1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 119 120 void VisitConditionalOperator(const ConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 133 void VisitVAArgExpr(VAArgExpr *E); 134 135 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 136 void EmitNullInitializationToLValue(LValue Address, QualType T); 137 // case Expr::ChooseExprClass: 138 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 139 }; 140 } // end anonymous namespace. 141 142 //===----------------------------------------------------------------------===// 143 // Utilities 144 //===----------------------------------------------------------------------===// 145 146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 147 /// represents a value lvalue, this method emits the address of the lvalue, 148 /// then loads the result into DestPtr. 149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 150 if (CGF.getContext().getLangOptions().CPlusPlus) { 151 if (const CXXConstructExpr *CE = Dest.getCtorExpr()) { 152 // Perform copy initialization of Src into Dest. 153 const CXXConstructorDecl *CD = CE->getConstructor(); 154 CXXCtorType Type = 155 (CE->getConstructionKind() == CXXConstructExpr::CK_Complete) 156 ? Ctor_Complete : Ctor_Base; 157 bool ForVirtualBase = 158 CE->getConstructionKind() == CXXConstructExpr::CK_VirtualBase; 159 // Call the constructor. 160 const Stmt * S = dyn_cast<Stmt>(E); 161 clang::ConstExprIterator BegExp(&S); 162 CGF.EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(), 163 BegExp, (BegExp+1)); 164 return; 165 } 166 } 167 LValue LV = CGF.EmitLValue(E); 168 EmitFinalDestCopy(E, LV); 169 } 170 171 /// \brief True if the given aggregate type requires special GC API calls. 172 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 173 // Only record types have members that might require garbage collection. 174 const RecordType *RecordTy = T->getAs<RecordType>(); 175 if (!RecordTy) return false; 176 177 // Don't mess with non-trivial C++ types. 178 RecordDecl *Record = RecordTy->getDecl(); 179 if (isa<CXXRecordDecl>(Record) && 180 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 181 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 182 return false; 183 184 // Check whether the type has an object member. 185 return Record->hasObjectMember(); 186 } 187 188 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 189 /// 190 /// The idea is that you do something like this: 191 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 192 /// EmitGCMove(E, Result); 193 /// If GC doesn't interfere, this will cause the result to be emitted 194 /// directly into the return value slot. If GC does interfere, a final 195 /// move will be performed. 196 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 197 if (Dest.requiresGCollection()) { 198 std::pair<uint64_t, unsigned> TypeInfo = 199 CGF.getContext().getTypeInfo(E->getType()); 200 unsigned long size = TypeInfo.first/8; 201 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 202 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 203 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 204 Src.getAggregateAddr(), 205 SizeVal); 206 } 207 } 208 209 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 210 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 211 assert(Src.isAggregate() && "value must be aggregate value!"); 212 213 // If Dest is ignored, then we're evaluating an aggregate expression 214 // in a context (like an expression statement) that doesn't care 215 // about the result. C says that an lvalue-to-rvalue conversion is 216 // performed in these cases; C++ says that it is not. In either 217 // case, we don't actually need to do anything unless the value is 218 // volatile. 219 if (Dest.isIgnored()) { 220 if (!Src.isVolatileQualified() || 221 CGF.CGM.getLangOptions().CPlusPlus || 222 (IgnoreResult && Ignore)) 223 return; 224 // If the source is volatile, we must read from it; to do that, we need 225 // some place to put it. 226 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 227 } 228 229 if (Dest.requiresGCollection()) { 230 std::pair<uint64_t, unsigned> TypeInfo = 231 CGF.getContext().getTypeInfo(E->getType()); 232 unsigned long size = TypeInfo.first/8; 233 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 234 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 235 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 236 Dest.getAddr(), 237 Src.getAggregateAddr(), 238 SizeVal); 239 return; 240 } 241 242 // If the result of the assignment is used, copy the LHS there also. 243 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 244 // from the source as well, as we can't eliminate it if either operand 245 // is volatile, unless copy has volatile for both source and destination.. 246 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 247 Dest.isVolatile()|Src.isVolatileQualified()); 248 } 249 250 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 251 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 252 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 253 254 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 255 Src.isVolatileQualified()), 256 Ignore); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // Visitor Methods 261 //===----------------------------------------------------------------------===// 262 263 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 264 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 265 Visit(E->getSubExpr()); 266 return; 267 } 268 269 switch (E->getCastKind()) { 270 default: assert(0 && "Unhandled cast kind!"); 271 272 case CK_Dynamic: { 273 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 