1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Aggregate Expression Emitter 32 //===----------------------------------------------------------------------===// 33 34 namespace { 35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 36 CodeGenFunction &CGF; 37 CGBuilderTy &Builder; 38 AggValueSlot Dest; 39 bool IsResultUnused; 40 41 AggValueSlot EnsureSlot(QualType T) { 42 if (!Dest.isIgnored()) return Dest; 43 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 44 } 45 void EnsureDest(QualType T) { 46 if (!Dest.isIgnored()) return; 47 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 48 } 49 50 // Calls `Fn` with a valid return value slot, potentially creating a temporary 51 // to do so. If a temporary is created, an appropriate copy into `Dest` will 52 // be emitted, as will lifetime markers. 53 // 54 // The given function should take a ReturnValueSlot, and return an RValue that 55 // points to said slot. 56 void withReturnValueSlot(const Expr *E, 57 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 61 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 62 IsResultUnused(IsResultUnused) { } 63 64 //===--------------------------------------------------------------------===// 65 // Utilities 66 //===--------------------------------------------------------------------===// 67 68 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 69 /// represents a value lvalue, this method emits the address of the lvalue, 70 /// then loads the result into DestPtr. 71 void EmitAggLoadOfLValue(const Expr *E); 72 73 enum ExprValueKind { 74 EVK_RValue, 75 EVK_NonRValue 76 }; 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 /// SrcIsRValue is true if source comes from an RValue. 80 void EmitFinalDestCopy(QualType type, const LValue &src, 81 ExprValueKind SrcValueKind = EVK_NonRValue); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 void VisitConstantExpr(ConstantExpr *E) { 128 return Visit(E->getSubExpr()); 129 } 130 131 // l-values. 132 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 void VisitBinCmp(const BinaryOperator *E); 153 154 void VisitObjCMessageExpr(ObjCMessageExpr *E); 155 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 156 EmitAggLoadOfLValue(E); 157 } 158 159 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 160 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 161 void VisitChooseExpr(const ChooseExpr *CE); 162 void VisitInitListExpr(InitListExpr *E); 163 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 164 llvm::Value *outerBegin = nullptr); 165 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 166 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 167 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 168 Visit(DAE->getExpr()); 169 } 170 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 171 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 172 Visit(DIE->getExpr()); 173 } 174 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 175 void VisitCXXConstructExpr(const CXXConstructExpr *E); 176 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 177 void VisitLambdaExpr(LambdaExpr *E); 178 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 179 void VisitExprWithCleanups(ExprWithCleanups *E); 180 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 181 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 182 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 183 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 184 185 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 186 if (E->isGLValue()) { 187 LValue LV = CGF.EmitPseudoObjectLValue(E); 188 return EmitFinalDestCopy(E->getType(), LV); 189 } 190 191 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 192 } 193 194 void VisitVAArgExpr(VAArgExpr *E); 195 196 void EmitInitializationToLValue(Expr *E, LValue Address); 197 void EmitNullInitializationToLValue(LValue Address); 198 // case Expr::ChooseExprClass: 199 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 200 void VisitAtomicExpr(AtomicExpr *E) { 201 RValue Res = CGF.EmitAtomicExpr(E); 202 EmitFinalDestCopy(E->getType(), Res); 203 } 204 }; 205 } // end anonymous namespace. 206 207 //===----------------------------------------------------------------------===// 208 // Utilities 209 //===----------------------------------------------------------------------===// 210 211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 212 /// represents a value lvalue, this method emits the address of the lvalue, 213 /// then loads the result into DestPtr. 214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 215 LValue LV = CGF.EmitLValue(E); 216 217 // If the type of the l-value is atomic, then do an atomic load. 218 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 219 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 220 return; 221 } 222 223 EmitFinalDestCopy(E->getType(), LV); 224 } 225 226 /// True if the given aggregate type requires special GC API calls. 227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 228 // Only record types have members that might require garbage collection. 229 const RecordType *RecordTy = T->getAs<RecordType>(); 230 if (!RecordTy) return false; 231 232 // Don't mess with non-trivial C++ types. 233 RecordDecl *Record = RecordTy->getDecl(); 234 if (isa<CXXRecordDecl>(Record) && 235 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 236 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 237 return false; 238 239 // Check whether the type has an object member. 240 return Record->hasObjectMember(); 241 } 242 243 void AggExprEmitter::withReturnValueSlot( 244 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 245 QualType RetTy = E->getType(); 246 bool RequiresDestruction = 247 Dest.isIgnored() && 248 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 249 250 // If it makes no observable difference, save a memcpy + temporary. 251 // 252 // We need to always provide our own temporary if destruction is required. 253 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 254 // its lifetime before we have the chance to emit a proper destructor call. 255 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 256 (RequiresDestruction && !Dest.getAddress().isValid()); 257 258 Address RetAddr = Address::invalid(); 259 Address RetAllocaAddr = Address::invalid(); 260 261 EHScopeStack::stable_iterator LifetimeEndBlock; 262 llvm::Value *LifetimeSizePtr = nullptr; 263 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 264 if (!UseTemp) { 265 RetAddr = Dest.getAddress(); 266 } else { 267 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 268 uint64_t Size = 269 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 270 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 271 if (LifetimeSizePtr) { 272 LifetimeStartInst = 273 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 274 assert(LifetimeStartInst->getIntrinsicID() == 275 llvm::Intrinsic::lifetime_start && 276 "Last insertion wasn't a lifetime.start?"); 277 278 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 279 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 280 LifetimeEndBlock = CGF.EHStack.stable_begin(); 281 } 282 } 283 284 RValue Src = 285 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 286 287 if (RequiresDestruction) 288 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 289 290 if (!UseTemp) 291 return; 292 293 assert(Dest.getPointer() != Src.getAggregatePointer()); 294 EmitFinalDestCopy(E->getType(), Src); 295 296 if (!RequiresDestruction && LifetimeStartInst) { 297 // If there's no dtor to run, the copy was the last use of our temporary. 298 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 299 // eagerly. 300 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 301 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 302 } 303 } 304 305 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 306 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 307 assert(src.isAggregate() && "value must be aggregate value!"); 308 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 309 EmitFinalDestCopy(type, srcLV, EVK_RValue); 310 } 311 312 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 313 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 314 ExprValueKind SrcValueKind) { 315 // If Dest is ignored, then we're evaluating an aggregate expression 316 // in a context that doesn't care about the result. Note that loads 317 // from volatile l-values force the existence of a non-ignored 318 // destination. 