1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33 
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40 
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49 
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72 
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   // l-values.
128   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
129   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
130   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
131   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
132   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
133   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
134     EmitAggLoadOfLValue(E);
135   }
136   void VisitPredefinedExpr(const PredefinedExpr *E) {
137     EmitAggLoadOfLValue(E);
138   }
139 
140   // Operators.
141   void VisitCastExpr(CastExpr *E);
142   void VisitCallExpr(const CallExpr *E);
143   void VisitStmtExpr(const StmtExpr *E);
144   void VisitBinaryOperator(const BinaryOperator *BO);
145   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
146   void VisitBinAssign(const BinaryOperator *E);
147   void VisitBinComma(const BinaryOperator *E);
148 
149   void VisitObjCMessageExpr(ObjCMessageExpr *E);
150   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
151     EmitAggLoadOfLValue(E);
152   }
153 
154   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
155   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
156   void VisitChooseExpr(const ChooseExpr *CE);
157   void VisitInitListExpr(InitListExpr *E);
158   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
159                               llvm::Value *outerBegin = nullptr);
160   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
161   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
162   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
163     Visit(DAE->getExpr());
164   }
165   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
166     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
167     Visit(DIE->getExpr());
168   }
169   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
170   void VisitCXXConstructExpr(const CXXConstructExpr *E);
171   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
172   void VisitLambdaExpr(LambdaExpr *E);
173   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
174   void VisitExprWithCleanups(ExprWithCleanups *E);
175   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
176   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
177   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
178   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
179 
180   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
181     if (E->isGLValue()) {
182       LValue LV = CGF.EmitPseudoObjectLValue(E);
183       return EmitFinalDestCopy(E->getType(), LV);
184     }
185 
186     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
187   }
188 
189   void VisitVAArgExpr(VAArgExpr *E);
190 
191   void EmitInitializationToLValue(Expr *E, LValue Address);
192   void EmitNullInitializationToLValue(LValue Address);
193   //  case Expr::ChooseExprClass:
194   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
195   void VisitAtomicExpr(AtomicExpr *E) {
196     RValue Res = CGF.EmitAtomicExpr(E);
197     EmitFinalDestCopy(E->getType(), Res);
198   }
199 };
200 }  // end anonymous namespace.
201 
202 //===----------------------------------------------------------------------===//
203 //                                Utilities
204 //===----------------------------------------------------------------------===//
205 
206 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
207 /// represents a value lvalue, this method emits the address of the lvalue,
208 /// then loads the result into DestPtr.
209 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
210   LValue LV = CGF.EmitLValue(E);
211 
212   // If the type of the l-value is atomic, then do an atomic load.
213   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
214     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
215     return;
216   }
217 
218   EmitFinalDestCopy(E->getType(), LV);
219 }
220 
221 /// \brief True if the given aggregate type requires special GC API calls.
222 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
223   // Only record types have members that might require garbage collection.
224   const RecordType *RecordTy = T->getAs<RecordType>();
225   if (!RecordTy) return false;
226 
227   // Don't mess with non-trivial C++ types.
228   RecordDecl *Record = RecordTy->getDecl();
229   if (isa<CXXRecordDecl>(Record) &&
230       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
231        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
232     return false;
233 
234   // Check whether the type has an object member.
235   return Record->hasObjectMember();
236 }
237 
238 void AggExprEmitter::withReturnValueSlot(
239     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
240   QualType RetTy = E->getType();
241   bool RequiresDestruction =
242       Dest.isIgnored() &&
243       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
244 
245   // If it makes no observable difference, save a memcpy + temporary.
246   //
247   // We need to always provide our own temporary if destruction is required.
248   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
249   // its lifetime before we have the chance to emit a proper destructor call.
250   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
251                  (RequiresDestruction && !Dest.getAddress().isValid());
252 
253   Address RetAddr = Address::invalid();
254 
255   EHScopeStack::stable_iterator LifetimeEndBlock;
256   llvm::Value *LifetimeSizePtr = nullptr;
257   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
258   if (!UseTemp) {
259     RetAddr = Dest.getAddress();
260   } else {
261     RetAddr = CGF.CreateMemTemp(RetTy);
262     uint64_t Size =
263         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
264     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAddr.getPointer());
265     if (LifetimeSizePtr) {
266       LifetimeStartInst =
267           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
268       assert(LifetimeStartInst->getIntrinsicID() ==
269                  llvm::Intrinsic::lifetime_start &&
270              "Last insertion wasn't a lifetime.start?");
271 
272       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
273           NormalEHLifetimeMarker, RetAddr, LifetimeSizePtr);
274       LifetimeEndBlock = CGF.EHStack.stable_begin();
275     }
276   }
277 
278   RValue Src =
279       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
280 
281   if (RequiresDestruction)
282     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
283 
284   if (!UseTemp)
285     return;
286 
287   assert(Dest.getPointer() != Src.getAggregatePointer());
288   EmitFinalDestCopy(E->getType(), Src);
289 
290   if (!RequiresDestruction && LifetimeStartInst) {
291     // If there's no dtor to run, the copy was the last use of our temporary.
292     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
293     // eagerly.
294     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
295     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAddr.getPointer());
296   }
297 }
298 
299 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
300 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
301   assert(src.isAggregate() && "value must be aggregate value!");
302   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
303   EmitFinalDestCopy(type, srcLV, EVK_RValue);
304 }
305 
306 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
307 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
308                                        ExprValueKind SrcValueKind) {
309   // If Dest is ignored, then we're evaluating an aggregate expression
310   // in a context that doesn't care about the result.  Note that loads
311   // from volatile l-values force the existence of a non-ignored
312   // destination.
313   if (Dest.isIgnored())
314     return;
315 
316   // Copy non-trivial C structs here.
317   LValue DstLV = CGF.MakeAddrLValue(
318       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
319 
320   if (SrcValueKind == EVK_RValue) {
321     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
322       if (Dest.isPotentiallyAliased())
323         CGF.callCStructMoveAssignmentOperator(DstLV, src);
324       else
325         CGF.callCStructMoveConstructor(DstLV, src);
326       return;
327     }
328   } else {
329     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
330       if (Dest.isPotentiallyAliased())
331         CGF.callCStructCopyAssignmentOperator(DstLV, src);
332       else
333         CGF.callCStructCopyConstructor(DstLV, src);
334       return;
335     }
336   }
337 
338   AggValueSlot srcAgg =
339     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
340                             needsGC(type), AggValueSlot::IsAliased);
341   EmitCopy(type, Dest, srcAgg);
342 }
343 
344 /// Perform a copy from the source into the destination.
