1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 VectorTy, Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // if this is a bitfield-resulting conditional operator, we can special case 195 // emit this. The normal 'EmitLValue' version of this is particularly 196 // difficult to codegen for, since creating a single "LValue" for two 197 // different sized arguments here is not particularly doable. 198 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 199 E->IgnoreParenNoopCasts(getContext()))) { 200 if (CondOp->getObjectKind() == OK_BitField) 201 return EmitIgnoredConditionalOperator(CondOp); 202 } 203 204 // Just emit it as an l-value and drop the result. 205 EmitLValue(E); 206 } 207 208 /// EmitAnyExpr - Emit code to compute the specified expression which 209 /// can have any type. The result is returned as an RValue struct. 210 /// If this is an aggregate expression, AggSlot indicates where the 211 /// result should be returned. 212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 213 AggValueSlot aggSlot, 214 bool ignoreResult) { 215 switch (getEvaluationKind(E->getType())) { 216 case TEK_Scalar: 217 return RValue::get(EmitScalarExpr(E, ignoreResult)); 218 case TEK_Complex: 219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 220 case TEK_Aggregate: 221 if (!ignoreResult && aggSlot.isIgnored()) 222 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 223 EmitAggExpr(E, aggSlot); 224 return aggSlot.asRValue(); 225 } 226 llvm_unreachable("bad evaluation kind"); 227 } 228 229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 230 /// always be accessible even if no aggregate location is provided. 231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 232 AggValueSlot AggSlot = AggValueSlot::ignored(); 233 234 if (hasAggregateEvaluationKind(E->getType())) 235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 236 return EmitAnyExpr(E, AggSlot); 237 } 238 239 /// EmitAnyExprToMem - Evaluate an expression into a given memory 240 /// location. 241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 242 Address Location, 243 Qualifiers Quals, 244 bool IsInit) { 245 // FIXME: This function should take an LValue as an argument. 246 switch (getEvaluationKind(E->getType())) { 247 case TEK_Complex: 248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 249 /*isInit*/ false); 250 return; 251 252 case TEK_Aggregate: { 253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 254 AggValueSlot::IsDestructed_t(IsInit), 255 AggValueSlot::DoesNotNeedGCBarriers, 256 AggValueSlot::IsAliased_t(!IsInit), 257 AggValueSlot::MayOverlap)); 258 return; 259 } 260 261 case TEK_Scalar: { 262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 263 LValue LV = MakeAddrLValue(Location, E->getType()); 264 EmitStoreThroughLValue(RV, LV); 265 return; 266 } 267 } 268 llvm_unreachable("bad evaluation kind"); 269 } 270 271 static void 272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 273 const Expr *E, Address ReferenceTemporary) { 274 // Objective-C++ ARC: 275 // If we are binding a reference to a temporary that has ownership, we 276 // need to perform retain/release operations on the temporary. 277 // 278 // FIXME: This should be looking at E, not M. 279 if (auto Lifetime = M->getType().getObjCLifetime()) { 280 switch (Lifetime) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 // Carry on to normal cleanup handling. 284 break; 285 286 case Qualifiers::OCL_Autoreleasing: 287 // Nothing to do; cleaned up by an autorelease pool. 288 return; 289 290 case Qualifiers::OCL_Strong: 291 case Qualifiers::OCL_Weak: 292 switch (StorageDuration Duration = M->getStorageDuration()) { 293 case SD_Static: 294 // Note: we intentionally do not register a cleanup to release 295 // the object on program termination. 296 return; 297 298 case SD_Thread: 299 // FIXME: We should probably register a cleanup in this case. 300 return; 301 302 case SD_Automatic: 303 case SD_FullExpression: 304 CodeGenFunction::Destroyer *Destroy; 305 CleanupKind CleanupKind; 306 if (Lifetime == Qualifiers::OCL_Strong) { 307 const ValueDecl *VD = M->getExtendingDecl(); 308 bool Precise = 309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 310 CleanupKind = CGF.getARCCleanupKind(); 311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 312 : &CodeGenFunction::destroyARCStrongImprecise; 313 } else { 314 // __weak objects always get EH cleanups; otherwise, exceptions 315 // could cause really nasty crashes instead of mere leaks. 316 CleanupKind = NormalAndEHCleanup; 317 Destroy = &CodeGenFunction::destroyARCWeak; 318 } 319 if (Duration == SD_FullExpression) 320 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 321 M->getType(), *Destroy, 322 CleanupKind & EHCleanup); 323 else 324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 325 M->getType(), 326 *Destroy, CleanupKind & EHCleanup); 327 return; 328 329 case SD_Dynamic: 330 llvm_unreachable("temporary cannot have dynamic storage duration"); 331 } 332 llvm_unreachable("unknown storage duration"); 333 } 334 } 335 336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 337 if (const RecordType *RT = 338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 339 // Get the destructor for the reference temporary. 