1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33 
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40 
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49 
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72 
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   void VisitConstantExpr(ConstantExpr *E) {
128     return Visit(E->getSubExpr());
129   }
130 
131   // l-values.
132   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143 
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152   void VisitBinCmp(const BinaryOperator *E);
153 
154   void VisitObjCMessageExpr(ObjCMessageExpr *E);
155   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156     EmitAggLoadOfLValue(E);
157   }
158 
159   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
160   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
161   void VisitChooseExpr(const ChooseExpr *CE);
162   void VisitInitListExpr(InitListExpr *E);
163   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
164                               llvm::Value *outerBegin = nullptr);
165   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
166   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
167   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
168     Visit(DAE->getExpr());
169   }
170   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
171     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
172     Visit(DIE->getExpr());
173   }
174   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
175   void VisitCXXConstructExpr(const CXXConstructExpr *E);
176   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
177   void VisitLambdaExpr(LambdaExpr *E);
178   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
179   void VisitExprWithCleanups(ExprWithCleanups *E);
180   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
181   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
182   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
183   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
184 
185   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
186     if (E->isGLValue()) {
187       LValue LV = CGF.EmitPseudoObjectLValue(E);
188       return EmitFinalDestCopy(E->getType(), LV);
189     }
190 
191     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
192   }
193 
194   void VisitVAArgExpr(VAArgExpr *E);
195 
196   void EmitInitializationToLValue(Expr *E, LValue Address);
197   void EmitNullInitializationToLValue(LValue Address);
198   //  case Expr::ChooseExprClass:
199   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
200   void VisitAtomicExpr(AtomicExpr *E) {
201     RValue Res = CGF.EmitAtomicExpr(E);
202     EmitFinalDestCopy(E->getType(), Res);
203   }
204 };
205 }  // end anonymous namespace.
206 
207 //===----------------------------------------------------------------------===//
208 //                                Utilities
209 //===----------------------------------------------------------------------===//
210 
211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
212 /// represents a value lvalue, this method emits the address of the lvalue,
213 /// then loads the result into DestPtr.
214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
215   LValue LV = CGF.EmitLValue(E);
216 
217   // If the type of the l-value is atomic, then do an atomic load.
218   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
219     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
220     return;
221   }
222 
223   EmitFinalDestCopy(E->getType(), LV);
224 }
225 
226 /// True if the given aggregate type requires special GC API calls.
227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
228   // Only record types have members that might require garbage collection.
229   const RecordType *RecordTy = T->getAs<RecordType>();
230   if (!RecordTy) return false;
231 
232   // Don't mess with non-trivial C++ types.
233   RecordDecl *Record = RecordTy->getDecl();
234   if (isa<CXXRecordDecl>(Record) &&
235       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
236        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
237     return false;
238 
239   // Check whether the type has an object member.
240   return Record->hasObjectMember();
241 }
242 
243 void AggExprEmitter::withReturnValueSlot(
244     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
245   QualType RetTy = E->getType();
246   bool RequiresDestruction =
247       Dest.isIgnored() &&
248       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
249 
250   // If it makes no observable difference, save a memcpy + temporary.
251   //
252   // We need to always provide our own temporary if destruction is required.
253   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
254   // its lifetime before we have the chance to emit a proper destructor call.
255   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
256                  (RequiresDestruction && !Dest.getAddress().isValid());
257 
258   Address RetAddr = Address::invalid();
259   Address RetAllocaAddr = Address::invalid();
260 
261   EHScopeStack::stable_iterator LifetimeEndBlock;
262   llvm::Value *LifetimeSizePtr = nullptr;
263   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
264   if (!UseTemp) {
265     RetAddr = Dest.getAddress();
266   } else {
267     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
268     uint64_t Size =
269         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
270     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
271     if (LifetimeSizePtr) {
272       LifetimeStartInst =
273           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
274       assert(LifetimeStartInst->getIntrinsicID() ==
275                  llvm::Intrinsic::lifetime_start &&
276              "Last insertion wasn't a lifetime.start?");
277 
278       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
279           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
280       LifetimeEndBlock = CGF.EHStack.stable_begin();
281     }
282   }
283 
284   RValue Src =
285       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
286 
287   if (RequiresDestruction)
288     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
289 
290   if (!UseTemp)
291     return;
292 
293   assert(Dest.getPointer() != Src.getAggregatePointer());
294   EmitFinalDestCopy(E->getType(), Src);
295 
296   if (!RequiresDestruction && LifetimeStartInst) {
297     // If there's no dtor to run, the copy was the last use of our temporary.
298     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
299     // eagerly.
300     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
301     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
302   }
303 }
304 
305 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
306 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
307   assert(src.isAggregate() && "value must be aggregate value!");
308   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
309   EmitFinalDestCopy(type, srcLV, EVK_RValue);
310 }
311 
312 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
313 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
314                                        ExprValueKind SrcValueKind) {
315   // If Dest is ignored, then we're evaluating an aggregate expression
316   // in a context that doesn't care about the result.  Note that loads
317   // from volatile l-values force the existence of a non-ignored
318   // destination.
319   if (Dest.isIgnored())
320     return;
321 
322   // Copy non-trivial C structs here.
323   LValue DstLV = CGF.MakeAddrLValue(
324       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
325 
326   if (SrcValueKind == EVK_RValue) {
327     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
328       if (Dest.isPotentiallyAliased())
329         CGF.callCStructMoveAssignmentOperator(DstLV, src);
330       else
331         CGF.callCStructMoveConstructor(DstLV, src);
332       return;
333     }
334   } else {
335     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
336       if (Dest.isPotentiallyAliased())
337         CGF.callCStructCopyAssignmentOperator(DstLV, src);
338       else
339         CGF.callCStructCopyConstructor(DstLV, src);
340       return;
341     }
342   }
343 
344   AggValueSlot srcAgg =
345     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
346                             needsGC(type), AggValueSlot::IsAliased,
347                             AggValueSlot::MayOverlap);
348   EmitCopy(type, Dest, srcAgg);
349 }
350 
351 /// Perform a copy from the source into the destination.
352 ///
353 /// \param type - the type of the aggregate being copied; qualifiers are
354 ///   ignored
355 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
356                               const AggValueSlot &src) {
357   if (dest.requiresGCollection()) {
358     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
359     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
360     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
361                                                       dest.getAddress(),
362                                                       src.getAddress(),
363                                                       size);
364     return;
365   }
366 
367   // If the result of the assignment is used, copy the LHS there also.
368   // It's volatile if either side is.  Use the minimum alignment of
369   // the two sides.
370   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
371   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
372   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
373                         dest.isVolatile() || src.isVolatile());
374 }
375 
376 /// Emit the initializer for a std::initializer_list initialized with a
377 /// real initializer list.
378 void
379 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
380   // Emit an array containing the elements.  The array is externally destructed
381   // if the std::initializer_list object is.
382   ASTContext &Ctx = CGF.getContext();
383   LValue Array = CGF.EmitLValue(E->getSubExpr());
384   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
385   Address ArrayPtr = Array.getAddress();
386 
387   const ConstantArrayType *ArrayType =
388       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
389   assert(ArrayType && "std::initializer_list constructed from non-array");
390 
391   // FIXME: Perform the checks on the field types in SemaInit.