345 ///
346 /// \param type - the type of the aggregate being copied; qualifiers are
347 ///   ignored
348 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
349                               const AggValueSlot &src) {
350   if (dest.requiresGCollection()) {
351     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
352     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
353     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
354                                                       dest.getAddress(),
355                                                       src.getAddress(),
356                                                       size);
357     return;
358   }
359 
360   // If the result of the assignment is used, copy the LHS there also.
361   // It's volatile if either side is.  Use the minimum alignment of
362   // the two sides.
363   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
364   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
365   CGF.EmitAggregateCopy(DestLV, SrcLV, type,
366                         dest.isVolatile() || src.isVolatile());
367 }
368 
369 /// \brief Emit the initializer for a std::initializer_list initialized with a
370 /// real initializer list.
371 void
372 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
373   // Emit an array containing the elements.  The array is externally destructed
374   // if the std::initializer_list object is.
375   ASTContext &Ctx = CGF.getContext();
376   LValue Array = CGF.EmitLValue(E->getSubExpr());
377   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
378   Address ArrayPtr = Array.getAddress();
379 
380   const ConstantArrayType *ArrayType =
381       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
382   assert(ArrayType && "std::initializer_list constructed from non-array");
383 
384   // FIXME: Perform the checks on the field types in SemaInit.
385   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
386   RecordDecl::field_iterator Field = Record->field_begin();
387   if (Field == Record->field_end()) {
388     CGF.ErrorUnsupported(E, "weird std::initializer_list");
389     return;
390   }
391 
392   // Start pointer.
393   if (!Field->getType()->isPointerType() ||
394       !Ctx.hasSameType(Field->getType()->getPointeeType(),
395                        ArrayType->getElementType())) {
396     CGF.ErrorUnsupported(E, "weird std::initializer_list");
397     return;
398   }
399 
400   AggValueSlot Dest = EnsureSlot(E->getType());
401   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
402   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
403   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
404   llvm::Value *IdxStart[] = { Zero, Zero };
405   llvm::Value *ArrayStart =
406       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
407   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
408   ++Field;
409 
410   if (Field == Record->field_end()) {
411     CGF.ErrorUnsupported(E, "weird std::initializer_list");
412     return;
413   }
414 
415   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
416   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
417   if (Field->getType()->isPointerType() &&
418       Ctx.hasSameType(Field->getType()->getPointeeType(),
419                       ArrayType->getElementType())) {
420     // End pointer.
421     llvm::Value *IdxEnd[] = { Zero, Size };
422     llvm::Value *ArrayEnd =
423         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
424     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
425   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
426     // Length.
427     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
428   } else {
429     CGF.ErrorUnsupported(E, "weird std::initializer_list");
430     return;
431   }
432 }
433 
434 /// \brief Determine if E is a trivial array filler, that is, one that is
435 /// equivalent to zero-initialization.
436 static bool isTrivialFiller(Expr *E) {
437   if (!E)
438     return true;
439 
440   if (isa<ImplicitValueInitExpr>(E))
441     return true;
442 
443   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
444     if (ILE->getNumInits())
445       return false;
446     return isTrivialFiller(ILE->getArrayFiller());
447   }
448 
449   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
450     return Cons->getConstructor()->isDefaultConstructor() &&
451            Cons->getConstructor()->isTrivial();
452 
453   // FIXME: Are there other cases where we can avoid emitting an initializer?
454   return false;
455 }
456 
457 /// \brief Emit initialization of an array from an initializer list.
458 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
459                                    QualType ArrayQTy, InitListExpr *E) {
460   uint64_t NumInitElements = E->getNumInits();
461 
462   uint64_t NumArrayElements = AType->getNumElements();
463   assert(NumInitElements <= NumArrayElements);
464 
465   QualType elementType =
466       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
467 
468   // DestPtr is an array*.  Construct an elementType* by drilling
469   // down a level.
470   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
471   llvm::Value *indices[] = { zero, zero };
472   llvm::Value *begin =
473     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
474 
475   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
476   CharUnits elementAlign =
477     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
478 
479   // Consider initializing the array by copying from a global. For this to be
480   // more efficient than per-element initialization, the size of the elements
481   // with explicit initializers should be large enough.
482   if (NumInitElements * elementSize.getQuantity() > 16 &&
483       elementType.isTriviallyCopyableType(CGF.getContext())) {
484     CodeGen::CodeGenModule &CGM = CGF.CGM;
485     ConstantEmitter Emitter(CGM);
486     LangAS AS = ArrayQTy.getAddressSpace();
487     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
488       auto GV = new llvm::GlobalVariable(
489           CGM.getModule(), C->getType(),
490           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
491           llvm::GlobalValue::PrivateLinkage, C, "constinit",
492           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
493           CGM.getContext().getTargetAddressSpace(AS));
494       Emitter.finalize(GV);
495       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
496       GV->setAlignment(Align.getQuantity());
497       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
498       return;
499     }
500   }
501 
502   // Exception safety requires us to destroy all the
503   // already-constructed members if an initializer throws.
504   // For that, we'll need an EH cleanup.
505   QualType::DestructionKind dtorKind = elementType.isDestructedType();
506   Address endOfInit = Address::invalid();
507   EHScopeStack::stable_iterator cleanup;
508   llvm::Instruction *cleanupDominator = nullptr;
509   if (CGF.needsEHCleanup(dtorKind)) {
510     // In principle we could tell the cleanup where we are more
511     // directly, but the control flow can get so varied here that it
512     // would actually be quite complex.  Therefore we go through an
513     // alloca.
514     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
515                                      "arrayinit.endOfInit");
516     cleanupDominator = Builder.CreateStore(begin, endOfInit);
517     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
518                                          elementAlign,
519                                          CGF.getDestroyer(dtorKind));
520     cleanup = CGF.EHStack.stable_begin();
521 
522   // Otherwise, remember that we didn't need a cleanup.
