1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Aggregate Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 namespace { 34 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 35 CodeGenFunction &CGF; 36 CGBuilderTy &Builder; 37 AggValueSlot Dest; 38 bool IsResultUnused; 39 40 /// We want to use 'dest' as the return slot except under two 41 /// conditions: 42 /// - The destination slot requires garbage collection, so we 43 /// need to use the GC API. 44 /// - The destination slot is potentially aliased. 45 bool shouldUseDestForReturnSlot() const { 46 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 47 } 48 49 ReturnValueSlot getReturnValueSlot() const { 50 if (!shouldUseDestForReturnSlot()) 51 return ReturnValueSlot(); 52 53 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 54 IsResultUnused); 55 } 56 57 AggValueSlot EnsureSlot(QualType T) { 58 if (!Dest.isIgnored()) return Dest; 59 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 60 } 61 void EnsureDest(QualType T) { 62 if (!Dest.isIgnored()) return; 63 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 64 } 65 66 public: 67 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 68 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 69 IsResultUnused(IsResultUnused) { } 70 71 //===--------------------------------------------------------------------===// 72 // Utilities 73 //===--------------------------------------------------------------------===// 74 75 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 76 /// represents a value lvalue, this method emits the address of the lvalue, 77 /// then loads the result into DestPtr. 78 void EmitAggLoadOfLValue(const Expr *E); 79 80 enum ExprValueKind { 81 EVK_RValue, 82 EVK_NonRValue 83 }; 84 85 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 86 /// SrcIsRValue is true if source comes from an RValue. 87 void EmitFinalDestCopy(QualType type, const LValue &src, 88 ExprValueKind SrcValueKind = EVK_NonRValue); 89 void EmitFinalDestCopy(QualType type, RValue src); 90 void EmitCopy(QualType type, const AggValueSlot &dest, 91 const AggValueSlot &src); 92 93 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 94 95 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 96 QualType ArrayQTy, InitListExpr *E); 97 98 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 99 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 100 return AggValueSlot::NeedsGCBarriers; 101 return AggValueSlot::DoesNotNeedGCBarriers; 102 } 103 104 bool TypeRequiresGCollection(QualType T); 105 106 //===--------------------------------------------------------------------===// 107 // Visitor Methods 108 //===--------------------------------------------------------------------===// 109 110 void Visit(Expr *E) { 111 ApplyDebugLocation DL(CGF, E); 112 StmtVisitor<AggExprEmitter>::Visit(E); 113 } 114 115 void VisitStmt(Stmt *S) { 116 CGF.ErrorUnsupported(S, "aggregate expression"); 117 } 118 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 119 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 120 Visit(GE->getResultExpr()); 121 } 122 void VisitCoawaitExpr(CoawaitExpr *E) { 123 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 124 } 125 void VisitCoyieldExpr(CoyieldExpr *E) { 126 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 127 } 128 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 129 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 130 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 131 return Visit(E->getReplacement()); 132 } 133 134 // l-values. 135 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 136 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 137 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 138 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 139 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 140 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 void VisitPredefinedExpr(const PredefinedExpr *E) { 144 EmitAggLoadOfLValue(E); 145 } 146 147 // Operators. 148 void VisitCastExpr(CastExpr *E); 149 void VisitCallExpr(const CallExpr *E); 150 void VisitStmtExpr(const StmtExpr *E); 151 void VisitBinaryOperator(const BinaryOperator *BO); 152 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 153 void VisitBinAssign(const BinaryOperator *E); 154 void VisitBinComma(const BinaryOperator *E); 155 156 void VisitObjCMessageExpr(ObjCMessageExpr *E); 157 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 158 EmitAggLoadOfLValue(E); 159 } 160 161 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 162 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 163 void VisitChooseExpr(const ChooseExpr *CE); 164 void VisitInitListExpr(InitListExpr *E); 165 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 166 llvm::Value *outerBegin = nullptr); 167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 179 void VisitLambdaExpr(LambdaExpr *E); 180 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 181 void VisitExprWithCleanups(ExprWithCleanups *E); 182 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 183 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 184 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 185 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 186 187 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 188 if (E->isGLValue()) { 189 LValue LV = CGF.EmitPseudoObjectLValue(E); 190 return EmitFinalDestCopy(E->getType(), LV); 191 } 192 193 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 194 } 195 196 void VisitVAArgExpr(VAArgExpr *E); 197 198 void EmitInitializationToLValue(Expr *E, LValue Address); 199 void EmitNullInitializationToLValue(LValue Address); 200 // case Expr::ChooseExprClass: 201 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 202 void VisitAtomicExpr(AtomicExpr *E) { 203 RValue Res = CGF.EmitAtomicExpr(E); 204 EmitFinalDestCopy(E->getType(), Res); 205 } 206 }; 207 } // end anonymous namespace. 208 209 //===----------------------------------------------------------------------===// 210 // Utilities 211 //===----------------------------------------------------------------------===// 212 213 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 214 /// represents a value lvalue, this method emits the address of the lvalue, 215 /// then loads the result into DestPtr. 216 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 217 LValue LV = CGF.EmitLValue(E); 218 219 // If the type of the l-value is atomic, then do an atomic load. 220 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 221 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 222 return; 223 } 224 225 EmitFinalDestCopy(E->getType(), LV); 226 } 227 228 /// \brief True if the given aggregate type requires special GC API calls. 229 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 230 // Only record types have members that might require garbage collection. 231 const RecordType *RecordTy = T->getAs<RecordType>(); 232 if (!RecordTy) return false; 233 234 // Don't mess with non-trivial C++ types. 235 RecordDecl *Record = RecordTy->getDecl(); 236 if (isa<CXXRecordDecl>(Record) && 237 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 238 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 239 return false; 240 241 // Check whether the type has an object member. 242 return Record->hasObjectMember(); 243 } 244 245 /// \brief Perform the final move to DestPtr if for some reason 246 /// getReturnValueSlot() didn't use it directly. 247 /// 248 /// The idea is that you do something like this: 249 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 250 /// EmitMoveFromReturnSlot(E, Result); 251 /// 252 /// If nothing interferes, this will cause the result to be emitted 253 /// directly into the return value slot. Otherwise, a final move 254 /// will be performed. 