1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/AST.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Function.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Intrinsics.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Aggregate Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 31 CodeGenFunction &CGF; 32 llvm::IRBuilder &Builder; 33 llvm::Value *DestPtr; 34 bool VolatileDest; 35 public: 36 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 37 : CGF(cgf), Builder(CGF.Builder), 38 DestPtr(destPtr), VolatileDest(volatileDest) { 39 } 40 41 //===--------------------------------------------------------------------===// 42 // Utilities 43 //===--------------------------------------------------------------------===// 44 45 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 46 /// represents a value lvalue, this method emits the address of the lvalue, 47 /// then loads the result into DestPtr. 48 void EmitAggLoadOfLValue(const Expr *E); 49 50 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 51 QualType EltTy); 52 53 void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty); 54 55 void EmitNonConstInit(InitListExpr *E); 56 57 //===--------------------------------------------------------------------===// 58 // Visitor Methods 59 //===--------------------------------------------------------------------===// 60 61 void VisitStmt(Stmt *S) { 62 CGF.WarnUnsupported(S, "aggregate expression"); 63 } 64 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 72 { EmitAggLoadOfLValue(E); } 73 74 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 78 // Operators. 79 // case Expr::UnaryOperatorClass: 80 // case Expr::CastExprClass: 81 void VisitImplicitCastExpr(ImplicitCastExpr *E); 82 void VisitCallExpr(const CallExpr *E); 83 void VisitStmtExpr(const StmtExpr *E); 84 void VisitBinaryOperator(const BinaryOperator *BO); 85 void VisitBinAssign(const BinaryOperator *E); 86 void VisitOverloadExpr(const OverloadExpr *E); 87 void VisitBinComma(const BinaryOperator *E); 88 89 90 void VisitConditionalOperator(const ConditionalOperator *CO); 91 void VisitInitListExpr(InitListExpr *E); 92 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 93 Visit(DAE->getExpr()); 94 } 95 void VisitVAArgExpr(VAArgExpr *E); 96 97 void EmitInitializationToLValue(Expr *E, LValue Address); 98 void EmitNullInitializationToLValue(LValue Address, QualType T); 99 // case Expr::ChooseExprClass: 100 101 }; 102 } // end anonymous namespace. 103 104 //===----------------------------------------------------------------------===// 105 // Utilities 106 //===----------------------------------------------------------------------===// 107 108 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 109 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 110 111 // Aggregate assignment turns into llvm.memset. 112 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 113 if (DestPtr->getType() != BP) 114 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 115 116 // Get size and alignment info for this aggregate. 117 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 118 119 // FIXME: Handle variable sized types. 120 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 121 122 llvm::Value *MemSetOps[4] = { 123 DestPtr, 124 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 125 // TypeInfo.first describes size in bits. 126 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 127 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 128 }; 129 130 Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4); 131 } 132 133 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr, 134 llvm::Value *SrcPtr, QualType Ty) { 135 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 136 137 // Aggregate assignment turns into llvm.memmove. 138 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 139 if (DestPtr->getType() != BP) 140 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 141 if (SrcPtr->getType() != BP) 142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 143 144 // Get size and alignment info for this aggregate. 145 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 146 147 // FIXME: Handle variable sized types. 148 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 149 150 llvm::Value *MemMoveOps[4] = { 151 DestPtr, SrcPtr, 152 // TypeInfo.first describes size in bits. 153 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 154 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 155 }; 156 157 Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4); 158 } 159 160 161 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 162 /// represents a value lvalue, this method emits the address of the lvalue, 163 /// then loads the result into DestPtr. 164 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 165 LValue LV = CGF.EmitLValue(E); 166 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 167 llvm::Value *SrcPtr = LV.getAddress(); 168 169 // If the result is ignored, don't copy from the value. 