     }
275     // Codegen the RHS so that it stores directly into the LHS.
276     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(),
277                     false, false, RequiresGCollection);
278     EmitFinalDestCopy(E, LHS, true);
279   }
280 }
281 
282 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
283   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
284   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
285   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
286 
287   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
288   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
289 
290   CGF.PushConditionalTempDestruction();
291   CGF.EmitBlock(LHSBlock);
292 
293   // Handle the GNU extension for missing LHS.
294   assert(E->getLHS() && "Must have LHS for aggregate value");
295 
296   Visit(E->getLHS());
297   CGF.PopConditionalTempDestruction();
298   CGF.EmitBranch(ContBlock);
299 
300   CGF.PushConditionalTempDestruction();
301   CGF.EmitBlock(RHSBlock);
302 
303   Visit(E->getRHS());
304   CGF.PopConditionalTempDestruction();
305   CGF.EmitBranch(ContBlock);
306 
307   CGF.EmitBlock(ContBlock);
308 }
309 
310 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
311   Visit(CE->getChosenSubExpr(CGF.getContext()));
312 }
313 
314 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
315   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
316   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
317 
318   if (!ArgPtr) {
319     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
320     return;
321   }
322 
323   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers()));
324 }
325 
326 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
327   llvm::Value *Val = DestPtr;
328 
329   if (!Val) {
330     // Create a temporary variable.
331     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
332 
333     // FIXME: volatile
334     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
335   } else
336     Visit(E->getSubExpr());
337 
338   // Don't make this a live temporary if we're emitting an initializer expr.
339   if (!IsInitializer)
340     CGF.PushCXXTemporary(E->getTemporary(), Val);
341 }
342 
343 void
344 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
345   llvm::Value *Val = DestPtr;
346 
347   if (!Val) {
348     // Create a temporary variable.
349     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
350   }
351 
352   CGF.EmitCXXConstructExpr(Val, E);
353 }
354 
355 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
356   CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer);
357 }
358 
359 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
360   // FIXME: Ignore result?
361   // FIXME: Are initializers affected by volatile?
362   if (isa<ImplicitValueInitExpr>(E)) {
363     EmitNullInitializationToLValue(LV, E->getType());
364   } else if (E->getType()->isComplexType()) {
365     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
366   } else if (CGF.hasAggregateLLVMType(E->getType())) {
367     CGF.EmitAnyExpr(E, LV.getAddress(), false);
368   } else {
369     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
370   }
371 }
372 
373 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
374   if (!CGF.hasAggregateLLVMType(T)) {
375     // For non-aggregates, we can store zero
376     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
377     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
378   } else {
379     // Otherwise, just memset the whole thing to zero.  This is legal
380     // because in LLVM, all default initializers are guaranteed to have a
381     // bit pattern of all zeros.
382     // FIXME: That isn't true for member pointers!
383     // There's a potential optimization opportunity in combining
384     // memsets; that would be easy for arrays, but relatively
385     // difficult for structures with the current code.
386     CGF.EmitMemSetToZero(LV.getAddress(), T);
387   }
388 }
389 
390 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
391 #if 0
392   // FIXME: Disabled while we figure out what to do about
393   // test/CodeGen/bitfield.c
394   //
395   // If we can, prefer a copy from a global; this is a lot less code for long
396   // globals, and it's easier for the current optimizers to analyze.
397   // FIXME: Should we really be doing this? Should we try to avoid cases where
398   // we emit a global with a lot of zeros?  Should we try to avoid short
399   // globals?
400   if (E->isConstantInitializer(CGF.getContext(), 0)) {
401     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
402     llvm::GlobalVariable* GV =
403     new llvm::GlobalVariable(C->getType(), true,
404                              llvm::GlobalValue::InternalLinkage,
405                              C, "", &CGF.CGM.getModule(), 0);
406     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
407     return;
408   }
409 #endif
410   if (E->hadArrayRangeDesignator()) {
411     CGF.ErrorUnsupported(E, "GNU array range designator extension");
412   }
413 
414   // Handle initialization of an array.
415   if (E->getType()->isArrayType()) {
416     const llvm::PointerType *APType =
417       cast<llvm::PointerType>(DestPtr->getType());
418     const llvm::ArrayType *AType =
419       cast<llvm::ArrayType>(APType->getElementType());
420 
421     uint64_t NumInitElements = E->getNumInits();
422 
423     if (E->getNumInits() > 0) {
424       QualType T1 = E->getType();
425       QualType T2 = E->getInit(0)->getType();
426       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
427         EmitAggLoadOfLValue(E->getInit(0));
428         return;
429       }
430     }
431 
432     uint64_t NumArrayElements = AType->getNumElements();
433     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
434     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
435 
436     // FIXME: were we intentionally ignoring address spaces and GC attributes?