255 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 256 // Push destructor if the result is ignored and the type is a C struct that 257 // is non-trivial to destroy. 258 QualType Ty = E->getType(); 259 if (Dest.isIgnored() && 260 Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) 261 CGF.pushDestroy(Ty.isDestructedType(), src.getAggregateAddress(), Ty); 262 263 if (shouldUseDestForReturnSlot()) { 264 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 265 // The possibility of undef rvalues complicates that a lot, 266 // though, so we can't really assert. 267 return; 268 } 269 270 // Otherwise, copy from there to the destination. 271 assert(Dest.getPointer() != src.getAggregatePointer()); 272 EmitFinalDestCopy(E->getType(), src); 273 } 274 275 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 276 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 277 assert(src.isAggregate() && "value must be aggregate value!"); 278 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 279 EmitFinalDestCopy(type, srcLV, EVK_RValue); 280 } 281 282 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 283 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 284 ExprValueKind SrcValueKind) { 285 // If Dest is ignored, then we're evaluating an aggregate expression 286 // in a context that doesn't care about the result. Note that loads 287 // from volatile l-values force the existence of a non-ignored 288 // destination. 289 if (Dest.isIgnored()) 290 return; 291 292 // Copy non-trivial C structs here. 293 LValue DstLV = CGF.MakeAddrLValue( 294 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 295 296 if (SrcValueKind == EVK_RValue) { 297 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 298 if (Dest.isPotentiallyAliased()) 299 CGF.callCStructMoveAssignmentOperator(DstLV, src); 300 else 301 CGF.callCStructMoveConstructor(DstLV, src); 302 return; 303 } 304 } else { 305 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 306 if (Dest.isPotentiallyAliased()) 307 CGF.callCStructCopyAssignmentOperator(DstLV, src); 308 else 309 CGF.callCStructCopyConstructor(DstLV, src); 310 return; 311 } 312 } 313 314 AggValueSlot srcAgg = 315 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 316 needsGC(type), AggValueSlot::IsAliased); 317 EmitCopy(type, Dest, srcAgg); 318 } 319 320 /// Perform a copy from the source into the destination. 321 /// 322 /// \param type - the type of the aggregate being copied; qualifiers are 323 /// ignored 324 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 325 const AggValueSlot &src) { 326 if (dest.requiresGCollection()) { 327 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 328 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 329 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 330 dest.getAddress(), 331 src.getAddress(), 332 size); 333 return; 334 } 335 336 // If the result of the assignment is used, copy the LHS there also. 337 // It's volatile if either side is. Use the minimum alignment of 338 // the two sides. 339 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 340 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 341 CGF.EmitAggregateCopy(DestLV, SrcLV, type, 342 dest.isVolatile() || src.isVolatile()); 343 } 344 345 /// \brief Emit the initializer for a std::initializer_list initialized with a 346 /// real initializer list. 347 void 348 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 349 // Emit an array containing the elements. The array is externally destructed 350 // if the std::initializer_list object is. 351 ASTContext &Ctx = CGF.getContext(); 352 LValue Array = CGF.EmitLValue(E->getSubExpr()); 353 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 354 Address ArrayPtr = Array.getAddress(); 355 356 const ConstantArrayType *ArrayType = 357 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 358 assert(ArrayType && "std::initializer_list constructed from non-array"); 359 360 // FIXME: Perform the checks on the field types in SemaInit. 361 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 362 RecordDecl::field_iterator Field = Record->field_begin(); 363 if (Field == Record->field_end()) { 364 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 365 return; 366 } 367 368 // Start pointer. 369 if (!Field->getType()->isPointerType() || 370 !Ctx.hasSameType(Field->getType()->getPointeeType(), 371 ArrayType->getElementType())) { 372 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 373 return; 374 } 375 376 AggValueSlot Dest = EnsureSlot(E->getType()); 377 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 378 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 379 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 380 llvm::Value *IdxStart[] = { Zero, Zero }; 381 llvm::Value *ArrayStart = 382 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 383 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 384 ++Field; 385 386 if (Field == Record->field_end()) { 387 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 388 return; 389 } 390 391 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 392 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 393 if (Field->getType()->isPointerType() && 394 Ctx.hasSameType(Field->getType()->getPointeeType(), 395 ArrayType->getElementType())) { 396 // End pointer. 397 llvm::Value *IdxEnd[] = { Zero, Size }; 398 llvm::Value *ArrayEnd = 399 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 400 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 401 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 402 // Length. 403 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 404 } else { 405 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 406 return; 407 } 408 } 409 410 /// \brief Determine if E is a trivial array filler, that is, one that is 411 /// equivalent to zero-initialization. 412 static bool isTrivialFiller(Expr *E) { 413 if (!E) 414 return true; 415 416 if (isa<ImplicitValueInitExpr>(E)) 417 return true; 418 419 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 420 if (ILE->getNumInits()) 421 return false; 422 return isTrivialFiller(ILE->getArrayFiller()); 423 } 424 425 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 426 return Cons->getConstructor()->isDefaultConstructor() && 427 Cons->getConstructor()->isTrivial(); 428 429 // FIXME: Are there other cases where we can avoid emitting an initializer? 430 return false; 431 } 432 433 /// \brief Emit initialization of an array from an initializer list. 434 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 435 QualType ArrayQTy, InitListExpr *E) { 436 uint64_t NumInitElements = E->getNumInits(); 437 438 uint64_t NumArrayElements = AType->getNumElements(); 439 assert(NumInitElements <= NumArrayElements); 440 441 QualType elementType = 442 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 443 444 // DestPtr is an array*. Construct an elementType* by drilling 445 // down a level. 446 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 447 llvm::Value *indices[] = { zero, zero }; 448 llvm::Value *begin = 449 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 450 451 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 452 CharUnits elementAlign = 453 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 454 455 // Consider initializing the array by copying from a global. For this to be 456 // more efficient than per-element initialization, the size of the elements 457 // with explicit initializers should be large enough. 