1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
85     Visit(GE->getResultExpr());
86   }
87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
88 
89   // l-values.
90   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
91   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
92   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
93   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
94   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103   void VisitPredefinedExpr(const PredefinedExpr *E) {
104     EmitAggLoadOfLValue(E);
105   }
106 
107   // Operators.
108   void VisitCastExpr(CastExpr *E);
109   void VisitCallExpr(const CallExpr *E);
110   void VisitStmtExpr(const StmtExpr *E);
111   void VisitBinaryOperator(const BinaryOperator *BO);
112   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
113   void VisitBinAssign(const BinaryOperator *E);
114   void VisitBinComma(const BinaryOperator *E);
115 
116   void VisitObjCMessageExpr(ObjCMessageExpr *E);
117   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
121 
122   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
123   void VisitChooseExpr(const ChooseExpr *CE);
124   void VisitInitListExpr(InitListExpr *E);
125   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
126   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
127     Visit(DAE->getExpr());
128   }
129   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
130   void VisitCXXConstructExpr(const CXXConstructExpr *E);
131   void VisitExprWithCleanups(ExprWithCleanups *E);
132   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
133   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
134 
135   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
136 
137   void VisitVAArgExpr(VAArgExpr *E);
138 
139   void EmitInitializationToLValue(Expr *E, LValue Address);
140   void EmitNullInitializationToLValue(LValue Address);
141   //  case Expr::ChooseExprClass:
142   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
143 };
144 }  // end anonymous namespace.
145 
146 //===----------------------------------------------------------------------===//
147 //                                Utilities
148 //===----------------------------------------------------------------------===//
149 
150 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
151 /// represents a value lvalue, this method emits the address of the lvalue,
152 /// then loads the result into DestPtr.
153 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
154   LValue LV = CGF.EmitLValue(E);
155   EmitFinalDestCopy(E, LV);
156 }
157 
158 /// \brief True if the given aggregate type requires special GC API calls.
159 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
160   // Only record types have members that might require garbage collection.
161   const RecordType *RecordTy = T->getAs<RecordType>();
162   if (!RecordTy) return false;
163 
164   // Don't mess with non-trivial C++ types.
165   RecordDecl *Record = RecordTy->getDecl();
166   if (isa<CXXRecordDecl>(Record) &&
167       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
168        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
169     return false;
170 
171   // Check whether the type has an object member.
172   return Record->hasObjectMember();
173 }
174 
175 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
176 ///
177 /// The idea is that you do something like this:
178 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
179 ///   EmitGCMove(E, Result);
180 /// If GC doesn't interfere, this will cause the result to be emitted
181 /// directly into the return value slot.  If GC does interfere, a final
182 /// move will be performed.
183 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
184   if (Dest.requiresGCollection()) {
185     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
186     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
187     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
188     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
189                                                     Src.getAggregateAddr(),
190                                                     SizeVal);
191   }
192 }
193 
194 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
195 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
196   assert(Src.isAggregate() && "value must be aggregate value!");
197 
198   // If Dest is ignored, then we're evaluating an aggregate expression
199   // in a context (like an expression statement) that doesn't care
200   // about the result.  C says that an lvalue-to-rvalue conversion is
201   // performed in these cases; C++ says that it is not.  In either
202   // case, we don't actually need to do anything unless the value is
203   // volatile.
204   if (Dest.isIgnored()) {
205     if (!Src.isVolatileQualified() ||
206         CGF.CGM.getLangOptions().CPlusPlus ||
207         (IgnoreResult && Ignore))
208       return;
209 
210     // If the source is volatile, we must read from it; to do that, we need
211     // some place to put it.
212     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
213   }
214 
215   if (Dest.requiresGCollection()) {
216     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
217     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
218     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
219     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
220                                                       Dest.getAddr(),
221                                                       Src.getAggregateAddr(),
222                                                       SizeVal);
223     return;
224   }
225   // If the result of the assignment is used, copy the LHS there also.
