1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/AST.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Intrinsics.h"
22 using namespace clang;
23 using namespace CodeGen;
24 
25 //===----------------------------------------------------------------------===//
26 //                        Aggregate Expression Emitter
27 //===----------------------------------------------------------------------===//
28 
29 namespace  {
30 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
31   CodeGenFunction &CGF;
32   llvm::IRBuilder &Builder;
33   llvm::Value *DestPtr;
34   bool VolatileDest;
35 public:
36   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
37     : CGF(cgf), Builder(CGF.Builder),
38       DestPtr(destPtr), VolatileDest(volatileDest) {
39   }
40 
41   //===--------------------------------------------------------------------===//
42   //                               Utilities
43   //===--------------------------------------------------------------------===//
44 
45   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
46   /// represents a value lvalue, this method emits the address of the lvalue,
47   /// then loads the result into DestPtr.
48   void EmitAggLoadOfLValue(const Expr *E);
49 
50   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
51                          QualType EltTy);
52 
53   void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty);
54 
55   void EmitNonConstInit(InitListExpr *E);
56 
57   //===--------------------------------------------------------------------===//
58   //                            Visitor Methods
59   //===--------------------------------------------------------------------===//
60 
61   void VisitStmt(Stmt *S) {
62     CGF.WarnUnsupported(S, "aggregate expression");
63   }
64   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
65 
66   // l-values.
67   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
68   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
69   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
70   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
71   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
72       { EmitAggLoadOfLValue(E); }
73 
74   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
75     EmitAggLoadOfLValue(E);
76   }
77 
78   // Operators.
79   //  case Expr::UnaryOperatorClass:
80   //  case Expr::CastExprClass:
81   void VisitImplicitCastExpr(ImplicitCastExpr *E);
82   void VisitCallExpr(const CallExpr *E);
83   void VisitStmtExpr(const StmtExpr *E);
84   void VisitBinaryOperator(const BinaryOperator *BO);
85   void VisitBinAssign(const BinaryOperator *E);
86   void VisitOverloadExpr(const OverloadExpr *E);
87   void VisitBinComma(const BinaryOperator *E);
88 
89 
90   void VisitConditionalOperator(const ConditionalOperator *CO);
91   void VisitInitListExpr(InitListExpr *E);
92   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
93     Visit(DAE->getExpr());
94   }
95   void VisitVAArgExpr(VAArgExpr *E);
96 
97   void EmitInitializationToLValue(Expr *E, LValue Address);
98   void EmitNullInitializationToLValue(LValue Address, QualType T);
99   //  case Expr::ChooseExprClass:
100 
101 };
102 }  // end anonymous namespace.
103 
104 //===----------------------------------------------------------------------===//
105 //                                Utilities
106 //===----------------------------------------------------------------------===//
107 
108 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
109   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
110 
111   // Aggregate assignment turns into llvm.memset.
112   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
113   if (DestPtr->getType() != BP)
114     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
115 
116   // Get size and alignment info for this aggregate.
117   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
118 
119   // FIXME: Handle variable sized types.
120   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
121 
122   llvm::Value *MemSetOps[4] = {
123     DestPtr,
124     llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty),
125     // TypeInfo.first describes size in bits.
126     llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
127     llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)
128   };
129 
130   Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4);
131 }
132 
133 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr,
134                                        llvm::Value *SrcPtr, QualType Ty) {
135   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
136 
137   // Aggregate assignment turns into llvm.memmove.
138   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
139   if (DestPtr->getType() != BP)
140     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
141   if (SrcPtr->getType() != BP)
142     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
143 
144   // Get size and alignment info for this aggregate.
145   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
146 
147   // FIXME: Handle variable sized types.
148   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
149 
150   llvm::Value *MemMoveOps[4] = {
151     DestPtr, SrcPtr,
152     // TypeInfo.first describes size in bits.
153     llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
154     llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8)
155   };
156 
157   Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4);
158 }
159 
160 
161 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
162 /// represents a value lvalue, this method emits the address of the lvalue,
163 /// then loads the result into DestPtr.
164 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
165   LValue LV = CGF.EmitLValue(E);
166   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
167   llvm::Value *SrcPtr = LV.getAddress();
168 
169   // If the result is ignored, don't copy from the value.
170   if (DestPtr == 0)
171     // FIXME: If the source is volatile, we must read from it.
