1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 //===----------------------------------------------------------------------===//
30 //                        Aggregate Expression Emitter
31 //===----------------------------------------------------------------------===//
32 
33 namespace  {
34 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
35   CodeGenFunction &CGF;
36   CGBuilderTy &Builder;
37   AggValueSlot Dest;
38   bool IsResultUnused;
39 
40   /// We want to use 'dest' as the return slot except under two
41   /// conditions:
42   ///   - The destination slot requires garbage collection, so we
43   ///     need to use the GC API.
44   ///   - The destination slot is potentially aliased.
45   bool shouldUseDestForReturnSlot() const {
46     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
47   }
48 
49   ReturnValueSlot getReturnValueSlot() const {
50     if (!shouldUseDestForReturnSlot())
51       return ReturnValueSlot();
52 
53     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
54                            IsResultUnused);
55   }
56 
57   AggValueSlot EnsureSlot(QualType T) {
58     if (!Dest.isIgnored()) return Dest;
59     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
60   }
61   void EnsureDest(QualType T) {
62     if (!Dest.isIgnored()) return;
63     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
64   }
65 
66 public:
67   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
68     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
69     IsResultUnused(IsResultUnused) { }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
76   /// represents a value lvalue, this method emits the address of the lvalue,
77   /// then loads the result into DestPtr.
78   void EmitAggLoadOfLValue(const Expr *E);
79 
80   enum ExprValueKind {
81     EVK_RValue,
82     EVK_NonRValue
83   };
84 
85   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
86   /// SrcIsRValue is true if source comes from an RValue.
87   void EmitFinalDestCopy(QualType type, const LValue &src,
88                          ExprValueKind SrcValueKind = EVK_NonRValue);
89   void EmitFinalDestCopy(QualType type, RValue src);
90   void EmitCopy(QualType type, const AggValueSlot &dest,
91                 const AggValueSlot &src);
92 
93   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
94 
95   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
96                      QualType ArrayQTy, InitListExpr *E);
97 
98   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
99     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
100       return AggValueSlot::NeedsGCBarriers;
101     return AggValueSlot::DoesNotNeedGCBarriers;
102   }
103 
104   bool TypeRequiresGCollection(QualType T);
105 
106   //===--------------------------------------------------------------------===//
107   //                            Visitor Methods
108   //===--------------------------------------------------------------------===//
109 
110   void Visit(Expr *E) {
111     ApplyDebugLocation DL(CGF, E);
112     StmtVisitor<AggExprEmitter>::Visit(E);
113   }
114 
115   void VisitStmt(Stmt *S) {
116     CGF.ErrorUnsupported(S, "aggregate expression");
117   }
118   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
119   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
120     Visit(GE->getResultExpr());
121   }
122   void VisitCoawaitExpr(CoawaitExpr *E) {
123     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
124   }
125   void VisitCoyieldExpr(CoyieldExpr *E) {
126     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
127   }
128   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
129   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
130   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
131     return Visit(E->getReplacement());
132   }
133 
134   // l-values.
135   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
136   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
137   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
138   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
139   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
140   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143   void VisitPredefinedExpr(const PredefinedExpr *E) {
144     EmitAggLoadOfLValue(E);
145   }
146 
147   // Operators.
148   void VisitCastExpr(CastExpr *E);
149   void VisitCallExpr(const CallExpr *E);
150   void VisitStmtExpr(const StmtExpr *E);
151   void VisitBinaryOperator(const BinaryOperator *BO);
152   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
153   void VisitBinAssign(const BinaryOperator *E);
154   void VisitBinComma(const BinaryOperator *E);
155 
156   void VisitObjCMessageExpr(ObjCMessageExpr *E);
157   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158     EmitAggLoadOfLValue(E);
159   }
160 
161   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
162   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
163   void VisitChooseExpr(const ChooseExpr *CE);
164   void VisitInitListExpr(InitListExpr *E);
165   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
166                               llvm::Value *outerBegin = nullptr);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
179   void VisitLambdaExpr(LambdaExpr *E);
180   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
181   void VisitExprWithCleanups(ExprWithCleanups *E);
182   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
183   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
184   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
185   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
186 
187   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
188     if (E->isGLValue()) {
189       LValue LV = CGF.EmitPseudoObjectLValue(E);
190       return EmitFinalDestCopy(E->getType(), LV);
191     }
192 
193     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
194   }
195 
196   void VisitVAArgExpr(VAArgExpr *E);
197 
198   void EmitInitializationToLValue(Expr *E, LValue Address);
199   void EmitNullInitializationToLValue(LValue Address);
200   //  case Expr::ChooseExprClass:
201   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
202   void VisitAtomicExpr(AtomicExpr *E) {
203     RValue Res = CGF.EmitAtomicExpr(E);
204     EmitFinalDestCopy(E->getType(), Res);
205   }
206 };
207 }  // end anonymous namespace.
208 
209 //===----------------------------------------------------------------------===//
210 //                                Utilities
211 //===----------------------------------------------------------------------===//
212 
213 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
214 /// represents a value lvalue, this method emits the address of the lvalue,
215 /// then loads the result into DestPtr.
216 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
217   LValue LV = CGF.EmitLValue(E);
218 
219   // If the type of the l-value is atomic, then do an atomic load.
220   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
221     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
222     return;
223   }
224 
225   EmitFinalDestCopy(E->getType(), LV);
226 }
227 
228 /// \brief True if the given aggregate type requires special GC API calls.
229 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
230   // Only record types have members that might require garbage collection.
231   const RecordType *RecordTy = T->getAs<RecordType>();
232   if (!RecordTy) return false;
233 
234   // Don't mess with non-trivial C++ types.
235   RecordDecl *Record = RecordTy->getDecl();
236   if (isa<CXXRecordDecl>(Record) &&
237       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
238        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
239     return false;
240 
241   // Check whether the type has an object member.
242   return Record->hasObjectMember();
243 }
244 
245 /// \brief Perform the final move to DestPtr if for some reason
246 /// getReturnValueSlot() didn't use it directly.
247 ///
248 /// The idea is that you do something like this:
249 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
250 ///   EmitMoveFromReturnSlot(E, Result);
251 ///
252 /// If nothing interferes, this will cause the result to be emitted
253 /// directly into the return value slot.  Otherwise, a final move
254 /// will be performed.
255 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
256   // Push destructor if the result is ignored and the type is a C struct that
257   // is non-trivial to destroy.