319 if (Dest.isIgnored()) 320 return; 321 322 // Copy non-trivial C structs here. 323 LValue DstLV = CGF.MakeAddrLValue( 324 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 325 326 if (SrcValueKind == EVK_RValue) { 327 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 328 if (Dest.isPotentiallyAliased()) 329 CGF.callCStructMoveAssignmentOperator(DstLV, src); 330 else 331 CGF.callCStructMoveConstructor(DstLV, src); 332 return; 333 } 334 } else { 335 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 336 if (Dest.isPotentiallyAliased()) 337 CGF.callCStructCopyAssignmentOperator(DstLV, src); 338 else 339 CGF.callCStructCopyConstructor(DstLV, src); 340 return; 341 } 342 } 343 344 AggValueSlot srcAgg = 345 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 346 needsGC(type), AggValueSlot::IsAliased, 347 AggValueSlot::MayOverlap); 348 EmitCopy(type, Dest, srcAgg); 349 } 350 351 /// Perform a copy from the source into the destination. 352 /// 353 /// \param type - the type of the aggregate being copied; qualifiers are 354 /// ignored 355 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 356 const AggValueSlot &src) { 357 if (dest.requiresGCollection()) { 358 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 359 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 360 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 361 dest.getAddress(), 362 src.getAddress(), 363 size); 364 return; 365 } 366 367 // If the result of the assignment is used, copy the LHS there also. 368 // It's volatile if either side is. Use the minimum alignment of 369 // the two sides. 370 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 371 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 372 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 373 dest.isVolatile() || src.isVolatile()); 374 } 375 376 /// Emit the initializer for a std::initializer_list initialized with a 377 /// real initializer list. 378 void 379 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 380 // Emit an array containing the elements. The array is externally destructed 381 // if the std::initializer_list object is. 382 ASTContext &Ctx = CGF.getContext(); 383 LValue Array = CGF.EmitLValue(E->getSubExpr()); 384 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 385 Address ArrayPtr = Array.getAddress(); 386 387 const ConstantArrayType *ArrayType = 388 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 389 assert(ArrayType && "std::initializer_list constructed from non-array"); 390 391 // FIXME: Perform the checks on the field types in SemaInit. 392 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 393 RecordDecl::field_iterator Field = Record->field_begin(); 394 if (Field == Record->field_end()) { 395 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 396 return; 397 } 398 399 // Start pointer. 400 if (!Field->getType()->isPointerType() || 401 !Ctx.hasSameType(Field->getType()->getPointeeType(), 402 ArrayType->getElementType())) { 403 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 404 return; 405 } 406 407 AggValueSlot Dest = EnsureSlot(E->getType()); 408 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 409 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 410 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 411 llvm::Value *IdxStart[] = { Zero, Zero }; 412 llvm::Value *ArrayStart = 413 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 414 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 415 ++Field; 416 417 if (Field == Record->field_end()) { 418 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 419 return; 420 } 421 422 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 423 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 424 if (Field->getType()->isPointerType() && 425 Ctx.hasSameType(Field->getType()->getPointeeType(), 426 ArrayType->getElementType())) { 427 // End pointer. 428 llvm::Value *IdxEnd[] = { Zero, Size }; 429 llvm::Value *ArrayEnd = 430 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 431 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 432 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 433 // Length. 434 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 435 } else { 436 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 437 return; 438 } 439 } 440 441 /// Determine if E is a trivial array filler, that is, one that is 442 /// equivalent to zero-initialization. 443 static bool isTrivialFiller(Expr *E) { 444 if (!E) 445 return true; 446 447 if (isa<ImplicitValueInitExpr>(E)) 448 return true; 449 450 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 451 if (ILE->getNumInits()) 452 return false; 453 return isTrivialFiller(ILE->getArrayFiller()); 454 } 455 456 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 457 return Cons->getConstructor()->isDefaultConstructor() && 458 Cons->getConstructor()->isTrivial(); 459 460 // FIXME: Are there other cases where we can avoid emitting an initializer? 461 return false; 462 } 463 464 /// Emit initialization of an array from an initializer list. 465 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 466 QualType ArrayQTy, InitListExpr *E) { 467 uint64_t NumInitElements = E->getNumInits(); 468 469 uint64_t NumArrayElements = AType->getNumElements(); 470 assert(NumInitElements <= NumArrayElements); 471 472 QualType elementType = 473 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 474 475 // DestPtr is an array*. Construct an elementType* by drilling 476 // down a level. 477 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 478 llvm::Value *indices[] = { zero, zero }; 479 llvm::Value *begin = 480 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 481 482 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 483 CharUnits elementAlign = 484 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 485 486 // Consider initializing the array by copying from a global. For this to be 487 // more efficient than per-element initialization, the size of the elements 488 // with explicit initializers should be large enough. 489 if (NumInitElements * elementSize.getQuantity() > 16 && 490 elementType.isTriviallyCopyableType(CGF.getContext())) { 491 CodeGen::CodeGenModule &CGM = CGF.CGM; 492 ConstantEmitter Emitter(CGM); 493 LangAS AS = ArrayQTy.getAddressSpace(); 494 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 495 auto GV = new llvm::GlobalVariable( 496 CGM.getModule(), C->getType(), 497 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 498 llvm::GlobalValue::PrivateLinkage, C, "constinit", 499 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 500 CGM.getContext().getTargetAddressSpace(AS)); 501 Emitter.finalize(GV); 502 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 503 GV->setAlignment(Align.getQuantity()); 504 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 505 return; 506 } 507 } 508 509 // Exception safety requires us to destroy all the 510 // already-constructed members if an initializer throws. 511 // For that, we'll need an EH cleanup. 512 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 513 Address endOfInit = Address::invalid(); 514 EHScopeStack::stable_iterator cleanup; 515 llvm::Instruction *cleanupDominator = nullptr; 516 if (CGF.needsEHCleanup(dtorKind)) { 517 // In principle we could tell the cleanup where we are more 518 // directly, but the control flow can get so varied here that it 519 // would actually be quite complex. Therefore we go through an 520 // alloca. 521 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 522 "arrayinit.endOfInit"); 523 cleanupDominator = Builder.CreateStore(begin, endOfInit); 524 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 525 elementAlign, 526 CGF.getDestroyer(dtorKind)); 527 cleanup = CGF.EHStack.stable_begin(); 528 529 // Otherwise, remember that we didn't need a cleanup. 530 } else { 531 dtorKind = QualType::DK_none; 532 } 533 534 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 535 536 // The 'current element to initialize'. The invariants on this 537 // variable are complicated. Essentially, after each iteration of 538 // the loop, it points to the last initialized element, except 539 // that it points to the beginning of the array before any 540 // elements have been initialized. 541 llvm::Value *element = begin; 542 543 // Emit the explicit initializers. 544 for (uint64_t i = 0; i != NumInitElements; ++i) { 545 // Advance to the next element. 546 if (i > 0) { 547 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 548 549 // Tell the cleanup that it needs to destroy up to this 550 // element. TODO: some of these stores can be trivially 551 // observed to be unnecessary. 