274 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 275 // FIXME: Do we also need to handle property references here? 276 if (LV.isSimple()) 277 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 278 else 279 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 280 281 if (!Dest.isIgnored()) 282 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 283 break; 284 } 285 286 case CK_ToUnion: { 287 // GCC union extension 288 QualType Ty = E->getSubExpr()->getType(); 289 QualType PtrTy = CGF.getContext().getPointerType(Ty); 290 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 291 CGF.ConvertType(PtrTy)); 292 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 293 Ty); 294 break; 295 } 296 297 case CK_DerivedToBase: 298 case CK_BaseToDerived: 299 case CK_UncheckedDerivedToBase: { 300 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 301 "should have been unpacked before we got here"); 302 break; 303 } 304 305 // FIXME: Remove the CK_Unknown check here. 306 case CK_Unknown: 307 case CK_NoOp: 308 case CK_UserDefinedConversion: 309 case CK_ConstructorConversion: 310 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 311 E->getType()) && 312 "Implicit cast types must be compatible"); 313 Visit(E->getSubExpr()); 314 break; 315 316 case CK_LValueBitCast: 317 llvm_unreachable("there are no lvalue bit-casts on aggregates"); 318 break; 319 } 320 } 321 322 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType()->isReferenceType()) { 324 EmitAggLoadOfLValue(E); 325 return; 326 } 327 328 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 329 EmitGCMove(E, RV); 330 } 331 332 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 333 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 334 EmitGCMove(E, RV); 335 } 336 337 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 338 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 339 EmitGCMove(E, RV); 340 } 341 342 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 343 ObjCImplicitSetterGetterRefExpr *E) { 344 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 345 EmitGCMove(E, RV); 346 } 347 348 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 349 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 350 Visit(E->getRHS()); 351 } 352 353 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 354 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 355 } 356 357 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 358 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 359 VisitPointerToDataMemberBinaryOperator(E); 360 else 361 CGF.ErrorUnsupported(E, "aggregate binary expression"); 362 } 363 364 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 365 const BinaryOperator *E) { 366 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 367 EmitFinalDestCopy(E, LV); 368 } 369 370 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 371 // For an assignment to work, the value on the right has 372 // to be compatible with the value on the left. 373 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 374 E->getRHS()->getType()) 375 && "Invalid assignment"); 376 LValue LHS = CGF.EmitLValue(E->getLHS()); 377 378 // We have to special case property setters, otherwise we must have 379 // a simple lvalue (no aggregates inside vectors, bitfields). 380 if (LHS.isPropertyRef()) { 381 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 382 CGF.EmitAggExpr(E->getRHS(), Slot); 383 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue()); 384 } else if (LHS.isKVCRef()) { 385 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 386 CGF.EmitAggExpr(E->getRHS(), Slot); 387 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue()); 388 } else { 389 bool GCollection = false; 390 if (CGF.getContext().getLangOptions().getGCMode()) 391 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 392 393 // Codegen the RHS so that it stores directly into the LHS. 394 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 395 GCollection); 396 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 397 EmitFinalDestCopy(E, LHS, true); 398 } 399 } 400 401 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 402 if (!E->getLHS()) { 403 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 404 return; 405 } 406 407 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 408 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 409 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 410 411 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 412 413 CGF.BeginConditionalBranch(); 414 CGF.EmitBlock(LHSBlock); 415 416 // Handle the GNU extension for missing LHS. 417 assert(E->getLHS() && "Must have LHS for aggregate value"); 418 419 Visit(E->getLHS()); 420 CGF.EndConditionalBranch(); 421 CGF.EmitBranch(ContBlock); 422 423 CGF.BeginConditionalBranch(); 424 CGF.EmitBlock(RHSBlock); 425 426 Visit(E->getRHS()); 427 CGF.EndConditionalBranch(); 428 CGF.EmitBranch(ContBlock); 429 430 CGF.EmitBlock(ContBlock); 431 } 432 433 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 434 Visit(CE->getChosenSubExpr(CGF.getContext())); 435 } 436 437 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 438 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 439 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 440 441 if (!ArgPtr) { 442 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 443 return; 444 } 445 446 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 447 } 448 449 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 450 // Ensure that we have a slot, but if we already do, remember 451 // whether its lifetime was externally managed. 