523   } else {
524     dtorKind = QualType::DK_none;
525   }
526 
527   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
528 
529   // The 'current element to initialize'.  The invariants on this
530   // variable are complicated.  Essentially, after each iteration of
531   // the loop, it points to the last initialized element, except
532   // that it points to the beginning of the array before any
533   // elements have been initialized.
534   llvm::Value *element = begin;
535 
536   // Emit the explicit initializers.
537   for (uint64_t i = 0; i != NumInitElements; ++i) {
538     // Advance to the next element.
539     if (i > 0) {
540       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
541 
542       // Tell the cleanup that it needs to destroy up to this
543       // element.  TODO: some of these stores can be trivially
544       // observed to be unnecessary.
545       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
546     }
547 
548     LValue elementLV =
549       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
550     EmitInitializationToLValue(E->getInit(i), elementLV);
551   }
552 
553   // Check whether there's a non-trivial array-fill expression.
554   Expr *filler = E->getArrayFiller();
555   bool hasTrivialFiller = isTrivialFiller(filler);
556 
557   // Any remaining elements need to be zero-initialized, possibly
558   // using the filler expression.  We can skip this if the we're
559   // emitting to zeroed memory.
560   if (NumInitElements != NumArrayElements &&
561       !(Dest.isZeroed() && hasTrivialFiller &&
562         CGF.getTypes().isZeroInitializable(elementType))) {
563 
564     // Use an actual loop.  This is basically
565     //   do { *array++ = filler; } while (array != end);
566 
567     // Advance to the start of the rest of the array.
568     if (NumInitElements) {
569       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
570       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
571     }
572 
573     // Compute the end of the array.
574     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
575                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
576                                                  "arrayinit.end");
577 
578     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
579     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
580 
581     // Jump into the body.
582     CGF.EmitBlock(bodyBB);
583     llvm::PHINode *currentElement =
584       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
585     currentElement->addIncoming(element, entryBB);
586 
587     // Emit the actual filler expression.
588     {
589       // C++1z [class.temporary]p5:
590       //   when a default constructor is called to initialize an element of
591       //   an array with no corresponding initializer [...] the destruction of
592       //   every temporary created in a default argument is sequenced before
593       //   the construction of the next array element, if any
594       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
595       LValue elementLV =
596         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
597       if (filler)
598         EmitInitializationToLValue(filler, elementLV);
599       else
600         EmitNullInitializationToLValue(elementLV);
601     }
602 
603     // Move on to the next element.
604     llvm::Value *nextElement =
605       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
606 
607     // Tell the EH cleanup that we finished with the last element.
608     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
609 
610     // Leave the loop if we're done.
611     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
612                                              "arrayinit.done");
613     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
614     Builder.CreateCondBr(done, endBB, bodyBB);
615     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
616 
617     CGF.EmitBlock(endBB);
618   }
619 
620   // Leave the partial-array cleanup if we entered one.
621   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
622 }
623 
624 //===----------------------------------------------------------------------===//
625 //                            Visitor Methods
626 //===----------------------------------------------------------------------===//
627 
628 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
629   Visit(E->GetTemporaryExpr());
630 }
631 
632 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
633   // If this is a unique OVE, just visit its source expression.
634   if (e->isUnique())
635     Visit(e->getSourceExpr());
636   else
637     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
638 }
639 
640 void
641 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
642   if (Dest.isPotentiallyAliased() &&
643       E->getType().isPODType(CGF.getContext())) {
644     // For a POD type, just emit a load of the lvalue + a copy, because our
645     // compound literal might alias the destination.
646     EmitAggLoadOfLValue(E);
647     return;
648   }
649 
650   AggValueSlot Slot = EnsureSlot(E->getType());
651   CGF.EmitAggExpr(E->getInitializer(), Slot);
652 }
653 
654 /// Attempt to look through various unimportant expressions to find a
655 /// cast of the given kind.
656 static Expr *findPeephole(Expr *op, CastKind kind) {
657   while (true) {
658     op = op->IgnoreParens();
659     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
660       if (castE->getCastKind() == kind)
661         return castE->getSubExpr();
662       if (castE->getCastKind() == CK_NoOp)
663         continue;
664     }
665     return nullptr;
666   }
667 }
668 
669 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
670   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
671     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
672   switch (E->getCastKind()) {
673   case CK_Dynamic: {
674     // FIXME: Can this actually happen? We have no test coverage for it.
675     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
676     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
677                                       CodeGenFunction::TCK_Load);
678     // FIXME: Do we also need to handle property references here?
679     if (LV.isSimple())
680       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
681     else
682       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
683 
684     if (!Dest.isIgnored())
685       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
686     break;
687   }
688 
689   case CK_ToUnion: {
690     // Evaluate even if the destination is ignored.
691     if (Dest.isIgnored()) {
692       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
693                       /*ignoreResult=*/true);
694       break;
695     }
696 
697     // GCC union extension
698     QualType Ty = E->getSubExpr()->getType();
699     Address CastPtr =
700       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
701     EmitInitializationToLValue(E->getSubExpr(),
702                                CGF.MakeAddrLValue(CastPtr, Ty));
703     break;
704   }
705 
706   case CK_DerivedToBase:
707   case CK_BaseToDerived:
708   case CK_UncheckedDerivedToBase: {
709     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
710                 "should have been unpacked before we got here");
711   }
712 
713   case CK_NonAtomicToAtomic:
714   case CK_AtomicToNonAtomic: {
715     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
716 
717     // Determine the atomic and value types.
718     QualType atomicType = E->getSubExpr()->getType();
719     QualType valueType = E->getType();
720     if (isToAtomic) std::swap(atomicType, valueType);
721 
722     assert(atomicType->isAtomicType());
723     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
724                           atomicType->castAs<AtomicType>()->getValueType()));
725 
726     // Just recurse normally if we're ignoring the result or the
727     // atomic type doesn't change representation.
728     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
729       return Visit(E->getSubExpr());
730     }
731 
732     CastKind peepholeTarget =
733       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
734 
735     // These two cases are reverses of each other; try to peephole them.
736     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
737       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
738                                                      E->getType()) &&
739            "peephole significantly changed types?");
740       return Visit(op);
741     }
742 
743     // If we're converting an r-value of non-atomic type to an r-value
744     // of atomic type, just emit directly into the relevant sub-object.
745     if (isToAtomic) {
746       AggValueSlot valueDest = Dest;
747       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
748         // Zero-initialize.  (Strictly speaking, we only need to intialize
749         // the padding at the end, but this is simpler.)
