1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118 
119   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
120   void VisitChooseExpr(const ChooseExpr *CE);
121   void VisitInitListExpr(InitListExpr *E);
122   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
123   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
124     Visit(DAE->getExpr());
125   }
126   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
127   void VisitCXXConstructExpr(const CXXConstructExpr *E);
128   void VisitExprWithCleanups(ExprWithCleanups *E);
129   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
130   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
131 
132   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
133 
134   void VisitVAArgExpr(VAArgExpr *E);
135 
136   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
137   void EmitNullInitializationToLValue(LValue Address, QualType T);
138   //  case Expr::ChooseExprClass:
139   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
140 };
141 }  // end anonymous namespace.
142 
143 //===----------------------------------------------------------------------===//
144 //                                Utilities
145 //===----------------------------------------------------------------------===//
146 
147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
148 /// represents a value lvalue, this method emits the address of the lvalue,
149 /// then loads the result into DestPtr.
150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
151   LValue LV = CGF.EmitLValue(E);
152   EmitFinalDestCopy(E, LV);
153 }
154 
155 /// \brief True if the given aggregate type requires special GC API calls.
156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
157   // Only record types have members that might require garbage collection.
158   const RecordType *RecordTy = T->getAs<RecordType>();
159   if (!RecordTy) return false;
160 
161   // Don't mess with non-trivial C++ types.
162   RecordDecl *Record = RecordTy->getDecl();
163   if (isa<CXXRecordDecl>(Record) &&
164       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
165        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
166     return false;
167 
168   // Check whether the type has an object member.
169   return Record->hasObjectMember();
170 }
171 
172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
173 ///
174 /// The idea is that you do something like this:
175 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
176 ///   EmitGCMove(E, Result);
177 /// If GC doesn't interfere, this will cause the result to be emitted
178 /// directly into the return value slot.  If GC does interfere, a final
179 /// move will be performed.
180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
181   if (Dest.requiresGCollection()) {
182     std::pair<uint64_t, unsigned> TypeInfo =
183       CGF.getContext().getTypeInfo(E->getType());
184     unsigned long size = TypeInfo.first/8;
185     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
186     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
187     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
188                                                     Src.getAggregateAddr(),
189                                                     SizeVal);
190   }
191 }
192 
193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
195   assert(Src.isAggregate() && "value must be aggregate value!");
196 
197   // If Dest is ignored, then we're evaluating an aggregate expression
198   // in a context (like an expression statement) that doesn't care
199   // about the result.  C says that an lvalue-to-rvalue conversion is
200   // performed in these cases; C++ says that it is not.  In either
201   // case, we don't actually need to do anything unless the value is
202   // volatile.
203   if (Dest.isIgnored()) {
204     if (!Src.isVolatileQualified() ||
205         CGF.CGM.getLangOptions().CPlusPlus ||
206         (IgnoreResult && Ignore))
207       return;
208 
209     // If the source is volatile, we must read from it; to do that, we need
210     // some place to put it.
211     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
212   }
213 
214   if (Dest.requiresGCollection()) {
215     std::pair<uint64_t, unsigned> TypeInfo =
216     CGF.getContext().getTypeInfo(E->getType());
217     unsigned long size = TypeInfo.first/8;
218     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
219     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
220     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
221                                                       Dest.getAddr(),
222                                                       Src.getAggregateAddr(),
223                                                       SizeVal);
224     return;
225   }
226   // If the result of the assignment is used, copy the LHS there also.
227   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
228   // from the source as well, as we can't eliminate it if either operand
229   // is volatile, unless copy has volatile for both source and destination..
230   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
231                         Dest.isVolatile()|Src.isVolatileQualified());
232 }
233 
234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
236   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
237 
238   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
239                                             Src.isVolatileQualified()),
240                     Ignore);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //                            Visitor Methods
245 //===----------------------------------------------------------------------===//
246 
247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
248   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
249 }
250 
251 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
252   switch (E->getCastKind()) {
253   case CK_Dynamic: {
254     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
255     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
256     // FIXME: Do we also need to handle property references here?
