1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 78 79 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 80 81 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 82 if (CGF.getLangOptions().getGCMode() && TypeRequiresGCollection(T)) 83 return AggValueSlot::NeedsGCBarriers; 84 return AggValueSlot::DoesNotNeedGCBarriers; 85 } 86 87 bool TypeRequiresGCollection(QualType T); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 void VisitStmt(Stmt *S) { 94 CGF.ErrorUnsupported(S, "aggregate expression"); 95 } 96 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 97 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 98 Visit(GE->getResultExpr()); 99 } 100 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 101 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 102 return Visit(E->getReplacement()); 103 } 104 105 // l-values. 106 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 107 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 108 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 109 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 110 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 111 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 112 EmitAggLoadOfLValue(E); 113 } 114 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitPredefinedExpr(const PredefinedExpr *E) { 118 EmitAggLoadOfLValue(E); 119 } 120 121 // Operators. 122 void VisitCastExpr(CastExpr *E); 123 void VisitCallExpr(const CallExpr *E); 124 void VisitStmtExpr(const StmtExpr *E); 125 void VisitBinaryOperator(const BinaryOperator *BO); 126 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 127 void VisitBinAssign(const BinaryOperator *E); 128 void VisitBinComma(const BinaryOperator *E); 129 130 void VisitObjCMessageExpr(ObjCMessageExpr *E); 131 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 132 EmitAggLoadOfLValue(E); 133 } 134 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 135 136 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 137 void VisitChooseExpr(const ChooseExpr *CE); 138 void VisitInitListExpr(InitListExpr *E); 139 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 140 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 141 Visit(DAE->getExpr()); 142 } 143 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 144 void VisitCXXConstructExpr(const CXXConstructExpr *E); 145 void VisitExprWithCleanups(ExprWithCleanups *E); 146 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 147 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 148 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 149 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 150 151 void VisitVAArgExpr(VAArgExpr *E); 152 153 void EmitInitializationToLValue(Expr *E, LValue Address); 154 void EmitNullInitializationToLValue(LValue Address); 155 // case Expr::ChooseExprClass: 156 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 157 }; 158 } // end anonymous namespace. 159 160 //===----------------------------------------------------------------------===// 161 // Utilities 162 //===----------------------------------------------------------------------===// 163 164 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 165 /// represents a value lvalue, this method emits the address of the lvalue, 166 /// then loads the result into DestPtr. 167 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 168 LValue LV = CGF.EmitLValue(E); 169 EmitFinalDestCopy(E, LV); 170 } 171 172 /// \brief True if the given aggregate type requires special GC API calls. 173 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 174 // Only record types have members that might require garbage collection. 175 const RecordType *RecordTy = T->getAs<RecordType>(); 176 if (!RecordTy) return false; 177 178 // Don't mess with non-trivial C++ types. 179 RecordDecl *Record = RecordTy->getDecl(); 180 if (isa<CXXRecordDecl>(Record) && 181 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 182 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 183 return false; 184 185 // Check whether the type has an object member. 186 return Record->hasObjectMember(); 187 } 188 189 /// \brief Perform the final move to DestPtr if for some reason 190 /// getReturnValueSlot() didn't use it directly. 191 /// 192 /// The idea is that you do something like this: 193 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 194 /// EmitMoveFromReturnSlot(E, Result); 195 /// 196 /// If nothing interferes, this will cause the result to be emitted 197 /// directly into the return value slot. Otherwise, a final move 198 /// will be performed. 199 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 200 if (shouldUseDestForReturnSlot()) { 201 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 202 // The possibility of undef rvalues complicates that a lot, 203 // though, so we can't really assert. 