750         if (!Dest.isZeroed())
751           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
752 
753         // Build a GEP to refer to the subobject.
754         Address valueAddr =
755             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
756                                         CharUnits());
757         valueDest = AggValueSlot::forAddr(valueAddr,
758                                           valueDest.getQualifiers(),
759                                           valueDest.isExternallyDestructed(),
760                                           valueDest.requiresGCollection(),
761                                           valueDest.isPotentiallyAliased(),
762                                           AggValueSlot::IsZeroed);
763       }
764 
765       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
766       return;
767     }
768 
769     // Otherwise, we're converting an atomic type to a non-atomic type.
770     // Make an atomic temporary, emit into that, and then copy the value out.
771     AggValueSlot atomicSlot =
772       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
773     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
774 
775     Address valueAddr =
776       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
777     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
778     return EmitFinalDestCopy(valueType, rvalue);
779   }
780 
781   case CK_LValueToRValue:
782     // If we're loading from a volatile type, force the destination
783     // into existence.
784     if (E->getSubExpr()->getType().isVolatileQualified()) {
785       EnsureDest(E->getType());
786       return Visit(E->getSubExpr());
787     }
788 
789     LLVM_FALLTHROUGH;
790 
791   case CK_NoOp:
792   case CK_UserDefinedConversion:
793   case CK_ConstructorConversion:
794     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
795                                                    E->getType()) &&
796            "Implicit cast types must be compatible");
797     Visit(E->getSubExpr());
798     break;
799 
800   case CK_LValueBitCast:
801     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
802 
803   case CK_Dependent:
804   case CK_BitCast:
805   case CK_ArrayToPointerDecay:
806   case CK_FunctionToPointerDecay:
807   case CK_NullToPointer:
808   case CK_NullToMemberPointer:
809   case CK_BaseToDerivedMemberPointer:
810   case CK_DerivedToBaseMemberPointer:
811   case CK_MemberPointerToBoolean:
812   case CK_ReinterpretMemberPointer:
813   case CK_IntegralToPointer:
814   case CK_PointerToIntegral:
815   case CK_PointerToBoolean:
816   case CK_ToVoid:
817   case CK_VectorSplat:
818   case CK_IntegralCast:
819   case CK_BooleanToSignedIntegral:
820   case CK_IntegralToBoolean:
821   case CK_IntegralToFloating:
822   case CK_FloatingToIntegral:
823   case CK_FloatingToBoolean:
824   case CK_FloatingCast:
825   case CK_CPointerToObjCPointerCast:
826   case CK_BlockPointerToObjCPointerCast:
827   case CK_AnyPointerToBlockPointerCast:
828   case CK_ObjCObjectLValueCast:
829   case CK_FloatingRealToComplex:
830   case CK_FloatingComplexToReal:
831   case CK_FloatingComplexToBoolean:
832   case CK_FloatingComplexCast:
833   case CK_FloatingComplexToIntegralComplex:
834   case CK_IntegralRealToComplex:
835   case CK_IntegralComplexToReal:
836   case CK_IntegralComplexToBoolean:
837   case CK_IntegralComplexCast:
838   case CK_IntegralComplexToFloatingComplex:
839   case CK_ARCProduceObject:
840   case CK_ARCConsumeObject:
841   case CK_ARCReclaimReturnedObject:
842   case CK_ARCExtendBlockObject:
843   case CK_CopyAndAutoreleaseBlockObject:
844   case CK_BuiltinFnToFnPtr:
845   case CK_ZeroToOCLEvent:
846   case CK_ZeroToOCLQueue:
847   case CK_AddressSpaceConversion:
848   case CK_IntToOCLSampler:
849     llvm_unreachable("cast kind invalid for aggregate types");
850   }
851 }
852 
853 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
854   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
855     EmitAggLoadOfLValue(E);
856     return;
857   }
858 
859   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
860     return CGF.EmitCallExpr(E, Slot);
861   });
862 }
863 
864 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
865   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
866     return CGF.EmitObjCMessageExpr(E, Slot);
867   });
868 }
869 
870 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
871   CGF.EmitIgnoredExpr(E->getLHS());
872   Visit(E->getRHS());
873 }
874 
875 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
876   CodeGenFunction::StmtExprEvaluation eval(CGF);
877   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
878 }
879 
880 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
881   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
882     VisitPointerToDataMemberBinaryOperator(E);
883   else
884     CGF.ErrorUnsupported(E, "aggregate binary expression");
885 }
886 
887 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
888                                                     const BinaryOperator *E) {
889   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
890   EmitFinalDestCopy(E->getType(), LV);
891 }
892 
893 /// Is the value of the given expression possibly a reference to or
894 /// into a __block variable?
895 static bool isBlockVarRef(const Expr *E) {
896   // Make sure we look through parens.
897   E = E->IgnoreParens();
898 
899   // Check for a direct reference to a __block variable.
900   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
901     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
902     return (var && var->hasAttr<BlocksAttr>());
903   }
904 
905   // More complicated stuff.
906 
907   // Binary operators.
908   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
909     // For an assignment or pointer-to-member operation, just care
910     // about the LHS.
911     if (op->isAssignmentOp() || op->isPtrMemOp())
912       return isBlockVarRef(op->getLHS());
913 
914     // For a comma, just care about the RHS.
915     if (op->getOpcode() == BO_Comma)
916       return isBlockVarRef(op->getRHS());
917 
918     // FIXME: pointer arithmetic?
919     return false;
920 
921   // Check both sides of a conditional operator.
922   } else if (const AbstractConditionalOperator *op
923                = dyn_cast<AbstractConditionalOperator>(E)) {
924     return isBlockVarRef(op->getTrueExpr())
925         || isBlockVarRef(op->getFalseExpr());
926 
927   // OVEs are required to support BinaryConditionalOperators.
928   } else if (const OpaqueValueExpr *op
929                = dyn_cast<OpaqueValueExpr>(E)) {
930     if (const Expr *src = op->getSourceExpr())
931       return isBlockVarRef(src);
932 
933   // Casts are necessary to get things like (*(int*)&var) = foo().
934   // We don't really care about the kind of cast here, except
935   // we don't want to look through l2r casts, because it's okay
936   // to get the *value* in a __block variable.