552 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 553 } 554 555 LValue elementLV = 556 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 557 EmitInitializationToLValue(E->getInit(i), elementLV); 558 } 559 560 // Check whether there's a non-trivial array-fill expression. 561 Expr *filler = E->getArrayFiller(); 562 bool hasTrivialFiller = isTrivialFiller(filler); 563 564 // Any remaining elements need to be zero-initialized, possibly 565 // using the filler expression. We can skip this if the we're 566 // emitting to zeroed memory. 567 if (NumInitElements != NumArrayElements && 568 !(Dest.isZeroed() && hasTrivialFiller && 569 CGF.getTypes().isZeroInitializable(elementType))) { 570 571 // Use an actual loop. This is basically 572 // do { *array++ = filler; } while (array != end); 573 574 // Advance to the start of the rest of the array. 575 if (NumInitElements) { 576 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 577 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 578 } 579 580 // Compute the end of the array. 581 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 582 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 583 "arrayinit.end"); 584 585 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 586 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 587 588 // Jump into the body. 589 CGF.EmitBlock(bodyBB); 590 llvm::PHINode *currentElement = 591 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 592 currentElement->addIncoming(element, entryBB); 593 594 // Emit the actual filler expression. 595 { 596 // C++1z [class.temporary]p5: 597 // when a default constructor is called to initialize an element of 598 // an array with no corresponding initializer [...] the destruction of 599 // every temporary created in a default argument is sequenced before 600 // the construction of the next array element, if any 601 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 602 LValue elementLV = 603 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 604 if (filler) 605 EmitInitializationToLValue(filler, elementLV); 606 else 607 EmitNullInitializationToLValue(elementLV); 608 } 609 610 // Move on to the next element. 611 llvm::Value *nextElement = 612 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 613 614 // Tell the EH cleanup that we finished with the last element. 615 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 616 617 // Leave the loop if we're done. 618 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 619 "arrayinit.done"); 620 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 621 Builder.CreateCondBr(done, endBB, bodyBB); 622 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 623 624 CGF.EmitBlock(endBB); 625 } 626 627 // Leave the partial-array cleanup if we entered one. 628 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // Visitor Methods 633 //===----------------------------------------------------------------------===// 634 635 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 636 Visit(E->GetTemporaryExpr()); 637 } 638 639 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 640 // If this is a unique OVE, just visit its source expression. 641 if (e->isUnique()) 642 Visit(e->getSourceExpr()); 643 else 644 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 645 } 646 647 void 648 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 649 if (Dest.isPotentiallyAliased() && 650 E->getType().isPODType(CGF.getContext())) { 651 // For a POD type, just emit a load of the lvalue + a copy, because our 652 // compound literal might alias the destination. 653 EmitAggLoadOfLValue(E); 654 return; 655 } 656 657 AggValueSlot Slot = EnsureSlot(E->getType()); 658 CGF.EmitAggExpr(E->getInitializer(), Slot); 659 } 660 661 /// Attempt to look through various unimportant expressions to find a 662 /// cast of the given kind. 663 static Expr *findPeephole(Expr *op, CastKind kind) { 664 while (true) { 665 op = op->IgnoreParens(); 666 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 667 if (castE->getCastKind() == kind) 668 return castE->getSubExpr(); 669 if (castE->getCastKind() == CK_NoOp) 670 continue; 671 } 672 return nullptr; 673 } 674 } 675 676 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 677 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 678 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 679 switch (E->getCastKind()) { 680 case CK_Dynamic: { 681 // FIXME: Can this actually happen? We have no test coverage for it. 682 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 683 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 684 CodeGenFunction::TCK_Load); 685 // FIXME: Do we also need to handle property references here? 686 if (LV.isSimple()) 687 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 688 else 689 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 690 691 if (!Dest.isIgnored()) 692 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 693 break; 694 } 695 696 case CK_ToUnion: { 697 // Evaluate even if the destination is ignored. 698 if (Dest.isIgnored()) { 699 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 700 /*ignoreResult=*/true); 701 break; 702 } 703 704 // GCC union extension 705 QualType Ty = E->getSubExpr()->getType(); 706 Address CastPtr = 707 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 708 EmitInitializationToLValue(E->getSubExpr(), 709 CGF.MakeAddrLValue(CastPtr, Ty)); 710 break; 711 } 712 713 case CK_DerivedToBase: 714 case CK_BaseToDerived: 715 case CK_UncheckedDerivedToBase: { 716 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 717 "should have been unpacked before we got here"); 718 } 719 720 case CK_NonAtomicToAtomic: 721 case CK_AtomicToNonAtomic: { 722 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 723 724 // Determine the atomic and value types. 725 QualType atomicType = E->getSubExpr()->getType(); 726 QualType valueType = E->getType(); 727 if (isToAtomic) std::swap(atomicType, valueType); 728 729 assert(atomicType->isAtomicType()); 730 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 731 atomicType->castAs<AtomicType>()->getValueType())); 732 733 // Just recurse normally if we're ignoring the result or the 734 // atomic type doesn't change representation. 735 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 736 return Visit(E->getSubExpr()); 737 } 738 739 CastKind peepholeTarget = 740 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 741 742 // These two cases are reverses of each other; try to peephole them. 743 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 744 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 745 E->getType()) && 746 "peephole significantly changed types?"); 747 return Visit(op); 748 } 749 750 // If we're converting an r-value of non-atomic type to an r-value 751 // of atomic type, just emit directly into the relevant sub-object. 752 if (isToAtomic) { 753 AggValueSlot valueDest = Dest; 754 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 755 // Zero-initialize. (Strictly speaking, we only need to initialize 756 // the padding at the end, but this is simpler.) 757 if (!Dest.isZeroed()) 758 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 759 760 // Build a GEP to refer to the subobject. 761 Address valueAddr = 762 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 763 valueDest = AggValueSlot::forAddr(valueAddr, 764 valueDest.getQualifiers(), 765 valueDest.isExternallyDestructed(), 766 valueDest.requiresGCollection(), 767 valueDest.isPotentiallyAliased(), 768 AggValueSlot::DoesNotOverlap, 769 AggValueSlot::IsZeroed); 770 } 771 772 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 773 return; 774 } 775 776 // Otherwise, we're converting an atomic type to a non-atomic type. 777 // Make an atomic temporary, emit into that, and then copy the value out. 778 AggValueSlot atomicSlot = 779 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 780 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 781 782 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 783 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 784 return EmitFinalDestCopy(valueType, rvalue); 785 } 786 787 case CK_LValueToRValue: 788 // If we're loading from a volatile type, force the destination 789 // into existence. 