258   QualType Ty = E->getType();
259   if (Dest.isIgnored() &&
260       Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
261     CGF.pushDestroy(Ty.isDestructedType(), src.getAggregateAddress(), Ty);
262 
263   if (shouldUseDestForReturnSlot()) {
264     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
265     // The possibility of undef rvalues complicates that a lot,
266     // though, so we can't really assert.
267     return;
268   }
269 
270   // Otherwise, copy from there to the destination.
271   assert(Dest.getPointer() != src.getAggregatePointer());
272   EmitFinalDestCopy(E->getType(), src);
273 }
274 
275 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
276 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
277   assert(src.isAggregate() && "value must be aggregate value!");
278   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
279   EmitFinalDestCopy(type, srcLV, EVK_RValue);
280 }
281 
282 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
283 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
284                                        ExprValueKind SrcValueKind) {
285   // If Dest is ignored, then we're evaluating an aggregate expression
286   // in a context that doesn't care about the result.  Note that loads
287   // from volatile l-values force the existence of a non-ignored
288   // destination.
289   if (Dest.isIgnored())
290     return;
291 
292   // Copy non-trivial C structs here.
293   LValue DstLV = CGF.MakeAddrLValue(
294       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
295 
296   if (SrcValueKind == EVK_RValue) {
297     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
298       if (Dest.isPotentiallyAliased())
299         CGF.callCStructMoveAssignmentOperator(DstLV, src);
300       else
301         CGF.callCStructMoveConstructor(DstLV, src);
302       return;
303     }
304   } else {
305     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
306       if (Dest.isPotentiallyAliased())
307         CGF.callCStructCopyAssignmentOperator(DstLV, src);
308       else
309         CGF.callCStructCopyConstructor(DstLV, src);
310       return;
311     }
312   }
313 
314   AggValueSlot srcAgg =
315     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
316                             needsGC(type), AggValueSlot::IsAliased);
317   EmitCopy(type, Dest, srcAgg);
318 }
319 
320 /// Perform a copy from the source into the destination.
321 ///
322 /// \param type - the type of the aggregate being copied; qualifiers are
323 ///   ignored
324 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
325                               const AggValueSlot &src) {
326   if (dest.requiresGCollection()) {
327     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
328     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
329     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
330                                                       dest.getAddress(),
331                                                       src.getAddress(),
332                                                       size);
333     return;
334   }
335 
336   // If the result of the assignment is used, copy the LHS there also.
337   // It's volatile if either side is.  Use the minimum alignment of
338   // the two sides.
339   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
340   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
341   CGF.EmitAggregateCopy(DestLV, SrcLV, type,
342                         dest.isVolatile() || src.isVolatile());
343 }
344 
345 /// \brief Emit the initializer for a std::initializer_list initialized with a
346 /// real initializer list.
347 void
348 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
349   // Emit an array containing the elements.  The array is externally destructed
350   // if the std::initializer_list object is.
351   ASTContext &Ctx = CGF.getContext();
352   LValue Array = CGF.EmitLValue(E->getSubExpr());
353   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
354   Address ArrayPtr = Array.getAddress();
355 
356   const ConstantArrayType *ArrayType =
357       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
358   assert(ArrayType && "std::initializer_list constructed from non-array");
359 
360   // FIXME: Perform the checks on the field types in SemaInit.
361   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
362   RecordDecl::field_iterator Field = Record->field_begin();
363   if (Field == Record->field_end()) {
364     CGF.ErrorUnsupported(E, "weird std::initializer_list");
365     return;
366   }
367 
368   // Start pointer.
369   if (!Field->getType()->isPointerType() ||
370       !Ctx.hasSameType(Field->getType()->getPointeeType(),
371                        ArrayType->getElementType())) {
372     CGF.ErrorUnsupported(E, "weird std::initializer_list");
373     return;
374   }
375 
376   AggValueSlot Dest = EnsureSlot(E->getType());
377   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
378   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
379   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
380   llvm::Value *IdxStart[] = { Zero, Zero };
381   llvm::Value *ArrayStart =
382       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
383   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
384   ++Field;
385 
386   if (Field == Record->field_end()) {
387     CGF.ErrorUnsupported(E, "weird std::initializer_list");
388     return;
389   }
390 
391   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
392   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
393   if (Field->getType()->isPointerType() &&
394       Ctx.hasSameType(Field->getType()->getPointeeType(),
395                       ArrayType->getElementType())) {
396     // End pointer.
397     llvm::Value *IdxEnd[] = { Zero, Size };
398     llvm::Value *ArrayEnd =
399         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
400     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
401   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
402     // Length.
403     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
404   } else {
405     CGF.ErrorUnsupported(E, "weird std::initializer_list");
406     return;
407   }
408 }
409 
410 /// \brief Determine if E is a trivial array filler, that is, one that is
411 /// equivalent to zero-initialization.
412 static bool isTrivialFiller(Expr *E) {
413   if (!E)
414     return true;
415 
416   if (isa<ImplicitValueInitExpr>(E))
417     return true;
418 
419   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
420     if (ILE->getNumInits())
421       return false;
422     return isTrivialFiller(ILE->getArrayFiller());
423   }
424 
425   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
426     return Cons->getConstructor()->isDefaultConstructor() &&
427            Cons->getConstructor()->isTrivial();
428 
429   // FIXME: Are there other cases where we can avoid emitting an initializer?
430   return false;
431 }
432 
433 /// \brief Emit initialization of an array from an initializer list.
434 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
435                                    QualType ArrayQTy, InitListExpr *E) {
436   uint64_t NumInitElements = E->getNumInits();
437 
438   uint64_t NumArrayElements = AType->getNumElements();
439   assert(NumInitElements <= NumArrayElements);
440 
441   QualType elementType =
442       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
443 
444   // DestPtr is an array*.  Construct an elementType* by drilling
445   // down a level.
446   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
447   llvm::Value *indices[] = { zero, zero };
448   llvm::Value *begin =
449     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
450 
451   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
452   CharUnits elementAlign =
453     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
454 
455   // Consider initializing the array by copying from a global. For this to be
456   // more efficient than per-element initialization, the size of the elements
457   // with explicit initializers should be large enough.
458   if (NumInitElements * elementSize.getQuantity() > 16 &&
459       elementType.isTriviallyCopyableType(CGF.getContext())) {
460     CodeGen::CodeGenModule &CGM = CGF.CGM;
461     ConstantEmitter Emitter(CGM);
462     LangAS AS = ArrayQTy.getAddressSpace();
463     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
464       auto GV = new llvm::GlobalVariable(
465           CGM.getModule(), C->getType(),
466           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
467           llvm::GlobalValue::PrivateLinkage, C, "constinit",
468           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
469           CGM.getContext().getTargetAddressSpace(AS));
470       Emitter.finalize(GV);
471       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
472       GV->setAlignment(Align.getQuantity());
473       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
474       return;
475     }
476   }
477 
478   // Exception safety requires us to destroy all the
479   // already-constructed members if an initializer throws.