937   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
938     if (cast->getCastKind() == CK_LValueToRValue)
939       return false;
940     return isBlockVarRef(cast->getSubExpr());
941 
942   // Handle unary operators.  Again, just aggressively look through
943   // it, ignoring the operation.
944   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
945     return isBlockVarRef(uop->getSubExpr());
946 
947   // Look into the base of a field access.
948   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
949     return isBlockVarRef(mem->getBase());
950 
951   // Look into the base of a subscript.
952   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
953     return isBlockVarRef(sub->getBase());
954   }
955 
956   return false;
957 }
958 
959 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
960   // For an assignment to work, the value on the right has
961   // to be compatible with the value on the left.
962   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
963                                                  E->getRHS()->getType())
964          && "Invalid assignment");
965 
966   // If the LHS might be a __block variable, and the RHS can
967   // potentially cause a block copy, we need to evaluate the RHS first
968   // so that the assignment goes the right place.
969   // This is pretty semantically fragile.
970   if (isBlockVarRef(E->getLHS()) &&
971       E->getRHS()->HasSideEffects(CGF.getContext())) {
972     // Ensure that we have a destination, and evaluate the RHS into that.
973     EnsureDest(E->getRHS()->getType());
974     Visit(E->getRHS());
975 
976     // Now emit the LHS and copy into it.
977     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
978 
979     // That copy is an atomic copy if the LHS is atomic.
980     if (LHS.getType()->isAtomicType() ||
981         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
982       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
983       return;
984     }
985 
986     EmitCopy(E->getLHS()->getType(),
987              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
988                                      needsGC(E->getLHS()->getType()),
989                                      AggValueSlot::IsAliased),
990              Dest);
991     return;
992   }
993 
994   LValue LHS = CGF.EmitLValue(E->getLHS());
995 
996   // If we have an atomic type, evaluate into the destination and then
997   // do an atomic copy.
998   if (LHS.getType()->isAtomicType() ||
999       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1000     EnsureDest(E->getRHS()->getType());
1001     Visit(E->getRHS());
1002     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1003     return;
1004   }
1005 
1006   // Codegen the RHS so that it stores directly into the LHS.
1007   AggValueSlot LHSSlot =
1008     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1009                             needsGC(E->getLHS()->getType()),
1010                             AggValueSlot::IsAliased);
1011   // A non-volatile aggregate destination might have volatile member.
1012   if (!LHSSlot.isVolatile() &&
1013       CGF.hasVolatileMember(E->getLHS()->getType()))
1014     LHSSlot.setVolatile(true);
1015 
1016   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1017 
1018   // Copy into the destination if the assignment isn't ignored.
1019   EmitFinalDestCopy(E->getType(), LHS);
1020 }
1021 
1022 void AggExprEmitter::
1023 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1024   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1025   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1026   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1027 
1028   // Bind the common expression if necessary.
1029   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1030 
1031   CodeGenFunction::ConditionalEvaluation eval(CGF);
1032   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1033                            CGF.getProfileCount(E));
1034 
1035   // Save whether the destination's lifetime is externally managed.
1036   bool isExternallyDestructed = Dest.isExternallyDestructed();
1037 
1038   eval.begin(CGF);
1039   CGF.EmitBlock(LHSBlock);
1040   CGF.incrementProfileCounter(E);
1041   Visit(E->getTrueExpr());
1042   eval.end(CGF);
1043 
1044   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1045   CGF.Builder.CreateBr(ContBlock);
1046 
1047   // If the result of an agg expression is unused, then the emission
1048   // of the LHS might need to create a destination slot.  That's fine
1049   // with us, and we can safely emit the RHS into the same slot, but
1050   // we shouldn't claim that it's already being destructed.
1051   Dest.setExternallyDestructed(isExternallyDestructed);
1052 
1053   eval.begin(CGF);
1054   CGF.EmitBlock(RHSBlock);
1055   Visit(E->getFalseExpr());
1056   eval.end(CGF);
1057 
1058   CGF.EmitBlock(ContBlock);
1059 }
1060 
1061 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1062   Visit(CE->getChosenSubExpr());
1063 }
1064 
1065 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1066   Address ArgValue = Address::invalid();
1067   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1068 
1069   // If EmitVAArg fails, emit an error.
1070   if (!ArgPtr.isValid()) {
1071     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1072     return;
1073   }
1074 
1075   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1076 }
1077 
1078 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1079   // Ensure that we have a slot, but if we already do, remember
1080   // whether it was externally destructed.
1081   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1082   EnsureDest(E->getType());
1083 
1084   // We're going to push a destructor if there isn't already one.
1085   Dest.setExternallyDestructed();
1086 
1087   Visit(E->getSubExpr());
1088 
1089   // Push that destructor we promised.
1090   if (!wasExternallyDestructed)
1091     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1092 }
1093 
1094 void
1095 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1096   AggValueSlot Slot = EnsureSlot(E->getType());
1097   CGF.EmitCXXConstructExpr(E, Slot);
1098 }
1099 
1100 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1101     const CXXInheritedCtorInitExpr *E) {
1102   AggValueSlot Slot = EnsureSlot(E->getType());
1103   CGF.EmitInheritedCXXConstructorCall(
1104       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1105       E->inheritedFromVBase(), E);
1106 }
1107 
1108 void
1109 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1110   AggValueSlot Slot = EnsureSlot(E->getType());
1111   CGF.EmitLambdaExpr(E, Slot);
1112 }
1113 
1114 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1115   CGF.enterFullExpression(E);
1116   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1117   Visit(E->getSubExpr());
1118 }
1119 
1120 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1121   QualType T = E->getType();
1122   AggValueSlot Slot = EnsureSlot(T);
1123   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1124 }
1125 
1126 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1127   QualType T = E->getType();
1128   AggValueSlot Slot = EnsureSlot(T);
1129   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1130 }
1131 
1132 /// isSimpleZero - If emitting this value will obviously just cause a store of
1133 /// zero to memory, return true.  This can return false if uncertain, so it just
1134 /// handles simple cases.
1135 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1136   E = E->IgnoreParens();
1137 
1138   // 0
1139   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1140     return IL->getValue() == 0;
1141   // +0.0
1142   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1143     return FL->getValue().isPosZero();
1144   // int()
1145   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1146       CGF.getTypes().isZeroInitializable(E->getType()))
1147     return true;
1148   // (int*)0 - Null pointer expressions.
