1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitCoawaitExpr(CoawaitExpr *E) { 115 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 116 } 117 void VisitCoyieldExpr(CoyieldExpr *E) { 118 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 121 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 123 return Visit(E->getReplacement()); 124 } 125 126 // l-values. 127 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 128 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 129 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 130 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 131 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 132 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 133 EmitAggLoadOfLValue(E); 134 } 135 void VisitPredefinedExpr(const PredefinedExpr *E) { 136 EmitAggLoadOfLValue(E); 137 } 138 139 // Operators. 140 void VisitCastExpr(CastExpr *E); 141 void VisitCallExpr(const CallExpr *E); 142 void VisitStmtExpr(const StmtExpr *E); 143 void VisitBinaryOperator(const BinaryOperator *BO); 144 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 145 void VisitBinAssign(const BinaryOperator *E); 146 void VisitBinComma(const BinaryOperator *E); 147 148 void VisitObjCMessageExpr(ObjCMessageExpr *E); 149 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 150 EmitAggLoadOfLValue(E); 151 } 152 153 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 154 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 155 void VisitChooseExpr(const ChooseExpr *CE); 156 void VisitInitListExpr(InitListExpr *E); 157 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 158 llvm::Value *outerBegin = nullptr); 159 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 160 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 161 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 162 Visit(DAE->getExpr()); 163 } 164 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 165 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 166 Visit(DIE->getExpr()); 167 } 168 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 169 void VisitCXXConstructExpr(const CXXConstructExpr *E); 170 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 171 void VisitLambdaExpr(LambdaExpr *E); 172 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 173 void VisitExprWithCleanups(ExprWithCleanups *E); 174 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 175 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 176 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 177 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 178 179 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 180 if (E->isGLValue()) { 181 LValue LV = CGF.EmitPseudoObjectLValue(E); 182 return EmitFinalDestCopy(E->getType(), LV); 183 } 184 185 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 186 } 187 188 void VisitVAArgExpr(VAArgExpr *E); 189 190 void EmitInitializationToLValue(Expr *E, LValue Address); 191 void EmitNullInitializationToLValue(LValue Address); 192 // case Expr::ChooseExprClass: 193 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 194 void VisitAtomicExpr(AtomicExpr *E) { 195 RValue Res = CGF.EmitAtomicExpr(E); 196 EmitFinalDestCopy(E->getType(), Res); 197 } 198 }; 199 } // end anonymous namespace. 200 201 //===----------------------------------------------------------------------===// 202 // Utilities 203 //===----------------------------------------------------------------------===// 204 205 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 206 /// represents a value lvalue, this method emits the address of the lvalue, 207 /// then loads the result into DestPtr. 208 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 209 LValue LV = CGF.EmitLValue(E); 210 211 // If the type of the l-value is atomic, then do an atomic load. 212 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 213 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 214 return; 215 } 216 217 EmitFinalDestCopy(E->getType(), LV); 218 } 219 220 /// \brief True if the given aggregate type requires special GC API calls. 221 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 222 // Only record types have members that might require garbage collection. 223 const RecordType *RecordTy = T->getAs<RecordType>(); 224 if (!RecordTy) return false; 225 226 // Don't mess with non-trivial C++ types. 227 RecordDecl *Record = RecordTy->getDecl(); 228 if (isa<CXXRecordDecl>(Record) && 229 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 230 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 231 return false; 232 233 // Check whether the type has an object member. 234 return Record->hasObjectMember(); 235 } 236 237 /// \brief Perform the final move to DestPtr if for some reason 238 /// getReturnValueSlot() didn't use it directly. 239 /// 240 /// The idea is that you do something like this: 241 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 242 /// EmitMoveFromReturnSlot(E, Result); 243 /// 244 /// If nothing interferes, this will cause the result to be emitted 245 /// directly into the return value slot. Otherwise, a final move 246 /// will be performed. 247 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 248 if (shouldUseDestForReturnSlot()) { 249 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 250 // The possibility of undef rvalues complicates that a lot, 251 // though, so we can't really assert. 252 return; 253 } 254 255 // Otherwise, copy from there to the destination. 256 assert(Dest.getPointer() != src.getAggregatePointer()); 257 EmitFinalDestCopy(E->getType(), src); 258 } 259 260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 262 assert(src.isAggregate() && "value must be aggregate value!"); 263 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 264 EmitFinalDestCopy(type, srcLV); 265 } 266 267 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 268 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 269 // If Dest is ignored, then we're evaluating an aggregate expression 270 // in a context that doesn't care about the result. Note that loads 271 // from volatile l-values force the existence of a non-ignored 272 // destination. 273 if (Dest.isIgnored()) 274 return; 275 276 AggValueSlot srcAgg = 277 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 278 needsGC(type), AggValueSlot::IsAliased); 279 EmitCopy(type, Dest, srcAgg); 280 } 281 282 /// Perform a copy from the source into the destination. 283 /// 284 /// \param type - the type of the aggregate being copied; qualifiers are 285 /// ignored 286 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 287 const AggValueSlot &src) { 288 if (dest.requiresGCollection()) { 289 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 290 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 291 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 292 dest.getAddress(), 293 src.getAddress(), 294 size); 295 return; 296 } 297 298 // If the result of the assignment is used, copy the LHS there also. 299 // It's volatile if either side is. Use the minimum alignment of 300 // the two sides. 