340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 341 if (!ClassDecl->hasTrivialDestructor()) 342 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 343 } 344 345 if (!ReferenceTemporaryDtor) 346 return; 347 348 // Call the destructor for the temporary. 349 switch (M->getStorageDuration()) { 350 case SD_Static: 351 case SD_Thread: { 352 llvm::FunctionCallee CleanupFn; 353 llvm::Constant *CleanupArg; 354 if (E->getType()->isArrayType()) { 355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 356 ReferenceTemporary, E->getType(), 357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 360 } else { 361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 364 } 365 CGF.CGM.getCXXABI().registerGlobalDtor( 366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 367 break; 368 } 369 370 case SD_FullExpression: 371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 372 CodeGenFunction::destroyCXXObject, 373 CGF.getLangOpts().Exceptions); 374 break; 375 376 case SD_Automatic: 377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 378 ReferenceTemporary, E->getType(), 379 CodeGenFunction::destroyCXXObject, 380 CGF.getLangOpts().Exceptions); 381 break; 382 383 case SD_Dynamic: 384 llvm_unreachable("temporary cannot have dynamic storage duration"); 385 } 386 } 387 388 static Address createReferenceTemporary(CodeGenFunction &CGF, 389 const MaterializeTemporaryExpr *M, 390 const Expr *Inner, 391 Address *Alloca = nullptr) { 392 auto &TCG = CGF.getTargetHooks(); 393 switch (M->getStorageDuration()) { 394 case SD_FullExpression: 395 case SD_Automatic: { 396 // If we have a constant temporary array or record try to promote it into a 397 // constant global under the same rules a normal constant would've been 398 // promoted. This is easier on the optimizer and generally emits fewer 399 // instructions. 400 QualType Ty = Inner->getType(); 401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 402 (Ty->isArrayType() || Ty->isRecordType()) && 403 CGF.CGM.isTypeConstant(Ty, true)) 404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 405 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 406 auto *GV = new llvm::GlobalVariable( 407 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 408 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 409 llvm::GlobalValue::NotThreadLocal, 410 CGF.getContext().getTargetAddressSpace(AS)); 411 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 412 GV->setAlignment(alignment.getAsAlign()); 413 llvm::Constant *C = GV; 414 if (AS != LangAS::Default) 415 C = TCG.performAddrSpaceCast( 416 CGF.CGM, GV, AS, LangAS::Default, 417 GV->getValueType()->getPointerTo( 418 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 419 // FIXME: Should we put the new global into a COMDAT? 420 return Address(C, GV->getValueType(), alignment); 421 } 422 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 423 } 424 case SD_Thread: 425 case SD_Static: 426 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 427 428 case SD_Dynamic: 429 llvm_unreachable("temporary can't have dynamic storage duration"); 430 } 431 llvm_unreachable("unknown storage duration"); 432 } 433 434 /// Helper method to check if the underlying ABI is AAPCS 435 static bool isAAPCS(const TargetInfo &TargetInfo) { 436 return TargetInfo.getABI().startswith("aapcs"); 437 } 438 439 LValue CodeGenFunction:: 440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 441 const Expr *E = M->getSubExpr(); 442 443 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 444 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 445 "Reference should never be pseudo-strong!"); 446 447 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 448 // as that will cause the lifetime adjustment to be lost for ARC 449 auto ownership = M->getType().getObjCLifetime(); 450 if (ownership != Qualifiers::OCL_None && 451 ownership != Qualifiers::OCL_ExplicitNone) { 452 Address Object = createReferenceTemporary(*this, M, E); 453 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 454 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 455 Object = Address(llvm::ConstantExpr::getBitCast( 456 Var, Ty->getPointerTo(Object.getAddressSpace())), 457 Ty, Object.getAlignment()); 458 459 // createReferenceTemporary will promote the temporary to a global with a 460 // constant initializer if it can. It can only do this to a value of 461 // ARC-manageable type if the value is global and therefore "immune" to 462 // ref-counting operations. Therefore we have no need to emit either a 463 // dynamic initialization or a cleanup and we can just return the address 464 // of the temporary. 