480   // For that, we'll need an EH cleanup.
481   QualType::DestructionKind dtorKind = elementType.isDestructedType();
482   Address endOfInit = Address::invalid();
483   EHScopeStack::stable_iterator cleanup;
484   llvm::Instruction *cleanupDominator = nullptr;
485   if (CGF.needsEHCleanup(dtorKind)) {
486     // In principle we could tell the cleanup where we are more
487     // directly, but the control flow can get so varied here that it
488     // would actually be quite complex.  Therefore we go through an
489     // alloca.
490     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
491                                      "arrayinit.endOfInit");
492     cleanupDominator = Builder.CreateStore(begin, endOfInit);
493     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
494                                          elementAlign,
495                                          CGF.getDestroyer(dtorKind));
496     cleanup = CGF.EHStack.stable_begin();
497 
498   // Otherwise, remember that we didn't need a cleanup.
499   } else {
500     dtorKind = QualType::DK_none;
501   }
502 
503   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
504 
505   // The 'current element to initialize'.  The invariants on this
506   // variable are complicated.  Essentially, after each iteration of
507   // the loop, it points to the last initialized element, except
508   // that it points to the beginning of the array before any
509   // elements have been initialized.
510   llvm::Value *element = begin;
511 
512   // Emit the explicit initializers.
513   for (uint64_t i = 0; i != NumInitElements; ++i) {
514     // Advance to the next element.
515     if (i > 0) {
516       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
517 
518       // Tell the cleanup that it needs to destroy up to this
519       // element.  TODO: some of these stores can be trivially
520       // observed to be unnecessary.
521       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
522     }
523 
524     LValue elementLV =
525       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
526     EmitInitializationToLValue(E->getInit(i), elementLV);
527   }
528 
529   // Check whether there's a non-trivial array-fill expression.
530   Expr *filler = E->getArrayFiller();
531   bool hasTrivialFiller = isTrivialFiller(filler);
532 
533   // Any remaining elements need to be zero-initialized, possibly
534   // using the filler expression.  We can skip this if the we're
535   // emitting to zeroed memory.
536   if (NumInitElements != NumArrayElements &&
537       !(Dest.isZeroed() && hasTrivialFiller &&
538         CGF.getTypes().isZeroInitializable(elementType))) {
539 
540     // Use an actual loop.  This is basically
541     //   do { *array++ = filler; } while (array != end);
542 
543     // Advance to the start of the rest of the array.
544     if (NumInitElements) {
545       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
546       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
547     }
548 
549     // Compute the end of the array.
550     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
551                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
552                                                  "arrayinit.end");
553 
554     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
555     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
556 
557     // Jump into the body.
558     CGF.EmitBlock(bodyBB);
559     llvm::PHINode *currentElement =
560       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
561     currentElement->addIncoming(element, entryBB);
562 
563     // Emit the actual filler expression.
564     {
565       // C++1z [class.temporary]p5:
566       //   when a default constructor is called to initialize an element of
567       //   an array with no corresponding initializer [...] the destruction of
568       //   every temporary created in a default argument is sequenced before
569       //   the construction of the next array element, if any
570       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
571       LValue elementLV =
572         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
573       if (filler)
574         EmitInitializationToLValue(filler, elementLV);
575       else
576         EmitNullInitializationToLValue(elementLV);
577     }
578 
579     // Move on to the next element.
580     llvm::Value *nextElement =
581       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
582 
583     // Tell the EH cleanup that we finished with the last element.
584     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
585 
586     // Leave the loop if we're done.
587     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
588                                              "arrayinit.done");
589     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
590     Builder.CreateCondBr(done, endBB, bodyBB);
591     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
592 
593     CGF.EmitBlock(endBB);
594   }
595 
596   // Leave the partial-array cleanup if we entered one.
597   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
598 }
599 
600 //===----------------------------------------------------------------------===//
601 //                            Visitor Methods
602 //===----------------------------------------------------------------------===//
603 
604 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
605   Visit(E->GetTemporaryExpr());
606 }
607 
608 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
609   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
610 }
611 
612 void
613 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
614   if (Dest.isPotentiallyAliased() &&
615       E->getType().isPODType(CGF.getContext())) {
616     // For a POD type, just emit a load of the lvalue + a copy, because our
617     // compound literal might alias the destination.
618     EmitAggLoadOfLValue(E);
619     return;
620   }
621 
622   AggValueSlot Slot = EnsureSlot(E->getType());
623   CGF.EmitAggExpr(E->getInitializer(), Slot);
624 }
625 
626 /// Attempt to look through various unimportant expressions to find a
627 /// cast of the given kind.
628 static Expr *findPeephole(Expr *op, CastKind kind) {
629   while (true) {
630     op = op->IgnoreParens();
631     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
632       if (castE->getCastKind() == kind)
633         return castE->getSubExpr();
634       if (castE->getCastKind() == CK_NoOp)
635         continue;
636     }
637     return nullptr;
638   }
639 }
640 
641 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
642   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
643     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
644   switch (E->getCastKind()) {
645   case CK_Dynamic: {
646     // FIXME: Can this actually happen? We have no test coverage for it.
647     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
648     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
649                                       CodeGenFunction::TCK_Load);
650     // FIXME: Do we also need to handle property references here?
651     if (LV.isSimple())
652       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
653     else
654       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
655 
656     if (!Dest.isIgnored())
657       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
658     break;
659   }
660 
661   case CK_ToUnion: {
662     // Evaluate even if the destination is ignored.
663     if (Dest.isIgnored()) {
664       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
665                       /*ignoreResult=*/true);
666       break;
667     }
668 
669     // GCC union extension
670     QualType Ty = E->getSubExpr()->getType();
671     Address CastPtr =
672       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
673     EmitInitializationToLValue(E->getSubExpr(),
674                                CGF.MakeAddrLValue(CastPtr, Ty));
675     break;
676   }
677 
678   case CK_DerivedToBase:
679   case CK_BaseToDerived:
680   case CK_UncheckedDerivedToBase: {
681     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
682                 "should have been unpacked before we got here");
683   }
684 
685   case CK_NonAtomicToAtomic:
686   case CK_AtomicToNonAtomic: {
687     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
688 
689     // Determine the atomic and value types.
