1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 CGBuilderTy &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 void EmitNonConstInit(InitListExpr *E); 52 53 //===--------------------------------------------------------------------===// 54 // Visitor Methods 55 //===--------------------------------------------------------------------===// 56 57 void VisitStmt(Stmt *S) { 58 CGF.ErrorUnsupported(S, "aggregate expression"); 59 } 60 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 61 62 // l-values. 63 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 64 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 65 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 66 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 67 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 68 { EmitAggLoadOfLValue(E); } 69 70 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 71 EmitAggLoadOfLValue(E); 72 } 73 74 // Operators. 75 // case Expr::UnaryOperatorClass: 76 // case Expr::CastExprClass: 77 void VisitImplicitCastExpr(ImplicitCastExpr *E); 78 void VisitCallExpr(const CallExpr *E); 79 void VisitStmtExpr(const StmtExpr *E); 80 void VisitBinaryOperator(const BinaryOperator *BO); 81 void VisitBinAssign(const BinaryOperator *E); 82 void VisitOverloadExpr(const OverloadExpr *E); 83 void VisitBinComma(const BinaryOperator *E); 84 85 void VisitObjCMessageExpr(ObjCMessageExpr *E); 86 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 87 EmitAggLoadOfLValue(E); 88 } 89 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 90 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 91 92 void VisitConditionalOperator(const ConditionalOperator *CO); 93 void VisitInitListExpr(InitListExpr *E); 94 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 95 Visit(DAE->getExpr()); 96 } 97 void VisitVAArgExpr(VAArgExpr *E); 98 99 void EmitInitializationToLValue(Expr *E, LValue Address); 100 void EmitNullInitializationToLValue(LValue Address, QualType T); 101 // case Expr::ChooseExprClass: 102 103 }; 104 } // end anonymous namespace. 105 106 //===----------------------------------------------------------------------===// 107 // Utilities 108 //===----------------------------------------------------------------------===// 109 110 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 111 /// represents a value lvalue, this method emits the address of the lvalue, 112 /// then loads the result into DestPtr. 113 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 114 LValue LV = CGF.EmitLValue(E); 115 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 116 llvm::Value *SrcPtr = LV.getAddress(); 117 118 // If the result is ignored, don't copy from the value. 119 if (DestPtr == 0) 120 // FIXME: If the source is volatile, we must read from it. 121 return; 122 123 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 124 } 125 126 //===----------------------------------------------------------------------===// 127 // Visitor Methods 128 //===----------------------------------------------------------------------===// 129 130 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 131 assert(CGF.getContext().typesAreCompatible( 132 E->getSubExpr()->getType().getUnqualifiedType(), 133 E->getType().getUnqualifiedType()) && 134 "Implicit cast types must be compatible"); 135 Visit(E->getSubExpr()); 136 } 137 138 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 139 RValue RV = CGF.EmitCallExpr(E); 140 assert(RV.isAggregate() && "Return value must be aggregate value!"); 141 142 // If the result is ignored, don't copy from the value. 143 if (DestPtr == 0) 144 // FIXME: If the source is volatile, we must read from it. 145 return; 146 147 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 148 } 149 150 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 151 RValue RV = CGF.EmitObjCMessageExpr(E); 152 assert(RV.isAggregate() && "Return value must be aggregate value!"); 153 154 // If the result is ignored, don't copy from the value. 155 if (DestPtr == 0) 156 // FIXME: If the source is volatile, we must read from it. 157 return; 158 159 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 160 } 161 162 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 163 RValue RV = CGF.EmitObjCPropertyGet(E); 164 assert(RV.isAggregate() && "Return value must be aggregate value!"); 165 166 // If the result is ignored, don't copy from the value. 167 if (DestPtr == 0) 168 // FIXME: If the source is volatile, we must read from it. 169 return; 170 171 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 172 } 173 174 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 175 RValue RV = CGF.EmitObjCPropertyGet(E); 176 assert(RV.isAggregate() && "Return value must be aggregate value!"); 177 178 // If the result is ignored, don't copy from the value. 179 if (DestPtr == 0) 180 // FIXME: If the source is volatile, we must read from it. 181 return; 182 183 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 184 } 185 186 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) { 187 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 188 E->arg_end(CGF.getContext())); 189 190 assert(RV.isAggregate() && "Return value must be aggregate value!"); 191 192 // If the result is ignored, don't copy from the value. 