1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/Constants.h" 22 #include "llvm/Function.h" 23 #include "llvm/GlobalVariable.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IgnoreResult; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 53 } 54 55 AggValueSlot EnsureSlot(QualType T) { 56 if (!Dest.isIgnored()) return Dest; 57 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 58 } 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 62 bool ignore) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IgnoreResult(ignore) { 65 } 66 67 //===--------------------------------------------------------------------===// 68 // Utilities 69 //===--------------------------------------------------------------------===// 70 71 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 72 /// represents a value lvalue, this method emits the address of the lvalue, 73 /// then loads the result into DestPtr. 74 void EmitAggLoadOfLValue(const Expr *E); 75 76 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 77 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 78 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false, 79 unsigned Alignment = 0); 80 81 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 82 83 void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); 84 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 85 QualType elementType, InitListExpr *E); 86 87 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 88 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 89 return AggValueSlot::NeedsGCBarriers; 90 return AggValueSlot::DoesNotNeedGCBarriers; 91 } 92 93 bool TypeRequiresGCollection(QualType T); 94 95 //===--------------------------------------------------------------------===// 96 // Visitor Methods 97 //===--------------------------------------------------------------------===// 98 99 void VisitStmt(Stmt *S) { 100 CGF.ErrorUnsupported(S, "aggregate expression"); 101 } 102 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 103 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 104 Visit(GE->getResultExpr()); 105 } 106 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 107 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 108 return Visit(E->getReplacement()); 109 } 110 111 // l-values. 112 void VisitDeclRefExpr(DeclRefExpr *E) { 113 // For aggregates, we should always be able to emit the variable 114 // as an l-value unless it's a reference. This is due to the fact 115 // that we can't actually ever see a normal l2r conversion on an 116 // aggregate in C++, and in C there's no language standard 117 // actively preventing us from listing variables in the captures 118 // list of a block. 119 if (E->getDecl()->getType()->isReferenceType()) { 120 if (CodeGenFunction::ConstantEmission result 121 = CGF.tryEmitAsConstant(E)) { 122 EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E)); 123 return; 124 } 125 } 126 127 EmitAggLoadOfLValue(E); 128 } 129 130 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 131 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 132 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 133 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 134 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 135 EmitAggLoadOfLValue(E); 136 } 137 void VisitPredefinedExpr(const PredefinedExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 141 // Operators. 142 void VisitCastExpr(CastExpr *E); 143 void VisitCallExpr(const CallExpr *E); 144 void VisitStmtExpr(const StmtExpr *E); 145 void VisitBinaryOperator(const BinaryOperator *BO); 146 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 147 void VisitBinAssign(const BinaryOperator *E); 148 void VisitBinComma(const BinaryOperator *E); 149 150 void VisitObjCMessageExpr(ObjCMessageExpr *E); 151 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 152 EmitAggLoadOfLValue(E); 153 } 154 155 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 156 void VisitChooseExpr(const ChooseExpr *CE); 157 void VisitInitListExpr(InitListExpr *E); 158 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 159 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 160 Visit(DAE->getExpr()); 161 } 162 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 163 void VisitCXXConstructExpr(const CXXConstructExpr *E); 164 void VisitLambdaExpr(LambdaExpr *E); 165 void VisitExprWithCleanups(ExprWithCleanups *E); 166 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 167 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 168 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 169 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 170 171 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 172 if (E->isGLValue()) { 173 LValue LV = CGF.EmitPseudoObjectLValue(E); 174 return EmitFinalDestCopy(E, LV); 175 } 176 177 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 178 } 179 180 void VisitVAArgExpr(VAArgExpr *E); 181 182 void EmitInitializationToLValue(Expr *E, LValue Address, 183 AggValueSlot::IsCompleteObject_t isCompleteObject); 184 void EmitNullInitializationToLValue(LValue Address); 185 // case Expr::ChooseExprClass: 186 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 187 void VisitAtomicExpr(AtomicExpr *E) { 188 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 189 } 190 }; 191 } // end anonymous namespace. 192 193 //===----------------------------------------------------------------------===// 194 // Utilities 195 //===----------------------------------------------------------------------===// 196 197 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 198 /// represents a value lvalue, this method emits the address of the lvalue, 199 /// then loads the result into DestPtr. 200 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 201 LValue LV = CGF.EmitLValue(E); 202 EmitFinalDestCopy(E, LV); 203 } 204 205 /// \brief True if the given aggregate type requires special GC API calls. 206 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 207 // Only record types have members that might require garbage collection. 208 const RecordType *RecordTy = T->getAs<RecordType>(); 209 if (!RecordTy) return false; 210 211 // Don't mess with non-trivial C++ types. 