690     QualType atomicType = E->getSubExpr()->getType();
691     QualType valueType = E->getType();
692     if (isToAtomic) std::swap(atomicType, valueType);
693 
694     assert(atomicType->isAtomicType());
695     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
696                           atomicType->castAs<AtomicType>()->getValueType()));
697 
698     // Just recurse normally if we're ignoring the result or the
699     // atomic type doesn't change representation.
700     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
701       return Visit(E->getSubExpr());
702     }
703 
704     CastKind peepholeTarget =
705       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
706 
707     // These two cases are reverses of each other; try to peephole them.
708     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
709       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
710                                                      E->getType()) &&
711            "peephole significantly changed types?");
712       return Visit(op);
713     }
714 
715     // If we're converting an r-value of non-atomic type to an r-value
716     // of atomic type, just emit directly into the relevant sub-object.
717     if (isToAtomic) {
718       AggValueSlot valueDest = Dest;
719       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
720         // Zero-initialize.  (Strictly speaking, we only need to intialize
721         // the padding at the end, but this is simpler.)
722         if (!Dest.isZeroed())
723           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
724 
725         // Build a GEP to refer to the subobject.
726         Address valueAddr =
727             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
728                                         CharUnits());
729         valueDest = AggValueSlot::forAddr(valueAddr,
730                                           valueDest.getQualifiers(),
731                                           valueDest.isExternallyDestructed(),
732                                           valueDest.requiresGCollection(),
733                                           valueDest.isPotentiallyAliased(),
734                                           AggValueSlot::IsZeroed);
735       }
736 
737       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
738       return;
739     }
740 
741     // Otherwise, we're converting an atomic type to a non-atomic type.
742     // Make an atomic temporary, emit into that, and then copy the value out.
743     AggValueSlot atomicSlot =
744       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
745     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
746 
747     Address valueAddr =
748       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
749     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
750     return EmitFinalDestCopy(valueType, rvalue);
751   }
752 
753   case CK_LValueToRValue:
754     // If we're loading from a volatile type, force the destination
755     // into existence.
756     if (E->getSubExpr()->getType().isVolatileQualified()) {
757       EnsureDest(E->getType());
758       return Visit(E->getSubExpr());
759     }
760 
761     LLVM_FALLTHROUGH;
762 
763   case CK_NoOp:
764   case CK_UserDefinedConversion:
765   case CK_ConstructorConversion:
766     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
767                                                    E->getType()) &&
768            "Implicit cast types must be compatible");
769     Visit(E->getSubExpr());
770     break;
771 
772   case CK_LValueBitCast:
773     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
774 
775   case CK_Dependent:
776   case CK_BitCast:
777   case CK_ArrayToPointerDecay:
778   case CK_FunctionToPointerDecay:
779   case CK_NullToPointer:
780   case CK_NullToMemberPointer:
781   case CK_BaseToDerivedMemberPointer:
782   case CK_DerivedToBaseMemberPointer:
783   case CK_MemberPointerToBoolean:
784   case CK_ReinterpretMemberPointer:
785   case CK_IntegralToPointer:
786   case CK_PointerToIntegral:
787   case CK_PointerToBoolean:
788   case CK_ToVoid:
789   case CK_VectorSplat:
790   case CK_IntegralCast:
791   case CK_BooleanToSignedIntegral:
792   case CK_IntegralToBoolean:
793   case CK_IntegralToFloating:
794   case CK_FloatingToIntegral:
795   case CK_FloatingToBoolean:
796   case CK_FloatingCast:
797   case CK_CPointerToObjCPointerCast:
798   case CK_BlockPointerToObjCPointerCast:
799   case CK_AnyPointerToBlockPointerCast:
800   case CK_ObjCObjectLValueCast:
801   case CK_FloatingRealToComplex:
802   case CK_FloatingComplexToReal:
803   case CK_FloatingComplexToBoolean:
804   case CK_FloatingComplexCast:
805   case CK_FloatingComplexToIntegralComplex:
806   case CK_IntegralRealToComplex:
807   case CK_IntegralComplexToReal:
808   case CK_IntegralComplexToBoolean:
809   case CK_IntegralComplexCast:
810   case CK_IntegralComplexToFloatingComplex:
811   case CK_ARCProduceObject:
812   case CK_ARCConsumeObject:
813   case CK_ARCReclaimReturnedObject:
814   case CK_ARCExtendBlockObject:
815   case CK_CopyAndAutoreleaseBlockObject:
816   case CK_BuiltinFnToFnPtr:
817   case CK_ZeroToOCLEvent:
818   case CK_ZeroToOCLQueue:
819   case CK_AddressSpaceConversion:
820   case CK_IntToOCLSampler:
821     llvm_unreachable("cast kind invalid for aggregate types");
822   }
823 }
824 
825 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
826   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
827     EmitAggLoadOfLValue(E);
828     return;
829   }
830 
831   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
832   EmitMoveFromReturnSlot(E, RV);
833 }
834 
835 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
836   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
837   EmitMoveFromReturnSlot(E, RV);
838 }
839 
840 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
841   CGF.EmitIgnoredExpr(E->getLHS());
842   Visit(E->getRHS());
843 }
844 
845 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
846   CodeGenFunction::StmtExprEvaluation eval(CGF);
847   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
848 }
849 
850 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
851   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
852     VisitPointerToDataMemberBinaryOperator(E);
853   else
854     CGF.ErrorUnsupported(E, "aggregate binary expression");
855 }
856 
857 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
858                                                     const BinaryOperator *E) {
859   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
860   EmitFinalDestCopy(E->getType(), LV);
861 }
862 
863 /// Is the value of the given expression possibly a reference to or
864 /// into a __block variable?
865 static bool isBlockVarRef(const Expr *E) {
866   // Make sure we look through parens.
867   E = E->IgnoreParens();
868 
869   // Check for a direct reference to a __block variable.
870   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
871     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
872     return (var && var->hasAttr<BlocksAttr>());
873   }
874 
875   // More complicated stuff.
876 
877   // Binary operators.
878   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
879     // For an assignment or pointer-to-member operation, just care
880     // about the LHS.
881     if (op->isAssignmentOp() || op->isPtrMemOp())
882       return isBlockVarRef(op->getLHS());
883 
884     // For a comma, just care about the RHS.
885     if (op->getOpcode() == BO_Comma)
886       return isBlockVarRef(op->getRHS());
887 
888     // FIXME: pointer arithmetic?