790 if (E->getSubExpr()->getType().isVolatileQualified()) { 791 EnsureDest(E->getType()); 792 return Visit(E->getSubExpr()); 793 } 794 795 LLVM_FALLTHROUGH; 796 797 case CK_NoOp: 798 case CK_UserDefinedConversion: 799 case CK_ConstructorConversion: 800 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 801 E->getType()) && 802 "Implicit cast types must be compatible"); 803 Visit(E->getSubExpr()); 804 break; 805 806 case CK_LValueBitCast: 807 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 808 809 case CK_Dependent: 810 case CK_BitCast: 811 case CK_ArrayToPointerDecay: 812 case CK_FunctionToPointerDecay: 813 case CK_NullToPointer: 814 case CK_NullToMemberPointer: 815 case CK_BaseToDerivedMemberPointer: 816 case CK_DerivedToBaseMemberPointer: 817 case CK_MemberPointerToBoolean: 818 case CK_ReinterpretMemberPointer: 819 case CK_IntegralToPointer: 820 case CK_PointerToIntegral: 821 case CK_PointerToBoolean: 822 case CK_ToVoid: 823 case CK_VectorSplat: 824 case CK_IntegralCast: 825 case CK_BooleanToSignedIntegral: 826 case CK_IntegralToBoolean: 827 case CK_IntegralToFloating: 828 case CK_FloatingToIntegral: 829 case CK_FloatingToBoolean: 830 case CK_FloatingCast: 831 case CK_CPointerToObjCPointerCast: 832 case CK_BlockPointerToObjCPointerCast: 833 case CK_AnyPointerToBlockPointerCast: 834 case CK_ObjCObjectLValueCast: 835 case CK_FloatingRealToComplex: 836 case CK_FloatingComplexToReal: 837 case CK_FloatingComplexToBoolean: 838 case CK_FloatingComplexCast: 839 case CK_FloatingComplexToIntegralComplex: 840 case CK_IntegralRealToComplex: 841 case CK_IntegralComplexToReal: 842 case CK_IntegralComplexToBoolean: 843 case CK_IntegralComplexCast: 844 case CK_IntegralComplexToFloatingComplex: 845 case CK_ARCProduceObject: 846 case CK_ARCConsumeObject: 847 case CK_ARCReclaimReturnedObject: 848 case CK_ARCExtendBlockObject: 849 case CK_CopyAndAutoreleaseBlockObject: 850 case CK_BuiltinFnToFnPtr: 851 case CK_ZeroToOCLOpaqueType: 852 case CK_AddressSpaceConversion: 853 case CK_IntToOCLSampler: 854 case CK_FixedPointCast: 855 case CK_FixedPointToBoolean: 856 llvm_unreachable("cast kind invalid for aggregate types"); 857 } 858 } 859 860 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 861 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 862 EmitAggLoadOfLValue(E); 863 return; 864 } 865 866 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 867 return CGF.EmitCallExpr(E, Slot); 868 }); 869 } 870 871 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 872 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 873 return CGF.EmitObjCMessageExpr(E, Slot); 874 }); 875 } 876 877 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 878 CGF.EmitIgnoredExpr(E->getLHS()); 879 Visit(E->getRHS()); 880 } 881 882 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 883 CodeGenFunction::StmtExprEvaluation eval(CGF); 884 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 885 } 886 887 enum CompareKind { 888 CK_Less, 889 CK_Greater, 890 CK_Equal, 891 }; 892 893 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 894 const BinaryOperator *E, llvm::Value *LHS, 895 llvm::Value *RHS, CompareKind Kind, 896 const char *NameSuffix = "") { 897 QualType ArgTy = E->getLHS()->getType(); 898 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 899 ArgTy = CT->getElementType(); 900 901 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 902 assert(Kind == CK_Equal && 903 "member pointers may only be compared for equality"); 904 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 905 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 906 } 907 908 // Compute the comparison instructions for the specified comparison kind. 909 struct CmpInstInfo { 910 const char *Name; 911 llvm::CmpInst::Predicate FCmp; 912 llvm::CmpInst::Predicate SCmp; 913 llvm::CmpInst::Predicate UCmp; 914 }; 915 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 916 using FI = llvm::FCmpInst; 917 using II = llvm::ICmpInst; 918 switch (Kind) { 919 case CK_Less: 920 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 921 case CK_Greater: 922 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 923 case CK_Equal: 924 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 925 } 926 llvm_unreachable("Unrecognised CompareKind enum"); 927 }(); 928 929 if (ArgTy->hasFloatingRepresentation()) 930 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 931 llvm::Twine(InstInfo.Name) + NameSuffix); 932 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 933 auto Inst = 934 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 935 return Builder.CreateICmp(Inst, LHS, RHS, 936 llvm::Twine(InstInfo.Name) + NameSuffix); 937 } 938 939 llvm_unreachable("unsupported aggregate binary expression should have " 940 "already been handled"); 941 } 942 943 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 944 using llvm::BasicBlock; 945 using llvm::PHINode; 946 using llvm::Value; 947 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 948 E->getRHS()->getType())); 949 const ComparisonCategoryInfo &CmpInfo = 950 CGF.getContext().CompCategories.getInfoForType(E->getType()); 951 assert(CmpInfo.Record->isTriviallyCopyable() && 952 "cannot copy non-trivially copyable aggregate"); 953 954 QualType ArgTy = E->getLHS()->getType(); 955 956 // TODO: Handle comparing these types. 957 if (ArgTy->isVectorType()) 958 return CGF.ErrorUnsupported( 959 E, "aggregate three-way comparison with vector arguments"); 960 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 961 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 962 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 963 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 964 } 965 bool IsComplex = ArgTy->isAnyComplexType(); 966 967 // Evaluate the operands to the expression and extract their values. 968 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 969 RValue RV = CGF.EmitAnyExpr(E); 970 if (RV.isScalar()) 971 return {RV.getScalarVal(), nullptr}; 972 if (RV.isAggregate()) 973 return {RV.getAggregatePointer(), nullptr}; 974 assert(RV.isComplex()); 975 return RV.getComplexVal(); 976 }; 977 auto LHSValues = EmitOperand(E->getLHS()), 978 RHSValues = EmitOperand(E->getRHS()); 979 980 auto EmitCmp = [&](CompareKind K) { 981 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 982 K, IsComplex ? ".r" : ""); 983 if (!IsComplex) 984 return Cmp; 985 assert(K == CompareKind::CK_Equal); 986 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 987 RHSValues.second, K, ".i"); 988 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 989 }; 990 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 991 return Builder.getInt(VInfo->getIntValue()); 992 }; 993 994 Value *Select; 995 if (ArgTy->isNullPtrType()) { 996 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 997 } else if (CmpInfo.isEquality()) { 998 Select = Builder.CreateSelect( 999 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1000 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 1001 } else if (!CmpInfo.isPartial()) { 1002 Value *SelectOne = 1003 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1004 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1005 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1006 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1007 SelectOne, "sel.eq"); 1008 } else { 1009 Value *SelectEq = Builder.CreateSelect( 1010 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1011 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1012 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1013 EmitCmpRes(CmpInfo.getGreater()), 1014 SelectEq, "sel.gt"); 1015 Select = Builder.CreateSelect( 1016 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1017 } 1018 // Create the return value in the destination slot. 1019 EnsureDest(E->getType()); 1020 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1021 1022 // Emit the address of the first (and only) field in the comparison category 1023 // type, and initialize it from the constant integer value selected above. 1024 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1025 DestLV, *CmpInfo.Record->field_begin()); 1026 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1027 1028 // All done! The result is in the Dest slot. 1029 } 1030 1031 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1032 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1033 VisitPointerToDataMemberBinaryOperator(E); 1034 else 1035 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1036 } 1037 1038 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1039 const BinaryOperator *E) { 1040 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1041 EmitFinalDestCopy(E->getType(), LV); 1042 } 1043 1044 /// Is the value of the given expression possibly a reference to or 1045 /// into a __block variable? 1046 static bool isBlockVarRef(const Expr *E) { 1047 // Make sure we look through parens. 