437     Qualifiers Quals = CGF.MakeQualifiers(ElementType);
438 
439     for (uint64_t i = 0; i != NumArrayElements; ++i) {
440       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
441       if (i < NumInitElements)
442         EmitInitializationToLValue(E->getInit(i),
443                                    LValue::MakeAddr(NextVal, Quals));
444       else
445         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals),
446                                        ElementType);
447     }
448     return;
449   }
450 
451   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
452 
453   // Do struct initialization; this code just sets each individual member
454   // to the approprate value.  This makes bitfield support automatic;
455   // the disadvantage is that the generated code is more difficult for
456   // the optimizer, especially with bitfields.
457   unsigned NumInitElements = E->getNumInits();
458   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
459   unsigned CurInitVal = 0;
460 
461   if (E->getType()->isUnionType()) {
462     // Only initialize one field of a union. The field itself is
463     // specified by the initializer list.
464     if (!E->getInitializedFieldInUnion()) {
465       // Empty union; we have nothing to do.
466 
467 #ifndef NDEBUG
468       // Make sure that it's really an empty and not a failure of
469       // semantic analysis.
470       for (RecordDecl::field_iterator Field = SD->field_begin(),
471                                    FieldEnd = SD->field_end();
472            Field != FieldEnd; ++Field)
473         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
474 #endif
475       return;
476     }
477 
478     // FIXME: volatility
479     FieldDecl *Field = E->getInitializedFieldInUnion();
480     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
481 
482     if (NumInitElements) {
483       // Store the initializer into the field
484       EmitInitializationToLValue(E->getInit(0), FieldLoc);
485     } else {
486       // Default-initialize to null
487       EmitNullInitializationToLValue(FieldLoc, Field->getType());
488     }
489 
490     return;
491   }
492 
493   // Here we iterate over the fields; this makes it simpler to both
494   // default-initialize fields and skip over unnamed fields.
495   for (RecordDecl::field_iterator Field = SD->field_begin(),
496                                FieldEnd = SD->field_end();
497        Field != FieldEnd; ++Field) {
498     // We're done once we hit the flexible array member
499     if (Field->getType()->isIncompleteArrayType())
500       break;
501 
502     if (Field->isUnnamedBitfield())
503       continue;
504 
505     // FIXME: volatility
506     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
507     // We never generate write-barries for initialized fields.
508     LValue::SetObjCNonGC(FieldLoc, true);
509     if (CurInitVal < NumInitElements) {
510       // Store the initializer into the field
511       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
512     } else {
513       // We're out of initalizers; default-initialize to null
514       EmitNullInitializationToLValue(FieldLoc, Field->getType());
515     }
516   }
517 }
518 
519 //===----------------------------------------------------------------------===//
520 //                        Entry Points into this File
521 //===----------------------------------------------------------------------===//
522 
523 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
524 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
525 /// the value of the aggregate expression is not needed.  If VolatileDest is
526 /// true, DestPtr cannot be 0.
527 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
528                                   bool VolatileDest, bool IgnoreResult,
529                                   bool IsInitializer,
530                                   bool RequiresGCollection) {
531   assert(E && hasAggregateLLVMType(E->getType()) &&
532          "Invalid aggregate expression to emit");
533   assert ((DestPtr != 0 || VolatileDest == false)
534           && "volatile aggregate can't be 0");
535 
536   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer,
537                  RequiresGCollection)
538     .Visit(const_cast<Expr*>(E));
539 }
540 
541 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
542   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
543 
544   EmitMemSetToZero(DestPtr, Ty);
545 }
546 
547 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
548                                         llvm::Value *SrcPtr, QualType Ty,
549                                         bool isVolatile) {
550   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
551 
552   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
553   // C99 6.5.16.1p3, which states "If the value being stored in an object is
554   // read from another object that overlaps in anyway the storage of the first
555   // object, then the overlap shall be exact and the two objects shall have
556   // qualified or unqualified versions of a compatible type."
557   //
558   // memcpy is not defined if the source and destination pointers are exactly
559   // equal, but other compilers do this optimization, and almost every memcpy
560   // implementation handles this case safely.  If there is a libc that does not
561   // safely handle this, we can add a target hook.
562   const llvm::Type *BP =
563                 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
564   if (DestPtr->getType() != BP)
565     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
566   if (SrcPtr->getType() != BP)
567     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
568 
569   // Get size and alignment info for this aggregate.
570   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
571 
572   // FIXME: Handle variable sized types.
573   const llvm::Type *IntPtr =
574           llvm::IntegerType::get(VMContext, LLVMPointerWidth);
575 
576   // FIXME: If we have a volatile struct, the optimizer can remove what might
577   // appear to be `extra' memory ops:
578   //
579   // volatile struct { int i; } a, b;
580   //
581   // int main() {
582   //   a = b;
583   //   a = b;
584   // }
585   //
586   // we need to use a differnt call here.  We use isVolatile to indicate when
587   // either the source or the destination is volatile.
588   Builder.CreateCall4(CGM.getMemCpyFn(),
589                       DestPtr, SrcPtr,
590                       // TypeInfo.first describes size in bits.
591                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
592                       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
593                                              TypeInfo.second/8));
594 }
595