204 return; 205 } 206 207 // Otherwise, do a final copy, 208 assert(Dest.getAddr() != Src.getAggregateAddr()); 209 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 210 } 211 212 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 213 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 214 assert(Src.isAggregate() && "value must be aggregate value!"); 215 216 // If Dest is ignored, then we're evaluating an aggregate expression 217 // in a context (like an expression statement) that doesn't care 218 // about the result. C says that an lvalue-to-rvalue conversion is 219 // performed in these cases; C++ says that it is not. In either 220 // case, we don't actually need to do anything unless the value is 221 // volatile. 222 if (Dest.isIgnored()) { 223 if (!Src.isVolatileQualified() || 224 CGF.CGM.getLangOptions().CPlusPlus || 225 (IgnoreResult && Ignore)) 226 return; 227 228 // If the source is volatile, we must read from it; to do that, we need 229 // some place to put it. 230 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 231 } 232 233 if (Dest.requiresGCollection()) { 234 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 235 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 236 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 237 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 238 Dest.getAddr(), 239 Src.getAggregateAddr(), 240 SizeVal); 241 return; 242 } 243 // If the result of the assignment is used, copy the LHS there also. 244 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 245 // from the source as well, as we can't eliminate it if either operand 246 // is volatile, unless copy has volatile for both source and destination.. 247 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 248 Dest.isVolatile()|Src.isVolatileQualified()); 249 } 250 251 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 252 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 253 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 254 255 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 256 Src.isVolatileQualified()), 257 Ignore); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // Visitor Methods 262 //===----------------------------------------------------------------------===// 263 264 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 265 Visit(E->GetTemporaryExpr()); 266 } 267 268 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 269 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 270 } 271 272 void 273 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 274 if (E->getType().isPODType(CGF.getContext())) { 275 // For a POD type, just emit a load of the lvalue + a copy, because our 276 // compound literal might alias the destination. 277 // FIXME: This is a band-aid; the real problem appears to be in our handling 278 // of assignments, where we store directly into the LHS without checking 279 // whether anything in the RHS aliases. 280 EmitAggLoadOfLValue(E); 281 return; 282 } 283 284 AggValueSlot Slot = EnsureSlot(E->getType()); 285 CGF.EmitAggExpr(E->getInitializer(), Slot); 286 } 287 288 289 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 290 switch (E->getCastKind()) { 291 case CK_Dynamic: { 292 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 293 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 294 // FIXME: Do we also need to handle property references here? 295 if (LV.isSimple()) 296 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 297 else 298 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 299 300 if (!Dest.isIgnored()) 301 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 302 break; 303 } 304 305 case CK_ToUnion: { 306 if (Dest.isIgnored()) break; 307 308 // GCC union extension 309 QualType Ty = E->getSubExpr()->getType(); 310 QualType PtrTy = CGF.getContext().getPointerType(Ty); 311 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 312 CGF.ConvertType(PtrTy)); 313 EmitInitializationToLValue(E->getSubExpr(), 314 CGF.MakeAddrLValue(CastPtr, Ty)); 315 break; 316 } 317 318 case CK_DerivedToBase: 319 case CK_BaseToDerived: 320 case CK_UncheckedDerivedToBase: { 321 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 322 "should have been unpacked before we got here"); 323 break; 324 } 325 326 case CK_GetObjCProperty: { 327 LValue LV = CGF.EmitLValue(E->getSubExpr()); 328 assert(LV.isPropertyRef()); 329 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 330 EmitMoveFromReturnSlot(E, RV); 331 break; 332 } 333 334 case CK_LValueToRValue: // hope for downstream optimization 335 case CK_NoOp: 336 case CK_UserDefinedConversion: 337 case CK_ConstructorConversion: 338 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 339 E->getType()) && 340 "Implicit cast types must be compatible"); 341 Visit(E->getSubExpr()); 342 break; 343 344 case CK_LValueBitCast: 345 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 346 break; 347 348 case CK_Dependent: 349 case CK_BitCast: 350 case CK_ArrayToPointerDecay: 351 