1048 E = E->IgnoreParens(); 1049 1050 // Check for a direct reference to a __block variable. 1051 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1052 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1053 return (var && var->hasAttr<BlocksAttr>()); 1054 } 1055 1056 // More complicated stuff. 1057 1058 // Binary operators. 1059 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1060 // For an assignment or pointer-to-member operation, just care 1061 // about the LHS. 1062 if (op->isAssignmentOp() || op->isPtrMemOp()) 1063 return isBlockVarRef(op->getLHS()); 1064 1065 // For a comma, just care about the RHS. 1066 if (op->getOpcode() == BO_Comma) 1067 return isBlockVarRef(op->getRHS()); 1068 1069 // FIXME: pointer arithmetic? 1070 return false; 1071 1072 // Check both sides of a conditional operator. 1073 } else if (const AbstractConditionalOperator *op 1074 = dyn_cast<AbstractConditionalOperator>(E)) { 1075 return isBlockVarRef(op->getTrueExpr()) 1076 || isBlockVarRef(op->getFalseExpr()); 1077 1078 // OVEs are required to support BinaryConditionalOperators. 1079 } else if (const OpaqueValueExpr *op 1080 = dyn_cast<OpaqueValueExpr>(E)) { 1081 if (const Expr *src = op->getSourceExpr()) 1082 return isBlockVarRef(src); 1083 1084 // Casts are necessary to get things like (*(int*)&var) = foo(). 1085 // We don't really care about the kind of cast here, except 1086 // we don't want to look through l2r casts, because it's okay 1087 // to get the *value* in a __block variable. 1088 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1089 if (cast->getCastKind() == CK_LValueToRValue) 1090 return false; 1091 return isBlockVarRef(cast->getSubExpr()); 1092 1093 // Handle unary operators. Again, just aggressively look through 1094 // it, ignoring the operation. 1095 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1096 return isBlockVarRef(uop->getSubExpr()); 1097 1098 // Look into the base of a field access. 1099 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1100 return isBlockVarRef(mem->getBase()); 1101 1102 // Look into the base of a subscript. 1103 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1104 return isBlockVarRef(sub->getBase()); 1105 } 1106 1107 return false; 1108 } 1109 1110 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1111 // For an assignment to work, the value on the right has 1112 // to be compatible with the value on the left. 1113 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1114 E->getRHS()->getType()) 1115 && "Invalid assignment"); 1116 1117 // If the LHS might be a __block variable, and the RHS can 1118 // potentially cause a block copy, we need to evaluate the RHS first 1119 // so that the assignment goes the right place. 1120 // This is pretty semantically fragile. 1121 if (isBlockVarRef(E->getLHS()) && 1122 E->getRHS()->HasSideEffects(CGF.getContext())) { 1123 // Ensure that we have a destination, and evaluate the RHS into that. 1124 EnsureDest(E->getRHS()->getType()); 1125 Visit(E->getRHS()); 1126 1127 // Now emit the LHS and copy into it. 1128 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1129 1130 // That copy is an atomic copy if the LHS is atomic. 1131 if (LHS.getType()->isAtomicType() || 1132 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1133 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1134 return; 1135 } 1136 1137 EmitCopy(E->getLHS()->getType(), 1138 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1139 needsGC(E->getLHS()->getType()), 1140 AggValueSlot::IsAliased, 1141 AggValueSlot::MayOverlap), 1142 Dest); 1143 return; 1144 } 1145 1146 LValue LHS = CGF.EmitLValue(E->getLHS()); 1147 1148 // If we have an atomic type, evaluate into the destination and then 1149 // do an atomic copy. 1150 if (LHS.getType()->isAtomicType() || 1151 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1152 EnsureDest(E->getRHS()->getType()); 1153 Visit(E->getRHS()); 1154 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1155 return; 1156 } 1157 1158 // Codegen the RHS so that it stores directly into the LHS. 1159 AggValueSlot LHSSlot = 1160 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1161 needsGC(E->getLHS()->getType()), 1162 AggValueSlot::IsAliased, 1163 AggValueSlot::MayOverlap); 1164 // A non-volatile aggregate destination might have volatile member. 1165 if (!LHSSlot.isVolatile() && 1166 CGF.hasVolatileMember(E->getLHS()->getType())) 1167 LHSSlot.setVolatile(true); 1168 1169 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1170 1171 // Copy into the destination if the assignment isn't ignored. 1172 EmitFinalDestCopy(E->getType(), LHS); 1173 } 1174 1175 void AggExprEmitter:: 1176 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1177 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1178 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1179 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1180 1181 // Bind the common expression if necessary. 1182 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1183 1184 CodeGenFunction::ConditionalEvaluation eval(CGF); 1185 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1186 CGF.getProfileCount(E)); 1187 1188 // Save whether the destination's lifetime is externally managed. 1189 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1190 1191 eval.begin(CGF); 1192 CGF.EmitBlock(LHSBlock); 1193 CGF.incrementProfileCounter(E); 1194 Visit(E->getTrueExpr()); 1195 eval.end(CGF); 1196 1197 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1198 CGF.Builder.CreateBr(ContBlock); 1199 1200 // If the result of an agg expression is unused, then the emission 1201 // of the LHS might need to create a destination slot. That's fine 1202 // with us, and we can safely emit the RHS into the same slot, but 1203 // we shouldn't claim that it's already being destructed. 1204 Dest.setExternallyDestructed(isExternallyDestructed); 1205 1206 eval.begin(CGF); 1207 CGF.EmitBlock(RHSBlock); 1208 Visit(E->getFalseExpr()); 1209 eval.end(CGF); 1210 1211 CGF.EmitBlock(ContBlock); 1212 } 1213 1214 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1215 Visit(CE->getChosenSubExpr()); 1216 } 1217 1218 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1219 Address ArgValue = Address::invalid(); 1220 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1221 1222 // If EmitVAArg fails, emit an error. 1223 if (!ArgPtr.isValid()) { 1224 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1225 return; 1226 } 1227 1228 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1229 } 1230 1231 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1232 // Ensure that we have a slot, but if we already do, remember 1233 // whether it was externally destructed. 1234 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1235 EnsureDest(E->getType()); 1236 1237 // We're going to push a destructor if there isn't already one. 1238 Dest.setExternallyDestructed(); 1239 1240 Visit(E->getSubExpr()); 1241 1242 // Push that destructor we promised. 1243 if (!wasExternallyDestructed) 1244 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1245 } 1246 1247 void 1248 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1249 AggValueSlot Slot = EnsureSlot(E->getType()); 1250 CGF.EmitCXXConstructExpr(E, Slot); 1251 } 1252 1253 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1254 const CXXInheritedCtorInitExpr *E) { 1255 AggValueSlot Slot = EnsureSlot(E->getType()); 1256 CGF.EmitInheritedCXXConstructorCall( 1257 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1258 E->inheritedFromVBase(), E); 1259 } 1260 1261 void 1262 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1263 AggValueSlot Slot = EnsureSlot(E->getType()); 1264 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1265 1266 // We'll need to enter cleanup scopes in case any of the element 1267 // initializers throws an exception. 1268 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1269 llvm::Instruction *CleanupDominator = nullptr; 1270 1271 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1272 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1273 e = E->capture_init_end(); 1274 i != e; ++i, ++CurField) { 1275 // Emit initialization 1276 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1277 if (CurField->hasCapturedVLAType()) { 1278 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1279 continue; 1280 } 1281 1282 EmitInitializationToLValue(*i, LV); 1283 1284 // Push a destructor if necessary. 