392   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
393   RecordDecl::field_iterator Field = Record->field_begin();
394   if (Field == Record->field_end()) {
395     CGF.ErrorUnsupported(E, "weird std::initializer_list");
396     return;
397   }
398 
399   // Start pointer.
400   if (!Field->getType()->isPointerType() ||
401       !Ctx.hasSameType(Field->getType()->getPointeeType(),
402                        ArrayType->getElementType())) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406 
407   AggValueSlot Dest = EnsureSlot(E->getType());
408   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
409   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
410   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
411   llvm::Value *IdxStart[] = { Zero, Zero };
412   llvm::Value *ArrayStart =
413       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
414   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
415   ++Field;
416 
417   if (Field == Record->field_end()) {
418     CGF.ErrorUnsupported(E, "weird std::initializer_list");
419     return;
420   }
421 
422   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
423   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
424   if (Field->getType()->isPointerType() &&
425       Ctx.hasSameType(Field->getType()->getPointeeType(),
426                       ArrayType->getElementType())) {
427     // End pointer.
428     llvm::Value *IdxEnd[] = { Zero, Size };
429     llvm::Value *ArrayEnd =
430         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
431     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
432   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
433     // Length.
434     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
435   } else {
436     CGF.ErrorUnsupported(E, "weird std::initializer_list");
437     return;
438   }
439 }
440 
441 /// Determine if E is a trivial array filler, that is, one that is
442 /// equivalent to zero-initialization.
443 static bool isTrivialFiller(Expr *E) {
444   if (!E)
445     return true;
446 
447   if (isa<ImplicitValueInitExpr>(E))
448     return true;
449 
450   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
451     if (ILE->getNumInits())
452       return false;
453     return isTrivialFiller(ILE->getArrayFiller());
454   }
455 
456   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
457     return Cons->getConstructor()->isDefaultConstructor() &&
458            Cons->getConstructor()->isTrivial();
459 
460   // FIXME: Are there other cases where we can avoid emitting an initializer?
461   return false;
462 }
463 
464 /// Emit initialization of an array from an initializer list.
465 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
466                                    QualType ArrayQTy, InitListExpr *E) {
467   uint64_t NumInitElements = E->getNumInits();
468 
469   uint64_t NumArrayElements = AType->getNumElements();
470   assert(NumInitElements <= NumArrayElements);
471 
472   QualType elementType =
473       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
474 
475   // DestPtr is an array*.  Construct an elementType* by drilling
476   // down a level.
477   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
478   llvm::Value *indices[] = { zero, zero };
479   llvm::Value *begin =
480     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
481 
482   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
483   CharUnits elementAlign =
484     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
485 
486   // Consider initializing the array by copying from a global. For this to be
487   // more efficient than per-element initialization, the size of the elements
488   // with explicit initializers should be large enough.
489   if (NumInitElements * elementSize.getQuantity() > 16 &&
490       elementType.isTriviallyCopyableType(CGF.getContext())) {
491     CodeGen::CodeGenModule &CGM = CGF.CGM;
492     ConstantEmitter Emitter(CGM);
493     LangAS AS = ArrayQTy.getAddressSpace();
494     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
495       auto GV = new llvm::GlobalVariable(
496           CGM.getModule(), C->getType(),
497           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
498           llvm::GlobalValue::PrivateLinkage, C, "constinit",
499           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
500           CGM.getContext().getTargetAddressSpace(AS));
501       Emitter.finalize(GV);
502       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
503       GV->setAlignment(Align.getQuantity());
504       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
505       return;
506     }
507   }
508 
509   // Exception safety requires us to destroy all the
510   // already-constructed members if an initializer throws.
511   // For that, we'll need an EH cleanup.
512   QualType::DestructionKind dtorKind = elementType.isDestructedType();
513   Address endOfInit = Address::invalid();
514   EHScopeStack::stable_iterator cleanup;
515   llvm::Instruction *cleanupDominator = nullptr;
516   if (CGF.needsEHCleanup(dtorKind)) {
517     // In principle we could tell the cleanup where we are more
518     // directly, but the control flow can get so varied here that it
519     // would actually be quite complex.  Therefore we go through an
520     // alloca.
521     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
522                                      "arrayinit.endOfInit");
523     cleanupDominator = Builder.CreateStore(begin, endOfInit);
524     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
525                                          elementAlign,
526                                          CGF.getDestroyer(dtorKind));
527     cleanup = CGF.EHStack.stable_begin();
528 
529   // Otherwise, remember that we didn't need a cleanup.
530   } else {
531     dtorKind = QualType::DK_none;
532   }
533 
534   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
535 
536   // The 'current element to initialize'.  The invariants on this
537   // variable are complicated.  Essentially, after each iteration of
538   // the loop, it points to the last initialized element, except
539   // that it points to the beginning of the array before any
540   // elements have been initialized.
541   llvm::Value *element = begin;
542 
543   // Emit the explicit initializers.
544   for (uint64_t i = 0; i != NumInitElements; ++i) {
545     // Advance to the next element.
546     if (i > 0) {
547       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
548 
549       // Tell the cleanup that it needs to destroy up to this
550       // element.  TODO: some of these stores can be trivially
551       // observed to be unnecessary.
552       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
553     }
554 
555     LValue elementLV =
556       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
557     EmitInitializationToLValue(E->getInit(i), elementLV);
558   }
559 
560   // Check whether there's a non-trivial array-fill expression.
561   Expr *filler = E->getArrayFiller();
562   bool hasTrivialFiller = isTrivialFiller(filler);
563 
564   // Any remaining elements need to be zero-initialized, possibly
565   // using the filler expression.  We can skip this if the we're
566   // emitting to zeroed memory.
567   if (NumInitElements != NumArrayElements &&
568       !(Dest.isZeroed() && hasTrivialFiller &&
569         CGF.getTypes().isZeroInitializable(elementType))) {
570 
571     // Use an actual loop.  This is basically
572     //   do { *array++ = filler; } while (array != end);
573 
574     // Advance to the start of the rest of the array.
575     if (NumInitElements) {
576       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
577       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
578     }
579 
580     // Compute the end of the array.
581     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
582                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
583                                                  "arrayinit.end");
584 
585     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
586     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
587 
588     // Jump into the body.
589     CGF.EmitBlock(bodyBB);
590     llvm::PHINode *currentElement =
591       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
592     currentElement->addIncoming(element, entryBB);
593 
594     // Emit the actual filler expression.
595     {
596       // C++1z [class.temporary]p5:
597       //   when a default constructor is called to initialize an element of
598       //   an array with no corresponding initializer [...] the destruction of
599       //   every temporary created in a default argument is sequenced before
600       //   the construction of the next array element, if any
601       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
602       LValue elementLV =
603         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
604       if (filler)
605         EmitInitializationToLValue(filler, elementLV);
606       else
607         EmitNullInitializationToLValue(elementLV);
608     }
609 
610     // Move on to the next element.