226   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
227   // from the source as well, as we can't eliminate it if either operand
228   // is volatile, unless copy has volatile for both source and destination..
229   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
230                         Dest.isVolatile()|Src.isVolatileQualified());
231 }
232 
233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
235   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
236 
237   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
238                                             Src.isVolatileQualified()),
239                     Ignore);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 //                            Visitor Methods
244 //===----------------------------------------------------------------------===//
245 
246 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
247   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
248 }
249 
250 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
251   switch (E->getCastKind()) {
252   case CK_Dynamic: {
253     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
254     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
255     // FIXME: Do we also need to handle property references here?
256     if (LV.isSimple())
257       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
258     else
259       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
260 
261     if (!Dest.isIgnored())
262       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
263     break;
264   }
265 
266   case CK_ToUnion: {
267     if (Dest.isIgnored()) break;
268 
269     // GCC union extension
270     QualType Ty = E->getSubExpr()->getType();
271     QualType PtrTy = CGF.getContext().getPointerType(Ty);
272     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
273                                                  CGF.ConvertType(PtrTy));
274     EmitInitializationToLValue(E->getSubExpr(),
275                                CGF.MakeAddrLValue(CastPtr, Ty));
276     break;
277   }
278 
279   case CK_DerivedToBase:
280   case CK_BaseToDerived:
281   case CK_UncheckedDerivedToBase: {
282     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
283                 "should have been unpacked before we got here");
284     break;
285   }
286 
287   case CK_GetObjCProperty: {
288     LValue LV = CGF.EmitLValue(E->getSubExpr());
289     assert(LV.isPropertyRef());
290     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
291     EmitGCMove(E, RV);
292     break;
293   }
294 
295   case CK_LValueToRValue: // hope for downstream optimization
296   case CK_NoOp:
297   case CK_UserDefinedConversion:
298   case CK_ConstructorConversion:
299     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
300                                                    E->getType()) &&
301            "Implicit cast types must be compatible");
302     Visit(E->getSubExpr());
303     break;
304 
305   case CK_LValueBitCast:
306     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
307     break;
308 
309   case CK_Dependent:
310   case CK_BitCast:
311   case CK_ArrayToPointerDecay:
312   case CK_FunctionToPointerDecay:
313   case CK_NullToPointer:
314   case CK_NullToMemberPointer:
315   case CK_BaseToDerivedMemberPointer:
316   case CK_DerivedToBaseMemberPointer:
317   case CK_MemberPointerToBoolean:
318   case CK_IntegralToPointer:
319   case CK_PointerToIntegral:
320   case CK_PointerToBoolean:
321   case CK_ToVoid:
322   case CK_VectorSplat:
323   case CK_IntegralCast:
324   case CK_IntegralToBoolean:
325   case CK_IntegralToFloating:
326   case CK_FloatingToIntegral:
327   case CK_FloatingToBoolean:
328   case CK_FloatingCast:
329   case CK_AnyPointerToObjCPointerCast:
330   case CK_AnyPointerToBlockPointerCast:
331   case CK_ObjCObjectLValueCast:
332   case CK_FloatingRealToComplex:
333   case CK_FloatingComplexToReal:
334   case CK_FloatingComplexToBoolean:
335   case CK_FloatingComplexCast:
336   case CK_FloatingComplexToIntegralComplex:
337   case CK_IntegralRealToComplex:
338   case CK_IntegralComplexToReal:
339   case CK_IntegralComplexToBoolean:
340   case CK_IntegralComplexCast:
341   case CK_IntegralComplexToFloatingComplex:
342   case CK_ObjCProduceObject:
343   case CK_ObjCConsumeObject:
344     llvm_unreachable("cast kind invalid for aggregate types");
345   }
346 }
347 
348 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
349   if (E->getCallReturnType()->isReferenceType()) {
350     EmitAggLoadOfLValue(E);
351     return;
352   }
353 
354   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
355   EmitGCMove(E, RV);
356 }
357 
358 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
359   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
360   EmitGCMove(E, RV);
361 }
362 
363 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
364   llvm_unreachable("direct property access not surrounded by "
365                    "lvalue-to-rvalue cast");
366 }
367 
368 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
369   CGF.EmitIgnoredExpr(E->getLHS());
370   Visit(E->getRHS());
371 }
372 
373 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
374   CodeGenFunction::StmtExprEvaluation eval(CGF);
375   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
376 }
377 
378 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
379   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
380     VisitPointerToDataMemberBinaryOperator(E);
381   else
382     CGF.ErrorUnsupported(E, "aggregate binary expression");
383 }
384 
385 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
386                                                     const BinaryOperator *E) {
387   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
388   EmitFinalDestCopy(E, LV);
389 }
390 
391 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
392   // For an assignment to work, the value on the right has
393   // to be compatible with the value on the left.