1285 if (QualType::DestructionKind DtorKind = 1286 CurField->getType().isDestructedType()) { 1287 assert(LV.isSimple()); 1288 if (CGF.needsEHCleanup(DtorKind)) { 1289 if (!CleanupDominator) 1290 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1291 CGF.Int8Ty, 1292 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1293 CharUnits::One()); // placeholder 1294 1295 CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(), 1296 CGF.getDestroyer(DtorKind), false); 1297 Cleanups.push_back(CGF.EHStack.stable_begin()); 1298 } 1299 } 1300 } 1301 1302 // Deactivate all the partial cleanups in reverse order, which 1303 // generally means popping them. 1304 for (unsigned i = Cleanups.size(); i != 0; --i) 1305 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1306 1307 // Destroy the placeholder if we made one. 1308 if (CleanupDominator) 1309 CleanupDominator->eraseFromParent(); 1310 } 1311 1312 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1313 CGF.enterFullExpression(E); 1314 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1315 Visit(E->getSubExpr()); 1316 } 1317 1318 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1319 QualType T = E->getType(); 1320 AggValueSlot Slot = EnsureSlot(T); 1321 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1322 } 1323 1324 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1325 QualType T = E->getType(); 1326 AggValueSlot Slot = EnsureSlot(T); 1327 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1328 } 1329 1330 /// isSimpleZero - If emitting this value will obviously just cause a store of 1331 /// zero to memory, return true. This can return false if uncertain, so it just 1332 /// handles simple cases. 1333 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1334 E = E->IgnoreParens(); 1335 1336 // 0 1337 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1338 return IL->getValue() == 0; 1339 // +0.0 1340 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1341 return FL->getValue().isPosZero(); 1342 // int() 1343 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1344 CGF.getTypes().isZeroInitializable(E->getType())) 1345 return true; 1346 // (int*)0 - Null pointer expressions. 1347 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1348 return ICE->getCastKind() == CK_NullToPointer && 1349 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1350 // '\0' 1351 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1352 return CL->getValue() == 0; 1353 1354 // Otherwise, hard case: conservatively return false. 1355 return false; 1356 } 1357 1358 1359 void 1360 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1361 QualType type = LV.getType(); 1362 // FIXME: Ignore result? 1363 // FIXME: Are initializers affected by volatile? 1364 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1365 // Storing "i32 0" to a zero'd memory location is a noop. 1366 return; 1367 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1368 return EmitNullInitializationToLValue(LV); 1369 } else if (isa<NoInitExpr>(E)) { 1370 // Do nothing. 1371 return; 1372 } else if (type->isReferenceType()) { 1373 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1374 return CGF.EmitStoreThroughLValue(RV, LV); 1375 } 1376 1377 switch (CGF.getEvaluationKind(type)) { 1378 case TEK_Complex: 1379 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1380 return; 1381 case TEK_Aggregate: 1382 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1383 AggValueSlot::IsDestructed, 1384 AggValueSlot::DoesNotNeedGCBarriers, 1385 AggValueSlot::IsNotAliased, 1386 AggValueSlot::MayOverlap, 1387 Dest.isZeroed())); 1388 return; 1389 case TEK_Scalar: 1390 if (LV.isSimple()) { 1391 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1392 } else { 1393 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1394 } 1395 return; 1396 } 1397 llvm_unreachable("bad evaluation kind"); 1398 } 1399 1400 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1401 QualType type = lv.getType(); 1402 1403 // If the destination slot is already zeroed out before the aggregate is 1404 // copied into it, we don't have to emit any zeros here. 1405 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1406 return; 1407 1408 if (CGF.hasScalarEvaluationKind(type)) { 1409 // For non-aggregates, we can store the appropriate null constant. 1410 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1411 // Note that the following is not equivalent to 1412 // EmitStoreThroughBitfieldLValue for ARC types. 1413 if (lv.isBitField()) { 1414 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1415 } else { 1416 assert(lv.isSimple()); 1417 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1418 } 1419 } else { 1420 // There's a potential optimization opportunity in combining 1421 // memsets; that would be easy for arrays, but relatively 1422 // difficult for structures with the current code. 1423 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1424 } 1425 } 1426 1427 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1428 #if 0 1429 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1430 // (Length of globals? Chunks of zeroed-out space?). 1431 // 1432 // If we can, prefer a copy from a global; this is a lot less code for long 1433 // globals, and it's easier for the current optimizers to analyze. 1434 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1435 llvm::GlobalVariable* GV = 1436 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1437 llvm::GlobalValue::InternalLinkage, C, ""); 1438 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1439 return; 1440 } 1441 #endif 1442 if (E->hadArrayRangeDesignator()) 1443 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1444 1445 if (E->isTransparent()) 1446 return Visit(E->getInit(0)); 1447 1448 AggValueSlot Dest = EnsureSlot(E->getType()); 1449 1450 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1451 1452 // Handle initialization of an array. 1453 if (E->getType()->isArrayType()) { 1454 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1455 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1456 return; 1457 } 1458 1459 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1460 1461 // Do struct initialization; this code just sets each individual member 1462 // to the approprate value. This makes bitfield support automatic; 1463 // the disadvantage is that the generated code is more difficult for 1464 // the optimizer, especially with bitfields. 1465 unsigned NumInitElements = E->getNumInits(); 1466 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1467 1468 // We'll need to enter cleanup scopes in case any of the element 1469 // initializers throws an exception. 1470 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1471 llvm::Instruction *cleanupDominator = nullptr; 1472 1473 unsigned curInitIndex = 0; 1474 1475 // Emit initialization of base classes. 1476 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1477 assert(E->getNumInits() >= CXXRD->getNumBases() && 1478 "missing initializer for base class"); 1479 for (auto &Base : CXXRD->bases()) { 1480 assert(!Base.isVirtual() && "should not see vbases here"); 1481 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1482 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1483 Dest.getAddress(), CXXRD, BaseRD, 1484 /*isBaseVirtual*/ false); 1485 AggValueSlot AggSlot = AggValueSlot::forAddr( 1486 V, Qualifiers(), 1487 AggValueSlot::IsDestructed, 1488 AggValueSlot::DoesNotNeedGCBarriers, 1489 AggValueSlot::IsNotAliased, 1490 CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1491 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1492 1493 if (QualType::DestructionKind dtorKind = 1494 Base.getType().isDestructedType()) { 1495 CGF.pushDestroy(dtorKind, V, Base.getType()); 1496 cleanups.push_back(CGF.EHStack.stable_begin()); 1497 } 1498 } 1499 } 1500 1501 // Prepare a 'this' for CXXDefaultInitExprs. 1502 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1503 1504 if (record->isUnion()) { 1505 // Only initialize one field of a union. The field itself is 1506 // specified by the initializer list. 1507 if (!E->getInitializedFieldInUnion()) { 1508 // Empty union; we have nothing to do. 1509 1510 #ifndef NDEBUG 1511 // Make sure that it's really an empty and not a failure of 1512 // semantic analysis. 1513 for (const auto *Field : record->fields()) 1514 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1515 #endif 1516 return; 1517 } 1518 1519 // FIXME: volatility 1520 FieldDecl *Field = E->getInitializedFieldInUnion(); 1521 1522 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1523 if (NumInitElements) { 1524 // Store the initializer into the field 1525 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1526 } else { 1527 // Default-initialize to null. 1528 EmitNullInitializationToLValue(FieldLoc); 1529 } 1530 1531 return; 1532 } 1533 1534 // Here we iterate over the fields; this makes it simpler to both 1535 // default-initialize fields and skip over unnamed fields. 