611     llvm::Value *nextElement =
612       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
613 
614     // Tell the EH cleanup that we finished with the last element.
615     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
616 
617     // Leave the loop if we're done.
618     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
619                                              "arrayinit.done");
620     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
621     Builder.CreateCondBr(done, endBB, bodyBB);
622     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
623 
624     CGF.EmitBlock(endBB);
625   }
626 
627   // Leave the partial-array cleanup if we entered one.
628   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //                            Visitor Methods
633 //===----------------------------------------------------------------------===//
634 
635 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
636   Visit(E->GetTemporaryExpr());
637 }
638 
639 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
640   // If this is a unique OVE, just visit its source expression.
641   if (e->isUnique())
642     Visit(e->getSourceExpr());
643   else
644     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
645 }
646 
647 void
648 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
649   if (Dest.isPotentiallyAliased() &&
650       E->getType().isPODType(CGF.getContext())) {
651     // For a POD type, just emit a load of the lvalue + a copy, because our
652     // compound literal might alias the destination.
653     EmitAggLoadOfLValue(E);
654     return;
655   }
656 
657   AggValueSlot Slot = EnsureSlot(E->getType());
658   CGF.EmitAggExpr(E->getInitializer(), Slot);
659 }
660 
661 /// Attempt to look through various unimportant expressions to find a
662 /// cast of the given kind.
663 static Expr *findPeephole(Expr *op, CastKind kind) {
664   while (true) {
665     op = op->IgnoreParens();
666     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
667       if (castE->getCastKind() == kind)
668         return castE->getSubExpr();
669       if (castE->getCastKind() == CK_NoOp)
670         continue;
671     }
672     return nullptr;
673   }
674 }
675 
676 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
677   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
678     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
679   switch (E->getCastKind()) {
680   case CK_Dynamic: {
681     // FIXME: Can this actually happen? We have no test coverage for it.
682     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
683     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
684                                       CodeGenFunction::TCK_Load);
685     // FIXME: Do we also need to handle property references here?
686     if (LV.isSimple())
687       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
688     else
689       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
690 
691     if (!Dest.isIgnored())
692       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
693     break;
694   }
695 
696   case CK_ToUnion: {
697     // Evaluate even if the destination is ignored.
698     if (Dest.isIgnored()) {
699       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
700                       /*ignoreResult=*/true);
701       break;
702     }
703 
704     // GCC union extension
705     QualType Ty = E->getSubExpr()->getType();
706     Address CastPtr =
707       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
708     EmitInitializationToLValue(E->getSubExpr(),
709                                CGF.MakeAddrLValue(CastPtr, Ty));
710     break;
711   }
712 
713   case CK_DerivedToBase:
714   case CK_BaseToDerived:
715   case CK_UncheckedDerivedToBase: {
716     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
717                 "should have been unpacked before we got here");
718   }
719 
720   case CK_NonAtomicToAtomic:
721   case CK_AtomicToNonAtomic: {
722     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
723 
724     // Determine the atomic and value types.
725     QualType atomicType = E->getSubExpr()->getType();
726     QualType valueType = E->getType();
727     if (isToAtomic) std::swap(atomicType, valueType);
728 
729     assert(atomicType->isAtomicType());
730     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
731                           atomicType->castAs<AtomicType>()->getValueType()));
732 
733     // Just recurse normally if we're ignoring the result or the
734     // atomic type doesn't change representation.
735     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
736       return Visit(E->getSubExpr());
737     }
738 
739     CastKind peepholeTarget =
740       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
741 
742     // These two cases are reverses of each other; try to peephole them.
743     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
744       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
745                                                      E->getType()) &&
746            "peephole significantly changed types?");
747       return Visit(op);
748     }
749 
750     // If we're converting an r-value of non-atomic type to an r-value
751     // of atomic type, just emit directly into the relevant sub-object.
752     if (isToAtomic) {
753       AggValueSlot valueDest = Dest;
754       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
755         // Zero-initialize.  (Strictly speaking, we only need to initialize
756         // the padding at the end, but this is simpler.)
757         if (!Dest.isZeroed())
758           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
759 
760         // Build a GEP to refer to the subobject.
761         Address valueAddr =
762             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
763         valueDest = AggValueSlot::forAddr(valueAddr,
764                                           valueDest.getQualifiers(),
765                                           valueDest.isExternallyDestructed(),
766                                           valueDest.requiresGCollection(),
767                                           valueDest.isPotentiallyAliased(),
768                                           AggValueSlot::DoesNotOverlap,
769                                           AggValueSlot::IsZeroed);
770       }
771 
772       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
773       return;
774     }
775 
776     // Otherwise, we're converting an atomic type to a non-atomic type.
777     // Make an atomic temporary, emit into that, and then copy the value out.
778     AggValueSlot atomicSlot =
779       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
780     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
781 
782     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
783     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
784     return EmitFinalDestCopy(valueType, rvalue);
785   }
786 
787   case CK_LValueToRValue:
788     // If we're loading from a volatile type, force the destination
789     // into existence.
790     if (E->getSubExpr()->getType().isVolatileQualified()) {
791       EnsureDest(E->getType());
792       return Visit(E->getSubExpr());
793     }
794 
795     LLVM_FALLTHROUGH;
796 
797   case CK_NoOp:
798   case CK_UserDefinedConversion:
799   case CK_ConstructorConversion:
800     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
801                                                    E->getType()) &&
802            "Implicit cast types must be compatible");
803     Visit(E->getSubExpr());
804     break;
805 
806   case CK_LValueBitCast:
807     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
808 
809   case CK_Dependent:
810   case CK_BitCast:
811   case CK_ArrayToPointerDecay:
812   case CK_FunctionToPointerDecay:
813   case CK_NullToPointer:
814   case CK_NullToMemberPointer:
815   case CK_BaseToDerivedMemberPointer:
816   case CK_DerivedToBaseMemberPointer:
817   case CK_MemberPointerToBoolean:
818   case CK_ReinterpretMemberPointer:
819   case CK_IntegralToPointer:
820   case CK_PointerToIntegral:
821   case CK_PointerToBoolean:
822   case CK_ToVoid:
823   case CK_VectorSplat:
824   case CK_IntegralCast:
825   case CK_BooleanToSignedIntegral:
826   case CK_IntegralToBoolean:
827   case CK_IntegralToFloating:
828   case CK_FloatingToIntegral:
829   case CK_FloatingToBoolean:
830   case CK_FloatingCast:
831   case CK_CPointerToObjCPointerCast:
832   case CK_BlockPointerToObjCPointerCast:
833   case CK_AnyPointerToBlockPointerCast:
834   case CK_ObjCObjectLValueCast:
835   case CK_FloatingRealToComplex:
836   case CK_FloatingComplexToReal:
837   case CK_FloatingComplexToBoolean:
838   case CK_FloatingComplexCast:
839   case CK_FloatingComplexToIntegralComplex:
840   case CK_IntegralRealToComplex:
841   case CK_IntegralComplexToReal:
842   case CK_IntegralComplexToBoolean:
843   case CK_IntegralComplexCast:
844   case CK_IntegralComplexToFloatingComplex:
845   case CK_ARCProduceObject:
846   case CK_ARCConsumeObject:
847   case CK_ARCReclaimReturnedObject:
848   case CK_ARCExtendBlockObject:
849   case CK_CopyAndAutoreleaseBlockObject:
850   case CK_BuiltinFnToFnPtr:
851   case CK_ZeroToOCLOpaqueType:
852   case CK_AddressSpaceConversion:
853   case CK_IntToOCLSampler:
854   case CK_FixedPointCast:
855   case CK_FixedPointToBoolean:
856   case CK_FixedPointToIntegral:
857   case CK_IntegralToFixedPoint:
858     llvm_unreachable("cast kind invalid for aggregate types");
859   }
860 }
861 
862 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
863   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
864     EmitAggLoadOfLValue(E);
865     return;
866   }
867 
868   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
869     return CGF.EmitCallExpr(E, Slot);
870   });
871 }
872 
873 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
874   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
875     return CGF.EmitObjCMessageExpr(E, Slot);
876   });
877 }
878 
879 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
880   CGF.EmitIgnoredExpr(E->getLHS());
881   Visit(E->getRHS());
882 }
883 
884 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
885   CodeGenFunction::StmtExprEvaluation eval(CGF);
886   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
887 }
888 
889 enum CompareKind {
890   CK_Less,
891   CK_Greater,
892   CK_Equal,
893 };
894 
895 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
896                                 const BinaryOperator *E, llvm::Value *LHS,
897                                 llvm::Value *RHS, CompareKind Kind,
898                                 const char *NameSuffix = "") {
899   QualType ArgTy = E->getLHS()->getType();
900   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
901     ArgTy = CT->getElementType();
902 
903   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
904     assert(Kind == CK_Equal &&
905            "member pointers may only be compared for equality");
906     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
907         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
908   }
909 
910   // Compute the comparison instructions for the specified comparison kind.