case CK_FunctionToPointerDecay: 352 case CK_NullToPointer: 353 case CK_NullToMemberPointer: 354 case CK_BaseToDerivedMemberPointer: 355 case CK_DerivedToBaseMemberPointer: 356 case CK_MemberPointerToBoolean: 357 case CK_IntegralToPointer: 358 case CK_PointerToIntegral: 359 case CK_PointerToBoolean: 360 case CK_ToVoid: 361 case CK_VectorSplat: 362 case CK_IntegralCast: 363 case CK_IntegralToBoolean: 364 case CK_IntegralToFloating: 365 case CK_FloatingToIntegral: 366 case CK_FloatingToBoolean: 367 case CK_FloatingCast: 368 case CK_AnyPointerToObjCPointerCast: 369 case CK_AnyPointerToBlockPointerCast: 370 case CK_ObjCObjectLValueCast: 371 case CK_FloatingRealToComplex: 372 case CK_FloatingComplexToReal: 373 case CK_FloatingComplexToBoolean: 374 case CK_FloatingComplexCast: 375 case CK_FloatingComplexToIntegralComplex: 376 case CK_IntegralRealToComplex: 377 case CK_IntegralComplexToReal: 378 case CK_IntegralComplexToBoolean: 379 case CK_IntegralComplexCast: 380 case CK_IntegralComplexToFloatingComplex: 381 case CK_ObjCProduceObject: 382 case CK_ObjCConsumeObject: 383 case CK_ObjCReclaimReturnedObject: 384 llvm_unreachable("cast kind invalid for aggregate types"); 385 } 386 } 387 388 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 389 if (E->getCallReturnType()->isReferenceType()) { 390 EmitAggLoadOfLValue(E); 391 return; 392 } 393 394 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 395 EmitMoveFromReturnSlot(E, RV); 396 } 397 398 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 399 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 400 EmitMoveFromReturnSlot(E, RV); 401 } 402 403 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 404 llvm_unreachable("direct property access not surrounded by " 405 "lvalue-to-rvalue cast"); 406 } 407 408 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 409 CGF.EmitIgnoredExpr(E->getLHS()); 410 Visit(E->getRHS()); 411 } 412 413 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 414 CodeGenFunction::StmtExprEvaluation eval(CGF); 415 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 416 } 417 418 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 419 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 420 VisitPointerToDataMemberBinaryOperator(E); 421 else 422 CGF.ErrorUnsupported(E, "aggregate binary expression"); 423 } 424 425 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 426 const BinaryOperator *E) { 427 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 428 EmitFinalDestCopy(E, LV); 429 } 430 431 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 432 // For an assignment to work, the value on the right has 433 // to be compatible with the value on the left. 434 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 435 E->getRHS()->getType()) 436 && "Invalid assignment"); 437 438 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 439 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 440 if (VD->hasAttr<BlocksAttr>() && 441 E->getRHS()->HasSideEffects(CGF.getContext())) { 442 // When __block variable on LHS, the RHS must be evaluated first 443 // as it may change the 'forwarding' field via call to Block_copy. 444 LValue RHS = CGF.EmitLValue(E->getRHS()); 445 LValue LHS = CGF.EmitLValue(E->getLHS()); 446 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 447 needsGC(E->getLHS()->getType()), 448 AggValueSlot::IsAliased); 449 EmitFinalDestCopy(E, RHS, true); 450 return; 451 } 452 453 LValue LHS = CGF.EmitLValue(E->getLHS()); 454 455 // We have to special case property setters, otherwise we must have 456 // a simple lvalue (no aggregates inside vectors, bitfields). 457 if (LHS.isPropertyRef()) { 458 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 459 QualType ArgType = RE->getSetterArgType(); 460 RValue Src; 461 if (ArgType->isReferenceType()) 462 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 463 else { 464 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 465 CGF.EmitAggExpr(E->getRHS(), Slot); 466 Src = Slot.asRValue(); 467 } 468 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 469 } else { 470 // Codegen the RHS so that it stores directly into the LHS. 471 AggValueSlot LHSSlot = 472 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 473 needsGC(E->getLHS()->getType()), 474 AggValueSlot::IsAliased); 475 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 476 EmitFinalDestCopy(E, LHS, true); 477 } 478 } 479 480 void AggExprEmitter:: 481 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 482 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 483 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 484 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 485 486 // Bind the common expression if necessary. 487 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 488 489 CodeGenFunction::ConditionalEvaluation eval(CGF); 490 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 491 492 // Save whether the destination's lifetime is externally managed. 