257     if (LV.isSimple())
258       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
259     else
260       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
261 
262     if (!Dest.isIgnored())
263       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
264     break;
265   }
266 
267   case CK_ToUnion: {
268     if (Dest.isIgnored()) break;
269 
270     // GCC union extension
271     QualType Ty = E->getSubExpr()->getType();
272     QualType PtrTy = CGF.getContext().getPointerType(Ty);
273     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
274                                                  CGF.ConvertType(PtrTy));
275     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
276                                Ty);
277     break;
278   }
279 
280   case CK_DerivedToBase:
281   case CK_BaseToDerived:
282   case CK_UncheckedDerivedToBase: {
283     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
284                 "should have been unpacked before we got here");
285     break;
286   }
287 
288   case CK_GetObjCProperty: {
289     LValue LV = CGF.EmitLValue(E->getSubExpr());
290     assert(LV.isPropertyRef());
291     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
292     EmitGCMove(E, RV);
293     break;
294   }
295 
296   case CK_LValueToRValue: // hope for downstream optimization
297   case CK_NoOp:
298   case CK_UserDefinedConversion:
299   case CK_ConstructorConversion:
300     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
301                                                    E->getType()) &&
302            "Implicit cast types must be compatible");
303     Visit(E->getSubExpr());
304     break;
305 
306   case CK_LValueBitCast:
307     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
308     break;
309 
310   case CK_Dependent:
311   case CK_BitCast:
312   case CK_ArrayToPointerDecay:
313   case CK_FunctionToPointerDecay:
314   case CK_NullToPointer:
315   case CK_NullToMemberPointer:
316   case CK_BaseToDerivedMemberPointer:
317   case CK_DerivedToBaseMemberPointer:
318   case CK_MemberPointerToBoolean:
319   case CK_IntegralToPointer:
320   case CK_PointerToIntegral:
321   case CK_PointerToBoolean:
322   case CK_ToVoid:
323   case CK_VectorSplat:
324   case CK_IntegralCast:
325   case CK_IntegralToBoolean:
326   case CK_IntegralToFloating:
327   case CK_FloatingToIntegral:
328   case CK_FloatingToBoolean:
329   case CK_FloatingCast:
330   case CK_AnyPointerToObjCPointerCast:
331   case CK_AnyPointerToBlockPointerCast:
332   case CK_ObjCObjectLValueCast:
333   case CK_FloatingRealToComplex:
334   case CK_FloatingComplexToReal:
335   case CK_FloatingComplexToBoolean:
336   case CK_FloatingComplexCast:
337   case CK_FloatingComplexToIntegralComplex:
338   case CK_IntegralRealToComplex:
339   case CK_IntegralComplexToReal:
340   case CK_IntegralComplexToBoolean:
341   case CK_IntegralComplexCast:
342   case CK_IntegralComplexToFloatingComplex:
343     llvm_unreachable("cast kind invalid for aggregate types");
344   }
345 }
346 
347 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
348   if (E->getCallReturnType()->isReferenceType()) {
349     EmitAggLoadOfLValue(E);
350     return;
351   }
352 
353   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
354   EmitGCMove(E, RV);
355 }
356 
357 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
358   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
359   EmitGCMove(E, RV);
360 }
361 
362 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
363   llvm_unreachable("direct property access not surrounded by "
364                    "lvalue-to-rvalue cast");
365 }
366 
367 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
368   CGF.EmitIgnoredExpr(E->getLHS());
369   Visit(E->getRHS());
370 }
371 
372 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
373   CodeGenFunction::StmtExprEvaluation eval(CGF);
374   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
375 }
376 
377 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
378   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
379     VisitPointerToDataMemberBinaryOperator(E);
380   else
381     CGF.ErrorUnsupported(E, "aggregate binary expression");
382 }
383 
384 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
385                                                     const BinaryOperator *E) {
386   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
387   EmitFinalDestCopy(E, LV);
388 }
389 
390 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
391   // For an assignment to work, the value on the right has
392   // to be compatible with the value on the left.
393   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
394                                                  E->getRHS()->getType())
395          && "Invalid assignment");
396 
397   // FIXME:  __block variables need the RHS evaluated first!