911   struct CmpInstInfo {
912     const char *Name;
913     llvm::CmpInst::Predicate FCmp;
914     llvm::CmpInst::Predicate SCmp;
915     llvm::CmpInst::Predicate UCmp;
916   };
917   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
918     using FI = llvm::FCmpInst;
919     using II = llvm::ICmpInst;
920     switch (Kind) {
921     case CK_Less:
922       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
923     case CK_Greater:
924       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
925     case CK_Equal:
926       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
927     }
928     llvm_unreachable("Unrecognised CompareKind enum");
929   }();
930 
931   if (ArgTy->hasFloatingRepresentation())
932     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
933                               llvm::Twine(InstInfo.Name) + NameSuffix);
934   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
935     auto Inst =
936         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
937     return Builder.CreateICmp(Inst, LHS, RHS,
938                               llvm::Twine(InstInfo.Name) + NameSuffix);
939   }
940 
941   llvm_unreachable("unsupported aggregate binary expression should have "
942                    "already been handled");
943 }
944 
945 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
946   using llvm::BasicBlock;
947   using llvm::PHINode;
948   using llvm::Value;
949   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
950                                       E->getRHS()->getType()));
951   const ComparisonCategoryInfo &CmpInfo =
952       CGF.getContext().CompCategories.getInfoForType(E->getType());
953   assert(CmpInfo.Record->isTriviallyCopyable() &&
954          "cannot copy non-trivially copyable aggregate");
955 
956   QualType ArgTy = E->getLHS()->getType();
957 
958   // TODO: Handle comparing these types.
959   if (ArgTy->isVectorType())
960     return CGF.ErrorUnsupported(
961         E, "aggregate three-way comparison with vector arguments");
962   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
963       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
964       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
965     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
966   }
967   bool IsComplex = ArgTy->isAnyComplexType();
968 
969   // Evaluate the operands to the expression and extract their values.
970   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
971     RValue RV = CGF.EmitAnyExpr(E);
972     if (RV.isScalar())
973       return {RV.getScalarVal(), nullptr};
974     if (RV.isAggregate())
975       return {RV.getAggregatePointer(), nullptr};
976     assert(RV.isComplex());
977     return RV.getComplexVal();
978   };
979   auto LHSValues = EmitOperand(E->getLHS()),
980        RHSValues = EmitOperand(E->getRHS());
981 
982   auto EmitCmp = [&](CompareKind K) {
983     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
984                              K, IsComplex ? ".r" : "");
985     if (!IsComplex)
986       return Cmp;
987     assert(K == CompareKind::CK_Equal);
988     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
989                                  RHSValues.second, K, ".i");
990     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
991   };
992   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
993     return Builder.getInt(VInfo->getIntValue());
994   };
995 
996   Value *Select;
997   if (ArgTy->isNullPtrType()) {
998     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
999   } else if (CmpInfo.isEquality()) {
1000     Select = Builder.CreateSelect(
1001         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1002         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1003   } else if (!CmpInfo.isPartial()) {
1004     Value *SelectOne =
1005         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1006                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1007     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1008                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1009                                   SelectOne, "sel.eq");
1010   } else {
1011     Value *SelectEq = Builder.CreateSelect(
1012         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1013         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1014     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1015                                            EmitCmpRes(CmpInfo.getGreater()),
1016                                            SelectEq, "sel.gt");
1017     Select = Builder.CreateSelect(
1018         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1019   }
1020   // Create the return value in the destination slot.
1021   EnsureDest(E->getType());
1022   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1023 
1024   // Emit the address of the first (and only) field in the comparison category
1025   // type, and initialize it from the constant integer value selected above.
1026   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1027       DestLV, *CmpInfo.Record->field_begin());
1028   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1029 
1030   // All done! The result is in the Dest slot.
1031 }
1032 
1033 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1034   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1035     VisitPointerToDataMemberBinaryOperator(E);
1036   else
1037     CGF.ErrorUnsupported(E, "aggregate binary expression");
1038 }
1039 
1040 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1041                                                     const BinaryOperator *E) {
1042   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1043   EmitFinalDestCopy(E->getType(), LV);
1044 }
1045 
1046 /// Is the value of the given expression possibly a reference to or
1047 /// into a __block variable?
1048 static bool isBlockVarRef(const Expr *E) {
1049   // Make sure we look through parens.
1050   E = E->IgnoreParens();
1051 
1052   // Check for a direct reference to a __block variable.
1053   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1054     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1055     return (var && var->hasAttr<BlocksAttr>());
1056   }
1057 
1058   // More complicated stuff.
1059 
1060   // Binary operators.
1061   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1062     // For an assignment or pointer-to-member operation, just care
1063     // about the LHS.
1064     if (op->isAssignmentOp() || op->isPtrMemOp())
1065       return isBlockVarRef(op->getLHS());
1066 
1067     // For a comma, just care about the RHS.
1068     if (op->getOpcode() == BO_Comma)
1069       return isBlockVarRef(op->getRHS());
1070 
1071     // FIXME: pointer arithmetic?
1072     return false;
1073 
1074   // Check both sides of a conditional operator.