394   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
395                                                  E->getRHS()->getType())
396          && "Invalid assignment");
397 
398   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
399     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
400       if (VD->hasAttr<BlocksAttr>() &&
401           E->getRHS()->HasSideEffects(CGF.getContext())) {
402         // When __block variable on LHS, the RHS must be evaluated first
403         // as it may change the 'forwarding' field via call to Block_copy.
404         LValue RHS = CGF.EmitLValue(E->getRHS());
405         LValue LHS = CGF.EmitLValue(E->getLHS());
406         bool GCollection = false;
407         if (CGF.getContext().getLangOptions().getGCMode())
408           GCollection = TypeRequiresGCollection(E->getLHS()->getType());
409         Dest = AggValueSlot::forLValue(LHS, true, GCollection);
410         EmitFinalDestCopy(E, RHS, true);
411         return;
412       }
413 
414   LValue LHS = CGF.EmitLValue(E->getLHS());
415 
416   // We have to special case property setters, otherwise we must have
417   // a simple lvalue (no aggregates inside vectors, bitfields).
418   if (LHS.isPropertyRef()) {
419     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
420     QualType ArgType = RE->getSetterArgType();
421     RValue Src;
422     if (ArgType->isReferenceType())
423       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
424     else {
425       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
426       CGF.EmitAggExpr(E->getRHS(), Slot);
427       Src = Slot.asRValue();
428     }
429     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
430   } else {
431     bool GCollection = false;
432     if (CGF.getContext().getLangOptions().getGCMode())
433       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
434 
435     // Codegen the RHS so that it stores directly into the LHS.
436     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
437                                                    GCollection);
438     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
439     EmitFinalDestCopy(E, LHS, true);
440   }
441 }
442 
443 void AggExprEmitter::
444 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
445   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
446   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
447   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
448 
449   // Bind the common expression if necessary.
450   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
451 
452   CodeGenFunction::ConditionalEvaluation eval(CGF);
453   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
454 
455   // Save whether the destination's lifetime is externally managed.
456   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
457 
458   eval.begin(CGF);
459   CGF.EmitBlock(LHSBlock);
460   Visit(E->getTrueExpr());
461   eval.end(CGF);
462 
463   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
464   CGF.Builder.CreateBr(ContBlock);
465 
466   // If the result of an agg expression is unused, then the emission
467   // of the LHS might need to create a destination slot.  That's fine
468   // with us, and we can safely emit the RHS into the same slot, but
469   // we shouldn't claim that its lifetime is externally managed.
470   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
471 
472   eval.begin(CGF);
473   CGF.EmitBlock(RHSBlock);
474   Visit(E->getFalseExpr());
475   eval.end(CGF);
476 
477   CGF.EmitBlock(ContBlock);
478 }
479 
480 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
481   Visit(CE->getChosenSubExpr(CGF.getContext()));
482 }
483 
484 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
485   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
486   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
487 
488   if (!ArgPtr) {
489     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
490     return;
491   }
492 
493   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
494 }
495 
496 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
497   // Ensure that we have a slot, but if we already do, remember
498   // whether its lifetime was externally managed.