212 RecordDecl *Record = RecordTy->getDecl(); 213 if (isa<CXXRecordDecl>(Record) && 214 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 215 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 216 return false; 217 218 // Check whether the type has an object member. 219 return Record->hasObjectMember(); 220 } 221 222 /// \brief Perform the final move to DestPtr if for some reason 223 /// getReturnValueSlot() didn't use it directly. 224 /// 225 /// The idea is that you do something like this: 226 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 227 /// EmitMoveFromReturnSlot(E, Result); 228 /// 229 /// If nothing interferes, this will cause the result to be emitted 230 /// directly into the return value slot. Otherwise, a final move 231 /// will be performed. 232 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 233 if (shouldUseDestForReturnSlot()) { 234 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 235 // The possibility of undef rvalues complicates that a lot, 236 // though, so we can't really assert. 237 return; 238 } 239 240 // Otherwise, do a final copy, 241 assert(Dest.getAddr() != Src.getAggregateAddr()); 242 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 243 } 244 245 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 246 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore, 247 unsigned Alignment) { 248 assert(Src.isAggregate() && "value must be aggregate value!"); 249 250 // If Dest is ignored, then we're evaluating an aggregate expression 251 // in a context (like an expression statement) that doesn't care 252 // about the result. C says that an lvalue-to-rvalue conversion is 253 // performed in these cases; C++ says that it is not. In either 254 // case, we don't actually need to do anything unless the value is 255 // volatile. 256 if (Dest.isIgnored()) { 257 if (!Src.isVolatileQualified() || 258 CGF.CGM.getLangOpts().CPlusPlus || 259 (IgnoreResult && Ignore)) 260 return; 261 262 // If the source is volatile, we must read from it; to do that, we need 263 // some place to put it. 264 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 265 } 266 267 if (Dest.requiresGCollection()) { 268 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 269 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 270 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 271 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 272 Dest.getAddr(), 273 Src.getAggregateAddr(), 274 SizeVal); 275 return; 276 } 277 // If the result of the assignment is used, copy the LHS there also. 278 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 279 // from the source as well, as we can't eliminate it if either operand 280 // is volatile, unless copy has volatile for both source and destination.. 281 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 282 Dest.isVolatile()|Src.isVolatileQualified(), 283 Alignment, Dest.isCompleteObject()); 284 } 285 286 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 287 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 288 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 289 290 CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment()); 291 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity()); 292 } 293 294 static QualType GetStdInitializerListElementType(QualType T) { 295 // Just assume that this is really std::initializer_list. 296 ClassTemplateSpecializationDecl *specialization = 297 cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); 298 return specialization->getTemplateArgs()[0].getAsType(); 299 } 300 301 /// \brief Prepare cleanup for the temporary array. 302 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, 303 QualType arrayType, 304 llvm::Value *addr, 305 const InitListExpr *initList) { 306 QualType::DestructionKind dtorKind = arrayType.isDestructedType(); 307 if (!dtorKind) 308 return; // Type doesn't need destroying. 309 if (dtorKind != QualType::DK_cxx_destructor) { 310 CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); 311 return; 312 } 313 314 CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); 315 CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, 316 /*EHCleanup=*/true); 317 } 318 319 /// \brief Emit the initializer for a std::initializer_list initialized with a 320 /// real initializer list. 321 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, 322 InitListExpr *initList) { 323 // We emit an array containing the elements, then have the init list point 324 // at the array. 325 ASTContext &ctx = CGF.getContext(); 326 unsigned numInits = initList->getNumInits(); 327 QualType element = GetStdInitializerListElementType(initList->getType()); 328 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 329 QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); 330 llvm::Type *LTy = CGF.ConvertTypeForMem(array); 331 llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); 332 alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); 333 alloc->setName(".initlist."); 334 335 EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); 336 337 // FIXME: The diagnostics are somewhat out of place here. 338 RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); 339 RecordDecl::field_iterator field = record->field_begin(); 340 if (field == record->field_end()) { 341 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 342 return; 343 } 344 345 QualType elementPtr = ctx.getPointerType(element.withConst()); 346 347 // Start pointer. 348 if (!ctx.hasSameType(field->getType(), elementPtr)) { 349 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 350 return; 351 } 352 LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0); 353 llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); 354 CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); 355 ++field; 356 357 if (field == record->field_end()) { 358 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 359 return; 360 } 361 LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0); 362 if (ctx.hasSameType(field->getType(), elementPtr)) { 363 // End pointer. 364 llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); 365 CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); 366 } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { 367 // Length. 