1075   } else if (const AbstractConditionalOperator *op
1076                = dyn_cast<AbstractConditionalOperator>(E)) {
1077     return isBlockVarRef(op->getTrueExpr())
1078         || isBlockVarRef(op->getFalseExpr());
1079 
1080   // OVEs are required to support BinaryConditionalOperators.
1081   } else if (const OpaqueValueExpr *op
1082                = dyn_cast<OpaqueValueExpr>(E)) {
1083     if (const Expr *src = op->getSourceExpr())
1084       return isBlockVarRef(src);
1085 
1086   // Casts are necessary to get things like (*(int*)&var) = foo().
1087   // We don't really care about the kind of cast here, except
1088   // we don't want to look through l2r casts, because it's okay
1089   // to get the *value* in a __block variable.
1090   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1091     if (cast->getCastKind() == CK_LValueToRValue)
1092       return false;
1093     return isBlockVarRef(cast->getSubExpr());
1094 
1095   // Handle unary operators.  Again, just aggressively look through
1096   // it, ignoring the operation.
1097   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1098     return isBlockVarRef(uop->getSubExpr());
1099 
1100   // Look into the base of a field access.
1101   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1102     return isBlockVarRef(mem->getBase());
1103 
1104   // Look into the base of a subscript.
1105   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1106     return isBlockVarRef(sub->getBase());
1107   }
1108 
1109   return false;
1110 }
1111 
1112 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1113   // For an assignment to work, the value on the right has
1114   // to be compatible with the value on the left.
1115   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1116                                                  E->getRHS()->getType())
1117          && "Invalid assignment");
1118 
1119   // If the LHS might be a __block variable, and the RHS can
1120   // potentially cause a block copy, we need to evaluate the RHS first
1121   // so that the assignment goes the right place.
1122   // This is pretty semantically fragile.
1123   if (isBlockVarRef(E->getLHS()) &&
1124       E->getRHS()->HasSideEffects(CGF.getContext())) {
1125     // Ensure that we have a destination, and evaluate the RHS into that.
1126     EnsureDest(E->getRHS()->getType());
1127     Visit(E->getRHS());
1128 
1129     // Now emit the LHS and copy into it.
1130     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1131 
1132     // That copy is an atomic copy if the LHS is atomic.
1133     if (LHS.getType()->isAtomicType() ||
1134         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1135       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1136       return;
1137     }
1138 
1139     EmitCopy(E->getLHS()->getType(),
1140              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1141                                      needsGC(E->getLHS()->getType()),
1142                                      AggValueSlot::IsAliased,
1143                                      AggValueSlot::MayOverlap),
1144              Dest);
1145     return;
1146   }
1147 
1148   LValue LHS = CGF.EmitLValue(E->getLHS());
1149 
1150   // If we have an atomic type, evaluate into the destination and then
1151   // do an atomic copy.
1152   if (LHS.getType()->isAtomicType() ||
1153       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1154     EnsureDest(E->getRHS()->getType());
1155     Visit(E->getRHS());
1156     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1157     return;
1158   }
1159 
1160   // Codegen the RHS so that it stores directly into the LHS.
1161   AggValueSlot LHSSlot =
1162     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1163                             needsGC(E->getLHS()->getType()),
1164                             AggValueSlot::IsAliased,
1165                             AggValueSlot::MayOverlap);
1166   // A non-volatile aggregate destination might have volatile member.
1167   if (!LHSSlot.isVolatile() &&
1168       CGF.hasVolatileMember(E->getLHS()->getType()))
1169     LHSSlot.setVolatile(true);
1170 
1171   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1172 
1173   // Copy into the destination if the assignment isn't ignored.
1174   EmitFinalDestCopy(E->getType(), LHS);
1175 }
1176 
1177 void AggExprEmitter::
1178 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1179   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1180   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1181   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1182 
1183   // Bind the common expression if necessary.
1184   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1185 
1186   CodeGenFunction::ConditionalEvaluation eval(CGF);
1187   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1188                            CGF.getProfileCount(E));
1189 
1190   // Save whether the destination's lifetime is externally managed.
1191   bool isExternallyDestructed = Dest.isExternallyDestructed();
1192 
1193   eval.begin(CGF);
1194   CGF.EmitBlock(LHSBlock);
1195   CGF.incrementProfileCounter(E);
1196   Visit(E->getTrueExpr());
1197   eval.end(CGF);
1198 
1199   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1200   CGF.Builder.CreateBr(ContBlock);
1201 
1202   // If the result of an agg expression is unused, then the emission
1203   // of the LHS might need to create a destination slot.  That's fine
1204   // with us, and we can safely emit the RHS into the same slot, but
1205   // we shouldn't claim that it's already being destructed.
1206   Dest.setExternallyDestructed(isExternallyDestructed);
1207 
1208   eval.begin(CGF);
1209   CGF.EmitBlock(RHSBlock);
1210   Visit(E->getFalseExpr());
1211   eval.end(CGF);
1212 
1213   CGF.EmitBlock(ContBlock);
1214 }
1215 
1216 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1217   Visit(CE->getChosenSubExpr());
1218 }
1219 
1220 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1221   Address ArgValue = Address::invalid();
1222   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1223 
1224   // If EmitVAArg fails, emit an error.
1225   if (!ArgPtr.isValid()) {
1226     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1227     return;
1228   }
1229 
1230   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1231 }
1232 
1233 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1234   // Ensure that we have a slot, but if we already do, remember
1235   // whether it was externally destructed.
1236   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1237   EnsureDest(E->getType());
1238 
1239   // We're going to push a destructor if there isn't already one.
1240   Dest.setExternallyDestructed();
1241 
1242   Visit(E->getSubExpr());
1243 
1244   // Push that destructor we promised.
1245   if (!wasExternallyDestructed)
1246     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1247 }
1248 
1249 void
1250 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1251   AggValueSlot Slot = EnsureSlot(E->getType());
1252   CGF.EmitCXXConstructExpr(E, Slot);
1253 }
1254 
1255 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1256     const CXXInheritedCtorInitExpr *E) {
1257   AggValueSlot Slot = EnsureSlot(E->getType());
1258   CGF.EmitInheritedCXXConstructorCall(
1259       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1260       E->inheritedFromVBase(), E);
1261 }
1262 
1263 void
1264 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1265   AggValueSlot Slot = EnsureSlot(E->getType());
1266   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1267 
1268   // We'll need to enter cleanup scopes in case any of the element
1269   // initializers throws an exception.
1270   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1271   llvm::Instruction *CleanupDominator = nullptr;
1272 
1273   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1274   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1275                                                e = E->capture_init_end();
1276        i != e; ++i, ++CurField) {
1277     // Emit initialization
1278     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1279     if (CurField->hasCapturedVLAType()) {
1280       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1281       continue;
1282     }
1283 
1284     EmitInitializationToLValue(*i, LV);
1285 
1286     // Push a destructor if necessary.