301 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 302 dest.isVolatile() || src.isVolatile()); 303 } 304 305 /// \brief Emit the initializer for a std::initializer_list initialized with a 306 /// real initializer list. 307 void 308 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 309 // Emit an array containing the elements. The array is externally destructed 310 // if the std::initializer_list object is. 311 ASTContext &Ctx = CGF.getContext(); 312 LValue Array = CGF.EmitLValue(E->getSubExpr()); 313 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 314 Address ArrayPtr = Array.getAddress(); 315 316 const ConstantArrayType *ArrayType = 317 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 318 assert(ArrayType && "std::initializer_list constructed from non-array"); 319 320 // FIXME: Perform the checks on the field types in SemaInit. 321 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 322 RecordDecl::field_iterator Field = Record->field_begin(); 323 if (Field == Record->field_end()) { 324 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 325 return; 326 } 327 328 // Start pointer. 329 if (!Field->getType()->isPointerType() || 330 !Ctx.hasSameType(Field->getType()->getPointeeType(), 331 ArrayType->getElementType())) { 332 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 333 return; 334 } 335 336 AggValueSlot Dest = EnsureSlot(E->getType()); 337 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 338 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 339 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 340 llvm::Value *IdxStart[] = { Zero, Zero }; 341 llvm::Value *ArrayStart = 342 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 343 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 344 ++Field; 345 346 if (Field == Record->field_end()) { 347 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 348 return; 349 } 350 351 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 352 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 353 if (Field->getType()->isPointerType() && 354 Ctx.hasSameType(Field->getType()->getPointeeType(), 355 ArrayType->getElementType())) { 356 // End pointer. 357 llvm::Value *IdxEnd[] = { Zero, Size }; 358 llvm::Value *ArrayEnd = 359 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 360 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 361 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 362 // Length. 363 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 364 } else { 365 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 366 return; 367 } 368 } 369 370 /// \brief Determine if E is a trivial array filler, that is, one that is 371 /// equivalent to zero-initialization. 372 static bool isTrivialFiller(Expr *E) { 373 if (!E) 374 return true; 375 376 if (isa<ImplicitValueInitExpr>(E)) 377 return true; 378 379 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 380 if (ILE->getNumInits()) 381 return false; 382 return isTrivialFiller(ILE->getArrayFiller()); 383 } 384 385 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 386 return Cons->getConstructor()->isDefaultConstructor() && 387 Cons->getConstructor()->isTrivial(); 388 389 // FIXME: Are there other cases where we can avoid emitting an initializer? 390 return false; 391 } 392 393 /// \brief Emit initialization of an array from an initializer list. 394 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 395 QualType elementType, InitListExpr *E) { 396 uint64_t NumInitElements = E->getNumInits(); 397 398 uint64_t NumArrayElements = AType->getNumElements(); 399 assert(NumInitElements <= NumArrayElements); 400 401 // DestPtr is an array*. Construct an elementType* by drilling 402 // down a level. 403 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 404 llvm::Value *indices[] = { zero, zero }; 405 llvm::Value *begin = 406 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 407 408 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 409 CharUnits elementAlign = 410 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 411 412 // Exception safety requires us to destroy all the 413 // already-constructed members if an initializer throws. 414 // For that, we'll need an EH cleanup. 415 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 416 Address endOfInit = Address::invalid(); 417 EHScopeStack::stable_iterator cleanup; 418 llvm::Instruction *cleanupDominator = nullptr; 419 if (CGF.needsEHCleanup(dtorKind)) { 420 // In principle we could tell the cleanup where we are more 421 // directly, but the control flow can get so varied here that it 422 // would actually be quite complex. Therefore we go through an 423 // alloca. 424 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 425 "arrayinit.endOfInit"); 426 cleanupDominator = Builder.CreateStore(begin, endOfInit); 427 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 428 elementAlign, 429 CGF.getDestroyer(dtorKind)); 430 cleanup = CGF.EHStack.stable_begin(); 431 432 // Otherwise, remember that we didn't need a cleanup. 433 } else { 434 dtorKind = QualType::DK_none; 435 } 436 437 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 438 439 // The 'current element to initialize'. The invariants on this 440 // variable are complicated. Essentially, after each iteration of 441 // the loop, it points to the last initialized element, except 442 // that it points to the beginning of the array before any 443 // elements have been initialized. 444 llvm::Value *element = begin; 445 446 // Emit the explicit initializers. 447 for (uint64_t i = 0; i != NumInitElements; ++i) { 448 // Advance to the next element. 449 if (i > 0) { 450 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 451 452 // Tell the cleanup that it needs to destroy up to this 453 // element. TODO: some of these stores can be trivially 454 // observed to be unnecessary. 455 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 456 } 457 458 LValue elementLV = 459 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 460 EmitInitializationToLValue(E->getInit(i), elementLV); 461 } 462 463 // Check whether there's a non-trivial array-fill expression. 464 Expr *filler = E->getArrayFiller(); 465 bool hasTrivialFiller = isTrivialFiller(filler); 466 467 // Any remaining elements need to be zero-initialized, possibly 468 // using the filler expression. We can skip this if the we're 469 // emitting to zeroed memory. 470 if (NumInitElements != NumArrayElements && 471 !(Dest.isZeroed() && hasTrivialFiller && 472 CGF.getTypes().isZeroInitializable(elementType))) { 473 474 // Use an actual loop. This is basically 475 // do { *array++ = filler; } while (array != end); 476 477 // Advance to the start of the rest of the array. 478 if (NumInitElements) { 479 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 480 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 481 } 482 483 // Compute the end of the array. 