172     return;
173 
174   EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
175 }
176 
177 //===----------------------------------------------------------------------===//
178 //                            Visitor Methods
179 //===----------------------------------------------------------------------===//
180 
181 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E)
182 {
183   QualType STy = E->getSubExpr()->getType().getCanonicalType();
184   QualType Ty = E->getType().getCanonicalType();
185 
186   assert(CGF.getContext().typesAreCompatible(
187              STy.getUnqualifiedType(), Ty.getUnqualifiedType())
188          && "Implicit cast types must be compatible");
189 
190   Visit(E->getSubExpr());
191 }
192 
193 void AggExprEmitter::VisitCallExpr(const CallExpr *E)
194 {
195   RValue RV = CGF.EmitCallExpr(E);
196   assert(RV.isAggregate() && "Return value must be aggregate value!");
197 
198   // If the result is ignored, don't copy from the value.
199   if (DestPtr == 0)
200     // FIXME: If the source is volatile, we must read from it.
201     return;
202 
203   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
204 }
205 
206 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E)
207 {
208   RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
209                                E->arg_end(CGF.getContext()));
210 
211   assert(RV.isAggregate() && "Return value must be aggregate value!");
212 
213   // If the result is ignored, don't copy from the value.
214   if (DestPtr == 0)
215     // FIXME: If the source is volatile, we must read from it.
216     return;
217 
218   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
219 }
220 
221 void AggExprEmitter::VisitBinComma(const BinaryOperator *E)
222 {
223   CGF.EmitAnyExpr(E->getLHS());
224   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
225 }
226 
227 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
228   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
229 }
230 
231 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
232   CGF.WarnUnsupported(E, "aggregate binary expression");
233 }
234 
235 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
236   // For an assignment to work, the value on the right has
237   // to be compatible with the value on the left.
238   assert(CGF.getContext().typesAreCompatible(
239              E->getLHS()->getType().getUnqualifiedType(),
240              E->getRHS()->getType().getUnqualifiedType())
241          && "Invalid assignment");
242   LValue LHS = CGF.EmitLValue(E->getLHS());
243 
244   // Codegen the RHS so that it stores directly into the LHS.
245   CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
246 
247   if (DestPtr == 0)
248     return;
249 
250   // If the result of the assignment is used, copy the RHS there also.
251   EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
252 }
253 
254 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
255   llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
256   llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
257   llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
258 
259   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
260   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
261 
262   CGF.EmitBlock(LHSBlock);
263 
264   // Handle the GNU extension for missing LHS.
265   assert(E->getLHS() && "Must have LHS for aggregate value");
266 
267   Visit(E->getLHS());
268   Builder.CreateBr(ContBlock);
269   LHSBlock = Builder.GetInsertBlock();
270 
271   CGF.EmitBlock(RHSBlock);
272 
273   Visit(E->getRHS());
274   Builder.CreateBr(ContBlock);
275   RHSBlock = Builder.GetInsertBlock();
276 
277   CGF.EmitBlock(ContBlock);
278 }
279 
280 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
281   llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress();
282   llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
283   if (DestPtr)
284     // FIXME: volatility
285     Builder.CreateStore(V, DestPtr);
286 }
287 
288 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
289 
290   const llvm::PointerType *APType =
291     cast<llvm::PointerType>(DestPtr->getType());
292   const llvm::Type *DestType = APType->getElementType();
293 
294   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
295     unsigned NumInitElements = E->getNumInits();
296 
297     unsigned i;
298     for (i = 0; i != NumInitElements; ++i) {
299       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
300       Expr *Init = E->getInit(i);
301       if (isa<InitListExpr>(Init))
302         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
303       else
304         // FIXME: volatility
305         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
306     }
307 
308     // Emit remaining default initializers
309     unsigned NumArrayElements = AType->getNumElements();
310     QualType QType = E->getInit(0)->getType();
311     const llvm::Type *EType = AType->getElementType();
312     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
313       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
314       if (EType->isSingleValueType())
315         // FIXME: volatility
316         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
317       else
318         EmitAggregateClear(NextVal, QType);
319     }
320   } else
321     assert(false && "Invalid initializer");
322 }
323 
324 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
325   // FIXME: Are initializers affected by volatile?
326   if (E->getType()->isComplexType()) {
327     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
328   } else if (CGF.hasAggregateLLVMType(E->getType())) {
329     CGF.EmitAnyExpr(E, LV.getAddress(), false);
330   } else {
331     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
332   }
333 }
334 
335 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
336   if (!CGF.hasAggregateLLVMType(T)) {
337     // For non-aggregates, we can store zero
338     const llvm::Type *T =
339        cast<llvm::PointerType>(LV.getAddress()->getType())->getElementType();
340     // FIXME: volatility
341     Builder.CreateStore(llvm::Constant::getNullValue(T), LV.getAddress());
342   } else {
343     // Otherwise, just memset the whole thing to zero.  This is legal
344     // because in LLVM, all default initializers are guaranteed to have a
345     // bit pattern of all zeros.