458 if (NumInitElements * elementSize.getQuantity() > 16 && 459 elementType.isTriviallyCopyableType(CGF.getContext())) { 460 CodeGen::CodeGenModule &CGM = CGF.CGM; 461 ConstantEmitter Emitter(CGM); 462 LangAS AS = ArrayQTy.getAddressSpace(); 463 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 464 auto GV = new llvm::GlobalVariable( 465 CGM.getModule(), C->getType(), 466 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 467 llvm::GlobalValue::PrivateLinkage, C, "constinit", 468 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 469 CGM.getContext().getTargetAddressSpace(AS)); 470 Emitter.finalize(GV); 471 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 472 GV->setAlignment(Align.getQuantity()); 473 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 474 return; 475 } 476 } 477 478 // Exception safety requires us to destroy all the 479 // already-constructed members if an initializer throws. 480 // For that, we'll need an EH cleanup. 481 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 482 Address endOfInit = Address::invalid(); 483 EHScopeStack::stable_iterator cleanup; 484 llvm::Instruction *cleanupDominator = nullptr; 485 if (CGF.needsEHCleanup(dtorKind)) { 486 // In principle we could tell the cleanup where we are more 487 // directly, but the control flow can get so varied here that it 488 // would actually be quite complex. Therefore we go through an 489 // alloca. 490 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 491 "arrayinit.endOfInit"); 492 cleanupDominator = Builder.CreateStore(begin, endOfInit); 493 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 494 elementAlign, 495 CGF.getDestroyer(dtorKind)); 496 cleanup = CGF.EHStack.stable_begin(); 497 498 // Otherwise, remember that we didn't need a cleanup. 499 } else { 500 dtorKind = QualType::DK_none; 501 } 502 503 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 504 505 // The 'current element to initialize'. The invariants on this 506 // variable are complicated. Essentially, after each iteration of 507 // the loop, it points to the last initialized element, except 508 // that it points to the beginning of the array before any 509 // elements have been initialized. 510 llvm::Value *element = begin; 511 512 // Emit the explicit initializers. 513 for (uint64_t i = 0; i != NumInitElements; ++i) { 514 // Advance to the next element. 515 if (i > 0) { 516 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 517 518 // Tell the cleanup that it needs to destroy up to this 519 // element. TODO: some of these stores can be trivially 520 // observed to be unnecessary. 521 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 522 } 523 524 LValue elementLV = 525 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 526 EmitInitializationToLValue(E->getInit(i), elementLV); 527 } 528 529 // Check whether there's a non-trivial array-fill expression. 530 Expr *filler = E->getArrayFiller(); 531 bool hasTrivialFiller = isTrivialFiller(filler); 532 533 // Any remaining elements need to be zero-initialized, possibly 534 // using the filler expression. We can skip this if the we're 535 // emitting to zeroed memory. 536 if (NumInitElements != NumArrayElements && 537 !(Dest.isZeroed() && hasTrivialFiller && 538 CGF.getTypes().isZeroInitializable(elementType))) { 539 540 // Use an actual loop. This is basically 541 // do { *array++ = filler; } while (array != end); 542 543 // Advance to the start of the rest of the array. 544 if (NumInitElements) { 545 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 546 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 547 } 548 549 // Compute the end of the array. 550 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 551 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 552 "arrayinit.end"); 553 554 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 555 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 556 557 // Jump into the body. 558 CGF.EmitBlock(bodyBB); 559 llvm::PHINode *currentElement = 560 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 561 currentElement->addIncoming(element, entryBB); 562 563 // Emit the actual filler expression. 564 { 565 // C++1z [class.temporary]p5: 566 // when a default constructor is called to initialize an element of 567 // an array with no corresponding initializer [...] the destruction of 568 // every temporary created in a default argument is sequenced before 569 // the construction of the next array element, if any 570 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 571 LValue elementLV = 572 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 573 if (filler) 574 EmitInitializationToLValue(filler, elementLV); 575 else 576 EmitNullInitializationToLValue(elementLV); 577 } 578 579 // Move on to the next element. 580 llvm::Value *nextElement = 581 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 582 583 // Tell the EH cleanup that we finished with the last element. 584 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 585 586 // Leave the loop if we're done. 587 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 588 "arrayinit.done"); 589 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 590 Builder.CreateCondBr(done, endBB, bodyBB); 591 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 592 593 CGF.EmitBlock(endBB); 594 } 595 596 // Leave the partial-array cleanup if we entered one. 597 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 598 } 599 600 //===----------------------------------------------------------------------===// 601 // Visitor Methods 602 //===----------------------------------------------------------------------===// 603 604 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 605 Visit(E->GetTemporaryExpr()); 606 } 607 608 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 609 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 610 } 611 612 void 613 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 614 if (Dest.isPotentiallyAliased() && 615 E->getType().isPODType(CGF.getContext())) { 616 // For a POD type, just emit a load of the lvalue + a copy, because our 617 // compound literal might alias the destination. 618 EmitAggLoadOfLValue(E); 619 return; 620 } 621 622 AggValueSlot Slot = EnsureSlot(E->getType()); 623 CGF.EmitAggExpr(E->getInitializer(), Slot); 624 } 625 626 /// Attempt to look through various unimportant expressions to find a 627 /// cast of the given kind. 628 static Expr *findPeephole(Expr *op, CastKind kind) { 629 while (true) { 630 op = op->IgnoreParens(); 631 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 632 if (castE->getCastKind() == kind) 633 return castE->getSubExpr(); 634 if (castE->getCastKind() == CK_NoOp) 635 continue; 636 } 637 return nullptr; 638 } 639 } 640 641 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 642 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 643 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 644 switch (E->getCastKind()) { 645 case CK_Dynamic: { 646 // FIXME: Can this actually happen? We have no test coverage for it. 647 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 648 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 649 CodeGenFunction::TCK_Load); 650 // FIXME: Do we also need to handle property references here? 651 if (LV.isSimple()) 652 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 653 else 654 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 655 656 if (!Dest.isIgnored()) 657 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 658 break; 659 } 660 661 case CK_ToUnion: { 662 // Evaluate even if the destination is ignored. 