499   bool WasManaged = Dest.isLifetimeExternallyManaged();
500   Dest = EnsureSlot(E->getType());
501   Dest.setLifetimeExternallyManaged();
502 
503   Visit(E->getSubExpr());
504 
505   // Set up the temporary's destructor if its lifetime wasn't already
506   // being managed.
507   if (!WasManaged)
508     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
509 }
510 
511 void
512 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
513   AggValueSlot Slot = EnsureSlot(E->getType());
514   CGF.EmitCXXConstructExpr(E, Slot);
515 }
516 
517 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
518   CGF.EmitExprWithCleanups(E, Dest);
519 }
520 
521 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
522   QualType T = E->getType();
523   AggValueSlot Slot = EnsureSlot(T);
524   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
525 }
526 
527 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
528   QualType T = E->getType();
529   AggValueSlot Slot = EnsureSlot(T);
530   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
531 }
532 
533 /// isSimpleZero - If emitting this value will obviously just cause a store of
534 /// zero to memory, return true.  This can return false if uncertain, so it just
535 /// handles simple cases.
536 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
537   E = E->IgnoreParens();
538 
539   // 0
540   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
541     return IL->getValue() == 0;
542   // +0.0
543   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
544     return FL->getValue().isPosZero();
545   // int()
546   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
547       CGF.getTypes().isZeroInitializable(E->getType()))
548     return true;
549   // (int*)0 - Null pointer expressions.
550   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
551     return ICE->getCastKind() == CK_NullToPointer;
552   // '\0'
553   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
554     return CL->getValue() == 0;
555 
556   // Otherwise, hard case: conservatively return false.
557   return false;
558 }
559 
560 
561 void
562 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
563   QualType type = LV.getType();
564   // FIXME: Ignore result?
565   // FIXME: Are initializers affected by volatile?
566   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
567     // Storing "i32 0" to a zero'd memory location is a noop.
568   } else if (isa<ImplicitValueInitExpr>(E)) {
569     EmitNullInitializationToLValue(LV);
570   } else if (type->isReferenceType()) {
571     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
572     CGF.EmitStoreThroughLValue(RV, LV, type);
573   } else if (type->isAnyComplexType()) {
574     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
575   } else if (CGF.hasAggregateLLVMType(type)) {
576     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false,
577                                                Dest.isZeroed()));
578   } else if (LV.isSimple()) {
579     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
580   } else {
581     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, type);
582   }
583 }
584 
585 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
586   QualType type = lv.getType();
587 
588   // If the destination slot is already zeroed out before the aggregate is
589   // copied into it, we don't have to emit any zeros here.
590   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
591     return;
592 
593   if (!CGF.hasAggregateLLVMType(type)) {
594     // For non-aggregates, we can store zero
595     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
596     CGF.EmitStoreThroughLValue(RValue::get(null), lv, type);
597   } else {
598     // There's a potential optimization opportunity in combining
599     // memsets; that would be easy for arrays, but relatively
600     // difficult for structures with the current code.
601     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
602   }
603 }
604 
605 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
606 #if 0
607   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
608   // (Length of globals? Chunks of zeroed-out space?).
609   //
610   // If we can, prefer a copy from a global; this is a lot less code for long
611   // globals, and it's easier for the current optimizers to analyze.
612   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
613     llvm::GlobalVariable* GV =
614     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
615                              llvm::GlobalValue::InternalLinkage, C, "");
616     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
617     return;
618   }
619 #endif
620   if (E->hadArrayRangeDesignator())
621     CGF.ErrorUnsupported(E, "GNU array range designator extension");
622 
623   llvm::Value *DestPtr = Dest.getAddr();
624 
625   // Handle initialization of an array.