889     return false;
890 
891   // Check both sides of a conditional operator.
892   } else if (const AbstractConditionalOperator *op
893                = dyn_cast<AbstractConditionalOperator>(E)) {
894     return isBlockVarRef(op->getTrueExpr())
895         || isBlockVarRef(op->getFalseExpr());
896 
897   // OVEs are required to support BinaryConditionalOperators.
898   } else if (const OpaqueValueExpr *op
899                = dyn_cast<OpaqueValueExpr>(E)) {
900     if (const Expr *src = op->getSourceExpr())
901       return isBlockVarRef(src);
902 
903   // Casts are necessary to get things like (*(int*)&var) = foo().
904   // We don't really care about the kind of cast here, except
905   // we don't want to look through l2r casts, because it's okay
906   // to get the *value* in a __block variable.
907   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
908     if (cast->getCastKind() == CK_LValueToRValue)
909       return false;
910     return isBlockVarRef(cast->getSubExpr());
911 
912   // Handle unary operators.  Again, just aggressively look through
913   // it, ignoring the operation.
914   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
915     return isBlockVarRef(uop->getSubExpr());
916 
917   // Look into the base of a field access.
918   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
919     return isBlockVarRef(mem->getBase());
920 
921   // Look into the base of a subscript.
922   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
923     return isBlockVarRef(sub->getBase());
924   }
925 
926   return false;
927 }
928 
929 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
930   // For an assignment to work, the value on the right has
931   // to be compatible with the value on the left.
932   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
933                                                  E->getRHS()->getType())
934          && "Invalid assignment");
935 
936   // If the LHS might be a __block variable, and the RHS can
937   // potentially cause a block copy, we need to evaluate the RHS first
938   // so that the assignment goes the right place.
939   // This is pretty semantically fragile.
940   if (isBlockVarRef(E->getLHS()) &&
941       E->getRHS()->HasSideEffects(CGF.getContext())) {
942     // Ensure that we have a destination, and evaluate the RHS into that.
943     EnsureDest(E->getRHS()->getType());
944     Visit(E->getRHS());
945 
946     // Now emit the LHS and copy into it.
947     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
948 
949     // That copy is an atomic copy if the LHS is atomic.
950     if (LHS.getType()->isAtomicType() ||
951         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
952       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
953       return;
954     }
955 
956     EmitCopy(E->getLHS()->getType(),
957              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
958                                      needsGC(E->getLHS()->getType()),
959                                      AggValueSlot::IsAliased),
960              Dest);
961     return;
962   }
963 
964   LValue LHS = CGF.EmitLValue(E->getLHS());
965 
966   // If we have an atomic type, evaluate into the destination and then
967   // do an atomic copy.
968   if (LHS.getType()->isAtomicType() ||
969       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
970     EnsureDest(E->getRHS()->getType());
971     Visit(E->getRHS());
972     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
973     return;
974   }
975 
976   // Codegen the RHS so that it stores directly into the LHS.
977   AggValueSlot LHSSlot =
978     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
979                             needsGC(E->getLHS()->getType()),
980                             AggValueSlot::IsAliased);
981   // A non-volatile aggregate destination might have volatile member.
982   if (!LHSSlot.isVolatile() &&
983       CGF.hasVolatileMember(E->getLHS()->getType()))
984     LHSSlot.setVolatile(true);
985 
986   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
987 
988   // Copy into the destination if the assignment isn't ignored.
989   EmitFinalDestCopy(E->getType(), LHS);
990 }
991 
992 void AggExprEmitter::
993 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
994   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
995   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
996   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
997 
998   // Bind the common expression if necessary.
999   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1000 
1001   CodeGenFunction::ConditionalEvaluation eval(CGF);
1002   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1003                            CGF.getProfileCount(E));
1004 
1005   // Save whether the destination's lifetime is externally managed.
1006   bool isExternallyDestructed = Dest.isExternallyDestructed();
1007 
1008   eval.begin(CGF);
1009   CGF.EmitBlock(LHSBlock);
1010   CGF.incrementProfileCounter(E);
1011   Visit(E->getTrueExpr());
1012   eval.end(CGF);
1013 
1014   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1015   CGF.Builder.CreateBr(ContBlock);
1016 
1017   // If the result of an agg expression is unused, then the emission
1018   // of the LHS might need to create a destination slot.  That's fine
1019   // with us, and we can safely emit the RHS into the same slot, but
1020   // we shouldn't claim that it's already being destructed.
1021   Dest.setExternallyDestructed(isExternallyDestructed);
1022 
1023   eval.begin(CGF);
1024   CGF.EmitBlock(RHSBlock);
1025   Visit(E->getFalseExpr());
1026   eval.end(CGF);
1027 
1028   CGF.EmitBlock(ContBlock);
1029 }
1030 
1031 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1032   Visit(CE->getChosenSubExpr());
1033 }
1034 
1035 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1036   Address ArgValue = Address::invalid();
1037   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1038 
1039   // If EmitVAArg fails, emit an error.
1040   if (!ArgPtr.isValid()) {
1041     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1042     return;
1043   }
1044 
1045   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1046 }
1047 
1048 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1049   // Ensure that we have a slot, but if we already do, remember
1050   // whether it was externally destructed.
1051   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1052   EnsureDest(E->getType());
1053 
1054   // We're going to push a destructor if there isn't already one.
1055   Dest.setExternallyDestructed();
1056 
1057   Visit(E->getSubExpr());
1058 
1059   // Push that destructor we promised.
1060   if (!wasExternallyDestructed)
1061     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1062 }
1063 
1064 void
1065 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1066   AggValueSlot Slot = EnsureSlot(E->getType());
1067   CGF.EmitCXXConstructExpr(E, Slot);
1068 }
1069 
1070 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1071     const CXXInheritedCtorInitExpr *E) {
1072   AggValueSlot Slot = EnsureSlot(E->getType());
1073   CGF.EmitInheritedCXXConstructorCall(
1074       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1075       E->inheritedFromVBase(), E);
1076 }
1077 
1078 void
1079 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1080   AggValueSlot Slot = EnsureSlot(E->getType());
1081   CGF.EmitLambdaExpr(E, Slot);
1082 }
1083 
1084 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1085   CGF.enterFullExpression(E);
1086   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1087   Visit(E->getSubExpr());
1088 }
1089 
1090 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1091   QualType T = E->getType();
1092   AggValueSlot Slot = EnsureSlot(T);
1093   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1094 }
1095 
1096 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1097   QualType T = E->getType();
1098   AggValueSlot Slot = EnsureSlot(T);
1099   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1100 }
1101 
1102 /// isSimpleZero - If emitting this value will obviously just cause a store of
1103 /// zero to memory, return true.  This can return false if uncertain, so it just
1104 /// handles simple cases.