663 if (Dest.isIgnored()) { 664 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 665 /*ignoreResult=*/true); 666 break; 667 } 668 669 // GCC union extension 670 QualType Ty = E->getSubExpr()->getType(); 671 Address CastPtr = 672 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 673 EmitInitializationToLValue(E->getSubExpr(), 674 CGF.MakeAddrLValue(CastPtr, Ty)); 675 break; 676 } 677 678 case CK_DerivedToBase: 679 case CK_BaseToDerived: 680 case CK_UncheckedDerivedToBase: { 681 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 682 "should have been unpacked before we got here"); 683 } 684 685 case CK_NonAtomicToAtomic: 686 case CK_AtomicToNonAtomic: { 687 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 688 689 // Determine the atomic and value types. 690 QualType atomicType = E->getSubExpr()->getType(); 691 QualType valueType = E->getType(); 692 if (isToAtomic) std::swap(atomicType, valueType); 693 694 assert(atomicType->isAtomicType()); 695 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 696 atomicType->castAs<AtomicType>()->getValueType())); 697 698 // Just recurse normally if we're ignoring the result or the 699 // atomic type doesn't change representation. 700 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 701 return Visit(E->getSubExpr()); 702 } 703 704 CastKind peepholeTarget = 705 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 706 707 // These two cases are reverses of each other; try to peephole them. 708 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 709 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 710 E->getType()) && 711 "peephole significantly changed types?"); 712 return Visit(op); 713 } 714 715 // If we're converting an r-value of non-atomic type to an r-value 716 // of atomic type, just emit directly into the relevant sub-object. 717 if (isToAtomic) { 718 AggValueSlot valueDest = Dest; 719 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 720 // Zero-initialize. (Strictly speaking, we only need to intialize 721 // the padding at the end, but this is simpler.) 722 if (!Dest.isZeroed()) 723 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 724 725 // Build a GEP to refer to the subobject. 726 Address valueAddr = 727 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 728 CharUnits()); 729 valueDest = AggValueSlot::forAddr(valueAddr, 730 valueDest.getQualifiers(), 731 valueDest.isExternallyDestructed(), 732 valueDest.requiresGCollection(), 733 valueDest.isPotentiallyAliased(), 734 AggValueSlot::IsZeroed); 735 } 736 737 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 738 return; 739 } 740 741 // Otherwise, we're converting an atomic type to a non-atomic type. 742 // Make an atomic temporary, emit into that, and then copy the value out. 743 AggValueSlot atomicSlot = 744 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 745 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 746 747 Address valueAddr = 748 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 749 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 750 return EmitFinalDestCopy(valueType, rvalue); 751 } 752 753 case CK_LValueToRValue: 754 // If we're loading from a volatile type, force the destination 755 // into existence. 756 if (E->getSubExpr()->getType().isVolatileQualified()) { 757 EnsureDest(E->getType()); 758 return Visit(E->getSubExpr()); 759 } 760 761 LLVM_FALLTHROUGH; 762 763 case CK_NoOp: 764 case CK_UserDefinedConversion: 765 case CK_ConstructorConversion: 766 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 767 E->getType()) && 768 "Implicit cast types must be compatible"); 769 Visit(E->getSubExpr()); 770 break; 771 772 case CK_LValueBitCast: 773 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 774 775 case CK_Dependent: 776 case CK_BitCast: 777 case CK_ArrayToPointerDecay: 778 case CK_FunctionToPointerDecay: 779 case CK_NullToPointer: 780 case CK_NullToMemberPointer: 781 case CK_BaseToDerivedMemberPointer: 782 case CK_DerivedToBaseMemberPointer: 783 case CK_MemberPointerToBoolean: 784 case CK_ReinterpretMemberPointer: 785 case CK_IntegralToPointer: 786 case CK_PointerToIntegral: 787 case CK_PointerToBoolean: 788 case CK_ToVoid: 789 case CK_VectorSplat: 790 case CK_IntegralCast: 791 case CK_BooleanToSignedIntegral: 792 case CK_IntegralToBoolean: 793 case CK_IntegralToFloating: 794 case CK_FloatingToIntegral: 795 case CK_FloatingToBoolean: 796 case CK_FloatingCast: 797 case CK_CPointerToObjCPointerCast: 798 case CK_BlockPointerToObjCPointerCast: 799 case CK_AnyPointerToBlockPointerCast: 800 case CK_ObjCObjectLValueCast: 801 case CK_FloatingRealToComplex: 802 case CK_FloatingComplexToReal: 803 case CK_FloatingComplexToBoolean: 804 case CK_FloatingComplexCast: 805 case CK_FloatingComplexToIntegralComplex: 806 case CK_IntegralRealToComplex: 807 case CK_IntegralComplexToReal: 808 case CK_IntegralComplexToBoolean: 809 case CK_IntegralComplexCast: 810 case CK_IntegralComplexToFloatingComplex: 811 case CK_ARCProduceObject: 812 case CK_ARCConsumeObject: 813 case CK_ARCReclaimReturnedObject: 814 case CK_ARCExtendBlockObject: 815 case CK_CopyAndAutoreleaseBlockObject: 816 case CK_BuiltinFnToFnPtr: 817 case CK_ZeroToOCLEvent: 818 case CK_ZeroToOCLQueue: 819 case CK_AddressSpaceConversion: 820 case CK_IntToOCLSampler: 821 llvm_unreachable("cast kind invalid for aggregate types"); 822 } 823 } 824 825 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 826 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 827 EmitAggLoadOfLValue(E); 828 return; 829 } 830 831 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 832 EmitMoveFromReturnSlot(E, RV); 833 } 834 835 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 836 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 837 EmitMoveFromReturnSlot(E, RV); 838 } 839 840 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 841 CGF.EmitIgnoredExpr(E->getLHS()); 842 Visit(E->getRHS()); 843 } 844 845 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 846 CodeGenFunction::StmtExprEvaluation eval(CGF); 847 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 848 } 849 850 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 851 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 852 VisitPointerToDataMemberBinaryOperator(E); 853 else 854 CGF.ErrorUnsupported(E, "aggregate binary expression"); 855 } 856 857 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 858 const BinaryOperator *E) { 859 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 860 EmitFinalDestCopy(E->getType(), LV); 861 } 862 863 /// Is the value of the given expression possibly a reference to or 864 /// into a __block variable? 865 static bool isBlockVarRef(const Expr *E) { 866 // Make sure we look through parens. 867 E = E->IgnoreParens(); 868 869 // Check for a direct reference to a __block variable. 870 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 871 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 872 return (var && var->hasAttr<BlocksAttr>()); 873 } 874 875 // More complicated stuff. 876 877 // Binary operators. 878 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 879 // For an assignment or pointer-to-member operation, just care 880 // about the LHS. 881 if (op->isAssignmentOp() || op->isPtrMemOp()) 882 return isBlockVarRef(op->getLHS()); 883 884 // For a comma, just care about the RHS. 885 if (op->getOpcode() == BO_Comma) 886 return isBlockVarRef(op->getRHS()); 887 888 // FIXME: pointer arithmetic? 889 return false; 890 891 // Check both sides of a conditional operator. 892 } else if (const AbstractConditionalOperator *op 893 = dyn_cast<AbstractConditionalOperator>(E)) { 894 return isBlockVarRef(op->getTrueExpr()) 895 || isBlockVarRef(op->getFalseExpr()); 896 897 // OVEs are required to support BinaryConditionalOperators. 