1149   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1150     return ICE->getCastKind() == CK_NullToPointer &&
1151         CGF.getTypes().isPointerZeroInitializable(E->getType());
1152   // '\0'
1153   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1154     return CL->getValue() == 0;
1155 
1156   // Otherwise, hard case: conservatively return false.
1157   return false;
1158 }
1159 
1160 
1161 void
1162 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1163   QualType type = LV.getType();
1164   // FIXME: Ignore result?
1165   // FIXME: Are initializers affected by volatile?
1166   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1167     // Storing "i32 0" to a zero'd memory location is a noop.
1168     return;
1169   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1170     return EmitNullInitializationToLValue(LV);
1171   } else if (isa<NoInitExpr>(E)) {
1172     // Do nothing.
1173     return;
1174   } else if (type->isReferenceType()) {
1175     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1176     return CGF.EmitStoreThroughLValue(RV, LV);
1177   }
1178 
1179   switch (CGF.getEvaluationKind(type)) {
1180   case TEK_Complex:
1181     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1182     return;
1183   case TEK_Aggregate:
1184     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1185                                                AggValueSlot::IsDestructed,
1186                                       AggValueSlot::DoesNotNeedGCBarriers,
1187                                                AggValueSlot::IsNotAliased,
1188                                                Dest.isZeroed()));
1189     return;
1190   case TEK_Scalar:
1191     if (LV.isSimple()) {
1192       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1193     } else {
1194       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1195     }
1196     return;
1197   }
1198   llvm_unreachable("bad evaluation kind");
1199 }
1200 
1201 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1202   QualType type = lv.getType();
1203 
1204   // If the destination slot is already zeroed out before the aggregate is
1205   // copied into it, we don't have to emit any zeros here.
1206   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1207     return;
1208 
1209   if (CGF.hasScalarEvaluationKind(type)) {
1210     // For non-aggregates, we can store the appropriate null constant.
1211     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1212     // Note that the following is not equivalent to
1213     // EmitStoreThroughBitfieldLValue for ARC types.
1214     if (lv.isBitField()) {
1215       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1216     } else {
1217       assert(lv.isSimple());
1218       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1219     }
1220   } else {
1221     // There's a potential optimization opportunity in combining
1222     // memsets; that would be easy for arrays, but relatively
1223     // difficult for structures with the current code.
1224     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1225   }
1226 }
1227 
1228 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1229 #if 0
1230   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1231   // (Length of globals? Chunks of zeroed-out space?).
1232   //
1233   // If we can, prefer a copy from a global; this is a lot less code for long
1234   // globals, and it's easier for the current optimizers to analyze.
1235   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1236     llvm::GlobalVariable* GV =
1237     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1238                              llvm::GlobalValue::InternalLinkage, C, "");
1239     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1240     return;
1241   }
1242 #endif
1243   if (E->hadArrayRangeDesignator())
1244     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1245 
1246   if (E->isTransparent())
1247     return Visit(E->getInit(0));
1248 
1249   AggValueSlot Dest = EnsureSlot(E->getType());
1250 
1251   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1252 
1253   // Handle initialization of an array.
1254   if (E->getType()->isArrayType()) {
1255     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1256     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1257     return;
1258   }
1259 
1260   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1261 
1262   // Do struct initialization; this code just sets each individual member
1263   // to the approprate value.  This makes bitfield support automatic;
1264   // the disadvantage is that the generated code is more difficult for
1265   // the optimizer, especially with bitfields.
1266   unsigned NumInitElements = E->getNumInits();
1267   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1268 
1269   // We'll need to enter cleanup scopes in case any of the element
1270   // initializers throws an exception.
1271   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1272   llvm::Instruction *cleanupDominator = nullptr;
1273 
1274   unsigned curInitIndex = 0;
1275 
1276   // Emit initialization of base classes.
1277   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1278     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1279            "missing initializer for base class");
1280     for (auto &Base : CXXRD->bases()) {
1281       assert(!Base.isVirtual() && "should not see vbases here");
1282       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1283       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1284           Dest.getAddress(), CXXRD, BaseRD,
1285           /*isBaseVirtual*/ false);
1286       AggValueSlot AggSlot =
1287         AggValueSlot::forAddr(V, Qualifiers(),
1288                               AggValueSlot::IsDestructed,
1289                               AggValueSlot::DoesNotNeedGCBarriers,
1290                               AggValueSlot::IsNotAliased);
1291       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1292 
1293       if (QualType::DestructionKind dtorKind =
1294               Base.getType().isDestructedType()) {
1295         CGF.pushDestroy(dtorKind, V, Base.getType());
1296         cleanups.push_back(CGF.EHStack.stable_begin());
1297       }
1298     }
1299   }
1300 
1301   // Prepare a 'this' for CXXDefaultInitExprs.
1302   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1303 
1304   if (record->isUnion()) {
1305     // Only initialize one field of a union. The field itself is
1306     // specified by the initializer list.
1307     if (!E->getInitializedFieldInUnion()) {
1308       // Empty union; we have nothing to do.
1309 
1310 #ifndef NDEBUG
1311       // Make sure that it's really an empty and not a failure of
1312       // semantic analysis.
1313       for (const auto *Field : record->fields())
1314         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1315 #endif
1316       return;
1317     }
1318 
1319     // FIXME: volatility
1320     FieldDecl *Field = E->getInitializedFieldInUnion();
1321 
1322     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1323     if (NumInitElements) {
1324       // Store the initializer into the field
1325       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1326     } else {
1327       // Default-initialize to null.
1328       EmitNullInitializationToLValue(FieldLoc);
1329     }
1330 
1331     return;
1332   }
1333 
1334   // Here we iterate over the fields; this makes it simpler to both
1335   // default-initialize fields and skip over unnamed fields.
1336   for (const auto *field : record->fields()) {
1337     // We're done once we hit the flexible array member.
1338     if (field->getType()->isIncompleteArrayType())
1339       break;
1340 
1341     // Always skip anonymous bitfields.
1342     if (field->isUnnamedBitfield())
1343       continue;
1344 
1345     // We're done if we reach the end of the explicit initializers, we
1346     // have a zeroed object, and the rest of the fields are
1347     // zero-initializable.