398   LValue LHS = CGF.EmitLValue(E->getLHS());
399 
400   // We have to special case property setters, otherwise we must have
401   // a simple lvalue (no aggregates inside vectors, bitfields).
402   if (LHS.isPropertyRef()) {
403     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
404     QualType ArgType = RE->getSetterArgType();
405     RValue Src;
406     if (ArgType->isReferenceType())
407       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
408     else {
409       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
410       CGF.EmitAggExpr(E->getRHS(), Slot);
411       Src = Slot.asRValue();
412     }
413     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
414   } else {
415     bool GCollection = false;
416     if (CGF.getContext().getLangOptions().getGCMode())
417       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
418 
419     // Codegen the RHS so that it stores directly into the LHS.
420     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
421                                                    GCollection);
422     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
423     EmitFinalDestCopy(E, LHS, true);
424   }
425 }
426 
427 void AggExprEmitter::
428 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
429   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
430   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
431   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
432 
433   // Bind the common expression if necessary.
434   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
435 
436   CodeGenFunction::ConditionalEvaluation eval(CGF);
437   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
438 
439   // Save whether the destination's lifetime is externally managed.
440   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
441 
442   eval.begin(CGF);
443   CGF.EmitBlock(LHSBlock);
444   Visit(E->getTrueExpr());
445   eval.end(CGF);
446 
447   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
448   CGF.Builder.CreateBr(ContBlock);
449 
450   // If the result of an agg expression is unused, then the emission
451   // of the LHS might need to create a destination slot.  That's fine
452   // with us, and we can safely emit the RHS into the same slot, but
453   // we shouldn't claim that its lifetime is externally managed.
454   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
455 
456   eval.begin(CGF);
457   CGF.EmitBlock(RHSBlock);
458   Visit(E->getFalseExpr());
459   eval.end(CGF);
460 
461   CGF.EmitBlock(ContBlock);
462 }
463 
464 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
465   Visit(CE->getChosenSubExpr(CGF.getContext()));
466 }
467 
468 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
469   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
470   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
471 
472   if (!ArgPtr) {
473     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
474     return;
475   }
476 
477   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
478 }
479 
480 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
481   // Ensure that we have a slot, but if we already do, remember
482   // whether its lifetime was externally managed.
483   bool WasManaged = Dest.isLifetimeExternallyManaged();
484   Dest = EnsureSlot(E->getType());
485   Dest.setLifetimeExternallyManaged();
486 
487   Visit(E->getSubExpr());
488 
489   // Set up the temporary's destructor if its lifetime wasn't already
490   // being managed.
491   if (!WasManaged)
492     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
493 }
494 
495 void
496 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
497   AggValueSlot Slot = EnsureSlot(E->getType());
498   CGF.EmitCXXConstructExpr(E, Slot);
499 }
500 
501 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
502   CGF.EmitExprWithCleanups(E, Dest);
503 }
504 
505 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
506   QualType T = E->getType();
507   AggValueSlot Slot = EnsureSlot(T);
508   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
509 }
510 
511 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
512   QualType T = E->getType();
513   AggValueSlot Slot = EnsureSlot(T);
514   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
515 }
516 
517 /// isSimpleZero - If emitting this value will obviously just cause a store of
518 /// zero to memory, return true.  This can return false if uncertain, so it just
519 /// handles simple cases.
520 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
521   // (0)
522   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
523     return isSimpleZero(PE->getSubExpr(), CGF);
524   // 0
525   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
526     return IL->getValue() == 0;
527   // +0.0
528   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
529     return FL->getValue().isPosZero();
530   // int()
531   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
532       CGF.getTypes().isZeroInitializable(E->getType()))
533     return true;
534   // (int*)0 - Null pointer expressions.
535   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
536     return ICE->getCastKind() == CK_NullToPointer;
537   // '\0'
538   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
539     return CL->getValue() == 0;
540 
541   // Otherwise, hard case: conservatively return false.
542   return false;
543 }
544 
545 
546 void
547 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
548   // FIXME: Ignore result?
549   // FIXME: Are initializers affected by volatile?
550   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
551     // Storing "i32 0" to a zero'd memory location is a noop.