1536 for (const auto *field : record->fields()) { 1537 // We're done once we hit the flexible array member. 1538 if (field->getType()->isIncompleteArrayType()) 1539 break; 1540 1541 // Always skip anonymous bitfields. 1542 if (field->isUnnamedBitfield()) 1543 continue; 1544 1545 // We're done if we reach the end of the explicit initializers, we 1546 // have a zeroed object, and the rest of the fields are 1547 // zero-initializable. 1548 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1549 CGF.getTypes().isZeroInitializable(E->getType())) 1550 break; 1551 1552 1553 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1554 // We never generate write-barries for initialized fields. 1555 LV.setNonGC(true); 1556 1557 if (curInitIndex < NumInitElements) { 1558 // Store the initializer into the field. 1559 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1560 } else { 1561 // We're out of initializers; default-initialize to null 1562 EmitNullInitializationToLValue(LV); 1563 } 1564 1565 // Push a destructor if necessary. 1566 // FIXME: if we have an array of structures, all explicitly 1567 // initialized, we can end up pushing a linear number of cleanups. 1568 bool pushedCleanup = false; 1569 if (QualType::DestructionKind dtorKind 1570 = field->getType().isDestructedType()) { 1571 assert(LV.isSimple()); 1572 if (CGF.needsEHCleanup(dtorKind)) { 1573 if (!cleanupDominator) 1574 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1575 CGF.Int8Ty, 1576 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1577 CharUnits::One()); // placeholder 1578 1579 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1580 CGF.getDestroyer(dtorKind), false); 1581 cleanups.push_back(CGF.EHStack.stable_begin()); 1582 pushedCleanup = true; 1583 } 1584 } 1585 1586 // If the GEP didn't get used because of a dead zero init or something 1587 // else, clean it up for -O0 builds and general tidiness. 1588 if (!pushedCleanup && LV.isSimple()) 1589 if (llvm::GetElementPtrInst *GEP = 1590 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1591 if (GEP->use_empty()) 1592 GEP->eraseFromParent(); 1593 } 1594 1595 // Deactivate all the partial cleanups in reverse order, which 1596 // generally means popping them. 1597 for (unsigned i = cleanups.size(); i != 0; --i) 1598 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1599 1600 // Destroy the placeholder if we made one. 1601 if (cleanupDominator) 1602 cleanupDominator->eraseFromParent(); 1603 } 1604 1605 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1606 llvm::Value *outerBegin) { 1607 // Emit the common subexpression. 1608 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1609 1610 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1611 uint64_t numElements = E->getArraySize().getZExtValue(); 1612 1613 if (!numElements) 1614 return; 1615 1616 // destPtr is an array*. Construct an elementType* by drilling down a level. 1617 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1618 llvm::Value *indices[] = {zero, zero}; 1619 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1620 "arrayinit.begin"); 1621 1622 // Prepare to special-case multidimensional array initialization: we avoid 1623 // emitting multiple destructor loops in that case. 1624 if (!outerBegin) 1625 outerBegin = begin; 1626 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1627 1628 QualType elementType = 1629 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1630 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1631 CharUnits elementAlign = 1632 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1633 1634 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1635 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1636 1637 // Jump into the body. 1638 CGF.EmitBlock(bodyBB); 1639 llvm::PHINode *index = 1640 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1641 index->addIncoming(zero, entryBB); 1642 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1643 1644 // Prepare for a cleanup. 1645 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1646 EHScopeStack::stable_iterator cleanup; 1647 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1648 if (outerBegin->getType() != element->getType()) 1649 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1650 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1651 elementAlign, 1652 CGF.getDestroyer(dtorKind)); 1653 cleanup = CGF.EHStack.stable_begin(); 1654 } else { 1655 dtorKind = QualType::DK_none; 1656 } 1657 1658 // Emit the actual filler expression. 1659 { 1660 // Temporaries created in an array initialization loop are destroyed 1661 // at the end of each iteration. 1662 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1663 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1664 LValue elementLV = 1665 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1666 1667 if (InnerLoop) { 1668 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1669 auto elementSlot = AggValueSlot::forLValue( 1670 elementLV, AggValueSlot::IsDestructed, 1671 AggValueSlot::DoesNotNeedGCBarriers, 1672 AggValueSlot::IsNotAliased, 1673 AggValueSlot::DoesNotOverlap); 1674 AggExprEmitter(CGF, elementSlot, false) 1675 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1676 } else 1677 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1678 } 1679 1680 // Move on to the next element. 1681 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1682 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1683 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1684 1685 // Leave the loop if we're done. 1686 llvm::Value *done = Builder.CreateICmpEQ( 1687 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1688 "arrayinit.done"); 1689 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1690 Builder.CreateCondBr(done, endBB, bodyBB); 1691 1692 CGF.EmitBlock(endBB); 1693 1694 // Leave the partial-array cleanup if we entered one. 1695 if (dtorKind) 1696 CGF.DeactivateCleanupBlock(cleanup, index); 1697 } 1698 1699 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1700 AggValueSlot Dest = EnsureSlot(E->getType()); 1701 1702 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1703 EmitInitializationToLValue(E->getBase(), DestLV); 1704 VisitInitListExpr(E->getUpdater()); 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Entry Points into this File 1709 //===----------------------------------------------------------------------===// 1710 1711 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1712 /// non-zero bytes that will be stored when outputting the initializer for the 1713 /// specified initializer expression. 1714 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1715 E = E->IgnoreParens(); 1716 1717 // 0 and 0.0 won't require any non-zero stores! 1718 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1719 1720 // If this is an initlist expr, sum up the size of sizes of the (present) 1721 // elements. If this is something weird, assume the whole thing is non-zero. 1722 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1723 while (ILE && ILE->isTransparent()) 1724 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1725 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1726 return CGF.getContext().getTypeSizeInChars(E->getType()); 1727 1728 // InitListExprs for structs have to be handled carefully. If there are 1729 // reference members, we need to consider the size of the reference, not the 1730 // referencee. InitListExprs for unions and arrays can't have references. 1731 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1732 if (!RT->isUnionType()) { 1733 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1734 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1735 1736 unsigned ILEElement = 0; 1737 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1738 while (ILEElement != CXXRD->getNumBases()) 1739 NumNonZeroBytes += 1740 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1741 for (const auto *Field : SD->fields()) { 1742 // We're done once we hit the flexible array member or run out of 1743 // InitListExpr elements. 1744 if (Field->getType()->isIncompleteArrayType() || 1745 ILEElement == ILE->getNumInits()) 1746 break; 1747 if (Field->isUnnamedBitfield()) 1748 continue; 1749 1750 const Expr *E = ILE->getInit(ILEElement++); 1751 1752 // Reference values are always non-null and have the width of a pointer. 