493 bool isExternallyDestructed = Dest.isExternallyDestructed(); 494 495 eval.begin(CGF); 496 CGF.EmitBlock(LHSBlock); 497 Visit(E->getTrueExpr()); 498 eval.end(CGF); 499 500 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 501 CGF.Builder.CreateBr(ContBlock); 502 503 // If the result of an agg expression is unused, then the emission 504 // of the LHS might need to create a destination slot. That's fine 505 // with us, and we can safely emit the RHS into the same slot, but 506 // we shouldn't claim that it's already being destructed. 507 Dest.setExternallyDestructed(isExternallyDestructed); 508 509 eval.begin(CGF); 510 CGF.EmitBlock(RHSBlock); 511 Visit(E->getFalseExpr()); 512 eval.end(CGF); 513 514 CGF.EmitBlock(ContBlock); 515 } 516 517 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 518 Visit(CE->getChosenSubExpr(CGF.getContext())); 519 } 520 521 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 522 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 523 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 524 525 if (!ArgPtr) { 526 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 527 return; 528 } 529 530 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 531 } 532 533 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 534 // Ensure that we have a slot, but if we already do, remember 535 // whether it was externally destructed. 536 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 537 Dest = EnsureSlot(E->getType()); 538 539 // We're going to push a destructor if there isn't already one. 540 Dest.setExternallyDestructed(); 541 542 Visit(E->getSubExpr()); 543 544 // Push that destructor we promised. 545 if (!wasExternallyDestructed) 546 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 547 } 548 549 void 550 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 551 AggValueSlot Slot = EnsureSlot(E->getType()); 552 CGF.EmitCXXConstructExpr(E, Slot); 553 } 554 555 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 556 CGF.EmitExprWithCleanups(E, Dest); 557 } 558 559 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 560 QualType T = E->getType(); 561 AggValueSlot Slot = EnsureSlot(T); 562 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 563 } 564 565 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 566 QualType T = E->getType(); 567 AggValueSlot Slot = EnsureSlot(T); 568 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 569 } 570 571 /// isSimpleZero - If emitting this value will obviously just cause a store of 572 /// zero to memory, return true. This can return false if uncertain, so it just 573 /// handles simple cases. 574 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 575 E = E->IgnoreParens(); 576 577 // 0 578 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 579 return IL->getValue() == 0; 580 // +0.0 581 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 582 return FL->getValue().isPosZero(); 583 // int() 584 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 585 CGF.getTypes().isZeroInitializable(E->getType())) 586 return true; 587 // (int*)0 - Null pointer expressions. 588 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 589 return ICE->getCastKind() == CK_NullToPointer; 590 // '\0' 591 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 592 return CL->getValue() == 0; 593 594 // Otherwise, hard case: conservatively return false. 595 return false; 596 } 597 598 599 void 600 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 601 QualType type = LV.getType(); 602 // FIXME: Ignore result? 603 // FIXME: Are initializers affected by volatile? 604 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 605 // Storing "i32 0" to a zero'd memory location is a noop. 606 } else if (isa<ImplicitValueInitExpr>(E)) { 607 EmitNullInitializationToLValue(LV); 608 } else if (type->isReferenceType()) { 609 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 610 CGF.EmitStoreThroughLValue(RV, LV); 611 } else if (type->isAnyComplexType()) { 612 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 613 } else if (CGF.hasAggregateLLVMType(type)) { 614 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 615 AggValueSlot::IsDestructed, 616 AggValueSlot::DoesNotNeedGCBarriers, 617 AggValueSlot::IsNotAliased, 618 Dest.isZeroed())); 619 } else if (LV.isSimple()) { 620 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 621 } else { 622 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 623 } 624 } 625 626 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 627 QualType type = lv.getType(); 628 629 // If the destination slot is already zeroed out before the aggregate is 630 // copied into it, we don't have to emit any zeros here. 631 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 632 return; 633 634 if (!CGF.hasAggregateLLVMType(type)) { 635 // For non-aggregates, we can store zero 636 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 637 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 638 } else { 639 // There's a potential optimization opportunity in combining 640 // memsets; that would be easy for arrays, but relatively 641 // difficult for structures with the current code. 642 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 643 } 644 } 645 646 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 647 #if 0 648 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 649 // (Length of globals? Chunks of zeroed-out space?). 