193 if (DestPtr == 0) 194 // FIXME: If the source is volatile, we must read from it. 195 return; 196 197 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 198 } 199 200 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 201 CGF.EmitAnyExpr(E->getLHS()); 202 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 203 } 204 205 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 206 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 207 } 208 209 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 210 CGF.ErrorUnsupported(E, "aggregate binary expression"); 211 } 212 213 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 214 // For an assignment to work, the value on the right has 215 // to be compatible with the value on the left. 216 assert(CGF.getContext().typesAreCompatible( 217 E->getLHS()->getType().getUnqualifiedType(), 218 E->getRHS()->getType().getUnqualifiedType()) 219 && "Invalid assignment"); 220 LValue LHS = CGF.EmitLValue(E->getLHS()); 221 222 // We have to special case property setters, otherwise we must have 223 // a simple lvalue (no aggregates inside vectors, bitfields). 224 if (LHS.isPropertyRef()) { 225 // FIXME: Volatility? 226 llvm::Value *AggLoc = DestPtr; 227 if (!AggLoc) 228 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 229 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 230 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 231 RValue::getAggregate(AggLoc)); 232 } 233 else if (LHS.isKVCRef()) { 234 // FIXME: Volatility? 235 llvm::Value *AggLoc = DestPtr; 236 if (!AggLoc) 237 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 238 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 239 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 240 RValue::getAggregate(AggLoc)); 241 } else { 242 // Codegen the RHS so that it stores directly into the LHS. 243 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 244 245 if (DestPtr == 0) 246 return; 247 248 // If the result of the assignment is used, copy the RHS there also. 249 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 250 } 251 } 252 253 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 254 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 255 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 256 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 257 258 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 259 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 260 261 CGF.EmitBlock(LHSBlock); 262 263 // Handle the GNU extension for missing LHS. 264 assert(E->getLHS() && "Must have LHS for aggregate value"); 265 266 Visit(E->getLHS()); 267 CGF.EmitBranch(ContBlock); 268 269 CGF.EmitBlock(RHSBlock); 270 271 Visit(E->getRHS()); 272 CGF.EmitBranch(ContBlock); 273 274 CGF.EmitBlock(ContBlock); 275 } 276 277 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 278 llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); 279 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 280 281 if (!ArgPtr) { 282 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 283 return; 284 } 285 286 if (DestPtr) 287 // FIXME: volatility 288 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 289 } 290 291 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 292 if (E->hadDesignators()) { 293 CGF.ErrorUnsupported(E, "initializer list with designators"); 294 return; 295 } 296 297 const llvm::PointerType *APType = 298 cast<llvm::PointerType>(DestPtr->getType()); 299 const llvm::Type *DestType = APType->getElementType(); 300 301 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 302 unsigned NumInitElements = E->getNumInits(); 303 304 unsigned i; 305 for (i = 0; i != NumInitElements; ++i) { 306 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 307 Expr *Init = E->getInit(i); 308 if (isa<InitListExpr>(Init)) 309 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 310 else 311 // FIXME: volatility 312 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 313 } 314 315 // Emit remaining default initializers 316 unsigned NumArrayElements = AType->getNumElements(); 317 QualType QType = E->getInit(0)->getType(); 318 const llvm::Type *EType = AType->getElementType(); 319 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 320 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 321 if (EType->isSingleValueType()) 322 // FIXME: volatility 323 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 324 else 325 CGF.EmitAggregateClear(NextVal, QType); 326 } 327 } else 328 assert(false && "Invalid initializer"); 329 } 330 331 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 332 // FIXME: Are initializers affected by volatile? 333 if (E->getType()->isComplexType()) { 334 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 335 } else if (CGF.hasAggregateLLVMType(E->getType())) { 336 CGF.EmitAnyExpr(E, LV.getAddress(), false); 337 } else { 338 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 339 } 340 } 341 342 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 343 if (!CGF.hasAggregateLLVMType(T)) { 344 // For non-aggregates, we can store zero 345 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 346 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 347 } else { 348 // Otherwise, just memset the whole thing to zero. This is legal 349 // because in LLVM, all default initializers are guaranteed to have a 350 // bit pattern of all zeros. 351 // There's a potential optimization opportunity in combining 352 // memsets; that would be easy for arrays, but relatively 353 // difficult for structures with the current code. 354 const llvm::Type *SizeTy = llvm::Type::Int64Ty; 355 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset, 356 &SizeTy, 1); 357 uint64_t Size = CGF.getContext().getTypeSize(T); 358 359 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 360 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 361 Builder.CreateCall4(MemSet, DestPtr, 362 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 363 llvm::ConstantInt::get(SizeTy, Size/8), 364 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 365 } 366 } 367 368 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 369 if (E->hadDesignators()) { 370 CGF.ErrorUnsupported(E, "initializer list with designators"); 371 return; 372 } 373 374 #if 0 375 // FIXME: Disabled while we figure out what to do about 376 // test/CodeGen/bitfield.c 377 // 378 // If we can, prefer a copy from a global; this is a lot less 379 // code for long globals, and it's easier for the current optimizers 380 // to analyze. 