552   } else if (isa<ImplicitValueInitExpr>(E)) {
553     EmitNullInitializationToLValue(LV, T);
554   } else if (T->isReferenceType()) {
555     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
556     CGF.EmitStoreThroughLValue(RV, LV, T);
557   } else if (T->isAnyComplexType()) {
558     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
559   } else if (CGF.hasAggregateLLVMType(T)) {
560     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
561                                              false, Dest.isZeroed()));
562   } else {
563     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
564   }
565 }
566 
567 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
568   // If the destination slot is already zeroed out before the aggregate is
569   // copied into it, we don't have to emit any zeros here.
570   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
571     return;
572 
573   if (!CGF.hasAggregateLLVMType(T)) {
574     // For non-aggregates, we can store zero
575     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
576     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
577   } else {
578     // There's a potential optimization opportunity in combining
579     // memsets; that would be easy for arrays, but relatively
580     // difficult for structures with the current code.
581     CGF.EmitNullInitialization(LV.getAddress(), T);
582   }
583 }
584 
585 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
586 #if 0
587   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
588   // (Length of globals? Chunks of zeroed-out space?).
589   //
590   // If we can, prefer a copy from a global; this is a lot less code for long
591   // globals, and it's easier for the current optimizers to analyze.
592   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
593     llvm::GlobalVariable* GV =
594     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
595                              llvm::GlobalValue::InternalLinkage, C, "");
596     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
597     return;
598   }
599 #endif
600   if (E->hadArrayRangeDesignator())
601     CGF.ErrorUnsupported(E, "GNU array range designator extension");
602 
603   llvm::Value *DestPtr = Dest.getAddr();
604 
605   // Handle initialization of an array.
606   if (E->getType()->isArrayType()) {
607     const llvm::PointerType *APType =
608       cast<llvm::PointerType>(DestPtr->getType());
609     const llvm::ArrayType *AType =
610       cast<llvm::ArrayType>(APType->getElementType());
611 
612     uint64_t NumInitElements = E->getNumInits();
613 
614     if (E->getNumInits() > 0) {
615       QualType T1 = E->getType();
616       QualType T2 = E->getInit(0)->getType();
617       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
618         EmitAggLoadOfLValue(E->getInit(0));
619         return;
620       }
621     }
622 
623     uint64_t NumArrayElements = AType->getNumElements();
624     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
625     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
626 
627     // FIXME: were we intentionally ignoring address spaces and GC attributes?
628 
629     for (uint64_t i = 0; i != NumArrayElements; ++i) {
630       // If we're done emitting initializers and the destination is known-zeroed
631       // then we're done.
632       if (i == NumInitElements &&
633           Dest.isZeroed() &&
634           CGF.getTypes().isZeroInitializable(ElementType))
635         break;
636 
637       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
638       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
639 
640       if (i < NumInitElements)
641         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
642       else
643         EmitNullInitializationToLValue(LV, ElementType);
644 
645       // If the GEP didn't get used because of a dead zero init or something
646       // else, clean it up for -O0 builds and general tidiness.
647       if (llvm::GetElementPtrInst *GEP =
648             dyn_cast<llvm::GetElementPtrInst>(NextVal))
649         if (GEP->use_empty())
650           GEP->eraseFromParent();
651     }
652     return;
653   }
654 
655   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
656 
657   // Do struct initialization; this code just sets each individual member
658   // to the approprate value.  This makes bitfield support automatic;
659   // the disadvantage is that the generated code is more difficult for
660   // the optimizer, especially with bitfields.
661   unsigned NumInitElements = E->getNumInits();
662   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
663 
664   if (E->getType()->isUnionType()) {
665     // Only initialize one field of a union. The field itself is
666     // specified by the initializer list.
667     if (!E->getInitializedFieldInUnion()) {
668       // Empty union; we have nothing to do.
669 
670 #ifndef NDEBUG
671       // Make sure that it's really an empty and not a failure of
672       // semantic analysis.