368 CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); 369 } else { 370 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 371 return; 372 } 373 374 if (!Dest.isExternallyDestructed()) 375 EmitStdInitializerListCleanup(CGF, array, alloc, initList); 376 } 377 378 /// \brief Emit initialization of an array from an initializer list. 379 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 380 QualType elementType, InitListExpr *E) { 381 uint64_t NumInitElements = E->getNumInits(); 382 383 uint64_t NumArrayElements = AType->getNumElements(); 384 assert(NumInitElements <= NumArrayElements); 385 386 // DestPtr is an array*. Construct an elementType* by drilling 387 // down a level. 388 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 389 llvm::Value *indices[] = { zero, zero }; 390 llvm::Value *begin = 391 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 392 393 // Exception safety requires us to destroy all the 394 // already-constructed members if an initializer throws. 395 // For that, we'll need an EH cleanup. 396 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 397 llvm::AllocaInst *endOfInit = 0; 398 EHScopeStack::stable_iterator cleanup; 399 llvm::Instruction *cleanupDominator = 0; 400 if (CGF.needsEHCleanup(dtorKind)) { 401 // In principle we could tell the cleanup where we are more 402 // directly, but the control flow can get so varied here that it 403 // would actually be quite complex. Therefore we go through an 404 // alloca. 405 endOfInit = CGF.CreateTempAlloca(begin->getType(), 406 "arrayinit.endOfInit"); 407 cleanupDominator = Builder.CreateStore(begin, endOfInit); 408 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 409 CGF.getDestroyer(dtorKind)); 410 cleanup = CGF.EHStack.stable_begin(); 411 412 // Otherwise, remember that we didn't need a cleanup. 413 } else { 414 dtorKind = QualType::DK_none; 415 } 416 417 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 418 419 // The 'current element to initialize'. The invariants on this 420 // variable are complicated. Essentially, after each iteration of 421 // the loop, it points to the last initialized element, except 422 // that it points to the beginning of the array before any 423 // elements have been initialized. 424 llvm::Value *element = begin; 425 426 // Emit the explicit initializers. 427 for (uint64_t i = 0; i != NumInitElements; ++i) { 428 // Advance to the next element. 429 if (i > 0) { 430 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 431 432 // Tell the cleanup that it needs to destroy up to this 433 // element. TODO: some of these stores can be trivially 434 // observed to be unnecessary. 435 if (endOfInit) Builder.CreateStore(element, endOfInit); 436 } 437 438 // If these are nested std::initializer_list inits, do them directly, 439 // because they are conceptually the same "location". 440 InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); 441 if (initList && initList->initializesStdInitializerList()) { 442 EmitStdInitializerList(element, initList); 443 } else { 444 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 445 EmitInitializationToLValue(E->getInit(i), elementLV, 446 AggValueSlot::IsCompleteObject); 447 } 448 } 449 450 // Check whether there's a non-trivial array-fill expression. 451 // Note that this will be a CXXConstructExpr even if the element 452 // type is an array (or array of array, etc.) of class type. 453 Expr *filler = E->getArrayFiller(); 454 bool hasTrivialFiller = true; 455 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 456 assert(cons->getConstructor()->isDefaultConstructor()); 457 hasTrivialFiller = cons->getConstructor()->isTrivial(); 458 } 459 460 // Any remaining elements need to be zero-initialized, possibly 461 // using the filler expression. We can skip this if the we're 462 // emitting to zeroed memory. 463 if (NumInitElements != NumArrayElements && 464 !(Dest.isZeroed() && hasTrivialFiller && 465 CGF.getTypes().isZeroInitializable(elementType))) { 466 467 // Use an actual loop. This is basically 468 // do { *array++ = filler; } while (array != end); 469 470 // Advance to the start of the rest of the array. 471 if (NumInitElements) { 472 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 473 if (endOfInit) Builder.CreateStore(element, endOfInit); 474 } 475 476 // Compute the end of the array. 477 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 478 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 479 "arrayinit.end"); 480 481 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 482 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 483 484 // Jump into the body. 485 CGF.EmitBlock(bodyBB); 486 llvm::PHINode *currentElement = 487 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 488 currentElement->addIncoming(element, entryBB); 489 490 // Emit the actual filler expression. 491 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 492 if (filler) 493 EmitInitializationToLValue(filler, elementLV, 494 AggValueSlot::IsCompleteObject); 495 else 496 EmitNullInitializationToLValue(elementLV); 497 498 // Move on to the next element. 499 llvm::Value *nextElement = 500 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 501 502 // Tell the EH cleanup that we finished with the last element. 503 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 504 505 // Leave the loop if we're done. 506 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 507 "arrayinit.done"); 508 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 509 Builder.CreateCondBr(done, endBB, bodyBB); 510 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 511 512 CGF.EmitBlock(endBB); 513 } 514 515 // Leave the partial-array cleanup if we entered one. 516 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 517 } 518 519 //===----------------------------------------------------------------------===// 520 // Visitor Methods 521 //===----------------------------------------------------------------------===// 522 523 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 524 Visit(E->GetTemporaryExpr()); 525 } 526 527 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 528 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 529 } 530 531 void 532 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 533 if (E->getType().isPODType(CGF.getContext())) { 534 // For a POD type, just emit a load of the lvalue + a copy, because our 535 // compound literal might alias the destination. 