1753 if (Field->getType()->isReferenceType()) 1754 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1755 CGF.getTarget().getPointerWidth(0)); 1756 else 1757 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1758 } 1759 1760 return NumNonZeroBytes; 1761 } 1762 } 1763 1764 1765 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1766 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1767 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1768 return NumNonZeroBytes; 1769 } 1770 1771 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1772 /// zeros in it, emit a memset and avoid storing the individual zeros. 1773 /// 1774 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1775 CodeGenFunction &CGF) { 1776 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1777 // volatile stores. 1778 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1779 return; 1780 1781 // C++ objects with a user-declared constructor don't need zero'ing. 1782 if (CGF.getLangOpts().CPlusPlus) 1783 if (const RecordType *RT = CGF.getContext() 1784 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1785 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1786 if (RD->hasUserDeclaredConstructor()) 1787 return; 1788 } 1789 1790 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1791 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1792 if (Size <= CharUnits::fromQuantity(16)) 1793 return; 1794 1795 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1796 // we prefer to emit memset + individual stores for the rest. 1797 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1798 if (NumNonZeroBytes*4 > Size) 1799 return; 1800 1801 // Okay, it seems like a good idea to use an initial memset, emit the call. 1802 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1803 1804 Address Loc = Slot.getAddress(); 1805 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1806 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1807 1808 // Tell the AggExprEmitter that the slot is known zero. 1809 Slot.setZeroed(); 1810 } 1811 1812 1813 1814 1815 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1816 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1817 /// the value of the aggregate expression is not needed. If VolatileDest is 1818 /// true, DestPtr cannot be 0. 1819 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1820 assert(E && hasAggregateEvaluationKind(E->getType()) && 1821 "Invalid aggregate expression to emit"); 1822 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1823 "slot has bits but no address"); 1824 1825 // Optimize the slot if possible. 1826 CheckAggExprForMemSetUse(Slot, E, *this); 1827 1828 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1829 } 1830 1831 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1832 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1833 Address Temp = CreateMemTemp(E->getType()); 1834 LValue LV = MakeAddrLValue(Temp, E->getType()); 1835 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1836 AggValueSlot::DoesNotNeedGCBarriers, 1837 AggValueSlot::IsNotAliased, 1838 AggValueSlot::DoesNotOverlap)); 1839 return LV; 1840 } 1841 1842 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit( 1843 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1844 // Virtual bases are initialized first, in address order, so there's never 1845 // any overlap during their initialization. 1846 // 1847 // FIXME: Under P0840, this is no longer true: the tail padding of a vbase 1848 // of a field could be reused by a vbase of a containing class. 1849 if (IsVirtual) 1850 return AggValueSlot::DoesNotOverlap; 1851 1852 // If the base class is laid out entirely within the nvsize of the derived 1853 // class, its tail padding cannot yet be initialized, so we can issue 1854 // stores at the full width of the base class. 1855 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1856 if (Layout.getBaseClassOffset(BaseRD) + 1857 getContext().getASTRecordLayout(BaseRD).getSize() <= 1858 Layout.getNonVirtualSize()) 1859 return AggValueSlot::DoesNotOverlap; 1860 1861 // The tail padding may contain values we need to preserve. 1862 return AggValueSlot::MayOverlap; 1863 } 1864 1865 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1866 AggValueSlot::Overlap_t MayOverlap, 1867 bool isVolatile) { 1868 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1869 1870 Address DestPtr = Dest.getAddress(); 1871 Address SrcPtr = Src.getAddress(); 1872 1873 if (getLangOpts().CPlusPlus) { 1874 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1875 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1876 assert((Record->hasTrivialCopyConstructor() || 1877 Record->hasTrivialCopyAssignment() || 1878 Record->hasTrivialMoveConstructor() || 1879 Record->hasTrivialMoveAssignment() || 1880 Record->isUnion()) && 1881 "Trying to aggregate-copy a type without a trivial copy/move " 1882 "constructor or assignment operator"); 1883 // Ignore empty classes in C++. 1884 if (Record->isEmpty()) 1885 return; 1886 } 1887 } 1888 1889 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1890 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1891 // read from another object that overlaps in anyway the storage of the first 1892 // object, then the overlap shall be exact and the two objects shall have 1893 // qualified or unqualified versions of a compatible type." 1894 // 1895 // memcpy is not defined if the source and destination pointers are exactly 1896 // equal, but other compilers do this optimization, and almost every memcpy 1897 // implementation handles this case safely. If there is a libc that does not 1898 // safely handle this, we can add a target hook. 1899 1900 // Get data size info for this aggregate. Don't copy the tail padding if this 1901 // might be a potentially-overlapping subobject, since the tail padding might 1902 // be occupied by a different object. Otherwise, copying it is fine. 1903 std::pair<CharUnits, CharUnits> TypeInfo; 1904 if (MayOverlap) 1905 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1906 else 1907 TypeInfo = getContext().getTypeInfoInChars(Ty); 1908 1909 llvm::Value *SizeVal = nullptr; 1910 if (TypeInfo.first.isZero()) { 1911 // But note that getTypeInfo returns 0 for a VLA. 1912 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1913 getContext().getAsArrayType(Ty))) { 1914 QualType BaseEltTy; 1915 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1916 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1917 assert(!TypeInfo.first.isZero()); 1918 SizeVal = Builder.CreateNUWMul( 1919 SizeVal, 1920 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1921 } 1922 } 1923 if (!SizeVal) { 1924 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1925 } 1926 1927 // FIXME: If we have a volatile struct, the optimizer can remove what might 1928 // appear to be `extra' memory ops: 1929 // 1930 // volatile struct { int i; } a, b; 1931 // 1932 // int main() { 1933 // a = b; 1934 // a = b; 1935 // } 1936 // 1937 // we need to use a different call here. We use isVolatile to indicate when 1938 // either the source or the destination is volatile. 1939 1940 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1941 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1942 1943 // Don't do any of the memmove_collectable tests if GC isn't set. 1944 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1945 // fall through 1946 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1947 RecordDecl *Record = RecordTy->getDecl(); 1948 if (Record->hasObjectMember()) { 1949 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1950 SizeVal); 1951 return; 1952 } 1953 } else if (Ty->isArrayType()) { 1954 QualType BaseType = getContext().getBaseElementType(Ty); 1955 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1956 if (RecordTy->getDecl()->hasObjectMember()) { 1957 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1958 SizeVal); 1959 return; 1960 } 1961 } 1962 } 1963 1964 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1965 1966 // Determine the metadata to describe the position of any padding in this 1967 // memcpy, as well as the TBAA tags for the members of the struct, in case 1968 // the optimizer wishes to expand it in to scalar memory operations. 1969 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1970 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1971 1972 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1973 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1974 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1975 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1976 } 1977 } 1978