673       for (RecordDecl::field_iterator Field = SD->field_begin(),
674                                    FieldEnd = SD->field_end();
675            Field != FieldEnd; ++Field)
676         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
677 #endif
678       return;
679     }
680 
681     // FIXME: volatility
682     FieldDecl *Field = E->getInitializedFieldInUnion();
683 
684     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
685     if (NumInitElements) {
686       // Store the initializer into the field
687       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
688     } else {
689       // Default-initialize to null.
690       EmitNullInitializationToLValue(FieldLoc, Field->getType());
691     }
692 
693     return;
694   }
695 
696   // Here we iterate over the fields; this makes it simpler to both
697   // default-initialize fields and skip over unnamed fields.
698   unsigned CurInitVal = 0;
699   for (RecordDecl::field_iterator Field = SD->field_begin(),
700                                FieldEnd = SD->field_end();
701        Field != FieldEnd; ++Field) {
702     // We're done once we hit the flexible array member
703     if (Field->getType()->isIncompleteArrayType())
704       break;
705 
706     if (Field->isUnnamedBitfield())
707       continue;
708 
709     // Don't emit GEP before a noop store of zero.
710     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
711         CGF.getTypes().isZeroInitializable(E->getType()))
712       break;
713 
714     // FIXME: volatility
715     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
716     // We never generate write-barries for initialized fields.
717     FieldLoc.setNonGC(true);
718 
719     if (CurInitVal < NumInitElements) {
720       // Store the initializer into the field.
721       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
722                                  Field->getType());
723     } else {
724       // We're out of initalizers; default-initialize to null
725       EmitNullInitializationToLValue(FieldLoc, Field->getType());
726     }
727 
728     // If the GEP didn't get used because of a dead zero init or something
729     // else, clean it up for -O0 builds and general tidiness.
730     if (FieldLoc.isSimple())
731       if (llvm::GetElementPtrInst *GEP =
732             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
733         if (GEP->use_empty())
734           GEP->eraseFromParent();
735   }
736 }
737 
738 //===----------------------------------------------------------------------===//
739 //                        Entry Points into this File
740 //===----------------------------------------------------------------------===//
741 
742 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
743 /// non-zero bytes that will be stored when outputting the initializer for the
744 /// specified initializer expression.
745 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
746   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
747     return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
748 
749   // 0 and 0.0 won't require any non-zero stores!
750   if (isSimpleZero(E, CGF)) return 0;
751 
752   // If this is an initlist expr, sum up the size of sizes of the (present)
753   // elements.  If this is something weird, assume the whole thing is non-zero.
754   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
755   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
756     return CGF.getContext().getTypeSize(E->getType())/8;
757 
758   // InitListExprs for structs have to be handled carefully.  If there are
759   // reference members, we need to consider the size of the reference, not the
760   // referencee.  InitListExprs for unions and arrays can't have references.
761   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
762     if (!RT->isUnionType()) {
763       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
764       uint64_t NumNonZeroBytes = 0;
765 
766       unsigned ILEElement = 0;
767       for (RecordDecl::field_iterator Field = SD->field_begin(),
768            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
769         // We're done once we hit the flexible array member or run out of
770         // InitListExpr elements.
771         if (Field->getType()->isIncompleteArrayType() ||
772             ILEElement == ILE->getNumInits())
773           break;
774         if (Field->isUnnamedBitfield())
775           continue;
776 
777         const Expr *E = ILE->getInit(ILEElement++);
778 
779         // Reference values are always non-null and have the width of a pointer.
780         if (Field->getType()->isReferenceType())
781           NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
782         else
783           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
784       }
785 
786       return NumNonZeroBytes;
787     }
788   }
789 
790 
791   uint64_t NumNonZeroBytes = 0;
792   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
793     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
794   return NumNonZeroBytes;
795 }
796 
797 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
798 /// zeros in it, emit a memset and avoid storing the individual zeros.
799 ///
800 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
801                                      CodeGenFunction &CGF) {
802   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
803   // volatile stores.
804   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
805 
806   // If the type is 16-bytes or smaller, prefer individual stores over memset.
807   std::pair<uint64_t, unsigned> TypeInfo =
808     CGF.getContext().getTypeInfo(E->getType());
809   if (TypeInfo.first/8 <= 16)
810     return;
811 
812   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
813   // we prefer to emit memset + individual stores for the rest.