1105 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1106   E = E->IgnoreParens();
1107 
1108   // 0
1109   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1110     return IL->getValue() == 0;
1111   // +0.0
1112   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1113     return FL->getValue().isPosZero();
1114   // int()
1115   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1116       CGF.getTypes().isZeroInitializable(E->getType()))
1117     return true;
1118   // (int*)0 - Null pointer expressions.
1119   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1120     return ICE->getCastKind() == CK_NullToPointer &&
1121         CGF.getTypes().isPointerZeroInitializable(E->getType());
1122   // '\0'
1123   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1124     return CL->getValue() == 0;
1125 
1126   // Otherwise, hard case: conservatively return false.
1127   return false;
1128 }
1129 
1130 
1131 void
1132 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1133   QualType type = LV.getType();
1134   // FIXME: Ignore result?
1135   // FIXME: Are initializers affected by volatile?
1136   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1137     // Storing "i32 0" to a zero'd memory location is a noop.
1138     return;
1139   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1140     return EmitNullInitializationToLValue(LV);
1141   } else if (isa<NoInitExpr>(E)) {
1142     // Do nothing.
1143     return;
1144   } else if (type->isReferenceType()) {
1145     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1146     return CGF.EmitStoreThroughLValue(RV, LV);
1147   }
1148 
1149   switch (CGF.getEvaluationKind(type)) {
1150   case TEK_Complex:
1151     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1152     return;
1153   case TEK_Aggregate:
1154     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1155                                                AggValueSlot::IsDestructed,
1156                                       AggValueSlot::DoesNotNeedGCBarriers,
1157                                                AggValueSlot::IsNotAliased,
1158                                                Dest.isZeroed()));
1159     return;
1160   case TEK_Scalar:
1161     if (LV.isSimple()) {
1162       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1163     } else {
1164       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1165     }
1166     return;
1167   }
1168   llvm_unreachable("bad evaluation kind");
1169 }
1170 
1171 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1172   QualType type = lv.getType();
1173 
1174   // If the destination slot is already zeroed out before the aggregate is
1175   // copied into it, we don't have to emit any zeros here.
1176   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1177     return;
1178 
1179   if (CGF.hasScalarEvaluationKind(type)) {
1180     // For non-aggregates, we can store the appropriate null constant.
1181     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1182     // Note that the following is not equivalent to
1183     // EmitStoreThroughBitfieldLValue for ARC types.
1184     if (lv.isBitField()) {
1185       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1186     } else {
1187       assert(lv.isSimple());
1188       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1189     }
1190   } else {
1191     // There's a potential optimization opportunity in combining
1192     // memsets; that would be easy for arrays, but relatively
1193     // difficult for structures with the current code.
1194     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1195   }
1196 }
1197 
1198 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1199 #if 0
1200   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1201   // (Length of globals? Chunks of zeroed-out space?).
1202   //
1203   // If we can, prefer a copy from a global; this is a lot less code for long
1204   // globals, and it's easier for the current optimizers to analyze.
1205   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1206     llvm::GlobalVariable* GV =
1207     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1208                              llvm::GlobalValue::InternalLinkage, C, "");
1209     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1210     return;
1211   }
1212 #endif
1213   if (E->hadArrayRangeDesignator())
1214     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1215 
1216   if (E->isTransparent())
1217     return Visit(E->getInit(0));
1218 
1219   AggValueSlot Dest = EnsureSlot(E->getType());
1220 
1221   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1222 
1223   // Handle initialization of an array.
1224   if (E->getType()->isArrayType()) {
1225     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1226     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1227     return;
1228   }
1229 
1230   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1231 
1232   // Do struct initialization; this code just sets each individual member
1233   // to the approprate value.  This makes bitfield support automatic;
1234   // the disadvantage is that the generated code is more difficult for
1235   // the optimizer, especially with bitfields.
1236   unsigned NumInitElements = E->getNumInits();
1237   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1238 
1239   // We'll need to enter cleanup scopes in case any of the element
1240   // initializers throws an exception.
1241   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1242   llvm::Instruction *cleanupDominator = nullptr;
1243 
1244   unsigned curInitIndex = 0;
1245 
1246   // Emit initialization of base classes.
1247   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1248     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1249            "missing initializer for base class");
1250     for (auto &Base : CXXRD->bases()) {
1251       assert(!Base.isVirtual() && "should not see vbases here");
1252       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1253       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1254           Dest.getAddress(), CXXRD, BaseRD,
1255           /*isBaseVirtual*/ false);
1256       AggValueSlot AggSlot =
1257         AggValueSlot::forAddr(V, Qualifiers(),
1258                               AggValueSlot::IsDestructed,
1259                               AggValueSlot::DoesNotNeedGCBarriers,
1260                               AggValueSlot::IsNotAliased);
1261       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1262 
1263       if (QualType::DestructionKind dtorKind =
1264               Base.getType().isDestructedType()) {
1265         CGF.pushDestroy(dtorKind, V, Base.getType());
1266         cleanups.push_back(CGF.EHStack.stable_begin());
1267       }
1268     }
1269   }
1270 
1271   // Prepare a 'this' for CXXDefaultInitExprs.
1272   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1273 
1274   if (record->isUnion()) {
1275     // Only initialize one field of a union. The field itself is
1276     // specified by the initializer list.
1277     if (!E->getInitializedFieldInUnion()) {
1278       // Empty union; we have nothing to do.
1279 
1280 #ifndef NDEBUG
1281       // Make sure that it's really an empty and not a failure of
1282       // semantic analysis.
1283       for (const auto *Field : record->fields())
1284         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1285 #endif
1286       return;
1287     }
1288 
1289     // FIXME: volatility
1290     FieldDecl *Field = E->getInitializedFieldInUnion();
1291 
1292     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1293     if (NumInitElements) {
1294       // Store the initializer into the field
1295       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1296     } else {
1297       // Default-initialize to null.
1298       EmitNullInitializationToLValue(FieldLoc);
1299     }
1300 
1301     return;
1302   }
1303 
1304   // Here we iterate over the fields; this makes it simpler to both
1305   // default-initialize fields and skip over unnamed fields.
1306   for (const auto *field : record->fields()) {
1307     // We're done once we hit the flexible array member.