346     // There's a potential optimization opportunity in combining
347     // memsets; that would be easy for arrays, but relatively
348     // difficult for structures with the current code.
349     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64);
350     uint64_t Size = CGF.getContext().getTypeSize(T);
351 
352     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
353     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
354     Builder.CreateCall4(MemSet, DestPtr,
355                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
356                         llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8),
357                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
358   }
359 }
360 
361 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
362   if (E->isConstantExpr(CGF.getContext(), 0)) {
363     // FIXME: call into const expr emitter so that we can emit
364     // a memcpy instead of storing the individual members.
365     // This is purely for perf; both codepaths lead to equivalent
366     // (although not necessarily identical) code.
367     // It's worth noting that LLVM keeps on getting smarter, though,
368     // so it might not be worth bothering.
369   }
370 
371   // Handle initialization of an array.
372   if (E->getType()->isArrayType()) {
373     const llvm::PointerType *APType =
374       cast<llvm::PointerType>(DestPtr->getType());
375     const llvm::ArrayType *AType =
376       cast<llvm::ArrayType>(APType->getElementType());
377 
378     uint64_t NumInitElements = E->getNumInits();
379 
380     if (E->getNumInits() > 0 &&
381         E->getType().getCanonicalType().getUnqualifiedType() ==
382           E->getInit(0)->getType().getCanonicalType().getUnqualifiedType()) {
383       EmitAggLoadOfLValue(E->getInit(0));
384       return;
385     }
386 
387     uint64_t NumArrayElements = AType->getNumElements();
388     QualType ElementType = E->getType()->getAsArrayType()->getElementType();
389 
390     unsigned CVRqualifier = E->getType().getCanonicalType()->getAsArrayType()
391                             ->getElementType().getCVRQualifiers();
392 
393     for (uint64_t i = 0; i != NumArrayElements; ++i) {
394       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
395       if (i < NumInitElements)
396         EmitInitializationToLValue(E->getInit(i),
397                                    LValue::MakeAddr(NextVal, CVRqualifier));
398       else
399         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
400                                        ElementType);
401     }
402     return;
403   }
404 
405   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
406 
407   // Do struct initialization; this code just sets each individual member
408   // to the approprate value.  This makes bitfield support automatic;
409   // the disadvantage is that the generated code is more difficult for
410   // the optimizer, especially with bitfields.
411   unsigned NumInitElements = E->getNumInits();
412   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
413   unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember();
414   unsigned CurInitVal = 0;
415   bool isUnion = E->getType()->isUnionType();
416 
417   // Here we iterate over the fields; this makes it simpler to both
418   // default-initialize fields and skip over unnamed fields.
419   for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) {
420     if (CurInitVal >= NumInitElements) {
421       // No more initializers; we're done.
422       break;
423     }
424 
425     FieldDecl *CurField = SD->getMember(CurFieldNo);
426     if (CurField->getIdentifier() == 0) {
427       // Initializers can't initialize unnamed fields, e.g. "int : 20;"
428       continue;
429     }
430     // FIXME: volatility
431     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0);
432     if (CurInitVal < NumInitElements) {
433       // Store the initializer into the field
434       // This will probably have to get a bit smarter when we support
435       // designators in initializers
436       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
437     } else {
438       // We're out of initalizers; default-initialize to null
439       EmitNullInitializationToLValue(FieldLoc, CurField->getType());
440     }
441 
442     // Unions only initialize one field.
443     // (things can get weird with designators, but they aren't
444     // supported yet.)
445     if (E->getType()->isUnionType())
446       break;
447   }
448 }
449 
450 //===----------------------------------------------------------------------===//
451 //                        Entry Points into this File
452 //===----------------------------------------------------------------------===//
453 
454 /// EmitAggExpr - Emit the computation of the specified expression of
455 /// aggregate type.  The result is computed into DestPtr.  Note that if
456 /// DestPtr is null, the value of the aggregate expression is not needed.
457 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
458                                   bool VolatileDest) {
459   assert(E && hasAggregateLLVMType(E->getType()) &&
460          "Invalid aggregate expression to emit");
461 
462   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
463 }
464