536 // FIXME: This is a band-aid; the real problem appears to be in our handling 537 // of assignments, where we store directly into the LHS without checking 538 // whether anything in the RHS aliases. 539 EmitAggLoadOfLValue(E); 540 return; 541 } 542 543 AggValueSlot Slot = EnsureSlot(E->getType()); 544 CGF.EmitAggExpr(E->getInitializer(), Slot); 545 } 546 547 548 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 549 switch (E->getCastKind()) { 550 case CK_Dynamic: { 551 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 552 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 553 // FIXME: Do we also need to handle property references here? 554 if (LV.isSimple()) 555 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 556 else 557 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 558 559 if (!Dest.isIgnored()) 560 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 561 break; 562 } 563 564 case CK_ToUnion: { 565 if (Dest.isIgnored()) break; 566 567 // GCC union extension 568 QualType Ty = E->getSubExpr()->getType(); 569 QualType PtrTy = CGF.getContext().getPointerType(Ty); 570 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 571 CGF.ConvertType(PtrTy)); 572 EmitInitializationToLValue(E->getSubExpr(), 573 CGF.MakeAddrLValue(CastPtr, Ty), 574 Dest.isCompleteObject()); 575 break; 576 } 577 578 case CK_DerivedToBase: 579 case CK_BaseToDerived: 580 case CK_UncheckedDerivedToBase: { 581 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 582 "should have been unpacked before we got here"); 583 } 584 585 case CK_LValueToRValue: // hope for downstream optimization 586 case CK_NoOp: 587 case CK_AtomicToNonAtomic: 588 case CK_NonAtomicToAtomic: 589 case CK_UserDefinedConversion: 590 case CK_ConstructorConversion: 591 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 592 E->getType()) && 593 "Implicit cast types must be compatible"); 594 Visit(E->getSubExpr()); 595 break; 596 597 case CK_LValueBitCast: 598 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 599 600 case CK_Dependent: 601 case CK_BitCast: 602 case CK_ArrayToPointerDecay: 603 case CK_FunctionToPointerDecay: 604 case CK_NullToPointer: 605 case CK_NullToMemberPointer: 606 case CK_BaseToDerivedMemberPointer: 607 case CK_DerivedToBaseMemberPointer: 608 case CK_MemberPointerToBoolean: 609 case CK_ReinterpretMemberPointer: 610 case CK_IntegralToPointer: 611 case CK_PointerToIntegral: 612 case CK_PointerToBoolean: 613 case CK_ToVoid: 614 case CK_VectorSplat: 615 case CK_IntegralCast: 616 case CK_IntegralToBoolean: 617 case CK_IntegralToFloating: 618 case CK_FloatingToIntegral: 619 case CK_FloatingToBoolean: 620 case CK_FloatingCast: 621 case CK_CPointerToObjCPointerCast: 622 case CK_BlockPointerToObjCPointerCast: 623 case CK_AnyPointerToBlockPointerCast: 624 case CK_ObjCObjectLValueCast: 625 case CK_FloatingRealToComplex: 626 case CK_FloatingComplexToReal: 627 case CK_FloatingComplexToBoolean: 628 case CK_FloatingComplexCast: 629 case CK_FloatingComplexToIntegralComplex: 630 case CK_IntegralRealToComplex: 631 case CK_IntegralComplexToReal: 632 case CK_IntegralComplexToBoolean: 633 case CK_IntegralComplexCast: 634 case CK_IntegralComplexToFloatingComplex: 635 case CK_ARCProduceObject: 636 case CK_ARCConsumeObject: 637 case CK_ARCReclaimReturnedObject: 638 case CK_ARCExtendBlockObject: 639 case CK_CopyAndAutoreleaseBlockObject: 640 llvm_unreachable("cast kind invalid for aggregate types"); 641 } 642 } 643 644 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 645 if (E->getCallReturnType()->isReferenceType()) { 646 EmitAggLoadOfLValue(E); 647 return; 648 } 649 650 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 651 EmitMoveFromReturnSlot(E, RV); 652 } 653 654 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 655 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 656 EmitMoveFromReturnSlot(E, RV); 657 } 658 659 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 660 CGF.EmitIgnoredExpr(E->getLHS()); 661 Visit(E->getRHS()); 662 } 663 664 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 665 CodeGenFunction::StmtExprEvaluation eval(CGF); 666 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 667 } 668 669 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 670 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 671 VisitPointerToDataMemberBinaryOperator(E); 672 else 673 CGF.ErrorUnsupported(E, "aggregate binary expression"); 674 } 675 676 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 677 const BinaryOperator *E) { 678 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 679 EmitFinalDestCopy(E, LV); 680 } 681 682 /// Quickly check whether the object looks like it might be a complete 683 /// object. 684 static AggValueSlot::IsCompleteObject_t isCompleteObject(const Expr *E) { 685 E = E->IgnoreParens(); 686 687 QualType objectType; 688 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 689 objectType = DRE->getDecl()->getType(); 690 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 691 objectType = ME->getMemberDecl()->getType(); 692 } else { 693 // Be conservative. 694 return AggValueSlot::MayNotBeCompleteObject; 695 } 696 697 // The expression refers directly to some sort of object. 698 // If that object has reference type, be conservative. 