452 bool WasManaged = Dest.isLifetimeExternallyManaged(); 453 Dest = EnsureSlot(E->getType()); 454 Dest.setLifetimeExternallyManaged(); 455 456 Visit(E->getSubExpr()); 457 458 // Set up the temporary's destructor if its lifetime wasn't already 459 // being managed. 460 if (!WasManaged) 461 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 462 } 463 464 void 465 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 466 AggValueSlot Slot = EnsureSlot(E->getType()); 467 CGF.EmitCXXConstructExpr(E, Slot); 468 } 469 470 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 471 CGF.EmitCXXExprWithTemporaries(E, Dest); 472 } 473 474 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 475 QualType T = E->getType(); 476 AggValueSlot Slot = EnsureSlot(T); 477 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 478 } 479 480 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 481 QualType T = E->getType(); 482 AggValueSlot Slot = EnsureSlot(T); 483 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 484 } 485 486 void 487 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 488 // FIXME: Ignore result? 489 // FIXME: Are initializers affected by volatile? 490 if (isa<ImplicitValueInitExpr>(E)) { 491 EmitNullInitializationToLValue(LV, T); 492 } else if (T->isReferenceType()) { 493 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 494 CGF.EmitStoreThroughLValue(RV, LV, T); 495 } else if (T->isAnyComplexType()) { 496 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 497 } else if (CGF.hasAggregateLLVMType(T)) { 498 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true)); 499 } else { 500 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 501 } 502 } 503 504 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 505 if (!CGF.hasAggregateLLVMType(T)) { 506 // For non-aggregates, we can store zero 507 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 508 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 509 } else { 510 // There's a potential optimization opportunity in combining 511 // memsets; that would be easy for arrays, but relatively 512 // difficult for structures with the current code. 513 CGF.EmitNullInitialization(LV.getAddress(), T); 514 } 515 } 516 517 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 518 #if 0 519 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 520 // (Length of globals? Chunks of zeroed-out space?). 521 // 522 // If we can, prefer a copy from a global; this is a lot less code for long 523 // globals, and it's easier for the current optimizers to analyze. 524 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 525 llvm::GlobalVariable* GV = 526 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 527 llvm::GlobalValue::InternalLinkage, C, ""); 528 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 529 return; 530 } 531 #endif 532 if (E->hadArrayRangeDesignator()) 533 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 534 535 llvm::Value *DestPtr = Dest.getAddr(); 536 537 // Handle initialization of an array. 538 if (E->getType()->isArrayType()) { 539 const llvm::PointerType *APType = 540 cast<llvm::PointerType>(DestPtr->getType()); 541 const llvm::ArrayType *AType = 542 cast<llvm::ArrayType>(APType->getElementType()); 543 544 uint64_t NumInitElements = E->getNumInits(); 545 546 if (E->getNumInits() > 0) { 547 QualType T1 = E->getType(); 548 QualType T2 = E->getInit(0)->getType(); 549 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 550 EmitAggLoadOfLValue(E->getInit(0)); 551 return; 552 } 553 } 554 555 uint64_t NumArrayElements = AType->getNumElements(); 556 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 557 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 558 559 // FIXME: were we intentionally ignoring address spaces and GC attributes? 560 561 for (uint64_t i = 0; i != NumArrayElements; ++i) { 562 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 563 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 564 if (i < NumInitElements) 565 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 566 567 else 568 EmitNullInitializationToLValue(LV, ElementType); 569 } 570 return; 571 } 572 573 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 574 575 // Do struct initialization; this code just sets each individual member 576 // to the approprate value. This makes bitfield support automatic; 577 // the disadvantage is that the generated code is more difficult for 578 // the optimizer, especially with bitfields. 579 unsigned NumInitElements = E->getNumInits(); 580 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 581 582 if (E->getType()->isUnionType()) { 583 // Only initialize one field of a union. The field itself is 584 // specified by the initializer list. 585 if (!E->getInitializedFieldInUnion()) { 586 // Empty union; we have nothing to do. 587 588 #ifndef NDEBUG 589 // Make sure that it's really an empty and not a failure of 590 // semantic analysis. 591 for (RecordDecl::field_iterator Field = SD->field_begin(), 592 FieldEnd = SD->field_end(); 593 Field != FieldEnd; ++Field) 594 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 595 #endif 596 return; 597 } 598 599 // FIXME: volatility 600 FieldDecl *Field = E->getInitializedFieldInUnion(); 601 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 602 603 if (NumInitElements) { 604 // Store the initializer into the field 605 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 606 } else { 607 // Default-initialize to null 608 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 609 } 610 611 return; 612 } 613 614 // Here we iterate over the fields; this makes it simpler to both 615 // default-initialize fields and skip over unnamed fields. 