1287     if (QualType::DestructionKind DtorKind =
1288             CurField->getType().isDestructedType()) {
1289       assert(LV.isSimple());
1290       if (CGF.needsEHCleanup(DtorKind)) {
1291         if (!CleanupDominator)
1292           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1293               CGF.Int8Ty,
1294               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1295               CharUnits::One()); // placeholder
1296 
1297         CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(),
1298                         CGF.getDestroyer(DtorKind), false);
1299         Cleanups.push_back(CGF.EHStack.stable_begin());
1300       }
1301     }
1302   }
1303 
1304   // Deactivate all the partial cleanups in reverse order, which
1305   // generally means popping them.
1306   for (unsigned i = Cleanups.size(); i != 0; --i)
1307     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1308 
1309   // Destroy the placeholder if we made one.
1310   if (CleanupDominator)
1311     CleanupDominator->eraseFromParent();
1312 }
1313 
1314 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1315   CGF.enterFullExpression(E);
1316   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1317   Visit(E->getSubExpr());
1318 }
1319 
1320 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1321   QualType T = E->getType();
1322   AggValueSlot Slot = EnsureSlot(T);
1323   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1324 }
1325 
1326 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1327   QualType T = E->getType();
1328   AggValueSlot Slot = EnsureSlot(T);
1329   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1330 }
1331 
1332 /// isSimpleZero - If emitting this value will obviously just cause a store of
1333 /// zero to memory, return true.  This can return false if uncertain, so it just
1334 /// handles simple cases.
1335 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1336   E = E->IgnoreParens();
1337 
1338   // 0
1339   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1340     return IL->getValue() == 0;
1341   // +0.0
1342   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1343     return FL->getValue().isPosZero();
1344   // int()
1345   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1346       CGF.getTypes().isZeroInitializable(E->getType()))
1347     return true;
1348   // (int*)0 - Null pointer expressions.
1349   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1350     return ICE->getCastKind() == CK_NullToPointer &&
1351         CGF.getTypes().isPointerZeroInitializable(E->getType());
1352   // '\0'
1353   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1354     return CL->getValue() == 0;
1355 
1356   // Otherwise, hard case: conservatively return false.
1357   return false;
1358 }
1359 
1360 
1361 void
1362 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1363   QualType type = LV.getType();
1364   // FIXME: Ignore result?
1365   // FIXME: Are initializers affected by volatile?
1366   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1367     // Storing "i32 0" to a zero'd memory location is a noop.
1368     return;
1369   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1370     return EmitNullInitializationToLValue(LV);
1371   } else if (isa<NoInitExpr>(E)) {
1372     // Do nothing.
1373     return;
1374   } else if (type->isReferenceType()) {
1375     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1376     return CGF.EmitStoreThroughLValue(RV, LV);
1377   }
1378 
1379   switch (CGF.getEvaluationKind(type)) {
1380   case TEK_Complex:
1381     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1382     return;
1383   case TEK_Aggregate:
1384     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1385                                                AggValueSlot::IsDestructed,
1386                                       AggValueSlot::DoesNotNeedGCBarriers,
1387                                                AggValueSlot::IsNotAliased,
1388                                                AggValueSlot::MayOverlap,
1389                                                Dest.isZeroed()));
1390     return;
1391   case TEK_Scalar:
1392     if (LV.isSimple()) {
1393       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1394     } else {
1395       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1396     }
1397     return;
1398   }
1399   llvm_unreachable("bad evaluation kind");
1400 }
1401 
1402 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1403   QualType type = lv.getType();
1404 
1405   // If the destination slot is already zeroed out before the aggregate is
1406   // copied into it, we don't have to emit any zeros here.
1407   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1408     return;
1409 
1410   if (CGF.hasScalarEvaluationKind(type)) {
1411     // For non-aggregates, we can store the appropriate null constant.
1412     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1413     // Note that the following is not equivalent to
1414     // EmitStoreThroughBitfieldLValue for ARC types.
1415     if (lv.isBitField()) {
1416       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1417     } else {
1418       assert(lv.isSimple());
1419       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1420     }
1421   } else {
1422     // There's a potential optimization opportunity in combining
1423     // memsets; that would be easy for arrays, but relatively
1424     // difficult for structures with the current code.
1425     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1426   }
1427 }
1428 
1429 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1430 #if 0
1431   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1432   // (Length of globals? Chunks of zeroed-out space?).
1433   //
1434   // If we can, prefer a copy from a global; this is a lot less code for long
1435   // globals, and it's easier for the current optimizers to analyze.
1436   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1437     llvm::GlobalVariable* GV =
1438     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1439                              llvm::GlobalValue::InternalLinkage, C, "");
1440     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1441     return;
1442   }
1443 #endif
1444   if (E->hadArrayRangeDesignator())
1445     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1446 
1447   if (E->isTransparent())
1448     return Visit(E->getInit(0));
1449 
1450   AggValueSlot Dest = EnsureSlot(E->getType());
1451 
1452   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1453 
1454   // Handle initialization of an array.
1455   if (E->getType()->isArrayType()) {
1456     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1457     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1458     return;
1459   }
1460 
1461   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1462 
1463   // Do struct initialization; this code just sets each individual member
1464   // to the approprate value.  This makes bitfield support automatic;
1465   // the disadvantage is that the generated code is more difficult for
1466   // the optimizer, especially with bitfields.
1467   unsigned NumInitElements = E->getNumInits();
1468   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1469 
1470   // We'll need to enter cleanup scopes in case any of the element
1471   // initializers throws an exception.
1472   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1473   llvm::Instruction *cleanupDominator = nullptr;
1474 
1475   unsigned curInitIndex = 0;
1476 
1477   // Emit initialization of base classes.
1478   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1479     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1480            "missing initializer for base class");
1481     for (auto &Base : CXXRD->bases()) {
1482       assert(!Base.isVirtual() && "should not see vbases here");
1483       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1484       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1485           Dest.getAddress(), CXXRD, BaseRD,
1486           /*isBaseVirtual*/ false);
1487       AggValueSlot AggSlot = AggValueSlot::forAddr(
1488           V, Qualifiers(),
1489           AggValueSlot::IsDestructed,
1490           AggValueSlot::DoesNotNeedGCBarriers,
1491           AggValueSlot::IsNotAliased,
1492           CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1493       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1494 
1495       if (QualType::DestructionKind dtorKind =
1496               Base.getType().isDestructedType()) {
1497         CGF.pushDestroy(dtorKind, V, Base.getType());
1498         cleanups.push_back(CGF.EHStack.stable_begin());
1499       }
1500     }
1501   }
1502 
1503   // Prepare a 'this' for CXXDefaultInitExprs.
1504   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1505 
1506   if (record->isUnion()) {
1507     // Only initialize one field of a union. The field itself is
1508     // specified by the initializer list.
1509     if (!E->getInitializedFieldInUnion()) {
1510       // Empty union; we have nothing to do.
1511 
1512 #ifndef NDEBUG
1513       // Make sure that it's really an empty and not a failure of
1514       // semantic analysis.
1515       for (const auto *Field : record->fields())
1516         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1517 #endif
1518       return;
1519     }
1520 
1521     // FIXME: volatility
1522     FieldDecl *Field = E->getInitializedFieldInUnion();
1523 
1524     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1525     if (NumInitElements) {
1526       // Store the initializer into the field
1527       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1528     } else {
1529       // Default-initialize to null.