626   if (E->getType()->isArrayType()) {
627     const llvm::PointerType *APType =
628       cast<llvm::PointerType>(DestPtr->getType());
629     const llvm::ArrayType *AType =
630       cast<llvm::ArrayType>(APType->getElementType());
631 
632     uint64_t NumInitElements = E->getNumInits();
633 
634     if (E->getNumInits() > 0) {
635       QualType T1 = E->getType();
636       QualType T2 = E->getInit(0)->getType();
637       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
638         EmitAggLoadOfLValue(E->getInit(0));
639         return;
640       }
641     }
642 
643     uint64_t NumArrayElements = AType->getNumElements();
644     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
645     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
646     ElementType = CGF.getContext().getQualifiedType(ElementType,
647                                                     Dest.getQualifiers());
648 
649     bool hasNonTrivialCXXConstructor = false;
650     if (CGF.getContext().getLangOptions().CPlusPlus)
651       if (const RecordType *RT = CGF.getContext()
652                         .getBaseElementType(ElementType)->getAs<RecordType>()) {
653         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
654         hasNonTrivialCXXConstructor = !RD->hasTrivialDefaultConstructor();
655       }
656 
657     for (uint64_t i = 0; i != NumArrayElements; ++i) {
658       // If we're done emitting initializers and the destination is known-zeroed
659       // then we're done.
660       if (i == NumInitElements &&
661           Dest.isZeroed() &&
662           CGF.getTypes().isZeroInitializable(ElementType) &&
663           !hasNonTrivialCXXConstructor)
664         break;
665 
666       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
667       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
668 
669       if (i < NumInitElements)
670         EmitInitializationToLValue(E->getInit(i), LV);
671       else if (Expr *filler = E->getArrayFiller())
672         EmitInitializationToLValue(filler, LV);
673       else
674         EmitNullInitializationToLValue(LV);
675 
676       // If the GEP didn't get used because of a dead zero init or something
677       // else, clean it up for -O0 builds and general tidiness.
678       if (llvm::GetElementPtrInst *GEP =
679             dyn_cast<llvm::GetElementPtrInst>(NextVal))
680         if (GEP->use_empty())
681           GEP->eraseFromParent();
682     }
683     return;
684   }
685 
686   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
687 
688   // Do struct initialization; this code just sets each individual member
689   // to the approprate value.  This makes bitfield support automatic;
690   // the disadvantage is that the generated code is more difficult for
691   // the optimizer, especially with bitfields.
692   unsigned NumInitElements = E->getNumInits();
693   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
694 
695   if (E->getType()->isUnionType()) {
696     // Only initialize one field of a union. The field itself is
697     // specified by the initializer list.
698     if (!E->getInitializedFieldInUnion()) {
699       // Empty union; we have nothing to do.
700 
701 #ifndef NDEBUG
702       // Make sure that it's really an empty and not a failure of
703       // semantic analysis.
704       for (RecordDecl::field_iterator Field = SD->field_begin(),
705                                    FieldEnd = SD->field_end();
706            Field != FieldEnd; ++Field)
707         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
708 #endif
709       return;
710     }
711 
712     // FIXME: volatility
713     FieldDecl *Field = E->getInitializedFieldInUnion();
714 
715     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
716     if (NumInitElements) {
717       // Store the initializer into the field
718       EmitInitializationToLValue(E->getInit(0), FieldLoc);
719     } else {
720       // Default-initialize to null.
721       EmitNullInitializationToLValue(FieldLoc);
722     }
723 
724     return;
725   }
726 
727   // Here we iterate over the fields; this makes it simpler to both
728   // default-initialize fields and skip over unnamed fields.
729   unsigned CurInitVal = 0;
730   for (RecordDecl::field_iterator Field = SD->field_begin(),
731                                FieldEnd = SD->field_end();
732        Field != FieldEnd; ++Field) {
733     // We're done once we hit the flexible array member
734     if (Field->getType()->isIncompleteArrayType())
735       break;
736 
737     if (Field->isUnnamedBitfield())
738       continue;
739 
740     // Don't emit GEP before a noop store of zero.
741     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
742         CGF.getTypes().isZeroInitializable(E->getType()))
743       break;
744 
745     // FIXME: volatility
746     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
747     // We never generate write-barries for initialized fields.