650 // 651 // If we can, prefer a copy from a global; this is a lot less code for long 652 // globals, and it's easier for the current optimizers to analyze. 653 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 654 llvm::GlobalVariable* GV = 655 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 656 llvm::GlobalValue::InternalLinkage, C, ""); 657 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 658 return; 659 } 660 #endif 661 if (E->hadArrayRangeDesignator()) 662 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 663 664 llvm::Value *DestPtr = Dest.getAddr(); 665 666 // Handle initialization of an array. 667 if (E->getType()->isArrayType()) { 668 llvm::PointerType *APType = 669 cast<llvm::PointerType>(DestPtr->getType()); 670 llvm::ArrayType *AType = 671 cast<llvm::ArrayType>(APType->getElementType()); 672 673 uint64_t NumInitElements = E->getNumInits(); 674 675 if (E->getNumInits() > 0) { 676 QualType T1 = E->getType(); 677 QualType T2 = E->getInit(0)->getType(); 678 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 679 EmitAggLoadOfLValue(E->getInit(0)); 680 return; 681 } 682 } 683 684 uint64_t NumArrayElements = AType->getNumElements(); 685 assert(NumInitElements <= NumArrayElements); 686 687 QualType elementType = E->getType().getCanonicalType(); 688 elementType = CGF.getContext().getQualifiedType( 689 cast<ArrayType>(elementType)->getElementType(), 690 elementType.getQualifiers() + Dest.getQualifiers()); 691 692 // DestPtr is an array*. Construct an elementType* by drilling 693 // down a level. 694 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 695 llvm::Value *indices[] = { zero, zero }; 696 llvm::Value *begin = 697 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 698 699 // Exception safety requires us to destroy all the 700 // already-constructed members if an initializer throws. 701 // For that, we'll need an EH cleanup. 702 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 703 llvm::AllocaInst *endOfInit = 0; 704 EHScopeStack::stable_iterator cleanup; 705 if (CGF.needsEHCleanup(dtorKind)) { 706 // In principle we could tell the cleanup where we are more 707 // directly, but the control flow can get so varied here that it 708 // would actually be quite complex. Therefore we go through an 709 // alloca. 710 endOfInit = CGF.CreateTempAlloca(begin->getType(), 711 "arrayinit.endOfInit"); 712 Builder.CreateStore(begin, endOfInit); 713 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 714 CGF.getDestroyer(dtorKind)); 715 cleanup = CGF.EHStack.stable_begin(); 716 717 // Otherwise, remember that we didn't need a cleanup. 718 } else { 719 dtorKind = QualType::DK_none; 720 } 721 722 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 723 724 // The 'current element to initialize'. The invariants on this 725 // variable are complicated. Essentially, after each iteration of 726 // the loop, it points to the last initialized element, except 727 // that it points to the beginning of the array before any 728 // elements have been initialized. 729 llvm::Value *element = begin; 730 731 // Emit the explicit initializers. 732 for (uint64_t i = 0; i != NumInitElements; ++i) { 733 // Advance to the next element. 734 if (i > 0) { 735 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 736 737 // Tell the cleanup that it needs to destroy up to this 738 // element. TODO: some of these stores can be trivially 739 // observed to be unnecessary. 740 if (endOfInit) Builder.CreateStore(element, endOfInit); 741 } 742 743 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 744 EmitInitializationToLValue(E->getInit(i), elementLV); 745 } 746 747 // Check whether there's a non-trivial array-fill expression. 748 // Note that this will be a CXXConstructExpr even if the element 749 // type is an array (or array of array, etc.) of class type. 750 Expr *filler = E->getArrayFiller(); 751 bool hasTrivialFiller = true; 752 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 753 assert(cons->getConstructor()->isDefaultConstructor()); 754 hasTrivialFiller = cons->getConstructor()->isTrivial(); 755 } 756 757 // Any remaining elements need to be zero-initialized, possibly 758 // using the filler expression. We can skip this if the we're 759 // emitting to zeroed memory. 760 if (NumInitElements != NumArrayElements && 761 !