898 } else if (const OpaqueValueExpr *op 899 = dyn_cast<OpaqueValueExpr>(E)) { 900 if (const Expr *src = op->getSourceExpr()) 901 return isBlockVarRef(src); 902 903 // Casts are necessary to get things like (*(int*)&var) = foo(). 904 // We don't really care about the kind of cast here, except 905 // we don't want to look through l2r casts, because it's okay 906 // to get the *value* in a __block variable. 907 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 908 if (cast->getCastKind() == CK_LValueToRValue) 909 return false; 910 return isBlockVarRef(cast->getSubExpr()); 911 912 // Handle unary operators. Again, just aggressively look through 913 // it, ignoring the operation. 914 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 915 return isBlockVarRef(uop->getSubExpr()); 916 917 // Look into the base of a field access. 918 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 919 return isBlockVarRef(mem->getBase()); 920 921 // Look into the base of a subscript. 922 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 923 return isBlockVarRef(sub->getBase()); 924 } 925 926 return false; 927 } 928 929 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 930 // For an assignment to work, the value on the right has 931 // to be compatible with the value on the left. 932 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 933 E->getRHS()->getType()) 934 && "Invalid assignment"); 935 936 // If the LHS might be a __block variable, and the RHS can 937 // potentially cause a block copy, we need to evaluate the RHS first 938 // so that the assignment goes the right place. 939 // This is pretty semantically fragile. 940 if (isBlockVarRef(E->getLHS()) && 941 E->getRHS()->HasSideEffects(CGF.getContext())) { 942 // Ensure that we have a destination, and evaluate the RHS into that. 943 EnsureDest(E->getRHS()->getType()); 944 Visit(E->getRHS()); 945 946 // Now emit the LHS and copy into it. 947 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 948 949 // That copy is an atomic copy if the LHS is atomic. 950 if (LHS.getType()->isAtomicType() || 951 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 952 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 953 return; 954 } 955 956 EmitCopy(E->getLHS()->getType(), 957 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 958 needsGC(E->getLHS()->getType()), 959 AggValueSlot::IsAliased), 960 Dest); 961 return; 962 } 963 964 LValue LHS = CGF.EmitLValue(E->getLHS()); 965 966 // If we have an atomic type, evaluate into the destination and then 967 // do an atomic copy. 968 if (LHS.getType()->isAtomicType() || 969 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 970 EnsureDest(E->getRHS()->getType()); 971 Visit(E->getRHS()); 972 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 973 return; 974 } 975 976 // Codegen the RHS so that it stores directly into the LHS. 977 AggValueSlot LHSSlot = 978 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 979 needsGC(E->getLHS()->getType()), 980 AggValueSlot::IsAliased); 981 // A non-volatile aggregate destination might have volatile member. 982 if (!LHSSlot.isVolatile() && 983 CGF.hasVolatileMember(E->getLHS()->getType())) 984 LHSSlot.setVolatile(true); 985 986 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 987 988 // Copy into the destination if the assignment isn't ignored. 989 EmitFinalDestCopy(E->getType(), LHS); 990 } 991 992 void AggExprEmitter:: 993 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 994 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 995 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 996 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 997 998 // Bind the common expression if necessary. 999 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1000 1001 CodeGenFunction::ConditionalEvaluation eval(CGF); 1002 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1003 CGF.getProfileCount(E)); 1004 1005 // Save whether the destination's lifetime is externally managed. 1006 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1007 1008 eval.begin(CGF); 1009 CGF.EmitBlock(LHSBlock); 1010 CGF.incrementProfileCounter(E); 1011 Visit(E->getTrueExpr()); 1012 eval.end(CGF); 1013 1014 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1015 CGF.Builder.CreateBr(ContBlock); 1016 1017 // If the result of an agg expression is unused, then the emission 1018 // of the LHS might need to create a destination slot. That's fine 1019 // with us, and we can safely emit the RHS into the same slot, but 1020 // we shouldn't claim that it's already being destructed. 1021 Dest.setExternallyDestructed(isExternallyDestructed); 1022 1023 eval.begin(CGF); 1024 CGF.EmitBlock(RHSBlock); 1025 Visit(E->getFalseExpr()); 1026 eval.end(CGF); 1027 1028 CGF.EmitBlock(ContBlock); 1029 } 1030 1031 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1032 Visit(CE->getChosenSubExpr()); 1033 } 1034 1035 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1036 Address ArgValue = Address::invalid(); 1037 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1038 1039 // If EmitVAArg fails, emit an error. 1040 if (!ArgPtr.isValid()) { 1041 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1042 return; 1043 } 1044 1045 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1046 } 1047 1048 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1049 // Ensure that we have a slot, but if we already do, remember 1050 // whether it was externally destructed. 1051 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1052 EnsureDest(E->getType()); 1053 1054 // We're going to push a destructor if there isn't already one. 1055 Dest.setExternallyDestructed(); 1056 1057 Visit(E->getSubExpr()); 1058 1059 // Push that destructor we promised. 1060 if (!wasExternallyDestructed) 1061 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1062 } 1063 1064 void 1065 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1066 AggValueSlot Slot = EnsureSlot(E->getType()); 1067 CGF.EmitCXXConstructExpr(E, Slot); 1068 } 1069 1070 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1071 const CXXInheritedCtorInitExpr *E) { 1072 AggValueSlot Slot = EnsureSlot(E->getType()); 1073 CGF.EmitInheritedCXXConstructorCall( 1074 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1075 E->inheritedFromVBase(), E); 1076 } 1077 1078 void 1079 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1080 AggValueSlot Slot = EnsureSlot(E->getType()); 1081 CGF.EmitLambdaExpr(E, Slot); 1082 } 1083 1084 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1085 CGF.enterFullExpression(E); 1086 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1087 Visit(E->getSubExpr()); 1088 } 1089 1090 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1091 QualType T = E->getType(); 1092 AggValueSlot Slot = EnsureSlot(T); 1093 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1094 } 1095 1096 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1097 QualType T = E->getType(); 1098 AggValueSlot Slot = EnsureSlot(T); 1099 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1100 } 1101 1102 /// isSimpleZero - If emitting this value will obviously just cause a store of 1103 /// zero to memory, return true. This can return false if uncertain, so it just 1104 /// handles simple cases. 1105 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1106 E = E->IgnoreParens(); 1107 1108 // 0 1109 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1110 return IL->getValue() == 0; 1111 // +0.0 1112 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1113 return FL->getValue().isPosZero(); 1114 // int() 1115 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1116 CGF.getTypes().isZeroInitializable(E->getType())) 1117 return true; 1118 // (int*)0 - Null pointer expressions. 