748     FieldLoc.setNonGC(true);
749 
750     if (CurInitVal < NumInitElements) {
751       // Store the initializer into the field.
752       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
753     } else {
754       // We're out of initalizers; default-initialize to null
755       EmitNullInitializationToLValue(FieldLoc);
756     }
757 
758     // If the GEP didn't get used because of a dead zero init or something
759     // else, clean it up for -O0 builds and general tidiness.
760     if (FieldLoc.isSimple())
761       if (llvm::GetElementPtrInst *GEP =
762             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
763         if (GEP->use_empty())
764           GEP->eraseFromParent();
765   }
766 }
767 
768 //===----------------------------------------------------------------------===//
769 //                        Entry Points into this File
770 //===----------------------------------------------------------------------===//
771 
772 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
773 /// non-zero bytes that will be stored when outputting the initializer for the
774 /// specified initializer expression.
775 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
776   E = E->IgnoreParens();
777 
778   // 0 and 0.0 won't require any non-zero stores!
779   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
780 
781   // If this is an initlist expr, sum up the size of sizes of the (present)
782   // elements.  If this is something weird, assume the whole thing is non-zero.
783   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
784   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
785     return CGF.getContext().getTypeSizeInChars(E->getType());
786 
787   // InitListExprs for structs have to be handled carefully.  If there are
788   // reference members, we need to consider the size of the reference, not the
789   // referencee.  InitListExprs for unions and arrays can't have references.
790   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
791     if (!RT->isUnionType()) {
792       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
793       CharUnits NumNonZeroBytes = CharUnits::Zero();
794 
795       unsigned ILEElement = 0;
796       for (RecordDecl::field_iterator Field = SD->field_begin(),
797            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
798         // We're done once we hit the flexible array member or run out of
799         // InitListExpr elements.
800         if (Field->getType()->isIncompleteArrayType() ||
801             ILEElement == ILE->getNumInits())
802           break;
803         if (Field->isUnnamedBitfield())
804           continue;
805 
806         const Expr *E = ILE->getInit(ILEElement++);
807 
808         // Reference values are always non-null and have the width of a pointer.
809         if (Field->getType()->isReferenceType())
810           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
811               CGF.getContext().Target.getPointerWidth(0));
812         else
813           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
814       }
815 
816       return NumNonZeroBytes;
817     }
818   }
819 
820 
821   CharUnits NumNonZeroBytes = CharUnits::Zero();
822   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
823     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
824   return NumNonZeroBytes;
825 }
826 
827 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
828 /// zeros in it, emit a memset and avoid storing the individual zeros.
829 ///
830 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
831                                      CodeGenFunction &CGF) {
832   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
833   // volatile stores.
834   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
835 
836   // C++ objects with a user-declared constructor don't need zero'ing.
837   if (CGF.getContext().getLangOptions().CPlusPlus)
838     if (const RecordType *RT = CGF.getContext()
839                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
840       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
841       if (RD->hasUserDeclaredConstructor())
842         return;
843     }
844 
845   // If the type is 16-bytes or smaller, prefer individual stores over memset.
846   std::pair<CharUnits, CharUnits> TypeInfo =
847     CGF.getContext().getTypeInfoInChars(E->getType());
848   if (TypeInfo.first <= CharUnits::fromQuantity(16))
849     return;
850 
851   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
852   // we prefer to emit memset + individual stores for the rest.
853   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
854   if (NumNonZeroBytes*4 > TypeInfo.first)
855     return;
856 
857   // Okay, it seems like a good idea to use an initial memset, emit the call.
858   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
859   CharUnits Align = TypeInfo.second;
860 
861   llvm::Value *Loc = Slot.getAddr();
862   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
863 
864   Loc = CGF.Builder.CreateBitCast(Loc, BP);
865   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
866                            Align.getQuantity(), false);
867 
868   // Tell the AggExprEmitter that the slot is known zero.