699 if (objectType->isReferenceType()) 700 return AggValueSlot::MayNotBeCompleteObject; 701 702 return AggValueSlot::IsCompleteObject; 703 } 704 705 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 706 // For an assignment to work, the value on the right has 707 // to be compatible with the value on the left. 708 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 709 E->getRHS()->getType()) 710 && "Invalid assignment"); 711 712 if (const DeclRefExpr *DRE 713 = dyn_cast<DeclRefExpr>(E->getLHS()->IgnoreParens())) 714 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 715 if (VD->hasAttr<BlocksAttr>() && 716 E->getRHS()->HasSideEffects(CGF.getContext())) { 717 // When __block variable on LHS, the RHS must be evaluated first 718 // as it may change the 'forwarding' field via call to Block_copy. 719 LValue RHS = CGF.EmitLValue(E->getRHS()); 720 LValue LHS = CGF.EmitLValue(E->getLHS()); 721 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 722 needsGC(E->getLHS()->getType()), 723 AggValueSlot::IsAliased, 724 AggValueSlot::IsCompleteObject); 725 EmitFinalDestCopy(E, RHS, true); 726 return; 727 } 728 729 LValue LHS = CGF.EmitLValue(E->getLHS()); 730 731 // Codegen the RHS so that it stores directly into the LHS. 732 AggValueSlot LHSSlot = 733 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 734 needsGC(E->getLHS()->getType()), 735 AggValueSlot::IsAliased, 736 isCompleteObject(E->getLHS())); 737 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 738 EmitFinalDestCopy(E, LHS, true); 739 } 740 741 void AggExprEmitter:: 742 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 743 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 744 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 745 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 746 747 // Bind the common expression if necessary. 748 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 749 750 CodeGenFunction::ConditionalEvaluation eval(CGF); 751 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 752 753 // Save whether the destination's lifetime is externally managed. 754 bool isExternallyDestructed = Dest.isExternallyDestructed(); 755 756 eval.begin(CGF); 757 CGF.EmitBlock(LHSBlock); 758 Visit(E->getTrueExpr()); 759 eval.end(CGF); 760 761 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 762 CGF.Builder.CreateBr(ContBlock); 763 764 // If the result of an agg expression is unused, then the emission 765 // of the LHS might need to create a destination slot. That's fine 766 // with us, and we can safely emit the RHS into the same slot, but 767 // we shouldn't claim that it's already being destructed. 768 Dest.setExternallyDestructed(isExternallyDestructed); 769 770 eval.begin(CGF); 771 CGF.EmitBlock(RHSBlock); 772 Visit(E->getFalseExpr()); 773 eval.end(CGF); 774 775 CGF.EmitBlock(ContBlock); 776 } 777 778 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 779 Visit(CE->getChosenSubExpr(CGF.getContext())); 780 } 781 782 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 783 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 784 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 785 786 if (!ArgPtr) { 787 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 788 return; 789 } 790 791 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 792 } 793 794 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 795 // Ensure that we have a slot, but if we already do, remember 796 // whether it was externally destructed. 797 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 798 Dest = EnsureSlot(E->getType()); 799 800 // We're going to push a destructor if there isn't already one. 801 Dest.setExternallyDestructed(); 802 803 Visit(E->getSubExpr()); 804 805 // Push that destructor we promised. 806 if (!wasExternallyDestructed) 807 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 808 } 809 810 void 811 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 812 AggValueSlot Slot = EnsureSlot(E->getType()); 813 CGF.EmitCXXConstructExpr(E, Slot); 814 } 815 816 void 817 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 818 AggValueSlot Slot = EnsureSlot(E->getType()); 819 CGF.EmitLambdaExpr(E, Slot); 820 } 821 822 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 823 CGF.enterFullExpression(E); 824 CodeGenFunction::RunCleanupsScope cleanups(CGF); 825 Visit(E->getSubExpr()); 826 } 827 828 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 829 QualType T = E->getType(); 830 AggValueSlot Slot = EnsureSlot(T); 831 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 832 } 833 834 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 835 QualType T = E->getType(); 836 AggValueSlot Slot = EnsureSlot(T); 837 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 838 } 839 840 /// isSimpleZero - If emitting this value will obviously just cause a store of 841 /// zero to memory, return true. This can return false if uncertain, so it just 842 /// handles simple cases. 843 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 844 E = E->IgnoreParens(); 845 846 // 0 847 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 848 return IL->getValue() == 0; 849 // +0.0 850 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 851 return FL->getValue().isPosZero(); 852 // int() 853 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 854 CGF.getTypes().isZeroInitializable(E->getType())) 855 return true; 856 // (int*)0 - Null pointer expressions. 857 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 858 return ICE->getCastKind() == CK_NullToPointer; 859 // '\0' 860 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 861 return CL->getValue() == 0; 862 863 // Otherwise, hard case: conservatively return false. 864 return false; 865 } 866 867 868 void 869 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, 870 AggValueSlot::IsCompleteObject_t isCompleteObject) { 871 QualType type = LV.getType(); 872 // FIXME: Ignore result? 873 // FIXME: Are initializers affected by volatile? 874 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 875 // Storing "i32 0" to a zero'd memory location is a noop. 876 } else if (isa<ImplicitValueInitExpr>(E)) { 877 EmitNullInitializationToLValue(LV); 878 } else if (type->isReferenceType()) { 879 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 880 CGF.EmitStoreThroughLValue(RV, LV); 881 } else if (type->isAnyComplexType()) { 882 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 883 } else if (CGF.hasAggregateLLVMType(type)) { 884 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 885 AggValueSlot::IsDestructed, 886 AggValueSlot::DoesNotNeedGCBarriers, 887 AggValueSlot::IsNotAliased, 888 isCompleteObject, 889 Dest.isZeroed())); 890 } else if (LV.isSimple()) { 891 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 892 } else { 893 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 894 } 895 } 896 897 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 898 QualType type = lv.getType(); 899 900 // If the destination slot is already zeroed out before the aggregate is 901 // copied into it, we don't have to emit any zeros here. 902 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 903 return; 904 905 if (!CGF.hasAggregateLLVMType(type)) { 906 // For non-aggregates, we can store zero. 907 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 908 // Note that the following is not equivalent to 909 // EmitStoreThroughBitfieldLValue for ARC types. 