1308     if (field->getType()->isIncompleteArrayType())
1309       break;
1310 
1311     // Always skip anonymous bitfields.
1312     if (field->isUnnamedBitfield())
1313       continue;
1314 
1315     // We're done if we reach the end of the explicit initializers, we
1316     // have a zeroed object, and the rest of the fields are
1317     // zero-initializable.
1318     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1319         CGF.getTypes().isZeroInitializable(E->getType()))
1320       break;
1321 
1322 
1323     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1324     // We never generate write-barries for initialized fields.
1325     LV.setNonGC(true);
1326 
1327     if (curInitIndex < NumInitElements) {
1328       // Store the initializer into the field.
1329       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1330     } else {
1331       // We're out of initializers; default-initialize to null
1332       EmitNullInitializationToLValue(LV);
1333     }
1334 
1335     // Push a destructor if necessary.
1336     // FIXME: if we have an array of structures, all explicitly
1337     // initialized, we can end up pushing a linear number of cleanups.
1338     bool pushedCleanup = false;
1339     if (QualType::DestructionKind dtorKind
1340           = field->getType().isDestructedType()) {
1341       assert(LV.isSimple());
1342       if (CGF.needsEHCleanup(dtorKind)) {
1343         if (!cleanupDominator)
1344           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1345               CGF.Int8Ty,
1346               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1347               CharUnits::One()); // placeholder
1348 
1349         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1350                         CGF.getDestroyer(dtorKind), false);
1351         cleanups.push_back(CGF.EHStack.stable_begin());
1352         pushedCleanup = true;
1353       }
1354     }
1355 
1356     // If the GEP didn't get used because of a dead zero init or something
1357     // else, clean it up for -O0 builds and general tidiness.
1358     if (!pushedCleanup && LV.isSimple())
1359       if (llvm::GetElementPtrInst *GEP =
1360             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1361         if (GEP->use_empty())
1362           GEP->eraseFromParent();
1363   }
1364 
1365   // Deactivate all the partial cleanups in reverse order, which
1366   // generally means popping them.
1367   for (unsigned i = cleanups.size(); i != 0; --i)
1368     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1369 
1370   // Destroy the placeholder if we made one.
1371   if (cleanupDominator)
1372     cleanupDominator->eraseFromParent();
1373 }
1374 
1375 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1376                                             llvm::Value *outerBegin) {
1377   // Emit the common subexpression.
1378   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1379 
1380   Address destPtr = EnsureSlot(E->getType()).getAddress();
1381   uint64_t numElements = E->getArraySize().getZExtValue();
1382 
1383   if (!numElements)
1384     return;
1385 
1386   // destPtr is an array*. Construct an elementType* by drilling down a level.
1387   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1388   llvm::Value *indices[] = {zero, zero};
1389   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1390                                                  "arrayinit.begin");
1391 
1392   // Prepare to special-case multidimensional array initialization: we avoid
1393   // emitting multiple destructor loops in that case.
1394   if (!outerBegin)
1395     outerBegin = begin;
1396   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1397 
1398   QualType elementType =
1399       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1400   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1401   CharUnits elementAlign =
1402       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1403 
1404   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1405   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1406 
1407   // Jump into the body.
1408   CGF.EmitBlock(bodyBB);
1409   llvm::PHINode *index =
1410       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1411   index->addIncoming(zero, entryBB);
1412   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1413 
1414   // Prepare for a cleanup.
1415   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1416   EHScopeStack::stable_iterator cleanup;
1417   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1418     if (outerBegin->getType() != element->getType())
1419       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1420     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1421                                        elementAlign,
1422                                        CGF.getDestroyer(dtorKind));
1423     cleanup = CGF.EHStack.stable_begin();
1424   } else {
1425     dtorKind = QualType::DK_none;
1426   }
1427 
1428   // Emit the actual filler expression.
1429   {
1430     // Temporaries created in an array initialization loop are destroyed
1431     // at the end of each iteration.
1432     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1433     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1434     LValue elementLV =
1435         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1436 
1437     if (InnerLoop) {
1438       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1439       auto elementSlot = AggValueSlot::forLValue(
1440           elementLV, AggValueSlot::IsDestructed,
1441           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased);
1442       AggExprEmitter(CGF, elementSlot, false)
1443           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1444     } else
1445       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1446   }
1447 
1448   // Move on to the next element.
1449   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1450       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1451   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1452 
1453   // Leave the loop if we're done.
1454   llvm::Value *done = Builder.CreateICmpEQ(
1455       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1456       "arrayinit.done");
1457   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1458   Builder.CreateCondBr(done, endBB, bodyBB);
1459 
1460   CGF.EmitBlock(endBB);
1461 
1462   // Leave the partial-array cleanup if we entered one.
1463   if (dtorKind)
1464     CGF.DeactivateCleanupBlock(cleanup, index);
1465 }
1466 
1467 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1468   AggValueSlot Dest = EnsureSlot(E->getType());
1469 
1470   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1471   EmitInitializationToLValue(E->getBase(), DestLV);
1472   VisitInitListExpr(E->getUpdater());
1473 }
1474 
1475 //===----------------------------------------------------------------------===//
1476 //                        Entry Points into this File
1477 //===----------------------------------------------------------------------===//
1478 
1479 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1480 /// non-zero bytes that will be stored when outputting the initializer for the
1481 /// specified initializer expression.
1482 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1483   E = E->IgnoreParens();
1484 
1485   // 0 and 0.0 won't require any non-zero stores!
1486   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1487 
1488   // If this is an initlist expr, sum up the size of sizes of the (present)
1489   // elements.  If this is something weird, assume the whole thing is non-zero.
1490   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1491   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1492     return CGF.getContext().getTypeSizeInChars(E->getType());
1493 
1494   // InitListExprs for structs have to be handled carefully.  If there are
1495   // reference members, we need to consider the size of the reference, not the
1496   // referencee.  InitListExprs for unions and arrays can't have references.
1497   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1498     if (!RT->isUnionType()) {
1499       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1500       CharUnits NumNonZeroBytes = CharUnits::Zero();
1501 
1502       unsigned ILEElement = 0;
1503       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1504         while (ILEElement != CXXRD->getNumBases())
1505           NumNonZeroBytes +=
1506               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1507       for (const auto *Field : SD->fields()) {
1508         // We're done once we hit the flexible array member or run out of
1509         // InitListExpr elements.