869   Slot.setZeroed();
870 }
871 
872 
873 
874 
875 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
876 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
877 /// the value of the aggregate expression is not needed.  If VolatileDest is
878 /// true, DestPtr cannot be 0.
879 ///
880 /// \param IsInitializer - true if this evaluation is initializing an
881 /// object whose lifetime is already being managed.
882 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
883                                   bool IgnoreResult) {
884   assert(E && hasAggregateLLVMType(E->getType()) &&
885          "Invalid aggregate expression to emit");
886   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
887          "slot has bits but no address");
888 
889   // Optimize the slot if possible.
890   CheckAggExprForMemSetUse(Slot, E, *this);
891 
892   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
893 }
894 
895 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
896   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
897   llvm::Value *Temp = CreateMemTemp(E->getType());
898   LValue LV = MakeAddrLValue(Temp, E->getType());
899   EmitAggExpr(E, AggValueSlot::forLValue(LV, false));
900   return LV;
901 }
902 
903 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
904                                         llvm::Value *SrcPtr, QualType Ty,
905                                         bool isVolatile) {
906   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
907 
908   if (getContext().getLangOptions().CPlusPlus) {
909     if (const RecordType *RT = Ty->getAs<RecordType>()) {
910       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
911       assert((Record->hasTrivialCopyConstructor() ||
912               Record->hasTrivialCopyAssignment()) &&
913              "Trying to aggregate-copy a type without a trivial copy "
914              "constructor or assignment operator");
915       // Ignore empty classes in C++.
916       if (Record->isEmpty())
917         return;
918     }
919   }
920 
921   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
922   // C99 6.5.16.1p3, which states "If the value being stored in an object is
923   // read from another object that overlaps in anyway the storage of the first
924   // object, then the overlap shall be exact and the two objects shall have
925   // qualified or unqualified versions of a compatible type."
926   //
927   // memcpy is not defined if the source and destination pointers are exactly
928   // equal, but other compilers do this optimization, and almost every memcpy
929   // implementation handles this case safely.  If there is a libc that does not
930   // safely handle this, we can add a target hook.
931 
932   // Get size and alignment info for this aggregate.
933   std::pair<CharUnits, CharUnits> TypeInfo =
934     getContext().getTypeInfoInChars(Ty);
935 
936   // FIXME: Handle variable sized types.
937 
938   // FIXME: If we have a volatile struct, the optimizer can remove what might
939   // appear to be `extra' memory ops:
940   //
941   // volatile struct { int i; } a, b;
942   //
943   // int main() {
944   //   a = b;
945   //   a = b;
946   // }
947   //
948   // we need to use a different call here.  We use isVolatile to indicate when
949   // either the source or the destination is volatile.
950 
951   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
952   const llvm::Type *DBP =
953     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
954   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
955 
956   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
957   const llvm::Type *SBP =
958     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
959   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
960 
961   // Don't do any of the memmove_collectable tests if GC isn't set.
962   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
963     // fall through
964   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
965     RecordDecl *Record = RecordTy->getDecl();
966     if (Record->hasObjectMember()) {
967       CharUnits size = TypeInfo.first;
968       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
969       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
970       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
971                                                     SizeVal);
972       return;
973     }
974   } else if (Ty->isArrayType()) {
975     QualType BaseType = getContext().getBaseElementType(Ty);
976     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
977       if (RecordTy->getDecl()->hasObjectMember()) {
978         CharUnits size = TypeInfo.first;
979         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
980         llvm::Value *SizeVal =
981           llvm::ConstantInt::get(SizeTy, size.getQuantity());
982         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
983                                                       SizeVal);
984         return;
985       }
986     }
987   }
988 
989   Builder.CreateMemCpy(DestPtr, SrcPtr,
990                        llvm::ConstantInt::get(IntPtrTy,
991                                               TypeInfo.first.getQuantity()),
992                        TypeInfo.second.getQuantity(), isVolatile);
993 }
994