1348     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1349         CGF.getTypes().isZeroInitializable(E->getType()))
1350       break;
1351 
1352 
1353     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1354     // We never generate write-barries for initialized fields.
1355     LV.setNonGC(true);
1356 
1357     if (curInitIndex < NumInitElements) {
1358       // Store the initializer into the field.
1359       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1360     } else {
1361       // We're out of initializers; default-initialize to null
1362       EmitNullInitializationToLValue(LV);
1363     }
1364 
1365     // Push a destructor if necessary.
1366     // FIXME: if we have an array of structures, all explicitly
1367     // initialized, we can end up pushing a linear number of cleanups.
1368     bool pushedCleanup = false;
1369     if (QualType::DestructionKind dtorKind
1370           = field->getType().isDestructedType()) {
1371       assert(LV.isSimple());
1372       if (CGF.needsEHCleanup(dtorKind)) {
1373         if (!cleanupDominator)
1374           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1375               CGF.Int8Ty,
1376               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1377               CharUnits::One()); // placeholder
1378 
1379         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1380                         CGF.getDestroyer(dtorKind), false);
1381         cleanups.push_back(CGF.EHStack.stable_begin());
1382         pushedCleanup = true;
1383       }
1384     }
1385 
1386     // If the GEP didn't get used because of a dead zero init or something
1387     // else, clean it up for -O0 builds and general tidiness.
1388     if (!pushedCleanup && LV.isSimple())
1389       if (llvm::GetElementPtrInst *GEP =
1390             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1391         if (GEP->use_empty())
1392           GEP->eraseFromParent();
1393   }
1394 
1395   // Deactivate all the partial cleanups in reverse order, which
1396   // generally means popping them.
1397   for (unsigned i = cleanups.size(); i != 0; --i)
1398     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1399 
1400   // Destroy the placeholder if we made one.
1401   if (cleanupDominator)
1402     cleanupDominator->eraseFromParent();
1403 }
1404 
1405 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1406                                             llvm::Value *outerBegin) {
1407   // Emit the common subexpression.
1408   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1409 
1410   Address destPtr = EnsureSlot(E->getType()).getAddress();
1411   uint64_t numElements = E->getArraySize().getZExtValue();
1412 
1413   if (!numElements)
1414     return;
1415 
1416   // destPtr is an array*. Construct an elementType* by drilling down a level.
1417   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1418   llvm::Value *indices[] = {zero, zero};
1419   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1420                                                  "arrayinit.begin");
1421 
1422   // Prepare to special-case multidimensional array initialization: we avoid
1423   // emitting multiple destructor loops in that case.
1424   if (!outerBegin)
1425     outerBegin = begin;
1426   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1427 
1428   QualType elementType =
1429       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1430   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1431   CharUnits elementAlign =
1432       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1433 
1434   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1435   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1436 
1437   // Jump into the body.
1438   CGF.EmitBlock(bodyBB);
1439   llvm::PHINode *index =
1440       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1441   index->addIncoming(zero, entryBB);
1442   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1443 
1444   // Prepare for a cleanup.
1445   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1446   EHScopeStack::stable_iterator cleanup;
1447   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1448     if (outerBegin->getType() != element->getType())
1449       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1450     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1451                                        elementAlign,
1452                                        CGF.getDestroyer(dtorKind));
1453     cleanup = CGF.EHStack.stable_begin();
1454   } else {
1455     dtorKind = QualType::DK_none;
1456   }
1457 
1458   // Emit the actual filler expression.
1459   {
1460     // Temporaries created in an array initialization loop are destroyed
1461     // at the end of each iteration.
1462     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1463     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1464     LValue elementLV =
1465         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1466 
1467     if (InnerLoop) {
1468       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1469       auto elementSlot = AggValueSlot::forLValue(
1470           elementLV, AggValueSlot::IsDestructed,
1471           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased);
1472       AggExprEmitter(CGF, elementSlot, false)
1473           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1474     } else
1475       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1476   }
1477 
1478   // Move on to the next element.
1479   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1480       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1481   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1482 
1483   // Leave the loop if we're done.
1484   llvm::Value *done = Builder.CreateICmpEQ(
1485       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1486       "arrayinit.done");
1487   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1488   Builder.CreateCondBr(done, endBB, bodyBB);
1489 
1490   CGF.EmitBlock(endBB);
1491 
1492   // Leave the partial-array cleanup if we entered one.
1493   if (dtorKind)
1494     CGF.DeactivateCleanupBlock(cleanup, index);
1495 }
1496 
1497 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1498   AggValueSlot Dest = EnsureSlot(E->getType());
1499 
1500   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1501   EmitInitializationToLValue(E->getBase(), DestLV);
1502   VisitInitListExpr(E->getUpdater());
1503 }
1504 
1505 //===----------------------------------------------------------------------===//
1506 //                        Entry Points into this File
1507 //===----------------------------------------------------------------------===//
1508 
1509 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1510 /// non-zero bytes that will be stored when outputting the initializer for the
1511 /// specified initializer expression.
1512 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1513   E = E->IgnoreParens();
1514 
1515   // 0 and 0.0 won't require any non-zero stores!
1516   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1517 
1518   // If this is an initlist expr, sum up the size of sizes of the (present)
1519   // elements.  If this is something weird, assume the whole thing is non-zero.
1520   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1521   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1522     return CGF.getContext().getTypeSizeInChars(E->getType());
1523 
1524   // InitListExprs for structs have to be handled carefully.  If there are
1525   // reference members, we need to consider the size of the reference, not the
1526   // referencee.  InitListExprs for unions and arrays can't have references.
1527   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1528     if (!RT->isUnionType()) {
1529       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1530       CharUnits NumNonZeroBytes = CharUnits::Zero();
1531 
1532       unsigned ILEElement = 0;
1533       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1534         while (ILEElement != CXXRD->getNumBases())
1535           NumNonZeroBytes +=
1536               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1537       for (const auto *Field : SD->fields()) {
1538         // We're done once we hit the flexible array member or run out of
1539         // InitListExpr elements.
1540         if (Field->getType()->isIncompleteArrayType() ||
1541             ILEElement == ILE->getNumInits())
1542           break;
1543         if (Field->isUnnamedBitfield())
1544           continue;
1545 
1546         const Expr *E = ILE->getInit(ILEElement++);
1547 
1548         // Reference values are always non-null and have the width of a pointer.