910 if (lv.isBitField()) { 911 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 912 } else { 913 assert(lv.isSimple()); 914 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 915 } 916 } else { 917 // There's a potential optimization opportunity in combining 918 // memsets; that would be easy for arrays, but relatively 919 // difficult for structures with the current code. 920 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 921 } 922 } 923 924 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 925 #if 0 926 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 927 // (Length of globals? Chunks of zeroed-out space?). 928 // 929 // If we can, prefer a copy from a global; this is a lot less code for long 930 // globals, and it's easier for the current optimizers to analyze. 931 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 932 llvm::GlobalVariable* GV = 933 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 934 llvm::GlobalValue::InternalLinkage, C, ""); 935 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 936 return; 937 } 938 #endif 939 if (E->hadArrayRangeDesignator()) 940 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 941 942 if (E->initializesStdInitializerList()) { 943 EmitStdInitializerList(Dest.getAddr(), E); 944 return; 945 } 946 947 llvm::Value *DestPtr = EnsureSlot(E->getType()).getAddr(); 948 949 // Handle initialization of an array. 950 if (E->getType()->isArrayType()) { 951 if (E->getNumInits() > 0) { 952 QualType T1 = E->getType(); 953 QualType T2 = E->getInit(0)->getType(); 954 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 955 EmitAggLoadOfLValue(E->getInit(0)); 956 return; 957 } 958 } 959 960 QualType elementType = 961 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 962 963 llvm::PointerType *APType = 964 cast<llvm::PointerType>(DestPtr->getType()); 965 llvm::ArrayType *AType = 966 cast<llvm::ArrayType>(APType->getElementType()); 967 968 EmitArrayInit(DestPtr, AType, elementType, E); 969 return; 970 } 971 972 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 973 974 // Do struct initialization; this code just sets each individual member 975 // to the approprate value. This makes bitfield support automatic; 976 // the disadvantage is that the generated code is more difficult for 977 // the optimizer, especially with bitfields. 978 unsigned NumInitElements = E->getNumInits(); 979 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 980 981 if (record->isUnion()) { 982 // Only initialize one field of a union. The field itself is 983 // specified by the initializer list. 984 if (!E->getInitializedFieldInUnion()) { 985 // Empty union; we have nothing to do. 986 987 #ifndef NDEBUG 988 // Make sure that it's really an empty and not a failure of 989 // semantic analysis. 990 for (RecordDecl::field_iterator Field = record->field_begin(), 991 FieldEnd = record->field_end(); 992 Field != FieldEnd; ++Field) 993 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 994 #endif 995 return; 996 } 997 998 // FIXME: volatility 999 FieldDecl *Field = E->getInitializedFieldInUnion(); 1000 1001 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 1002 if (NumInitElements) { 1003 // Store the initializer into the field 1004 EmitInitializationToLValue(E->getInit(0), FieldLoc, 1005 AggValueSlot::IsCompleteObject); 1006 } else { 1007 // Default-initialize to null. 1008 EmitNullInitializationToLValue(FieldLoc); 1009 } 1010 1011 return; 1012 } 1013 1014 // We'll need to enter cleanup scopes in case any of the member 1015 // initializers throw an exception. 1016 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1017 llvm::Instruction *cleanupDominator = 0; 1018 1019 // Here we iterate over the fields; this makes it simpler to both 1020 // default-initialize fields and skip over unnamed fields. 1021 unsigned curInitIndex = 0; 1022 for (RecordDecl::field_iterator field = record->field_begin(), 1023 fieldEnd = record->field_end(); 1024 field != fieldEnd; ++field) { 1025 // We're done once we hit the flexible array member. 1026 if (field->getType()->isIncompleteArrayType()) 1027 break; 1028 1029 // Always skip anonymous bitfields. 1030 if (field->isUnnamedBitfield()) 1031 continue; 1032 1033 // We're done if we reach the end of the explicit initializers, we 1034 // have a zeroed object, and the rest of the fields are 1035 // zero-initializable. 1036 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1037 CGF.getTypes().isZeroInitializable(E->getType())) 1038 break; 1039 1040 // FIXME: volatility 1041 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 1042 // We never generate write-barries for initialized fields. 1043 LV.setNonGC(true); 1044 1045 if (curInitIndex < NumInitElements) { 1046 // Store the initializer into the field. 1047 EmitInitializationToLValue(E->getInit(curInitIndex++), LV, 1048 AggValueSlot::IsCompleteObject); 1049 } else { 1050 // We're out of initalizers; default-initialize to null 1051 EmitNullInitializationToLValue(LV); 1052 } 1053 1054 // Push a destructor if necessary. 1055 // FIXME: if we have an array of structures, all explicitly 1056 // initialized, we can end up pushing a linear number of cleanups. 1057 bool pushedCleanup = false; 1058 if (QualType::DestructionKind dtorKind 1059 = field->getType().isDestructedType()) { 1060 assert(LV.isSimple()); 1061 if (CGF.needsEHCleanup(dtorKind)) { 1062 if (!cleanupDominator) 1063 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1064 1065 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1066 CGF.getDestroyer(dtorKind), false); 1067 cleanups.push_back(CGF.EHStack.stable_begin()); 1068 pushedCleanup = true; 1069 } 1070 } 1071 1072 // If the GEP didn't get used because of a dead zero init or something 1073 // else, clean it up for -O0 builds and general tidiness. 