616 unsigned CurInitVal = 0; 617 for (RecordDecl::field_iterator Field = SD->field_begin(), 618 FieldEnd = SD->field_end(); 619 Field != FieldEnd; ++Field) { 620 // We're done once we hit the flexible array member 621 if (Field->getType()->isIncompleteArrayType()) 622 break; 623 624 if (Field->isUnnamedBitfield()) 625 continue; 626 627 // FIXME: volatility 628 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 629 // We never generate write-barries for initialized fields. 630 FieldLoc.setNonGC(true); 631 if (CurInitVal < NumInitElements) { 632 // Store the initializer into the field. 633 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 634 Field->getType()); 635 } else { 636 // We're out of initalizers; default-initialize to null 637 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 638 } 639 } 640 } 641 642 //===----------------------------------------------------------------------===// 643 // Entry Points into this File 644 //===----------------------------------------------------------------------===// 645 646 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 647 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 648 /// the value of the aggregate expression is not needed. If VolatileDest is 649 /// true, DestPtr cannot be 0. 650 /// 651 /// \param IsInitializer - true if this evaluation is initializing an 652 /// object whose lifetime is already being managed. 653 // 654 // FIXME: Take Qualifiers object. 655 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 656 bool IgnoreResult) { 657 assert(E && hasAggregateLLVMType(E->getType()) && 658 "Invalid aggregate expression to emit"); 659 assert((Slot.getAddr() != 0 || Slot.isIgnored()) 660 && "slot has bits but no address"); 661 662 AggExprEmitter(*this, Slot, IgnoreResult) 663 .Visit(const_cast<Expr*>(E)); 664 } 665 666 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 667 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 668 llvm::Value *Temp = CreateMemTemp(E->getType()); 669 LValue LV = MakeAddrLValue(Temp, E->getType()); 670 AggValueSlot Slot 671 = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false); 672 EmitAggExpr(E, Slot); 673 return LV; 674 } 675 676 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 677 llvm::Value *SrcPtr, QualType Ty, 678 bool isVolatile) { 679 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 680 681 if (getContext().getLangOptions().CPlusPlus) { 682 if (const RecordType *RT = Ty->getAs<RecordType>()) { 683 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 684 assert((Record->hasTrivialCopyConstructor() || 685 Record->hasTrivialCopyAssignment()) && 686 "Trying to aggregate-copy a type without a trivial copy " 687 "constructor or assignment operator"); 688 // Ignore empty classes in C++. 689 if (Record->isEmpty()) 690 return; 691 } 692 } 693 694 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 695 // C99 6.5.16.1p3, which states "If the value being stored in an object is 696 // read from another object that overlaps in anyway the storage of the first 697 // object, then the overlap shall be exact and the two objects shall have 698 // qualified or unqualified versions of a compatible type." 699 // 700 // memcpy is not defined if the source and destination pointers are exactly 701 // equal, but other compilers do this optimization, and almost every memcpy 702 // implementation handles this case safely. If there is a libc that does not 703 // safely handle this, we can add a target hook. 704 705 // Get size and alignment info for this aggregate. 706 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 707 708 // FIXME: Handle variable sized types. 709 710 // FIXME: If we have a volatile struct, the optimizer can remove what might 711 // appear to be `extra' memory ops: 712 // 713 // volatile struct { int i; } a, b; 714 // 715 // int main() { 716 // a = b; 717 // a = b; 718 // } 719 // 720 // we need to use a different call here. We use isVolatile to indicate when 721 // either the source or the destination is volatile. 722 723 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 724 const llvm::Type *DBP = 725 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 726 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 727 728 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 729 const llvm::Type *SBP = 730 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 731 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 732 733 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 734 RecordDecl *Record = RecordTy->getDecl(); 735 if (Record->hasObjectMember()) { 736 unsigned long size = TypeInfo.first/8; 737 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 738 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 739 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 740 SizeVal); 741 return; 742 } 743 } else if (getContext().getAsArrayType(Ty)) { 744 QualType BaseType = getContext().getBaseElementType(Ty); 745 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 746 if (RecordTy->getDecl()->hasObjectMember()) { 747 unsigned long size = TypeInfo.first/8; 748 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 749 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 750 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 751 SizeVal); 752 return; 753 } 754 } 755 } 756 757 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 758 IntPtrTy), 759 DestPtr, SrcPtr, 760 // TypeInfo.first describes size in bits. 761 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 762 Builder.getInt32(TypeInfo.second/8), 763 Builder.getInt1(isVolatile)); 764 } 765