1510         if (Field->getType()->isIncompleteArrayType() ||
1511             ILEElement == ILE->getNumInits())
1512           break;
1513         if (Field->isUnnamedBitfield())
1514           continue;
1515 
1516         const Expr *E = ILE->getInit(ILEElement++);
1517 
1518         // Reference values are always non-null and have the width of a pointer.
1519         if (Field->getType()->isReferenceType())
1520           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1521               CGF.getTarget().getPointerWidth(0));
1522         else
1523           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1524       }
1525 
1526       return NumNonZeroBytes;
1527     }
1528   }
1529 
1530 
1531   CharUnits NumNonZeroBytes = CharUnits::Zero();
1532   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1533     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1534   return NumNonZeroBytes;
1535 }
1536 
1537 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1538 /// zeros in it, emit a memset and avoid storing the individual zeros.
1539 ///
1540 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1541                                      CodeGenFunction &CGF) {
1542   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1543   // volatile stores.
1544   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1545     return;
1546 
1547   // C++ objects with a user-declared constructor don't need zero'ing.
1548   if (CGF.getLangOpts().CPlusPlus)
1549     if (const RecordType *RT = CGF.getContext()
1550                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1551       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1552       if (RD->hasUserDeclaredConstructor())
1553         return;
1554     }
1555 
1556   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1557   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1558   if (Size <= CharUnits::fromQuantity(16))
1559     return;
1560 
1561   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1562   // we prefer to emit memset + individual stores for the rest.
1563   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1564   if (NumNonZeroBytes*4 > Size)
1565     return;
1566 
1567   // Okay, it seems like a good idea to use an initial memset, emit the call.
1568   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1569 
1570   Address Loc = Slot.getAddress();
1571   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1572   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1573 
1574   // Tell the AggExprEmitter that the slot is known zero.
1575   Slot.setZeroed();
1576 }
1577 
1578 
1579 
1580 
1581 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1582 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1583 /// the value of the aggregate expression is not needed.  If VolatileDest is
1584 /// true, DestPtr cannot be 0.
1585 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1586   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1587          "Invalid aggregate expression to emit");
1588   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1589          "slot has bits but no address");
1590 
1591   // Optimize the slot if possible.
1592   CheckAggExprForMemSetUse(Slot, E, *this);
1593 
1594   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1595 }
1596 
1597 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1598   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1599   Address Temp = CreateMemTemp(E->getType());
1600   LValue LV = MakeAddrLValue(Temp, E->getType());
1601   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1602                                          AggValueSlot::DoesNotNeedGCBarriers,
1603                                          AggValueSlot::IsNotAliased));
1604   return LV;
1605 }
1606 
1607 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src,
1608                                         QualType Ty, bool isVolatile,
1609                                         bool isAssignment) {
1610   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1611 
1612   Address DestPtr = Dest.getAddress();
1613   Address SrcPtr = Src.getAddress();
1614 
1615   if (getLangOpts().CPlusPlus) {
1616     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1617       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1618       assert((Record->hasTrivialCopyConstructor() ||
1619               Record->hasTrivialCopyAssignment() ||
1620               Record->hasTrivialMoveConstructor() ||
1621               Record->hasTrivialMoveAssignment() ||
1622               Record->isUnion()) &&
1623              "Trying to aggregate-copy a type without a trivial copy/move "
1624              "constructor or assignment operator");
1625       // Ignore empty classes in C++.
1626       if (Record->isEmpty())
1627         return;
1628     }
1629   }
1630 
1631   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1632   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1633   // read from another object that overlaps in anyway the storage of the first
1634   // object, then the overlap shall be exact and the two objects shall have
1635   // qualified or unqualified versions of a compatible type."
1636   //
1637   // memcpy is not defined if the source and destination pointers are exactly
1638   // equal, but other compilers do this optimization, and almost every memcpy
1639   // implementation handles this case safely.  If there is a libc that does not
1640   // safely handle this, we can add a target hook.
1641 
1642   // Get data size info for this aggregate. If this is an assignment,
1643   // don't copy the tail padding, because we might be assigning into a
1644   // base subobject where the tail padding is claimed.  Otherwise,
1645   // copying it is fine.
1646   std::pair<CharUnits, CharUnits> TypeInfo;
1647   if (isAssignment)
1648     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1649   else
1650     TypeInfo = getContext().getTypeInfoInChars(Ty);
1651 
1652   llvm::Value *SizeVal = nullptr;
1653   if (TypeInfo.first.isZero()) {
1654     // But note that getTypeInfo returns 0 for a VLA.
1655     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1656             getContext().getAsArrayType(Ty))) {
1657       QualType BaseEltTy;
1658       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1659       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1660       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1661       if (!isAssignment)
1662         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1663       assert(!TypeInfo.first.isZero());
1664       SizeVal = Builder.CreateNUWMul(
1665           SizeVal,
1666           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1667       if (!isAssignment) {
1668         SizeVal = Builder.CreateNUWSub(
1669             SizeVal,
1670             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1671         SizeVal = Builder.CreateNUWAdd(
1672             SizeVal, llvm::ConstantInt::get(
1673                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1674       }
1675     }
1676   }
1677   if (!SizeVal) {
1678     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1679   }
1680 
1681   // FIXME: If we have a volatile struct, the optimizer can remove what might
1682   // appear to be `extra' memory ops:
1683   //
1684   // volatile struct { int i; } a, b;
1685   //
1686   // int main() {
1687   //   a = b;
1688   //   a = b;
1689   // }
1690   //
1691   // we need to use a different call here.  We use isVolatile to indicate when
1692   // either the source or the destination is volatile.
1693 
1694   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1695   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1696 
1697   // Don't do any of the memmove_collectable tests if GC isn't set.
1698   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1699     // fall through
1700   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1701     RecordDecl *Record = RecordTy->getDecl();
1702     if (Record->hasObjectMember()) {
1703       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1704                                                     SizeVal);
1705       return;
1706     }
1707   } else if (Ty->isArrayType()) {
1708     QualType BaseType = getContext().getBaseElementType(Ty);
1709     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1710       if (RecordTy->getDecl()->hasObjectMember()) {
1711         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1712                                                       SizeVal);
1713         return;
1714       }
1715     }
1716   }
1717 
1718   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1719 
1720   // Determine the metadata to describe the position of any padding in this
1721   // memcpy, as well as the TBAA tags for the members of the struct, in case
1722   // the optimizer wishes to expand it in to scalar memory operations.
1723   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1724     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1725 
1726   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1727     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1728         Dest.getTBAAInfo(), Src.getTBAAInfo());
1729     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1730   }
1731 }
1732