170 if (DestPtr == 0) 171 // FIXME: If the source is volatile, we must read from it. 172 return; 173 174 EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 175 } 176 177 //===----------------------------------------------------------------------===// 178 // Visitor Methods 179 //===----------------------------------------------------------------------===// 180 181 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) 182 { 183 QualType STy = E->getSubExpr()->getType().getCanonicalType(); 184 QualType Ty = E->getType().getCanonicalType(); 185 186 assert(CGF.getContext().typesAreCompatible( 187 STy.getUnqualifiedType(), Ty.getUnqualifiedType()) 188 && "Implicit cast types must be compatible"); 189 190 Visit(E->getSubExpr()); 191 } 192 193 void AggExprEmitter::VisitCallExpr(const CallExpr *E) 194 { 195 RValue RV = CGF.EmitCallExpr(E); 196 assert(RV.isAggregate() && "Return value must be aggregate value!"); 197 198 // If the result is ignored, don't copy from the value. 199 if (DestPtr == 0) 200 // FIXME: If the source is volatile, we must read from it. 201 return; 202 203 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 204 } 205 206 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) 207 { 208 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 209 E->arg_end(CGF.getContext())); 210 211 assert(RV.isAggregate() && "Return value must be aggregate value!"); 212 213 // If the result is ignored, don't copy from the value. 214 if (DestPtr == 0) 215 // FIXME: If the source is volatile, we must read from it. 216 return; 217 218 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 219 } 220 221 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) 222 { 223 CGF.EmitAnyExpr(E->getLHS()); 224 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 225 } 226 227 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 228 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 229 } 230 231 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 232 CGF.WarnUnsupported(E, "aggregate binary expression"); 233 } 234 235 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 236 // For an assignment to work, the value on the right has 237 // to be compatible with the value on the left. 238 assert(CGF.getContext().typesAreCompatible( 239 E->getLHS()->getType().getUnqualifiedType(), 240 E->getRHS()->getType().getUnqualifiedType()) 241 && "Invalid assignment"); 242 LValue LHS = CGF.EmitLValue(E->getLHS()); 243 244 // Codegen the RHS so that it stores directly into the LHS. 245 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 246 247 if (DestPtr == 0) 248 return; 249 250 // If the result of the assignment is used, copy the RHS there also. 251 EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 252 } 253 254 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 255 llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?"); 256 llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:"); 257 llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont"); 258 259 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 260 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 261 262 CGF.EmitBlock(LHSBlock); 263 264 // Handle the GNU extension for missing LHS. 265 assert(E->getLHS() && "Must have LHS for aggregate value"); 266 267 Visit(E->getLHS()); 268 Builder.CreateBr(ContBlock); 269 LHSBlock = Builder.GetInsertBlock(); 270 271 CGF.EmitBlock(RHSBlock); 272 273 Visit(E->getRHS()); 274 Builder.CreateBr(ContBlock); 275 RHSBlock = Builder.GetInsertBlock(); 276 277 CGF.EmitBlock(ContBlock); 278 } 279 280 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 281 llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); 282 llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 283 if (DestPtr) 284 // FIXME: volatility 285 Builder.CreateStore(V, DestPtr); 286 } 287 288 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 289 290 const llvm::PointerType *APType = 291 cast<llvm::PointerType>(DestPtr->getType()); 292 const llvm::Type *DestType = APType->getElementType(); 293 294 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 295 unsigned NumInitElements = E->getNumInits(); 296 297 unsigned i; 298 for (i = 0; i != NumInitElements; ++i) { 299 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 300 Expr *Init = E->getInit(i); 301 if (isa<InitListExpr>(Init)) 302 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 303 else 304 // FIXME: volatility 305 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 306 } 307 308 // Emit remaining default initializers 309 unsigned NumArrayElements = AType->getNumElements(); 310 QualType QType = E->getInit(0)->getType(); 311 const llvm::Type *EType = AType->getElementType(); 312 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 313 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 314 if (EType->isSingleValueType()) 315 // FIXME: volatility 316 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 317 else 318 EmitAggregateClear(NextVal, QType); 319 } 320 } else 321 assert(false && "Invalid initializer"); 322 } 323 324 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 325 // FIXME: Are initializers affected by volatile? 