1119 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1120 return ICE->getCastKind() == CK_NullToPointer && 1121 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1122 // '\0' 1123 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1124 return CL->getValue() == 0; 1125 1126 // Otherwise, hard case: conservatively return false. 1127 return false; 1128 } 1129 1130 1131 void 1132 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1133 QualType type = LV.getType(); 1134 // FIXME: Ignore result? 1135 // FIXME: Are initializers affected by volatile? 1136 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1137 // Storing "i32 0" to a zero'd memory location is a noop. 1138 return; 1139 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1140 return EmitNullInitializationToLValue(LV); 1141 } else if (isa<NoInitExpr>(E)) { 1142 // Do nothing. 1143 return; 1144 } else if (type->isReferenceType()) { 1145 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1146 return CGF.EmitStoreThroughLValue(RV, LV); 1147 } 1148 1149 switch (CGF.getEvaluationKind(type)) { 1150 case TEK_Complex: 1151 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1152 return; 1153 case TEK_Aggregate: 1154 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1155 AggValueSlot::IsDestructed, 1156 AggValueSlot::DoesNotNeedGCBarriers, 1157 AggValueSlot::IsNotAliased, 1158 Dest.isZeroed())); 1159 return; 1160 case TEK_Scalar: 1161 if (LV.isSimple()) { 1162 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1163 } else { 1164 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1165 } 1166 return; 1167 } 1168 llvm_unreachable("bad evaluation kind"); 1169 } 1170 1171 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1172 QualType type = lv.getType(); 1173 1174 // If the destination slot is already zeroed out before the aggregate is 1175 // copied into it, we don't have to emit any zeros here. 1176 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1177 return; 1178 1179 if (CGF.hasScalarEvaluationKind(type)) { 1180 // For non-aggregates, we can store the appropriate null constant. 1181 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1182 // Note that the following is not equivalent to 1183 // EmitStoreThroughBitfieldLValue for ARC types. 1184 if (lv.isBitField()) { 1185 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1186 } else { 1187 assert(lv.isSimple()); 1188 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1189 } 1190 } else { 1191 // There's a potential optimization opportunity in combining 1192 // memsets; that would be easy for arrays, but relatively 1193 // difficult for structures with the current code. 1194 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1195 } 1196 } 1197 1198 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1199 #if 0 1200 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1201 // (Length of globals? Chunks of zeroed-out space?). 1202 // 1203 // If we can, prefer a copy from a global; this is a lot less code for long 1204 // globals, and it's easier for the current optimizers to analyze. 1205 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1206 llvm::GlobalVariable* GV = 1207 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1208 llvm::GlobalValue::InternalLinkage, C, ""); 1209 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1210 return; 1211 } 1212 #endif 1213 if (E->hadArrayRangeDesignator()) 1214 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1215 1216 if (E->isTransparent()) 1217 return Visit(E->getInit(0)); 1218 1219 AggValueSlot Dest = EnsureSlot(E->getType()); 1220 1221 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1222 1223 // Handle initialization of an array. 1224 if (E->getType()->isArrayType()) { 1225 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1226 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1227 return; 1228 } 1229 1230 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1231 1232 // Do struct initialization; this code just sets each individual member 1233 // to the approprate value. This makes bitfield support automatic; 1234 // the disadvantage is that the generated code is more difficult for 1235 // the optimizer, especially with bitfields. 1236 unsigned NumInitElements = E->getNumInits(); 1237 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1238 1239 // We'll need to enter cleanup scopes in case any of the element 1240 // initializers throws an exception. 1241 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1242 llvm::Instruction *cleanupDominator = nullptr; 1243 1244 unsigned curInitIndex = 0; 1245 1246 // Emit initialization of base classes. 1247 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1248 assert(E->getNumInits() >= CXXRD->getNumBases() && 1249 "missing initializer for base class"); 1250 for (auto &Base : CXXRD->bases()) { 1251 assert(!Base.isVirtual() && "should not see vbases here"); 1252 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1253 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1254 Dest.getAddress(), CXXRD, BaseRD, 1255 /*isBaseVirtual*/ false); 1256 AggValueSlot AggSlot = 1257 AggValueSlot::forAddr(V, Qualifiers(), 1258 AggValueSlot::IsDestructed, 1259 AggValueSlot::DoesNotNeedGCBarriers, 1260 AggValueSlot::IsNotAliased); 1261 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1262 1263 if (QualType::DestructionKind dtorKind = 1264 Base.getType().isDestructedType()) { 1265 CGF.pushDestroy(dtorKind, V, Base.getType()); 1266 cleanups.push_back(CGF.EHStack.stable_begin()); 1267 } 1268 } 1269 } 1270 1271 // Prepare a 'this' for CXXDefaultInitExprs. 1272 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1273 1274 if (record->isUnion()) { 1275 // Only initialize one field of a union. The field itself is 1276 // specified by the initializer list. 1277 if (!E->getInitializedFieldInUnion()) { 1278 // Empty union; we have nothing to do. 1279 1280 #ifndef NDEBUG 1281 // Make sure that it's really an empty and not a failure of 1282 // semantic analysis. 1283 for (const auto *Field : record->fields()) 1284 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1285 #endif 1286 return; 1287 } 1288 1289 // FIXME: volatility 1290 FieldDecl *Field = E->getInitializedFieldInUnion(); 1291 1292 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1293 if (NumInitElements) { 1294 // Store the initializer into the field 1295 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1296 } else { 1297 // Default-initialize to null. 1298 EmitNullInitializationToLValue(FieldLoc); 1299 } 1300 1301 return; 1302 } 1303 1304 // Here we iterate over the fields; this makes it simpler to both 1305 // default-initialize fields and skip over unnamed fields. 1306 for (const auto *field : record->fields()) { 1307 // We're done once we hit the flexible array member. 1308 if (field->getType()->isIncompleteArrayType()) 1309 break; 1310 1311 // Always skip anonymous bitfields. 1312 if (field->isUnnamedBitfield()) 1313 continue; 1314 1315 // We're done if we reach the end of the explicit initializers, we 1316 // have a zeroed object, and the rest of the fields are 1317 // zero-initializable. 1318 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1319 CGF.getTypes().isZeroInitializable(E->getType())) 1320 break; 1321 1322 1323 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1324 // We never generate write-barries for initialized fields. 1325 LV.setNonGC(true); 1326 1327 if (curInitIndex < NumInitElements) { 1328 // Store the initializer into the field. 