(Dest.isZeroed() && hasTrivialFiller && 762 CGF.getTypes().isZeroInitializable(elementType))) { 763 764 // Use an actual loop. This is basically 765 // do { *array++ = filler; } while (array != end); 766 767 // Advance to the start of the rest of the array. 768 if (NumInitElements) { 769 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 770 if (endOfInit) Builder.CreateStore(element, endOfInit); 771 } 772 773 // Compute the end of the array. 774 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 775 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 776 "arrayinit.end"); 777 778 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 779 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 780 781 // Jump into the body. 782 CGF.EmitBlock(bodyBB); 783 llvm::PHINode *currentElement = 784 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 785 currentElement->addIncoming(element, entryBB); 786 787 // Emit the actual filler expression. 788 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 789 if (filler) 790 EmitInitializationToLValue(filler, elementLV); 791 else 792 EmitNullInitializationToLValue(elementLV); 793 794 // Move on to the next element. 795 llvm::Value *nextElement = 796 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 797 798 // Tell the EH cleanup that we finished with the last element. 799 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 800 801 // Leave the loop if we're done. 802 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 803 "arrayinit.done"); 804 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 805 Builder.CreateCondBr(done, endBB, bodyBB); 806 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 807 808 CGF.EmitBlock(endBB); 809 } 810 811 // Leave the partial-array cleanup if we entered one. 812 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup); 813 814 return; 815 } 816 817 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 818 819 // Do struct initialization; this code just sets each individual member 820 // to the approprate value. This makes bitfield support automatic; 821 // the disadvantage is that the generated code is more difficult for 822 // the optimizer, especially with bitfields. 823 unsigned NumInitElements = E->getNumInits(); 824 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 825 826 if (record->isUnion()) { 827 // Only initialize one field of a union. The field itself is 828 // specified by the initializer list. 829 if (!E->getInitializedFieldInUnion()) { 830 // Empty union; we have nothing to do. 831 832 #ifndef NDEBUG 833 // Make sure that it's really an empty and not a failure of 834 // semantic analysis. 835 for (RecordDecl::field_iterator Field = record->field_begin(), 836 FieldEnd = record->field_end(); 837 Field != FieldEnd; ++Field) 838 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 839 #endif 840 return; 841 } 842 843 // FIXME: volatility 844 FieldDecl *Field = E->getInitializedFieldInUnion(); 845 846 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 847 if (NumInitElements) { 848 // Store the initializer into the field 849 EmitInitializationToLValue(E->getInit(0), FieldLoc); 850 } else { 851 // Default-initialize to null. 852 EmitNullInitializationToLValue(FieldLoc); 853 } 854 855 return; 856 } 857 858 // We'll need to enter cleanup scopes in case any of the member 859 // initializers throw an exception. 860 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 861 862 // Here we iterate over the fields; this makes it simpler to both 863 // default-initialize fields and skip over unnamed fields. 864 unsigned curInitIndex = 0; 865 for (RecordDecl::field_iterator field = record->field_begin(), 866 fieldEnd = record->field_end(); 867 field != fieldEnd; ++field) { 868 // We're done once we hit the flexible array member. 869 if (field->getType()->isIncompleteArrayType()) 870 break; 871 872 // Always skip anonymous bitfields. 873 if (field->isUnnamedBitfield()) 874 continue; 875 876 // We're done if we reach the end of the explicit initializers, we 877 // have a zeroed object, and the rest of the fields are 878 // zero-initializable. 879 if (curInitIndex == NumInitElements && Dest.isZeroed() && 880 CGF.getTypes().isZeroInitializable(E->getType())) 881 break; 882 883 // FIXME: volatility 884 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 885 // We never generate write-barries for initialized fields. 886 LV.setNonGC(true); 887 888 if (curInitIndex < NumInitElements) { 889 // Store the initializer into the field. 890 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 891 } else { 892 // We're out of initalizers; default-initialize to null 893 EmitNullInitializationToLValue(LV); 894 } 895 896 // Push a destructor if necessary. 897 // FIXME: if we have an array of structures, all explicitly 898 // initialized, we can end up pushing a linear number of cleanups. 