1549         if (Field->getType()->isReferenceType())
1550           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1551               CGF.getTarget().getPointerWidth(0));
1552         else
1553           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1554       }
1555 
1556       return NumNonZeroBytes;
1557     }
1558   }
1559 
1560 
1561   CharUnits NumNonZeroBytes = CharUnits::Zero();
1562   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1563     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1564   return NumNonZeroBytes;
1565 }
1566 
1567 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1568 /// zeros in it, emit a memset and avoid storing the individual zeros.
1569 ///
1570 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1571                                      CodeGenFunction &CGF) {
1572   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1573   // volatile stores.
1574   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1575     return;
1576 
1577   // C++ objects with a user-declared constructor don't need zero'ing.
1578   if (CGF.getLangOpts().CPlusPlus)
1579     if (const RecordType *RT = CGF.getContext()
1580                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1581       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1582       if (RD->hasUserDeclaredConstructor())
1583         return;
1584     }
1585 
1586   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1587   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1588   if (Size <= CharUnits::fromQuantity(16))
1589     return;
1590 
1591   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1592   // we prefer to emit memset + individual stores for the rest.
1593   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1594   if (NumNonZeroBytes*4 > Size)
1595     return;
1596 
1597   // Okay, it seems like a good idea to use an initial memset, emit the call.
1598   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1599 
1600   Address Loc = Slot.getAddress();
1601   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1602   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1603 
1604   // Tell the AggExprEmitter that the slot is known zero.
1605   Slot.setZeroed();
1606 }
1607 
1608 
1609 
1610 
1611 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1612 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1613 /// the value of the aggregate expression is not needed.  If VolatileDest is
1614 /// true, DestPtr cannot be 0.
1615 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1616   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1617          "Invalid aggregate expression to emit");
1618   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1619          "slot has bits but no address");
1620 
1621   // Optimize the slot if possible.
1622   CheckAggExprForMemSetUse(Slot, E, *this);
1623 
1624   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1625 }
1626 
1627 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1628   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1629   Address Temp = CreateMemTemp(E->getType());
1630   LValue LV = MakeAddrLValue(Temp, E->getType());
1631   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1632                                          AggValueSlot::DoesNotNeedGCBarriers,
1633                                          AggValueSlot::IsNotAliased));
1634   return LV;
1635 }
1636 
1637 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src,
1638                                         QualType Ty, bool isVolatile,
1639                                         bool isAssignment) {
1640   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1641 
1642   Address DestPtr = Dest.getAddress();
1643   Address SrcPtr = Src.getAddress();
1644 
1645   if (getLangOpts().CPlusPlus) {
1646     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1647       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1648       assert((Record->hasTrivialCopyConstructor() ||
1649               Record->hasTrivialCopyAssignment() ||
1650               Record->hasTrivialMoveConstructor() ||
1651               Record->hasTrivialMoveAssignment() ||
1652               Record->isUnion()) &&
1653              "Trying to aggregate-copy a type without a trivial copy/move "
1654              "constructor or assignment operator");
1655       // Ignore empty classes in C++.
1656       if (Record->isEmpty())
1657         return;
1658     }
1659   }
1660 
1661   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1662   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1663   // read from another object that overlaps in anyway the storage of the first
1664   // object, then the overlap shall be exact and the two objects shall have
1665   // qualified or unqualified versions of a compatible type."
1666   //
1667   // memcpy is not defined if the source and destination pointers are exactly
1668   // equal, but other compilers do this optimization, and almost every memcpy
1669   // implementation handles this case safely.  If there is a libc that does not
1670   // safely handle this, we can add a target hook.
1671 
1672   // Get data size info for this aggregate. If this is an assignment,
1673   // don't copy the tail padding, because we might be assigning into a
1674   // base subobject where the tail padding is claimed.  Otherwise,
1675   // copying it is fine.
1676   std::pair<CharUnits, CharUnits> TypeInfo;
1677   if (isAssignment)
1678     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1679   else
1680     TypeInfo = getContext().getTypeInfoInChars(Ty);
1681 
1682   llvm::Value *SizeVal = nullptr;
1683   if (TypeInfo.first.isZero()) {
1684     // But note that getTypeInfo returns 0 for a VLA.
1685     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1686             getContext().getAsArrayType(Ty))) {
1687       QualType BaseEltTy;
1688       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1689       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1690       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1691       if (!isAssignment)
1692         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1693       assert(!TypeInfo.first.isZero());
1694       SizeVal = Builder.CreateNUWMul(
1695           SizeVal,
1696           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1697       if (!isAssignment) {
1698         SizeVal = Builder.CreateNUWSub(
1699             SizeVal,
1700             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1701         SizeVal = Builder.CreateNUWAdd(
1702             SizeVal, llvm::ConstantInt::get(
1703                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1704       }
1705     }
1706   }
1707   if (!SizeVal) {
1708     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1709   }
1710 
1711   // FIXME: If we have a volatile struct, the optimizer can remove what might
1712   // appear to be `extra' memory ops:
1713   //
1714   // volatile struct { int i; } a, b;
1715   //
1716   // int main() {
1717   //   a = b;
1718   //   a = b;
1719   // }
1720   //
1721   // we need to use a different call here.  We use isVolatile to indicate when
1722   // either the source or the destination is volatile.
1723 
1724   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1725   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1726 
1727   // Don't do any of the memmove_collectable tests if GC isn't set.
1728   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1729     // fall through
1730   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1731     RecordDecl *Record = RecordTy->getDecl();
1732     if (Record->hasObjectMember()) {
1733       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1734                                                     SizeVal);
1735       return;
1736     }
1737   } else if (Ty->isArrayType()) {
1738     QualType BaseType = getContext().getBaseElementType(Ty);
1739     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1740       if (RecordTy->getDecl()->hasObjectMember()) {
1741         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1742                                                       SizeVal);
1743         return;
1744       }
1745     }
1746   }
1747 
1748   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1749 
1750   // Determine the metadata to describe the position of any padding in this
1751   // memcpy, as well as the TBAA tags for the members of the struct, in case
1752   // the optimizer wishes to expand it in to scalar memory operations.
1753   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1754     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1755 
1756   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1757     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1758         Dest.getTBAAInfo(), Src.getTBAAInfo());
1759     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1760   }
1761 }
1762