1329 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1330 } else { 1331 // We're out of initializers; default-initialize to null 1332 EmitNullInitializationToLValue(LV); 1333 } 1334 1335 // Push a destructor if necessary. 1336 // FIXME: if we have an array of structures, all explicitly 1337 // initialized, we can end up pushing a linear number of cleanups. 1338 bool pushedCleanup = false; 1339 if (QualType::DestructionKind dtorKind 1340 = field->getType().isDestructedType()) { 1341 assert(LV.isSimple()); 1342 if (CGF.needsEHCleanup(dtorKind)) { 1343 if (!cleanupDominator) 1344 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1345 CGF.Int8Ty, 1346 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1347 CharUnits::One()); // placeholder 1348 1349 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1350 CGF.getDestroyer(dtorKind), false); 1351 cleanups.push_back(CGF.EHStack.stable_begin()); 1352 pushedCleanup = true; 1353 } 1354 } 1355 1356 // If the GEP didn't get used because of a dead zero init or something 1357 // else, clean it up for -O0 builds and general tidiness. 1358 if (!pushedCleanup && LV.isSimple()) 1359 if (llvm::GetElementPtrInst *GEP = 1360 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1361 if (GEP->use_empty()) 1362 GEP->eraseFromParent(); 1363 } 1364 1365 // Deactivate all the partial cleanups in reverse order, which 1366 // generally means popping them. 1367 for (unsigned i = cleanups.size(); i != 0; --i) 1368 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1369 1370 // Destroy the placeholder if we made one. 1371 if (cleanupDominator) 1372 cleanupDominator->eraseFromParent(); 1373 } 1374 1375 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1376 llvm::Value *outerBegin) { 1377 // Emit the common subexpression. 1378 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1379 1380 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1381 uint64_t numElements = E->getArraySize().getZExtValue(); 1382 1383 if (!numElements) 1384 return; 1385 1386 // destPtr is an array*. Construct an elementType* by drilling down a level. 1387 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1388 llvm::Value *indices[] = {zero, zero}; 1389 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1390 "arrayinit.begin"); 1391 1392 // Prepare to special-case multidimensional array initialization: we avoid 1393 // emitting multiple destructor loops in that case. 1394 if (!outerBegin) 1395 outerBegin = begin; 1396 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1397 1398 QualType elementType = 1399 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1400 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1401 CharUnits elementAlign = 1402 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1403 1404 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1405 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1406 1407 // Jump into the body. 1408 CGF.EmitBlock(bodyBB); 1409 llvm::PHINode *index = 1410 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1411 index->addIncoming(zero, entryBB); 1412 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1413 1414 // Prepare for a cleanup. 1415 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1416 EHScopeStack::stable_iterator cleanup; 1417 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1418 if (outerBegin->getType() != element->getType()) 1419 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1420 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1421 elementAlign, 1422 CGF.getDestroyer(dtorKind)); 1423 cleanup = CGF.EHStack.stable_begin(); 1424 } else { 1425 dtorKind = QualType::DK_none; 1426 } 1427 1428 // Emit the actual filler expression. 1429 { 1430 // Temporaries created in an array initialization loop are destroyed 1431 // at the end of each iteration. 1432 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1433 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1434 LValue elementLV = 1435 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1436 1437 if (InnerLoop) { 1438 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1439 auto elementSlot = AggValueSlot::forLValue( 1440 elementLV, AggValueSlot::IsDestructed, 1441 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1442 AggExprEmitter(CGF, elementSlot, false) 1443 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1444 } else 1445 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1446 } 1447 1448 // Move on to the next element. 1449 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1450 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1451 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1452 1453 // Leave the loop if we're done. 1454 llvm::Value *done = Builder.CreateICmpEQ( 1455 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1456 "arrayinit.done"); 1457 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1458 Builder.CreateCondBr(done, endBB, bodyBB); 1459 1460 CGF.EmitBlock(endBB); 1461 1462 // Leave the partial-array cleanup if we entered one. 1463 if (dtorKind) 1464 CGF.DeactivateCleanupBlock(cleanup, index); 1465 } 1466 1467 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1468 AggValueSlot Dest = EnsureSlot(E->getType()); 1469 1470 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1471 EmitInitializationToLValue(E->getBase(), DestLV); 1472 VisitInitListExpr(E->getUpdater()); 1473 } 1474 1475 //===----------------------------------------------------------------------===// 1476 // Entry Points into this File 1477 //===----------------------------------------------------------------------===// 1478 1479 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1480 /// non-zero bytes that will be stored when outputting the initializer for the 1481 /// specified initializer expression. 1482 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1483 E = E->IgnoreParens(); 1484 1485 // 0 and 0.0 won't require any non-zero stores! 1486 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1487 1488 // If this is an initlist expr, sum up the size of sizes of the (present) 1489 // elements. If this is something weird, assume the whole thing is non-zero. 1490 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1491 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1492 return CGF.getContext().getTypeSizeInChars(E->getType()); 1493 1494 // InitListExprs for structs have to be handled carefully. If there are 1495 // reference members, we need to consider the size of the reference, not the 1496 // referencee. InitListExprs for unions and arrays can't have references. 1497 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1498 if (!RT->isUnionType()) { 1499 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1500 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1501 1502 unsigned ILEElement = 0; 1503 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1504 while (ILEElement != CXXRD->getNumBases()) 1505 NumNonZeroBytes += 1506 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1507 for (const auto *Field : SD->fields()) { 1508 // We're done once we hit the flexible array member or run out of 1509 // InitListExpr elements. 1510 if (Field->getType()->isIncompleteArrayType() || 1511 ILEElement == ILE->getNumInits()) 1512 break; 1513 if (Field->isUnnamedBitfield()) 1514 continue; 1515 1516 const Expr *E = ILE->getInit(ILEElement++); 1517 1518 // Reference values are always non-null and have the width of a pointer. 