1074 if (!pushedCleanup && LV.isSimple()) 1075 if (llvm::GetElementPtrInst *GEP = 1076 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1077 if (GEP->use_empty()) 1078 GEP->eraseFromParent(); 1079 } 1080 1081 // Deactivate all the partial cleanups in reverse order, which 1082 // generally means popping them. 1083 for (unsigned i = cleanups.size(); i != 0; --i) 1084 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1085 1086 // Destroy the placeholder if we made one. 1087 if (cleanupDominator) 1088 cleanupDominator->eraseFromParent(); 1089 } 1090 1091 //===----------------------------------------------------------------------===// 1092 // Entry Points into this File 1093 //===----------------------------------------------------------------------===// 1094 1095 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1096 /// non-zero bytes that will be stored when outputting the initializer for the 1097 /// specified initializer expression. 1098 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1099 E = E->IgnoreParens(); 1100 1101 // 0 and 0.0 won't require any non-zero stores! 1102 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1103 1104 // If this is an initlist expr, sum up the size of sizes of the (present) 1105 // elements. If this is something weird, assume the whole thing is non-zero. 1106 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1107 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1108 return CGF.getContext().getTypeSizeInChars(E->getType()); 1109 1110 // InitListExprs for structs have to be handled carefully. If there are 1111 // reference members, we need to consider the size of the reference, not the 1112 // referencee. InitListExprs for unions and arrays can't have references. 1113 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1114 if (!RT->isUnionType()) { 1115 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1116 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1117 1118 unsigned ILEElement = 0; 1119 for (RecordDecl::field_iterator Field = SD->field_begin(), 1120 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1121 // We're done once we hit the flexible array member or run out of 1122 // InitListExpr elements. 1123 if (Field->getType()->isIncompleteArrayType() || 1124 ILEElement == ILE->getNumInits()) 1125 break; 1126 if (Field->isUnnamedBitfield()) 1127 continue; 1128 1129 const Expr *E = ILE->getInit(ILEElement++); 1130 1131 // Reference values are always non-null and have the width of a pointer. 1132 if (Field->getType()->isReferenceType()) 1133 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1134 CGF.getContext().getTargetInfo().getPointerWidth(0)); 1135 else 1136 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1137 } 1138 1139 return NumNonZeroBytes; 1140 } 1141 } 1142 1143 1144 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1145 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1146 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1147 return NumNonZeroBytes; 1148 } 1149 1150 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1151 /// zeros in it, emit a memset and avoid storing the individual zeros. 1152 /// 1153 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1154 CodeGenFunction &CGF) { 1155 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1156 // volatile stores. 1157 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1158 1159 // C++ objects with a user-declared constructor don't need zero'ing. 1160 if (CGF.getContext().getLangOpts().CPlusPlus) 1161 if (const RecordType *RT = CGF.getContext() 1162 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1163 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1164 if (RD->hasUserDeclaredConstructor()) 1165 return; 1166 } 1167 1168 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1169 std::pair<CharUnits, CharUnits> TypeInfo = 1170 CGF.getContext().getTypeInfoInChars(E->getType()); 1171 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1172 return; 1173 1174 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1175 // we prefer to emit memset + individual stores for the rest. 1176 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1177 if (NumNonZeroBytes*4 > TypeInfo.first) 1178 return; 1179 1180 // Okay, it seems like a good idea to use an initial memset, emit the call. 1181 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1182 CharUnits Align = TypeInfo.second; 1183 1184 llvm::Value *Loc = Slot.getAddr(); 1185 1186 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1187 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1188 Align.getQuantity(), false); 1189 1190 // Tell the AggExprEmitter that the slot is known zero. 1191 Slot.setZeroed(); 1192 } 1193 1194 1195 1196 1197 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1198 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1199 /// the value of the aggregate expression is not needed. If VolatileDest is 1200 /// true, DestPtr cannot be 0. 1201 /// 1202 /// \param IsInitializer - true if this evaluation is initializing an 1203 /// object whose lifetime is already being managed. 1204 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1205 bool IgnoreResult) { 1206 assert(E && hasAggregateLLVMType(E->getType()) && 1207 "Invalid aggregate expression to emit"); 1208 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1209 "slot has bits but no address"); 1210 1211 // Optimize the slot if possible. 1212 CheckAggExprForMemSetUse(Slot, E, *this); 1213 1214 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1215 } 1216 1217 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1218 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1219 llvm::Value *Temp = CreateMemTemp(E->getType()); 1220 LValue LV = MakeAddrLValue(Temp, E->getType()); 1221 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1222 AggValueSlot::DoesNotNeedGCBarriers, 1223 AggValueSlot::IsNotAliased, 1224 AggValueSlot::IsCompleteObject)); 1225 return LV; 1226 } 1227 1228 void CodeGenFunction::EmitAggregateCopy(llvm::Value *dest, llvm::Value *src, 1229 QualType type, 1230 bool isVolatile, unsigned alignment, 1231 bool destIsCompleteObject) { 1232 assert(!type->isAnyComplexType() && "Shouldn't happen for complex"); 1233 1234 // Get size and alignment info for this type. Note that the type 1235 // might include an alignment attribute, so we can't just rely on 1236 // the layout. 