326 if (E->getType()->isComplexType()) { 327 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 328 } else if (CGF.hasAggregateLLVMType(E->getType())) { 329 CGF.EmitAnyExpr(E, LV.getAddress(), false); 330 } else { 331 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 332 } 333 } 334 335 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 336 if (!CGF.hasAggregateLLVMType(T)) { 337 // For non-aggregates, we can store zero 338 const llvm::Type *T = 339 cast<llvm::PointerType>(LV.getAddress()->getType())->getElementType(); 340 // FIXME: volatility 341 Builder.CreateStore(llvm::Constant::getNullValue(T), LV.getAddress()); 342 } else { 343 // Otherwise, just memset the whole thing to zero. This is legal 344 // because in LLVM, all default initializers are guaranteed to have a 345 // bit pattern of all zeros. 346 // There's a potential optimization opportunity in combining 347 // memsets; that would be easy for arrays, but relatively 348 // difficult for structures with the current code. 349 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64); 350 uint64_t Size = CGF.getContext().getTypeSize(T); 351 352 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 353 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 354 Builder.CreateCall4(MemSet, DestPtr, 355 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 356 llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8), 357 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 358 } 359 } 360 361 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 362 if (E->isConstantExpr(CGF.getContext(), 0)) { 363 // FIXME: call into const expr emitter so that we can emit 364 // a memcpy instead of storing the individual members. 365 // This is purely for perf; both codepaths lead to equivalent 366 // (although not necessarily identical) code. 367 // It's worth noting that LLVM keeps on getting smarter, though, 368 // so it might not be worth bothering. 369 } 370 371 // Handle initialization of an array. 372 if (E->getType()->isArrayType()) { 373 const llvm::PointerType *APType = 374 cast<llvm::PointerType>(DestPtr->getType()); 375 const llvm::ArrayType *AType = 376 cast<llvm::ArrayType>(APType->getElementType()); 377 378 uint64_t NumInitElements = E->getNumInits(); 379 380 if (E->getNumInits() > 0 && 381 E->getType().getCanonicalType().getUnqualifiedType() == 382 E->getInit(0)->getType().getCanonicalType().getUnqualifiedType()) { 383 EmitAggLoadOfLValue(E->getInit(0)); 384 return; 385 } 386 387 uint64_t NumArrayElements = AType->getNumElements(); 388 QualType ElementType = E->getType()->getAsArrayType()->getElementType(); 389 390 unsigned CVRqualifier = E->getType().getCanonicalType()->getAsArrayType() 391 ->getElementType().getCVRQualifiers(); 392 393 for (uint64_t i = 0; i != NumArrayElements; ++i) { 394 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 395 if (i < NumInitElements) 396 EmitInitializationToLValue(E->getInit(i), 397 LValue::MakeAddr(NextVal, CVRqualifier)); 398 else 399 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 400 ElementType); 401 } 402 return; 403 } 404 405 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 406 407 // Do struct initialization; this code just sets each individual member 408 // to the approprate value. This makes bitfield support automatic; 409 // the disadvantage is that the generated code is more difficult for 410 // the optimizer, especially with bitfields. 411 unsigned NumInitElements = E->getNumInits(); 412 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 413 unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember(); 414 unsigned CurInitVal = 0; 415 bool isUnion = E->getType()->isUnionType(); 416 417 // Here we iterate over the fields; this makes it simpler to both 418 // default-initialize fields and skip over unnamed fields. 419 for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) { 420 if (CurInitVal >= NumInitElements) { 421 // No more initializers; we're done. 422 break; 423 } 424 425 FieldDecl *CurField = SD->getMember(CurFieldNo); 426 if (CurField->getIdentifier() == 0) { 427 // Initializers can't initialize unnamed fields, e.g. "int : 20;" 428 continue; 429 } 430 // FIXME: volatility 431 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0); 432 if (CurInitVal < NumInitElements) { 433 // Store the initializer into the field 434 // This will probably have to get a bit smarter when we support 435 // designators in initializers 436 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 437 } else { 438 // We're out of initalizers; default-initialize to null 439 EmitNullInitializationToLValue(FieldLoc, CurField->getType()); 440 } 441 442 // Unions only initialize one field. 443 // (things can get weird with designators, but they aren't 444 // supported yet.) 445 if (E->getType()->isUnionType()) 446 break; 447 } 448 } 449 450 //===----------------------------------------------------------------------===// 451 // Entry Points into this File 452 //===----------------------------------------------------------------------===// 453 454 /// EmitAggExpr - Emit the computation of the specified expression of 455 /// aggregate type. The result is computed into DestPtr. Note that if 456 /// DestPtr is null, the value of the aggregate expression is not needed. 457 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 458 bool VolatileDest) { 459 assert(E && hasAggregateLLVMType(E->getType()) && 460 "Invalid aggregate expression to emit"); 461 462 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 463 } 464