1530       EmitNullInitializationToLValue(FieldLoc);
1531     }
1532 
1533     return;
1534   }
1535 
1536   // Here we iterate over the fields; this makes it simpler to both
1537   // default-initialize fields and skip over unnamed fields.
1538   for (const auto *field : record->fields()) {
1539     // We're done once we hit the flexible array member.
1540     if (field->getType()->isIncompleteArrayType())
1541       break;
1542 
1543     // Always skip anonymous bitfields.
1544     if (field->isUnnamedBitfield())
1545       continue;
1546 
1547     // We're done if we reach the end of the explicit initializers, we
1548     // have a zeroed object, and the rest of the fields are
1549     // zero-initializable.
1550     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1551         CGF.getTypes().isZeroInitializable(E->getType()))
1552       break;
1553 
1554 
1555     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1556     // We never generate write-barries for initialized fields.
1557     LV.setNonGC(true);
1558 
1559     if (curInitIndex < NumInitElements) {
1560       // Store the initializer into the field.
1561       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1562     } else {
1563       // We're out of initializers; default-initialize to null
1564       EmitNullInitializationToLValue(LV);
1565     }
1566 
1567     // Push a destructor if necessary.
1568     // FIXME: if we have an array of structures, all explicitly
1569     // initialized, we can end up pushing a linear number of cleanups.
1570     bool pushedCleanup = false;
1571     if (QualType::DestructionKind dtorKind
1572           = field->getType().isDestructedType()) {
1573       assert(LV.isSimple());
1574       if (CGF.needsEHCleanup(dtorKind)) {
1575         if (!cleanupDominator)
1576           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1577               CGF.Int8Ty,
1578               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1579               CharUnits::One()); // placeholder
1580 
1581         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1582                         CGF.getDestroyer(dtorKind), false);
1583         cleanups.push_back(CGF.EHStack.stable_begin());
1584         pushedCleanup = true;
1585       }
1586     }
1587 
1588     // If the GEP didn't get used because of a dead zero init or something
1589     // else, clean it up for -O0 builds and general tidiness.
1590     if (!pushedCleanup && LV.isSimple())
1591       if (llvm::GetElementPtrInst *GEP =
1592             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1593         if (GEP->use_empty())
1594           GEP->eraseFromParent();
1595   }
1596 
1597   // Deactivate all the partial cleanups in reverse order, which
1598   // generally means popping them.
1599   for (unsigned i = cleanups.size(); i != 0; --i)
1600     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1601 
1602   // Destroy the placeholder if we made one.
1603   if (cleanupDominator)
1604     cleanupDominator->eraseFromParent();
1605 }
1606 
1607 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1608                                             llvm::Value *outerBegin) {
1609   // Emit the common subexpression.
1610   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1611 
1612   Address destPtr = EnsureSlot(E->getType()).getAddress();
1613   uint64_t numElements = E->getArraySize().getZExtValue();
1614 
1615   if (!numElements)
1616     return;
1617 
1618   // destPtr is an array*. Construct an elementType* by drilling down a level.
1619   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1620   llvm::Value *indices[] = {zero, zero};
1621   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1622                                                  "arrayinit.begin");
1623 
1624   // Prepare to special-case multidimensional array initialization: we avoid
1625   // emitting multiple destructor loops in that case.
1626   if (!outerBegin)
1627     outerBegin = begin;
1628   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1629 
1630   QualType elementType =
1631       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1632   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1633   CharUnits elementAlign =
1634       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1635 
1636   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1637   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1638 
1639   // Jump into the body.
1640   CGF.EmitBlock(bodyBB);
1641   llvm::PHINode *index =
1642       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1643   index->addIncoming(zero, entryBB);
1644   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1645 
1646   // Prepare for a cleanup.
1647   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1648   EHScopeStack::stable_iterator cleanup;
1649   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1650     if (outerBegin->getType() != element->getType())
1651       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1652     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1653                                        elementAlign,
1654                                        CGF.getDestroyer(dtorKind));
1655     cleanup = CGF.EHStack.stable_begin();
1656   } else {
1657     dtorKind = QualType::DK_none;
1658   }
1659 
1660   // Emit the actual filler expression.
1661   {
1662     // Temporaries created in an array initialization loop are destroyed
1663     // at the end of each iteration.
1664     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1665     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1666     LValue elementLV =
1667         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1668 
1669     if (InnerLoop) {
1670       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1671       auto elementSlot = AggValueSlot::forLValue(
1672           elementLV, AggValueSlot::IsDestructed,
1673           AggValueSlot::DoesNotNeedGCBarriers,
1674           AggValueSlot::IsNotAliased,
1675           AggValueSlot::DoesNotOverlap);
1676       AggExprEmitter(CGF, elementSlot, false)
1677           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1678     } else
1679       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1680   }
1681 
1682   // Move on to the next element.
1683   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1684       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1685   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1686 
1687   // Leave the loop if we're done.
1688   llvm::Value *done = Builder.CreateICmpEQ(
1689       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1690       "arrayinit.done");
1691   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1692   Builder.CreateCondBr(done, endBB, bodyBB);
1693 
1694   CGF.EmitBlock(endBB);
1695 
1696   // Leave the partial-array cleanup if we entered one.
1697   if (dtorKind)
1698     CGF.DeactivateCleanupBlock(cleanup, index);
1699 }
1700 
1701 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1702   AggValueSlot Dest = EnsureSlot(E->getType());
1703 
1704   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1705   EmitInitializationToLValue(E->getBase(), DestLV);
1706   VisitInitListExpr(E->getUpdater());
1707 }
1708 
1709 //===----------------------------------------------------------------------===//
1710 //                        Entry Points into this File
1711 //===----------------------------------------------------------------------===//
1712 
1713 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1714 /// non-zero bytes that will be stored when outputting the initializer for the
1715 /// specified initializer expression.
1716 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1717   E = E->IgnoreParens();
1718 
1719   // 0 and 0.0 won't require any non-zero stores!
1720   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1721 
1722   // If this is an initlist expr, sum up the size of sizes of the (present)
1723   // elements.  If this is something weird, assume the whole thing is non-zero.
1724   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1725   while (ILE && ILE->isTransparent())
1726     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1727   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1728     return CGF.getContext().getTypeSizeInChars(E->getType());
1729 
1730   // InitListExprs for structs have to be handled carefully.  If there are
1731   // reference members, we need to consider the size of the reference, not the
1732   // referencee.  InitListExprs for unions and arrays can't have references.
1733   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1734     if (!RT->isUnionType()) {
1735       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1736       CharUnits NumNonZeroBytes = CharUnits::Zero();
1737 
1738       unsigned ILEElement = 0;
1739       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1740         while (ILEElement != CXXRD->getNumBases())
1741           NumNonZeroBytes +=
1742               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1743       for (const auto *Field : SD->fields()) {
1744         // We're done once we hit the flexible array member or run out of
1745         // InitListExpr elements.
1746         if (Field->getType()->isIncompleteArrayType() ||
1747             ILEElement == ILE->getNumInits())
1748           break;
1749         if (Field->isUnnamedBitfield())
1750           continue;
1751 
1752         const Expr *E = ILE->getInit(ILEElement++);
1753 
1754         // Reference values are always non-null and have the width of a pointer.