814   uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
815   if (NumNonZeroBytes*4 > TypeInfo.first/8)
816     return;
817 
818   // Okay, it seems like a good idea to use an initial memset, emit the call.
819   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
820   unsigned Align = TypeInfo.second/8;
821 
822   llvm::Value *Loc = Slot.getAddr();
823   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
824 
825   Loc = CGF.Builder.CreateBitCast(Loc, BP);
826   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
827 
828   // Tell the AggExprEmitter that the slot is known zero.
829   Slot.setZeroed();
830 }
831 
832 
833 
834 
835 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
836 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
837 /// the value of the aggregate expression is not needed.  If VolatileDest is
838 /// true, DestPtr cannot be 0.
839 ///
840 /// \param IsInitializer - true if this evaluation is initializing an
841 /// object whose lifetime is already being managed.
842 //
843 // FIXME: Take Qualifiers object.
844 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
845                                   bool IgnoreResult) {
846   assert(E && hasAggregateLLVMType(E->getType()) &&
847          "Invalid aggregate expression to emit");
848   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
849          "slot has bits but no address");
850 
851   // Optimize the slot if possible.
852   CheckAggExprForMemSetUse(Slot, E, *this);
853 
854   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
855 }
856 
857 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
858   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
859   llvm::Value *Temp = CreateMemTemp(E->getType());
860   LValue LV = MakeAddrLValue(Temp, E->getType());
861   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
862   return LV;
863 }
864 
865 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
866                                         llvm::Value *SrcPtr, QualType Ty,
867                                         bool isVolatile) {
868   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
869 
870   if (getContext().getLangOptions().CPlusPlus) {
871     if (const RecordType *RT = Ty->getAs<RecordType>()) {
872       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
873       assert((Record->hasTrivialCopyConstructor() ||
874               Record->hasTrivialCopyAssignment()) &&
875              "Trying to aggregate-copy a type without a trivial copy "
876              "constructor or assignment operator");
877       // Ignore empty classes in C++.
878       if (Record->isEmpty())
879         return;
880     }
881   }
882 
883   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
884   // C99 6.5.16.1p3, which states "If the value being stored in an object is
885   // read from another object that overlaps in anyway the storage of the first
886   // object, then the overlap shall be exact and the two objects shall have
887   // qualified or unqualified versions of a compatible type."
888   //
889   // memcpy is not defined if the source and destination pointers are exactly
890   // equal, but other compilers do this optimization, and almost every memcpy
891   // implementation handles this case safely.  If there is a libc that does not
892   // safely handle this, we can add a target hook.
893 
894   // Get size and alignment info for this aggregate.
895   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
896 
897   // FIXME: Handle variable sized types.
898 
899   // FIXME: If we have a volatile struct, the optimizer can remove what might
900   // appear to be `extra' memory ops:
901   //
902   // volatile struct { int i; } a, b;
903   //
904   // int main() {
905   //   a = b;
906   //   a = b;
907   // }
908   //
909   // we need to use a different call here.  We use isVolatile to indicate when
910   // either the source or the destination is volatile.
911 
912   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
913   const llvm::Type *DBP =
914     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
915   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
916 
917   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
918   const llvm::Type *SBP =
919     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
920   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
921 
922   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
923     RecordDecl *Record = RecordTy->getDecl();
924     if (Record->hasObjectMember()) {
925       unsigned long size = TypeInfo.first/8;
926       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
927       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
928       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
929                                                     SizeVal);
930       return;
931     }
932   } else if (getContext().getAsArrayType(Ty)) {
933     QualType BaseType = getContext().getBaseElementType(Ty);
934     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
935       if (RecordTy->getDecl()->hasObjectMember()) {
936         unsigned long size = TypeInfo.first/8;
937         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
938         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
939         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
940                                                       SizeVal);
941         return;
942       }
943     }
944   }
945 
946   Builder.CreateMemCpy(DestPtr, SrcPtr,
947                        llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
948                        TypeInfo.second/8, isVolatile);
949 }
950