899 bool pushedCleanup = false; 900 if (QualType::DestructionKind dtorKind 901 = field->getType().isDestructedType()) { 902 assert(LV.isSimple()); 903 if (CGF.needsEHCleanup(dtorKind)) { 904 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 905 CGF.getDestroyer(dtorKind), false); 906 cleanups.push_back(CGF.EHStack.stable_begin()); 907 pushedCleanup = true; 908 } 909 } 910 911 // If the GEP didn't get used because of a dead zero init or something 912 // else, clean it up for -O0 builds and general tidiness. 913 if (!pushedCleanup && LV.isSimple()) 914 if (llvm::GetElementPtrInst *GEP = 915 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 916 if (GEP->use_empty()) 917 GEP->eraseFromParent(); 918 } 919 920 // Deactivate all the partial cleanups in reverse order, which 921 // generally means popping them. 922 for (unsigned i = cleanups.size(); i != 0; --i) 923 CGF.DeactivateCleanupBlock(cleanups[i-1]); 924 } 925 926 //===----------------------------------------------------------------------===// 927 // Entry Points into this File 928 //===----------------------------------------------------------------------===// 929 930 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 931 /// non-zero bytes that will be stored when outputting the initializer for the 932 /// specified initializer expression. 933 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 934 E = E->IgnoreParens(); 935 936 // 0 and 0.0 won't require any non-zero stores! 937 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 938 939 // If this is an initlist expr, sum up the size of sizes of the (present) 940 // elements. If this is something weird, assume the whole thing is non-zero. 941 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 942 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 943 return CGF.getContext().getTypeSizeInChars(E->getType()); 944 945 // InitListExprs for structs have to be handled carefully. If there are 946 // reference members, we need to consider the size of the reference, not the 947 // referencee. InitListExprs for unions and arrays can't have references. 948 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 949 if (!RT->isUnionType()) { 950 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 951 CharUnits NumNonZeroBytes = CharUnits::Zero(); 952 953 unsigned ILEElement = 0; 954 for (RecordDecl::field_iterator Field = SD->field_begin(), 955 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 956 // We're done once we hit the flexible array member or run out of 957 // InitListExpr elements. 958 if (Field->getType()->isIncompleteArrayType() || 959 ILEElement == ILE->getNumInits()) 960 break; 961 if (Field->isUnnamedBitfield()) 962 continue; 963 964 const Expr *E = ILE->getInit(ILEElement++); 965 966 // Reference values are always non-null and have the width of a pointer. 967 if (Field->getType()->isReferenceType()) 968 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 969 CGF.getContext().getTargetInfo().getPointerWidth(0)); 970 else 971 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 972 } 973 974 return NumNonZeroBytes; 975 } 976 } 977 978 979 CharUnits NumNonZeroBytes = CharUnits::Zero(); 980 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 981 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 982 return NumNonZeroBytes; 983 } 984 985 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 986 /// zeros in it, emit a memset and avoid storing the individual zeros. 987 /// 988 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 989 CodeGenFunction &CGF) { 990 // If the slot is already known to be zeroed, nothing to do. Don't mess with 991 // volatile stores. 992 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 993 994 // C++ objects with a user-declared constructor don't need zero'ing. 995 if (CGF.getContext().getLangOptions().CPlusPlus) 996 if (const RecordType *RT = CGF.getContext() 997 .getBaseElementType(E->getType())->getAs<RecordType>()) { 998 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 999 if (RD->hasUserDeclaredConstructor()) 1000 return; 1001 } 1002 1003 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1004 std::pair<CharUnits, CharUnits> TypeInfo = 1005 CGF.getContext().getTypeInfoInChars(E->getType()); 1006 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1007 return; 1008 1009 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1010 // we prefer to emit memset + individual stores for the rest. 1011 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1012 if (NumNonZeroBytes*4 > TypeInfo.first) 1013 return; 1014 1015 // Okay, it seems like a good idea to use an initial memset, emit the call. 1016 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1017 CharUnits Align = TypeInfo.second; 1018 1019 llvm::Value *Loc = Slot.getAddr(); 1020 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1021 1022 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1023 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1024 Align.getQuantity(), false); 1025 1026 // Tell the AggExprEmitter that the slot is known zero. 1027 Slot.setZeroed(); 1028 } 1029 1030 1031 1032 1033 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1034 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1035 /// the value of the aggregate expression is not needed. If VolatileDest is 1036 /// true, DestPtr cannot be 0. 