1755         if (Field->getType()->isReferenceType())
1756           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1757               CGF.getTarget().getPointerWidth(0));
1758         else
1759           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1760       }
1761 
1762       return NumNonZeroBytes;
1763     }
1764   }
1765 
1766 
1767   CharUnits NumNonZeroBytes = CharUnits::Zero();
1768   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1769     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1770   return NumNonZeroBytes;
1771 }
1772 
1773 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1774 /// zeros in it, emit a memset and avoid storing the individual zeros.
1775 ///
1776 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1777                                      CodeGenFunction &CGF) {
1778   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1779   // volatile stores.
1780   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1781     return;
1782 
1783   // C++ objects with a user-declared constructor don't need zero'ing.
1784   if (CGF.getLangOpts().CPlusPlus)
1785     if (const RecordType *RT = CGF.getContext()
1786                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1787       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1788       if (RD->hasUserDeclaredConstructor())
1789         return;
1790     }
1791 
1792   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1793   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1794   if (Size <= CharUnits::fromQuantity(16))
1795     return;
1796 
1797   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1798   // we prefer to emit memset + individual stores for the rest.
1799   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1800   if (NumNonZeroBytes*4 > Size)
1801     return;
1802 
1803   // Okay, it seems like a good idea to use an initial memset, emit the call.
1804   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1805 
1806   Address Loc = Slot.getAddress();
1807   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1808   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1809 
1810   // Tell the AggExprEmitter that the slot is known zero.
1811   Slot.setZeroed();
1812 }
1813 
1814 
1815 
1816 
1817 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1818 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1819 /// the value of the aggregate expression is not needed.  If VolatileDest is
1820 /// true, DestPtr cannot be 0.
1821 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1822   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1823          "Invalid aggregate expression to emit");
1824   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1825          "slot has bits but no address");
1826 
1827   // Optimize the slot if possible.
1828   CheckAggExprForMemSetUse(Slot, E, *this);
1829 
1830   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1831 }
1832 
1833 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1834   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1835   Address Temp = CreateMemTemp(E->getType());
1836   LValue LV = MakeAddrLValue(Temp, E->getType());
1837   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1838                                          AggValueSlot::DoesNotNeedGCBarriers,
1839                                          AggValueSlot::IsNotAliased,
1840                                          AggValueSlot::DoesNotOverlap));
1841   return LV;
1842 }
1843 
1844 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit(
1845     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1846   // Virtual bases are initialized first, in address order, so there's never
1847   // any overlap during their initialization.
1848   //
1849   // FIXME: Under P0840, this is no longer true: the tail padding of a vbase
1850   // of a field could be reused by a vbase of a containing class.
1851   if (IsVirtual)
1852     return AggValueSlot::DoesNotOverlap;
1853 
1854   // If the base class is laid out entirely within the nvsize of the derived
1855   // class, its tail padding cannot yet be initialized, so we can issue
1856   // stores at the full width of the base class.
1857   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1858   if (Layout.getBaseClassOffset(BaseRD) +
1859           getContext().getASTRecordLayout(BaseRD).getSize() <=
1860       Layout.getNonVirtualSize())
1861     return AggValueSlot::DoesNotOverlap;
1862 
1863   // The tail padding may contain values we need to preserve.
1864   return AggValueSlot::MayOverlap;
1865 }
1866 
1867 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1868                                         AggValueSlot::Overlap_t MayOverlap,
1869                                         bool isVolatile) {
1870   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1871 
1872   Address DestPtr = Dest.getAddress();
1873   Address SrcPtr = Src.getAddress();
1874 
1875   if (getLangOpts().CPlusPlus) {
1876     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1877       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1878       assert((Record->hasTrivialCopyConstructor() ||
1879               Record->hasTrivialCopyAssignment() ||
1880               Record->hasTrivialMoveConstructor() ||
1881               Record->hasTrivialMoveAssignment() ||
1882               Record->isUnion()) &&
1883              "Trying to aggregate-copy a type without a trivial copy/move "
1884              "constructor or assignment operator");
1885       // Ignore empty classes in C++.
1886       if (Record->isEmpty())
1887         return;
1888     }
1889   }
1890 
1891   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1892   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1893   // read from another object that overlaps in anyway the storage of the first
1894   // object, then the overlap shall be exact and the two objects shall have
1895   // qualified or unqualified versions of a compatible type."
1896   //
1897   // memcpy is not defined if the source and destination pointers are exactly
1898   // equal, but other compilers do this optimization, and almost every memcpy
1899   // implementation handles this case safely.  If there is a libc that does not
1900   // safely handle this, we can add a target hook.
1901 
1902   // Get data size info for this aggregate. Don't copy the tail padding if this
1903   // might be a potentially-overlapping subobject, since the tail padding might
1904   // be occupied by a different object. Otherwise, copying it is fine.
1905   std::pair<CharUnits, CharUnits> TypeInfo;
1906   if (MayOverlap)
1907     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1908   else
1909     TypeInfo = getContext().getTypeInfoInChars(Ty);
1910 
1911   llvm::Value *SizeVal = nullptr;
1912   if (TypeInfo.first.isZero()) {
1913     // But note that getTypeInfo returns 0 for a VLA.
1914     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1915             getContext().getAsArrayType(Ty))) {
1916       QualType BaseEltTy;
1917       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1918       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1919       assert(!TypeInfo.first.isZero());
1920       SizeVal = Builder.CreateNUWMul(
1921           SizeVal,
1922           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1923     }
1924   }
1925   if (!SizeVal) {
1926     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1927   }
1928 
1929   // FIXME: If we have a volatile struct, the optimizer can remove what might
1930   // appear to be `extra' memory ops:
1931   //
1932   // volatile struct { int i; } a, b;
1933   //
1934   // int main() {
1935   //   a = b;
1936   //   a = b;
1937   // }
1938   //
1939   // we need to use a different call here.  We use isVolatile to indicate when
1940   // either the source or the destination is volatile.
1941 
1942   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1943   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1944 
1945   // Don't do any of the memmove_collectable tests if GC isn't set.
1946   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1947     // fall through
1948   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1949     RecordDecl *Record = RecordTy->getDecl();
1950     if (Record->hasObjectMember()) {
1951       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1952                                                     SizeVal);
1953       return;
1954     }
1955   } else if (Ty->isArrayType()) {
1956     QualType BaseType = getContext().getBaseElementType(Ty);
1957     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1958       if (RecordTy->getDecl()->hasObjectMember()) {
1959         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1960                                                       SizeVal);
1961         return;
1962       }
1963     }
1964   }
1965 
1966   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1967 
1968   // Determine the metadata to describe the position of any padding in this
1969   // memcpy, as well as the TBAA tags for the members of the struct, in case
1970   // the optimizer wishes to expand it in to scalar memory operations.
1971   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1972     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1973 
1974   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1975     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1976         Dest.getTBAAInfo(), Src.getTBAAInfo());
1977     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1978   }
1979 }
1980