484 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 485 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 486 "arrayinit.end"); 487 488 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 489 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 490 491 // Jump into the body. 492 CGF.EmitBlock(bodyBB); 493 llvm::PHINode *currentElement = 494 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 495 currentElement->addIncoming(element, entryBB); 496 497 // Emit the actual filler expression. 498 { 499 // C++1z [class.temporary]p5: 500 // when a default constructor is called to initialize an element of 501 // an array with no corresponding initializer [...] the destruction of 502 // every temporary created in a default argument is sequenced before 503 // the construction of the next array element, if any 504 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 505 LValue elementLV = 506 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 507 if (filler) 508 EmitInitializationToLValue(filler, elementLV); 509 else 510 EmitNullInitializationToLValue(elementLV); 511 } 512 513 // Move on to the next element. 514 llvm::Value *nextElement = 515 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 516 517 // Tell the EH cleanup that we finished with the last element. 518 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 519 520 // Leave the loop if we're done. 521 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 522 "arrayinit.done"); 523 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 524 Builder.CreateCondBr(done, endBB, bodyBB); 525 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 526 527 CGF.EmitBlock(endBB); 528 } 529 530 // Leave the partial-array cleanup if we entered one. 531 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // Visitor Methods 536 //===----------------------------------------------------------------------===// 537 538 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 539 Visit(E->GetTemporaryExpr()); 540 } 541 542 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 543 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 544 } 545 546 void 547 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 548 if (Dest.isPotentiallyAliased() && 549 E->getType().isPODType(CGF.getContext())) { 550 // For a POD type, just emit a load of the lvalue + a copy, because our 551 // compound literal might alias the destination. 552 EmitAggLoadOfLValue(E); 553 return; 554 } 555 556 AggValueSlot Slot = EnsureSlot(E->getType()); 557 CGF.EmitAggExpr(E->getInitializer(), Slot); 558 } 559 560 /// Attempt to look through various unimportant expressions to find a 561 /// cast of the given kind. 562 static Expr *findPeephole(Expr *op, CastKind kind) { 563 while (true) { 564 op = op->IgnoreParens(); 565 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 566 if (castE->getCastKind() == kind) 567 return castE->getSubExpr(); 568 if (castE->getCastKind() == CK_NoOp) 569 continue; 570 } 571 return nullptr; 572 } 573 } 574 575 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 576 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 577 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 578 switch (E->getCastKind()) { 579 case CK_Dynamic: { 580 // FIXME: Can this actually happen? We have no test coverage for it. 581 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 582 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 583 CodeGenFunction::TCK_Load); 584 // FIXME: Do we also need to handle property references here? 585 if (LV.isSimple()) 586 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 587 else 588 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 589 590 if (!Dest.isIgnored()) 591 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 592 break; 593 } 594 595 case CK_ToUnion: { 596 // Evaluate even if the destination is ignored. 597 if (Dest.isIgnored()) { 598 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 599 /*ignoreResult=*/true); 600 break; 601 } 602 603 // GCC union extension 604 QualType Ty = E->getSubExpr()->getType(); 605 Address CastPtr = 606 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 607 EmitInitializationToLValue(E->getSubExpr(), 608 CGF.MakeAddrLValue(CastPtr, Ty)); 609 break; 610 } 611 612 case CK_DerivedToBase: 613 case CK_BaseToDerived: 614 case CK_UncheckedDerivedToBase: { 615 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 616 "should have been unpacked before we got here"); 617 } 618 619 case CK_NonAtomicToAtomic: 620 case CK_AtomicToNonAtomic: { 621 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 622 623 // Determine the atomic and value types. 624 QualType atomicType = E->getSubExpr()->getType(); 625 QualType valueType = E->getType(); 626 if (isToAtomic) std::swap(atomicType, valueType); 627 628 assert(atomicType->isAtomicType()); 629 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 630 atomicType->castAs<AtomicType>()->getValueType())); 631 632 // Just recurse normally if we're ignoring the result or the 633 // atomic type doesn't change representation. 634 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 635 return Visit(E->getSubExpr()); 636 } 637 638 CastKind peepholeTarget = 639 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 640 641 // These two cases are reverses of each other; try to peephole them. 642 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 643 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 644 E->getType()) && 645 "peephole significantly changed types?"); 646 return Visit(op); 647 } 648 649 // If we're converting an r-value of non-atomic type to an r-value 650 // of atomic type, just emit directly into the relevant sub-object. 651 if (isToAtomic) { 652 AggValueSlot valueDest = Dest; 653 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 654 // Zero-initialize. (Strictly speaking, we only need to intialize 655 // the padding at the end, but this is simpler.) 656 if (!Dest.isZeroed()) 657 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 658 659 // Build a GEP to refer to the subobject. 660 Address valueAddr = 661 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 662 CharUnits()); 663 valueDest = AggValueSlot::forAddr(valueAddr, 664 valueDest.getQualifiers(), 665 valueDest.isExternallyDestructed(), 666 valueDest.requiresGCollection(), 667 valueDest.isPotentiallyAliased(), 668 AggValueSlot::IsZeroed); 669 } 670 671 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 672 return; 673 } 674 675 // Otherwise, we're converting an atomic type to a non-atomic type. 676 // Make an atomic temporary, emit into that, and then copy the value out. 677 AggValueSlot atomicSlot = 678 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 679 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 680 681 Address valueAddr = 682 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 683 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 684 return EmitFinalDestCopy(valueType, rvalue); 685 } 686 687 case CK_LValueToRValue: 688 // If we're loading from a volatile type, force the destination 689 // into existence. 