1037 /// 1038 /// \param IsInitializer - true if this evaluation is initializing an 1039 /// object whose lifetime is already being managed. 1040 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1041 bool IgnoreResult) { 1042 assert(E && hasAggregateLLVMType(E->getType()) && 1043 "Invalid aggregate expression to emit"); 1044 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1045 "slot has bits but no address"); 1046 1047 // Optimize the slot if possible. 1048 CheckAggExprForMemSetUse(Slot, E, *this); 1049 1050 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1051 } 1052 1053 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1054 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1055 llvm::Value *Temp = CreateMemTemp(E->getType()); 1056 LValue LV = MakeAddrLValue(Temp, E->getType()); 1057 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1058 AggValueSlot::DoesNotNeedGCBarriers, 1059 AggValueSlot::IsNotAliased)); 1060 return LV; 1061 } 1062 1063 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1064 llvm::Value *SrcPtr, QualType Ty, 1065 bool isVolatile) { 1066 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1067 1068 if (getContext().getLangOptions().CPlusPlus) { 1069 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1070 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1071 assert((Record->hasTrivialCopyConstructor() || 1072 Record->hasTrivialCopyAssignment() || 1073 Record->hasTrivialMoveConstructor() || 1074 Record->hasTrivialMoveAssignment()) && 1075 "Trying to aggregate-copy a type without a trivial copy " 1076 "constructor or assignment operator"); 1077 // Ignore empty classes in C++. 1078 if (Record->isEmpty()) 1079 return; 1080 } 1081 } 1082 1083 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1084 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1085 // read from another object that overlaps in anyway the storage of the first 1086 // object, then the overlap shall be exact and the two objects shall have 1087 // qualified or unqualified versions of a compatible type." 1088 // 1089 // memcpy is not defined if the source and destination pointers are exactly 1090 // equal, but other compilers do this optimization, and almost every memcpy 1091 // implementation handles this case safely. If there is a libc that does not 1092 // safely handle this, we can add a target hook. 1093 1094 // Get size and alignment info for this aggregate. 1095 std::pair<CharUnits, CharUnits> TypeInfo = 1096 getContext().getTypeInfoInChars(Ty); 1097 1098 // FIXME: Handle variable sized types. 1099 1100 // FIXME: If we have a volatile struct, the optimizer can remove what might 1101 // appear to be `extra' memory ops: 1102 // 1103 // volatile struct { int i; } a, b; 1104 // 1105 // int main() { 1106 // a = b; 1107 // a = b; 1108 // } 1109 // 1110 // we need to use a different call here. We use isVolatile to indicate when 1111 // either the source or the destination is volatile. 1112 1113 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1114 llvm::Type *DBP = 1115 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1116 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 1117 1118 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1119 llvm::Type *SBP = 1120 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1121 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 1122 1123 // Don't do any of the memmove_collectable tests if GC isn't set. 1124 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 1125 // fall through 1126 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1127 RecordDecl *Record = RecordTy->getDecl(); 1128 if (Record->hasObjectMember()) { 1129 CharUnits size = TypeInfo.first; 1130 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1131 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1132 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1133 SizeVal); 1134 return; 1135 } 1136 } else if (Ty->isArrayType()) { 1137 QualType BaseType = getContext().getBaseElementType(Ty); 1138 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1139 if (RecordTy->getDecl()->hasObjectMember()) { 1140 CharUnits size = TypeInfo.first; 1141 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1142 llvm::Value *SizeVal = 1143 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1144 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1145 SizeVal); 1146 return; 1147 } 1148 } 1149 } 1150 1151 Builder.CreateMemCpy(DestPtr, SrcPtr, 1152 llvm::ConstantInt::get(IntPtrTy, 1153 TypeInfo.first.getQuantity()), 1154 TypeInfo.second.getQuantity(), isVolatile); 1155 } 1156