381 // FIXME: Should we really be doing this? Should we try to avoid 382 // cases where we emit a global with a lot of zeros? Should 383 // we try to avoid short globals? 384 if (E->isConstantExpr(CGF.getContext(), 0)) { 385 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 386 llvm::GlobalVariable* GV = 387 new llvm::GlobalVariable(C->getType(), true, 388 llvm::GlobalValue::InternalLinkage, 389 C, "", &CGF.CGM.getModule(), 0); 390 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 391 return; 392 } 393 #endif 394 // Handle initialization of an array. 395 if (E->getType()->isArrayType()) { 396 const llvm::PointerType *APType = 397 cast<llvm::PointerType>(DestPtr->getType()); 398 const llvm::ArrayType *AType = 399 cast<llvm::ArrayType>(APType->getElementType()); 400 401 uint64_t NumInitElements = E->getNumInits(); 402 403 if (E->getNumInits() > 0) { 404 QualType T1 = E->getType(); 405 QualType T2 = E->getInit(0)->getType(); 406 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 407 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 408 EmitAggLoadOfLValue(E->getInit(0)); 409 return; 410 } 411 } 412 413 uint64_t NumArrayElements = AType->getNumElements(); 414 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 415 ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType(); 416 417 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 418 419 for (uint64_t i = 0; i != NumArrayElements; ++i) { 420 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 421 if (i < NumInitElements) 422 EmitInitializationToLValue(E->getInit(i), 423 LValue::MakeAddr(NextVal, CVRqualifier)); 424 else 425 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 426 ElementType); 427 } 428 return; 429 } 430 431 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 432 433 // Do struct initialization; this code just sets each individual member 434 // to the approprate value. This makes bitfield support automatic; 435 // the disadvantage is that the generated code is more difficult for 436 // the optimizer, especially with bitfields. 437 unsigned NumInitElements = E->getNumInits(); 438 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 439 unsigned CurInitVal = 0; 440 bool isUnion = E->getType()->isUnionType(); 441 442 // Here we iterate over the fields; this makes it simpler to both 443 // default-initialize fields and skip over unnamed fields. 444 for (RecordDecl::field_iterator Field = SD->field_begin(), 445 FieldEnd = SD->field_end(); 446 Field != FieldEnd; ++Field) { 447 // We're done once we hit the flexible array member 448 if (Field->getType()->isIncompleteArrayType()) 449 break; 450 451 if (Field->getIdentifier() == 0) { 452 // Initializers can't initialize unnamed fields, e.g. "int : 20;" 453 continue; 454 } 455 // FIXME: volatility 456 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, isUnion,0); 457 if (CurInitVal < NumInitElements) { 458 // Store the initializer into the field 459 // This will probably have to get a bit smarter when we support 460 // designators in initializers 461 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 462 } else { 463 // We're out of initalizers; default-initialize to null 464 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 465 } 466 467 // Unions only initialize one field. 468 // (things can get weird with designators, but they aren't 469 // supported yet.) 470 if (E->getType()->isUnionType()) 471 break; 472 } 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Entry Points into this File 477 //===----------------------------------------------------------------------===// 478 479 /// EmitAggExpr - Emit the computation of the specified expression of 480 /// aggregate type. The result is computed into DestPtr. Note that if 481 /// DestPtr is null, the value of the aggregate expression is not needed. 482 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 483 bool VolatileDest) { 484 assert(E && hasAggregateLLVMType(E->getType()) && 485 "Invalid aggregate expression to emit"); 486 487 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 488 } 489 490 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 491 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 492 493 EmitMemSetToZero(DestPtr, Ty); 494 } 495 496 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 497 llvm::Value *SrcPtr, QualType Ty) { 498 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 499 500 // Aggregate assignment turns into llvm.memmove. 501 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 502 if (DestPtr->getType() != BP) 503 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 504 if (SrcPtr->getType() != BP) 505 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 506 507 // Get size and alignment info for this aggregate. 508 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 509 510 // FIXME: Handle variable sized types. 511 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 512 513 Builder.CreateCall4(CGM.getMemMoveFn(), 514 DestPtr, SrcPtr, 515 // TypeInfo.first describes size in bits. 516 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 517 llvm::ConstantInt::get(llvm::Type::Int32Ty, 518 TypeInfo.second/8)); 519 } 520