690 if (E->getSubExpr()->getType().isVolatileQualified()) { 691 EnsureDest(E->getType()); 692 return Visit(E->getSubExpr()); 693 } 694 695 // fallthrough 696 697 case CK_NoOp: 698 case CK_UserDefinedConversion: 699 case CK_ConstructorConversion: 700 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 701 E->getType()) && 702 "Implicit cast types must be compatible"); 703 Visit(E->getSubExpr()); 704 break; 705 706 case CK_LValueBitCast: 707 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 708 709 case CK_Dependent: 710 case CK_BitCast: 711 case CK_ArrayToPointerDecay: 712 case CK_FunctionToPointerDecay: 713 case CK_NullToPointer: 714 case CK_NullToMemberPointer: 715 case CK_BaseToDerivedMemberPointer: 716 case CK_DerivedToBaseMemberPointer: 717 case CK_MemberPointerToBoolean: 718 case CK_ReinterpretMemberPointer: 719 case CK_IntegralToPointer: 720 case CK_PointerToIntegral: 721 case CK_PointerToBoolean: 722 case CK_ToVoid: 723 case CK_VectorSplat: 724 case CK_IntegralCast: 725 case CK_BooleanToSignedIntegral: 726 case CK_IntegralToBoolean: 727 case CK_IntegralToFloating: 728 case CK_FloatingToIntegral: 729 case CK_FloatingToBoolean: 730 case CK_FloatingCast: 731 case CK_CPointerToObjCPointerCast: 732 case CK_BlockPointerToObjCPointerCast: 733 case CK_AnyPointerToBlockPointerCast: 734 case CK_ObjCObjectLValueCast: 735 case CK_FloatingRealToComplex: 736 case CK_FloatingComplexToReal: 737 case CK_FloatingComplexToBoolean: 738 case CK_FloatingComplexCast: 739 case CK_FloatingComplexToIntegralComplex: 740 case CK_IntegralRealToComplex: 741 case CK_IntegralComplexToReal: 742 case CK_IntegralComplexToBoolean: 743 case CK_IntegralComplexCast: 744 case CK_IntegralComplexToFloatingComplex: 745 case CK_ARCProduceObject: 746 case CK_ARCConsumeObject: 747 case CK_ARCReclaimReturnedObject: 748 case CK_ARCExtendBlockObject: 749 case CK_CopyAndAutoreleaseBlockObject: 750 case CK_BuiltinFnToFnPtr: 751 case CK_ZeroToOCLEvent: 752 case CK_ZeroToOCLQueue: 753 case CK_AddressSpaceConversion: 754 case CK_IntToOCLSampler: 755 llvm_unreachable("cast kind invalid for aggregate types"); 756 } 757 } 758 759 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 760 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 761 EmitAggLoadOfLValue(E); 762 return; 763 } 764 765 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 766 EmitMoveFromReturnSlot(E, RV); 767 } 768 769 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 770 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 771 EmitMoveFromReturnSlot(E, RV); 772 } 773 774 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 775 CGF.EmitIgnoredExpr(E->getLHS()); 776 Visit(E->getRHS()); 777 } 778 779 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 780 CodeGenFunction::StmtExprEvaluation eval(CGF); 781 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 782 } 783 784 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 785 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 786 VisitPointerToDataMemberBinaryOperator(E); 787 else 788 CGF.ErrorUnsupported(E, "aggregate binary expression"); 789 } 790 791 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 792 const BinaryOperator *E) { 793 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 794 EmitFinalDestCopy(E->getType(), LV); 795 } 796 797 /// Is the value of the given expression possibly a reference to or 798 /// into a __block variable? 799 static bool isBlockVarRef(const Expr *E) { 800 // Make sure we look through parens. 801 E = E->IgnoreParens(); 802 803 // Check for a direct reference to a __block variable. 804 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 805 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 806 return (var && var->hasAttr<BlocksAttr>()); 807 } 808 809 // More complicated stuff. 810 811 // Binary operators. 812 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 813 // For an assignment or pointer-to-member operation, just care 814 // about the LHS. 815 if (op->isAssignmentOp() || op->isPtrMemOp()) 816 return isBlockVarRef(op->getLHS()); 817 818 // For a comma, just care about the RHS. 819 if (op->getOpcode() == BO_Comma) 820 return isBlockVarRef(op->getRHS()); 821 822 // FIXME: pointer arithmetic? 823 return false; 824 825 // Check both sides of a conditional operator. 826 } else if (const AbstractConditionalOperator *op 827 = dyn_cast<AbstractConditionalOperator>(E)) { 828 return isBlockVarRef(op->getTrueExpr()) 829 || isBlockVarRef(op->getFalseExpr()); 830 831 // OVEs are required to support BinaryConditionalOperators. 832 } else if (const OpaqueValueExpr *op 833 = dyn_cast<OpaqueValueExpr>(E)) { 834 if (const Expr *src = op->getSourceExpr()) 835 return isBlockVarRef(src); 836 837 // Casts are necessary to get things like (*(int*)&var) = foo(). 838 // We don't really care about the kind of cast here, except 839 // we don't want to look through l2r casts, because it's okay 840 // to get the *value* in a __block variable. 841 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 842 if (cast->getCastKind() == CK_LValueToRValue) 843 return false; 844 return isBlockVarRef(cast->getSubExpr()); 845 846 // Handle unary operators. Again, just aggressively look through 847 // it, ignoring the operation. 848 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 849 return isBlockVarRef(uop->getSubExpr()); 850 851 // Look into the base of a field access. 852 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 853 return isBlockVarRef(mem->getBase()); 854 855 // Look into the base of a subscript. 856 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 857 return isBlockVarRef(sub->getBase()); 858 } 859 860 return false; 861 } 862 863 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 864 // For an assignment to work, the value on the right has 865 // to be compatible with the value on the left. 866 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 867 E->getRHS()->getType()) 868 && "Invalid assignment"); 869 870 // If the LHS might be a __block variable, and the RHS can 871 // potentially cause a block copy, we need to evaluate the RHS first 872 // so that the assignment goes the right place. 873 // This is pretty semantically fragile. 874 if (isBlockVarRef(E->getLHS()) && 875 E->getRHS()->HasSideEffects(CGF.getContext())) { 876 // Ensure that we have a destination, and evaluate the RHS into that. 877 EnsureDest(E->getRHS()->getType()); 878 Visit(E->getRHS()); 879 880 // Now emit the LHS and copy into it. 881 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 882 883 // That copy is an atomic copy if the LHS is atomic. 