1519 if (Field->getType()->isReferenceType()) 1520 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1521 CGF.getTarget().getPointerWidth(0)); 1522 else 1523 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1524 } 1525 1526 return NumNonZeroBytes; 1527 } 1528 } 1529 1530 1531 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1532 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1533 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1534 return NumNonZeroBytes; 1535 } 1536 1537 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1538 /// zeros in it, emit a memset and avoid storing the individual zeros. 1539 /// 1540 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1541 CodeGenFunction &CGF) { 1542 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1543 // volatile stores. 1544 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1545 return; 1546 1547 // C++ objects with a user-declared constructor don't need zero'ing. 1548 if (CGF.getLangOpts().CPlusPlus) 1549 if (const RecordType *RT = CGF.getContext() 1550 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1551 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1552 if (RD->hasUserDeclaredConstructor()) 1553 return; 1554 } 1555 1556 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1557 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1558 if (Size <= CharUnits::fromQuantity(16)) 1559 return; 1560 1561 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1562 // we prefer to emit memset + individual stores for the rest. 1563 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1564 if (NumNonZeroBytes*4 > Size) 1565 return; 1566 1567 // Okay, it seems like a good idea to use an initial memset, emit the call. 1568 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1569 1570 Address Loc = Slot.getAddress(); 1571 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1572 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1573 1574 // Tell the AggExprEmitter that the slot is known zero. 1575 Slot.setZeroed(); 1576 } 1577 1578 1579 1580 1581 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1582 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1583 /// the value of the aggregate expression is not needed. If VolatileDest is 1584 /// true, DestPtr cannot be 0. 1585 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1586 assert(E && hasAggregateEvaluationKind(E->getType()) && 1587 "Invalid aggregate expression to emit"); 1588 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1589 "slot has bits but no address"); 1590 1591 // Optimize the slot if possible. 1592 CheckAggExprForMemSetUse(Slot, E, *this); 1593 1594 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1595 } 1596 1597 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1598 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1599 Address Temp = CreateMemTemp(E->getType()); 1600 LValue LV = MakeAddrLValue(Temp, E->getType()); 1601 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1602 AggValueSlot::DoesNotNeedGCBarriers, 1603 AggValueSlot::IsNotAliased)); 1604 return LV; 1605 } 1606 1607 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, 1608 QualType Ty, bool isVolatile, 1609 bool isAssignment) { 1610 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1611 1612 Address DestPtr = Dest.getAddress(); 1613 Address SrcPtr = Src.getAddress(); 1614 1615 if (getLangOpts().CPlusPlus) { 1616 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1617 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1618 assert((Record->hasTrivialCopyConstructor() || 1619 Record->hasTrivialCopyAssignment() || 1620 Record->hasTrivialMoveConstructor() || 1621 Record->hasTrivialMoveAssignment() || 1622 Record->isUnion()) && 1623 "Trying to aggregate-copy a type without a trivial copy/move " 1624 "constructor or assignment operator"); 1625 // Ignore empty classes in C++. 1626 if (Record->isEmpty()) 1627 return; 1628 } 1629 } 1630 1631 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1632 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1633 // read from another object that overlaps in anyway the storage of the first 1634 // object, then the overlap shall be exact and the two objects shall have 1635 // qualified or unqualified versions of a compatible type." 1636 // 1637 // memcpy is not defined if the source and destination pointers are exactly 1638 // equal, but other compilers do this optimization, and almost every memcpy 1639 // implementation handles this case safely. If there is a libc that does not 1640 // safely handle this, we can add a target hook. 1641 1642 // Get data size info for this aggregate. If this is an assignment, 1643 // don't copy the tail padding, because we might be assigning into a 1644 // base subobject where the tail padding is claimed. Otherwise, 1645 // copying it is fine. 1646 std::pair<CharUnits, CharUnits> TypeInfo; 1647 if (isAssignment) 1648 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1649 else 1650 TypeInfo = getContext().getTypeInfoInChars(Ty); 1651 1652 llvm::Value *SizeVal = nullptr; 1653 if (TypeInfo.first.isZero()) { 1654 // But note that getTypeInfo returns 0 for a VLA. 1655 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1656 getContext().getAsArrayType(Ty))) { 1657 QualType BaseEltTy; 1658 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1659 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1660 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1661 if (!isAssignment) 1662 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1663 assert(!TypeInfo.first.isZero()); 1664 SizeVal = Builder.CreateNUWMul( 1665 SizeVal, 1666 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1667 if (!isAssignment) { 1668 SizeVal = Builder.CreateNUWSub( 1669 SizeVal, 1670 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1671 SizeVal = Builder.CreateNUWAdd( 1672 SizeVal, llvm::ConstantInt::get( 1673 SizeTy, LastElementTypeInfo.first.getQuantity())); 1674 } 1675 } 1676 } 1677 if (!SizeVal) { 1678 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1679 } 1680 1681 // FIXME: If we have a volatile struct, the optimizer can remove what might 1682 // appear to be `extra' memory ops: 1683 // 1684 // volatile struct { int i; } a, b; 1685 // 1686 // int main() { 1687 // a = b; 1688 // a = b; 1689 // } 1690 // 1691 // we need to use a different call here. We use isVolatile to indicate when 1692 // either the source or the destination is volatile. 1693 1694 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1695 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1696 1697 // Don't do any of the memmove_collectable tests if GC isn't set. 1698 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1699 // fall through 1700 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1701 RecordDecl *Record = RecordTy->getDecl(); 1702 if (Record->hasObjectMember()) { 1703 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1704 SizeVal); 1705 return; 1706 } 1707 } else if (Ty->isArrayType()) { 1708 QualType BaseType = getContext().getBaseElementType(Ty); 1709 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1710 if (RecordTy->getDecl()->hasObjectMember()) { 1711 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1712 SizeVal); 1713 return; 1714 } 1715 } 1716 } 1717 1718 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1719 1720 // Determine the metadata to describe the position of any padding in this 1721 // memcpy, as well as the TBAA tags for the members of the struct, in case 1722 // the optimizer wishes to expand it in to scalar memory operations. 1723 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1724 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1725 1726 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1727 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1728 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1729 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1730 } 1731 } 1732