1237 // FIXME: Do we need to handle VLAs here? 1238 std::pair<CharUnits, CharUnits> typeInfo = 1239 getContext().getTypeInfoInChars(type); 1240 1241 // If we weren't given an alignment, use the natural alignment. 1242 if (!alignment) alignment = typeInfo.second.getQuantity(); 1243 1244 CharUnits sizeToCopy = typeInfo.first; 1245 1246 // There's some special logic that applies to C++ classes: 1247 if (getContext().getLangOpts().CPlusPlus) { 1248 if (const RecordType *RT = type->getAs<RecordType>()) { 1249 // First, we want to assert that we're not doing this to 1250 // something with a non-trivial operator/constructor. 1251 CXXRecordDecl *record = cast<CXXRecordDecl>(RT->getDecl()); 1252 assert((record->hasTrivialCopyConstructor() || 1253 record->hasTrivialCopyAssignment() || 1254 record->hasTrivialMoveConstructor() || 1255 record->hasTrivialMoveAssignment()) && 1256 "Trying to aggregate-copy a type without a trivial copy " 1257 "constructor or assignment operator"); 1258 1259 // Second, we want to ignore empty classes. 1260 if (record->isEmpty()) 1261 return; 1262 1263 // Third, if it's possible that the destination might not be a 1264 // complete object, then we need to make sure we only copy the 1265 // data size, not the full sizeof, so that we don't overwrite 1266 // subclass fields in the tailing padding. It's generally going 1267 // to be more efficient to copy the sizeof, since we can use 1268 // larger stores. 1269 // 1270 // Unions and final classes can never be base classes. 1271 if (!destIsCompleteObject && !record->isUnion() && 1272 !record->hasAttr<FinalAttr>()) { 1273 const ASTRecordLayout &layout 1274 = getContext().getASTRecordLayout(record); 1275 sizeToCopy = layout.getDataSize(); 1276 } 1277 } 1278 } 1279 1280 llvm::PointerType *DPT = cast<llvm::PointerType>(dest->getType()); 1281 llvm::Type *DBP = 1282 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1283 dest = Builder.CreateBitCast(dest, DBP); 1284 1285 llvm::PointerType *SPT = cast<llvm::PointerType>(src->getType()); 1286 llvm::Type *SBP = 1287 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1288 src = Builder.CreateBitCast(src, SBP); 1289 1290 llvm::Value *sizeVal = 1291 llvm::ConstantInt::get(CGM.SizeTy, sizeToCopy.getQuantity()); 1292 1293 // Don't do any of the memmove_collectable tests if GC isn't set. 1294 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1295 // fall through 1296 } else if (const RecordType *RT = type->getAs<RecordType>()) { 1297 if (RT->getDecl()->hasObjectMember()) { 1298 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, dest, src, sizeVal); 1299 return; 1300 } 1301 } else if (type->isArrayType()) { 1302 QualType baseType = getContext().getBaseElementType(type); 1303 if (const RecordType *RT = baseType->getAs<RecordType>()) { 1304 if (RT->getDecl()->hasObjectMember()) { 1305 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, dest, src,sizeVal); 1306 return; 1307 } 1308 } 1309 } 1310 1311 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1312 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1313 // read from another object that overlaps in anyway the storage of the first 1314 // object, then the overlap shall be exact and the two objects shall have 1315 // qualified or unqualified versions of a compatible type." 1316 // 1317 // memcpy is not defined if the source and destination pointers are exactly 1318 // equal, but other compilers do this optimization, and almost every memcpy 1319 // implementation handles this case safely. If there is a libc that does not 1320 // safely handle this, we can add a target hook. 1321 1322 Builder.CreateMemCpy(dest, src, sizeVal, alignment, isVolatile); 1323 } 1324 1325 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, 1326 const Expr *init) { 1327 const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); 1328 if (cleanups) 1329 init = cleanups->getSubExpr(); 1330 1331 if (isa<InitListExpr>(init) && 1332 cast<InitListExpr>(init)->initializesStdInitializerList()) { 1333 // We initialized this std::initializer_list with an initializer list. 1334 // A backing array was created. Push a cleanup for it. 1335 EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); 1336 } 1337 } 1338 1339 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, 1340 llvm::Value *arrayStart, 1341 const InitListExpr *init) { 1342 // Check if there are any recursive cleanups to do, i.e. if we have 1343 // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; 1344 // then we need to destroy the inner array as well. 1345 for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { 1346 const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); 1347 if (!subInit || !subInit->initializesStdInitializerList()) 1348 continue; 1349 1350 // This one needs to be destroyed. Get the address of the std::init_list. 1351 llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); 1352 llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, 1353 "std.initlist"); 1354 CGF.EmitStdInitializerListCleanup(loc, subInit); 1355 } 1356 } 1357 1358 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, 1359 const InitListExpr *init) { 1360 ASTContext &ctx = getContext(); 1361 QualType element = GetStdInitializerListElementType(init->getType()); 1362 unsigned numInits = init->getNumInits(); 1363 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 1364 QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); 1365 QualType arrayPtr = ctx.getPointerType(array); 1366 llvm::Type *arrayPtrType = ConvertType(arrayPtr); 1367 1368 // lvalue is the location of a std::initializer_list, which as its first 1369 // element has a pointer to the array we want to destroy. 1370 llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); 1371 llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); 1372 1373 ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); 1374 1375 llvm::Value *arrayAddress = 1376 Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); 1377 ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); 1378 } 1379