884 if (LHS.getType()->isAtomicType() || 885 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 886 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 887 return; 888 } 889 890 EmitCopy(E->getLHS()->getType(), 891 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 892 needsGC(E->getLHS()->getType()), 893 AggValueSlot::IsAliased), 894 Dest); 895 return; 896 } 897 898 LValue LHS = CGF.EmitLValue(E->getLHS()); 899 900 // If we have an atomic type, evaluate into the destination and then 901 // do an atomic copy. 902 if (LHS.getType()->isAtomicType() || 903 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 904 EnsureDest(E->getRHS()->getType()); 905 Visit(E->getRHS()); 906 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 907 return; 908 } 909 910 // Codegen the RHS so that it stores directly into the LHS. 911 AggValueSlot LHSSlot = 912 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 913 needsGC(E->getLHS()->getType()), 914 AggValueSlot::IsAliased); 915 // A non-volatile aggregate destination might have volatile member. 916 if (!LHSSlot.isVolatile() && 917 CGF.hasVolatileMember(E->getLHS()->getType())) 918 LHSSlot.setVolatile(true); 919 920 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 921 922 // Copy into the destination if the assignment isn't ignored. 923 EmitFinalDestCopy(E->getType(), LHS); 924 } 925 926 void AggExprEmitter:: 927 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 928 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 929 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 930 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 931 932 // Bind the common expression if necessary. 933 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 934 935 CodeGenFunction::ConditionalEvaluation eval(CGF); 936 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 937 CGF.getProfileCount(E)); 938 939 // Save whether the destination's lifetime is externally managed. 940 bool isExternallyDestructed = Dest.isExternallyDestructed(); 941 942 eval.begin(CGF); 943 CGF.EmitBlock(LHSBlock); 944 CGF.incrementProfileCounter(E); 945 Visit(E->getTrueExpr()); 946 eval.end(CGF); 947 948 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 949 CGF.Builder.CreateBr(ContBlock); 950 951 // If the result of an agg expression is unused, then the emission 952 // of the LHS might need to create a destination slot. That's fine 953 // with us, and we can safely emit the RHS into the same slot, but 954 // we shouldn't claim that it's already being destructed. 955 Dest.setExternallyDestructed(isExternallyDestructed); 956 957 eval.begin(CGF); 958 CGF.EmitBlock(RHSBlock); 959 Visit(E->getFalseExpr()); 960 eval.end(CGF); 961 962 CGF.EmitBlock(ContBlock); 963 } 964 965 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 966 Visit(CE->getChosenSubExpr()); 967 } 968 969 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 970 Address ArgValue = Address::invalid(); 971 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 972 973 // If EmitVAArg fails, emit an error. 974 if (!ArgPtr.isValid()) { 975 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 976 return; 977 } 978 979 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 980 } 981 982 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 983 // Ensure that we have a slot, but if we already do, remember 984 // whether it was externally destructed. 985 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 986 EnsureDest(E->getType()); 987 988 // We're going to push a destructor if there isn't already one. 989 Dest.setExternallyDestructed(); 990 991 Visit(E->getSubExpr()); 992 993 // Push that destructor we promised. 994 if (!wasExternallyDestructed) 995 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 996 } 997 998 void 999 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1000 AggValueSlot Slot = EnsureSlot(E->getType()); 1001 CGF.EmitCXXConstructExpr(E, Slot); 1002 } 1003 1004 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1005 const CXXInheritedCtorInitExpr *E) { 1006 AggValueSlot Slot = EnsureSlot(E->getType()); 1007 CGF.EmitInheritedCXXConstructorCall( 1008 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1009 E->inheritedFromVBase(), E); 1010 } 1011 1012 void 1013 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1014 AggValueSlot Slot = EnsureSlot(E->getType()); 1015 CGF.EmitLambdaExpr(E, Slot); 1016 } 1017 1018 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1019 CGF.enterFullExpression(E); 1020 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1021 Visit(E->getSubExpr()); 1022 } 1023 1024 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1025 QualType T = E->getType(); 1026 AggValueSlot Slot = EnsureSlot(T); 1027 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1028 } 1029 1030 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1031 QualType T = E->getType(); 1032 AggValueSlot Slot = EnsureSlot(T); 1033 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1034 } 1035 1036 /// isSimpleZero - If emitting this value will obviously just cause a store of 1037 /// zero to memory, return true. This can return false if uncertain, so it just 1038 /// handles simple cases. 1039 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1040 E = E->IgnoreParens(); 1041 1042 // 0 1043 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1044 return IL->getValue() == 0; 1045 // +0.0 1046 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1047 return FL->getValue().isPosZero(); 1048 // int() 1049 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1050 CGF.getTypes().isZeroInitializable(E->getType())) 1051 return true; 1052 // (int*)0 - Null pointer expressions. 1053 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1054 return ICE->getCastKind() == CK_NullToPointer && 1055 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1056 // '\0' 1057 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1058 return CL->getValue() == 0; 1059 1060 // Otherwise, hard case: conservatively return false. 1061 return false; 1062 } 1063 1064 1065 void 1066 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1067 QualType type = LV.getType(); 1068 // FIXME: Ignore result? 1069 // FIXME: Are initializers affected by volatile? 1070 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1071 // Storing "i32 0" to a zero'd memory location is a noop. 1072 return; 1073 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1074 return EmitNullInitializationToLValue(LV); 1075 } else if (isa<NoInitExpr>(E)) { 1076 // Do nothing. 1077 return; 1078 } else if (type->isReferenceType()) { 1079 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1080 return CGF.EmitStoreThroughLValue(RV, LV); 1081 } 1082 1083 switch (CGF.getEvaluationKind(type)) { 1084 case TEK_Complex: 1085 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1086 return; 1087 case TEK_Aggregate: 1088 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1089 AggValueSlot::IsDestructed, 1090 AggValueSlot::DoesNotNeedGCBarriers, 1091 AggValueSlot::IsNotAliased, 1092 Dest.isZeroed())); 1093 return; 1094 case TEK_Scalar: 1095 if (LV.isSimple()) { 1096 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1097 } else { 1098 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1099 } 1100 return; 1101 } 1102 llvm_unreachable("bad evaluation kind"); 1103 } 1104 1105 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1106 QualType type = lv.getType(); 1107 1108 // If the destination slot is already zeroed out before the aggregate is 1109 // copied into it, we don't have to emit any zeros here. 1110 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1111 return; 1112 1113 if (CGF.hasScalarEvaluationKind(type)) { 1114 // For non-aggregates, we can store the appropriate null constant. 1115 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1116 // Note that the following is not equivalent to 1117 // EmitStoreThroughBitfieldLValue for ARC types. 1118 if (lv.isBitField()) { 1119 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1120 } else { 1121 assert(lv.isSimple()); 1122 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1123 } 1124 } else { 1125 // There's a potential optimization opportunity in combining 1126 // memsets; that would be easy for arrays, but relatively 1127 // difficult for structures with the current code. 1128 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1129 } 1130 } 1131 1132 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1133 #if 0 1134 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1135 // (Length of globals? Chunks of zeroed-out space?). 1136 // 1137 // If we can, prefer a copy from a global; this is a lot less code for long 1138 // globals, and it's easier for the current optimizers to analyze. 1139 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1140 llvm::GlobalVariable* GV = 1141 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1142 llvm::GlobalValue::InternalLinkage, C, ""); 1143 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1144 return; 1145 } 1146 #endif 1147 if (E->hadArrayRangeDesignator()) 1148 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1149 1150 if (E->isTransparent()) 1151 return Visit(E->getInit(0)); 1152 1153 AggValueSlot Dest = EnsureSlot(E->getType()); 1154 1155 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1156 1157 // Handle initialization of an array. 1158 if (E->getType()->isArrayType()) { 1159 QualType elementType = 1160 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1161 1162 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1163 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1164 return; 1165 } 1166 1167 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1168 1169 // Do struct initialization; this code just sets each individual member 1170 // to the approprate value. This makes bitfield support automatic; 1171 // the disadvantage is that the generated code is more difficult for 1172 // the optimizer, especially with bitfields. 1173 unsigned NumInitElements = E->getNumInits(); 1174 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1175 1176 // We'll need to enter cleanup scopes in case any of the element 1177 // initializers throws an exception. 1178 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1179 llvm::Instruction *cleanupDominator = nullptr; 1180 1181 unsigned curInitIndex = 0; 1182 1183 // Emit initialization of base classes. 1184 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1185 assert(E->getNumInits() >= CXXRD->getNumBases() && 1186 "missing initializer for base class"); 1187 for (auto &Base : CXXRD->bases()) { 1188 assert(!Base.isVirtual() && "should not see vbases here"); 1189 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1190 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1191 Dest.getAddress(), CXXRD, BaseRD, 1192 /*isBaseVirtual*/ false); 1193 AggValueSlot AggSlot = 1194 AggValueSlot::forAddr(V, Qualifiers(), 1195 AggValueSlot::IsDestructed, 1196 AggValueSlot::DoesNotNeedGCBarriers, 1197 AggValueSlot::IsNotAliased); 1198 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1199 1200 if (QualType::DestructionKind dtorKind = 1201 Base.getType().isDestructedType()) { 1202 CGF.pushDestroy(dtorKind, V, Base.getType()); 1203 cleanups.push_back(CGF.EHStack.stable_begin()); 1204 } 1205 } 1206 } 1207 1208 // Prepare a 'this' for CXXDefaultInitExprs. 1209 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1210 1211 if (record->isUnion()) { 1212 // Only initialize one field of a union. The field itself is 1213 // specified by the initializer list. 1214 if (!E->getInitializedFieldInUnion()) { 1215 // Empty union; we have nothing to do. 1216 1217 #ifndef NDEBUG 1218 // Make sure that it's really an empty and not a failure of 1219 // semantic analysis. 1220 for (const auto *Field : record->fields()) 1221 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1222 #endif 1223 return; 1224 } 1225 1226 // FIXME: volatility 1227 FieldDecl *Field = E->getInitializedFieldInUnion(); 1228 1229 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1230 if (NumInitElements) { 1231 // Store the initializer into the field 1232 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1233 } else { 1234 // Default-initialize to null. 1235 EmitNullInitializationToLValue(FieldLoc); 1236 } 1237 1238 return; 1239 } 1240 1241 // Here we iterate over the fields; this makes it simpler to both 1242 // default-initialize fields and skip over unnamed fields. 1243 for (const auto *field : record->fields()) { 1244 // We're done once we hit the flexible array member. 1245 if (field->getType()->isIncompleteArrayType()) 1246 break; 1247 1248 // Always skip anonymous bitfields. 1249 if (field->isUnnamedBitfield()) 1250 continue; 1251 1252 // We're done if we reach the end of the explicit initializers, we 1253 // have a zeroed object, and the rest of the fields are 1254 // zero-initializable. 1255 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1256 CGF.getTypes().isZeroInitializable(E->getType())) 1257 break; 1258 1259 1260 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1261 // We never generate write-barries for initialized fields. 1262 LV.setNonGC(true); 1263 1264 if (curInitIndex < NumInitElements) { 1265 // Store the initializer into the field. 1266 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1267 } else { 1268 // We're out of initializers; default-initialize to null 1269 EmitNullInitializationToLValue(LV); 1270 } 1271 1272 // Push a destructor if necessary. 1273 // FIXME: if we have an array of structures, all explicitly 1274 // initialized, we can end up pushing a linear number of cleanups. 1275 bool pushedCleanup = false; 1276 if (QualType::DestructionKind dtorKind 1277 = field->getType().isDestructedType()) { 1278 assert(LV.isSimple()); 1279 if (CGF.needsEHCleanup(dtorKind)) { 1280 if (!cleanupDominator) 1281 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1282 CGF.Int8Ty, 1283 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1284 CharUnits::One()); // placeholder 1285 1286 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1287 CGF.getDestroyer(dtorKind), false); 1288 cleanups.push_back(CGF.EHStack.stable_begin()); 1289 pushedCleanup = true; 1290 } 1291 } 1292 1293 // If the GEP didn't get used because of a dead zero init or something 1294 // else, clean it up for -O0 builds and general tidiness. 1295 if (!pushedCleanup && LV.isSimple()) 1296 if (llvm::GetElementPtrInst *GEP = 1297 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1298 if (GEP->use_empty()) 1299 GEP->eraseFromParent(); 1300 } 1301 1302 // Deactivate all the partial cleanups in reverse order, which 1303 // generally means popping them. 1304 for (unsigned i = cleanups.size(); i != 0; --i) 1305 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1306 1307 // Destroy the placeholder if we made one. 1308 if (cleanupDominator) 1309 cleanupDominator->eraseFromParent(); 1310 } 1311 1312 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1313 llvm::Value *outerBegin) { 1314 // Emit the common subexpression. 1315 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1316 1317 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1318 uint64_t numElements = E->getArraySize().getZExtValue(); 1319 1320 if (!numElements) 1321 return; 1322 1323 // destPtr is an array*. Construct an elementType* by drilling down a level. 1324 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1325 llvm::Value *indices[] = {zero, zero}; 1326 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1327 "arrayinit.begin"); 1328 1329 // Prepare to special-case multidimensional array initialization: we avoid 1330 // emitting multiple destructor loops in that case. 1331 if (!outerBegin) 1332 outerBegin = begin; 1333 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1334 1335 QualType elementType = 1336 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1337 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1338 CharUnits elementAlign = 1339 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1340 1341 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1342 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1343 1344 // Jump into the body. 1345 CGF.EmitBlock(bodyBB); 1346 llvm::PHINode *index = 1347 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1348 index->addIncoming(zero, entryBB); 1349 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1350 1351 // Prepare for a cleanup. 1352 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1353 EHScopeStack::stable_iterator cleanup; 1354 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1355 if (outerBegin->getType() != element->getType()) 1356 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1357 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1358 elementAlign, 1359 CGF.getDestroyer(dtorKind)); 1360 cleanup = CGF.EHStack.stable_begin(); 1361 } else { 1362 dtorKind = QualType::DK_none; 1363 } 1364 1365 // Emit the actual filler expression. 1366 { 1367 // Temporaries created in an array initialization loop are destroyed 1368 // at the end of each iteration. 1369 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1370 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1371 LValue elementLV = 1372 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1373 1374 if (InnerLoop) { 1375 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1376 auto elementSlot = AggValueSlot::forLValue( 1377 elementLV, AggValueSlot::IsDestructed, 1378 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1379 AggExprEmitter(CGF, elementSlot, false) 1380 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1381 } else 1382 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1383 } 1384 1385 // Move on to the next element. 1386 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1387 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1388 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1389 1390 // Leave the loop if we're done. 1391 llvm::Value *done = Builder.CreateICmpEQ( 1392 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1393 "arrayinit.done"); 1394 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1395 Builder.CreateCondBr(done, endBB, bodyBB); 1396 1397 CGF.EmitBlock(endBB); 1398 1399 // Leave the partial-array cleanup if we entered one. 1400 if (dtorKind) 1401 CGF.DeactivateCleanupBlock(cleanup, index); 1402 } 1403 1404 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1405 AggValueSlot Dest = EnsureSlot(E->getType()); 1406 1407 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1408 EmitInitializationToLValue(E->getBase(), DestLV); 1409 VisitInitListExpr(E->getUpdater()); 1410 } 1411 1412 //===----------------------------------------------------------------------===// 1413 // Entry Points into this File 1414 //===----------------------------------------------------------------------===// 1415 1416 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1417 /// non-zero bytes that will be stored when outputting the initializer for the 1418 /// specified initializer expression. 1419 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1420 E = E->IgnoreParens(); 1421 1422 // 0 and 0.0 won't require any non-zero stores! 1423 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1424 1425 // If this is an initlist expr, sum up the size of sizes of the (present) 1426 // elements. If this is something weird, assume the whole thing is non-zero. 1427 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1428 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1429 return CGF.getContext().getTypeSizeInChars(E->getType()); 1430 1431 // InitListExprs for structs have to be handled carefully. If there are 1432 // reference members, we need to consider the size of the reference, not the 1433 // referencee. InitListExprs for unions and arrays can't have references. 1434 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1435 if (!RT->isUnionType()) { 1436 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1437 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1438 1439 unsigned ILEElement = 0; 1440 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1441 while (ILEElement != CXXRD->getNumBases()) 1442 NumNonZeroBytes += 1443 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1444 for (const auto *Field : SD->fields()) { 1445 // We're done once we hit the flexible array member or run out of 1446 // InitListExpr elements. 1447 if (Field->getType()->isIncompleteArrayType() || 1448 ILEElement == ILE->getNumInits()) 1449 break; 1450 if (Field->isUnnamedBitfield()) 1451 continue; 1452 1453 const Expr *E = ILE->getInit(ILEElement++); 1454 1455 // Reference values are always non-null and have the width of a pointer. 1456 if (Field->getType()->isReferenceType()) 1457 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1458 CGF.getTarget().getPointerWidth(0)); 1459 else 1460 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1461 } 1462 1463 return NumNonZeroBytes; 1464 } 1465 } 1466 1467 1468 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1469 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1470 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1471 return NumNonZeroBytes; 1472 } 1473 1474 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1475 /// zeros in it, emit a memset and avoid storing the individual zeros. 1476 /// 1477 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1478 CodeGenFunction &CGF) { 1479 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1480 // volatile stores. 1481 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1482 return; 1483 1484 // C++ objects with a user-declared constructor don't need zero'ing. 1485 if (CGF.getLangOpts().CPlusPlus) 1486 if (const RecordType *RT = CGF.getContext() 1487 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1488 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1489 if (RD->hasUserDeclaredConstructor()) 1490 return; 1491 } 1492 1493 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1494 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1495 if (Size <= CharUnits::fromQuantity(16)) 1496 return; 1497 1498 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1499 // we prefer to emit memset + individual stores for the rest. 1500 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1501 if (NumNonZeroBytes*4 > Size) 1502 return; 1503 1504 // Okay, it seems like a good idea to use an initial memset, emit the call. 1505 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1506 1507 Address Loc = Slot.getAddress(); 1508 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1509 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1510 1511 // Tell the AggExprEmitter that the slot is known zero. 1512 Slot.setZeroed(); 1513 } 1514 1515 1516 1517 1518 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1519 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1520 /// the value of the aggregate expression is not needed. If VolatileDest is 1521 /// true, DestPtr cannot be 0. 1522 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1523 assert(E && hasAggregateEvaluationKind(E->getType()) && 1524 "Invalid aggregate expression to emit"); 1525 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1526 "slot has bits but no address"); 1527 1528 // Optimize the slot if possible. 1529 CheckAggExprForMemSetUse(Slot, E, *this); 1530 1531 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1532 } 1533 1534 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1535 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1536 Address Temp = CreateMemTemp(E->getType()); 1537 LValue LV = MakeAddrLValue(Temp, E->getType()); 1538 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1539 AggValueSlot::DoesNotNeedGCBarriers, 1540 AggValueSlot::IsNotAliased)); 1541 return LV; 1542 } 1543 1544 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1545 Address SrcPtr, QualType Ty, 1546 bool isVolatile, 1547 bool isAssignment) { 1548 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1549 1550 if (getLangOpts().CPlusPlus) { 1551 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1552 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1553 assert((Record->hasTrivialCopyConstructor() || 1554 Record->hasTrivialCopyAssignment() || 1555 Record->hasTrivialMoveConstructor() || 1556 Record->hasTrivialMoveAssignment() || 1557 Record->isUnion()) && 1558 "Trying to aggregate-copy a type without a trivial copy/move " 1559 "constructor or assignment operator"); 1560 // Ignore empty classes in C++. 1561 if (Record->isEmpty()) 1562 return; 1563 } 1564 } 1565 1566 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1567 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1568 // read from another object that overlaps in anyway the storage of the first 1569 // object, then the overlap shall be exact and the two objects shall have 1570 // qualified or unqualified versions of a compatible type." 1571 // 1572 // memcpy is not defined if the source and destination pointers are exactly 1573 // equal, but other compilers do this optimization, and almost every memcpy 1574 // implementation handles this case safely. If there is a libc that does not 1575 // safely handle this, we can add a target hook. 1576 1577 // Get data size info for this aggregate. If this is an assignment, 1578 // don't copy the tail padding, because we might be assigning into a 1579 // base subobject where the tail padding is claimed. Otherwise, 1580 // copying it is fine. 1581 std::pair<CharUnits, CharUnits> TypeInfo; 1582 if (isAssignment) 1583 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1584 else 1585 TypeInfo = getContext().getTypeInfoInChars(Ty); 1586 1587 llvm::Value *SizeVal = nullptr; 1588 if (TypeInfo.first.isZero()) { 1589 // But note that getTypeInfo returns 0 for a VLA. 1590 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1591 getContext().getAsArrayType(Ty))) { 1592 QualType BaseEltTy; 1593 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1594 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1595 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1596 if (!isAssignment) 1597 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1598 assert(!TypeInfo.first.isZero()); 1599 SizeVal = Builder.CreateNUWMul( 1600 SizeVal, 1601 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1602 if (!isAssignment) { 1603 SizeVal = Builder.CreateNUWSub( 1604 SizeVal, 1605 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1606 SizeVal = Builder.CreateNUWAdd( 1607 SizeVal, llvm::ConstantInt::get( 1608 SizeTy, LastElementTypeInfo.first.getQuantity())); 1609 } 1610 } 1611 } 1612 if (!SizeVal) { 1613 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1614 } 1615 1616 // FIXME: If we have a volatile struct, the optimizer can remove what might 1617 // appear to be `extra' memory ops: 1618 // 1619 // volatile struct { int i; } a, b; 1620 // 1621 // int main() { 1622 // a = b; 1623 // a = b; 1624 // } 1625 // 1626 // we need to use a different call here. We use isVolatile to indicate when 1627 // either the source or the destination is volatile. 1628 1629 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1630 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1631 1632 // Don't do any of the memmove_collectable tests if GC isn't set. 1633 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1634 // fall through 1635 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1636 RecordDecl *Record = RecordTy->getDecl(); 1637 if (Record->hasObjectMember()) { 1638 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1639 SizeVal); 1640 return; 1641 } 1642 } else if (Ty->isArrayType()) { 1643 QualType BaseType = getContext().getBaseElementType(Ty); 1644 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1645 if (RecordTy->getDecl()->hasObjectMember()) { 1646 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1647 SizeVal); 1648 return; 1649 } 1650 } 1651 } 1652 1653 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1654 1655 // Determine the metadata to describe the position of any padding in this 1656 // memcpy, as well as the TBAA tags for the members of the struct, in case 1657 // the optimizer wishes to expand it in to scalar memory operations. 1658 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1659 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1660 } 1661