465 if (Var->hasInitializer()) 466 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 467 468 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 469 } 470 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 471 AlignmentSource::Decl); 472 473 switch (getEvaluationKind(E->getType())) { 474 default: llvm_unreachable("expected scalar or aggregate expression"); 475 case TEK_Scalar: 476 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 477 break; 478 case TEK_Aggregate: { 479 EmitAggExpr(E, AggValueSlot::forAddr(Object, 480 E->getType().getQualifiers(), 481 AggValueSlot::IsDestructed, 482 AggValueSlot::DoesNotNeedGCBarriers, 483 AggValueSlot::IsNotAliased, 484 AggValueSlot::DoesNotOverlap)); 485 break; 486 } 487 } 488 489 pushTemporaryCleanup(*this, M, E, Object); 490 return RefTempDst; 491 } 492 493 SmallVector<const Expr *, 2> CommaLHSs; 494 SmallVector<SubobjectAdjustment, 2> Adjustments; 495 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 496 497 for (const auto &Ignored : CommaLHSs) 498 EmitIgnoredExpr(Ignored); 499 500 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 501 if (opaque->getType()->isRecordType()) { 502 assert(Adjustments.empty()); 503 return EmitOpaqueValueLValue(opaque); 504 } 505 } 506 507 // Create and initialize the reference temporary. 508 Address Alloca = Address::invalid(); 509 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 510 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 511 Object.getPointer()->stripPointerCasts())) { 512 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 513 Object = Address(llvm::ConstantExpr::getBitCast( 514 cast<llvm::Constant>(Object.getPointer()), 515 TemporaryType->getPointerTo()), 516 TemporaryType, 517 Object.getAlignment()); 518 // If the temporary is a global and has a constant initializer or is a 519 // constant temporary that we promoted to a global, we may have already 520 // initialized it. 521 if (!Var->hasInitializer()) { 522 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 524 } 525 } else { 526 switch (M->getStorageDuration()) { 527 case SD_Automatic: 528 if (auto *Size = EmitLifetimeStart( 529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 530 Alloca.getPointer())) { 531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 532 Alloca, Size); 533 } 534 break; 535 536 case SD_FullExpression: { 537 if (!ShouldEmitLifetimeMarkers) 538 break; 539 540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 541 // marker. Instead, start the lifetime of a conditional temporary earlier 542 // so that it's unconditional. Don't do this with sanitizers which need 543 // more precise lifetime marks. 544 ConditionalEvaluation *OldConditional = nullptr; 545 CGBuilderTy::InsertPoint OldIP; 546 if (isInConditionalBranch() && !E->getType().isDestructedType() && 547 !SanOpts.has(SanitizerKind::HWAddress) && 548 !SanOpts.has(SanitizerKind::Memory) && 549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 550 OldConditional = OutermostConditional; 551 OutermostConditional = nullptr; 552 553 OldIP = Builder.saveIP(); 554 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 555 Builder.restoreIP(CGBuilderTy::InsertPoint( 556 Block, llvm::BasicBlock::iterator(Block->back()))); 557 } 558 559 if (auto *Size = EmitLifetimeStart( 560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 561 Alloca.getPointer())) { 562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 563 Size); 564 } 565 566 if (OldConditional) { 567 OutermostConditional = OldConditional; 568 Builder.restoreIP(OldIP); 569 } 570 break; 571 } 572 573 default: 574 break; 575 } 576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 577 } 578 pushTemporaryCleanup(*this, M, E, Object); 579 580 // Perform derived-to-base casts and/or field accesses, to get from the 581 // temporary object we created (and, potentially, for which we extended 582 // the lifetime) to the subobject we're binding the reference to. 583 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 584 switch (Adjustment.Kind) { 585 case SubobjectAdjustment::DerivedToBaseAdjustment: 586 Object = 587 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 588 Adjustment.DerivedToBase.BasePath->path_begin(), 589 Adjustment.DerivedToBase.BasePath->path_end(), 590 /*NullCheckValue=*/ false, E->getExprLoc()); 591 break; 592 593 case SubobjectAdjustment::FieldAdjustment: { 594 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 595 LV = EmitLValueForField(LV, Adjustment.Field); 596 assert(LV.isSimple() && 597 "materialized temporary field is not a simple lvalue"); 598 Object = LV.getAddress(*this); 599 break; 600 } 601 602 case SubobjectAdjustment::MemberPointerAdjustment: { 603 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 604 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 605 Adjustment.Ptr.MPT); 606 break; 607 } 608 } 609 } 610 611 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 612 } 613 614 RValue 615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 616 // Emit the expression as an lvalue. 617 LValue LV = EmitLValue(E); 618 assert(LV.isSimple()); 619 llvm::Value *Value = LV.getPointer(*this); 620 621 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 622 // C++11 [dcl.ref]p5 (as amended by core issue 453): 623 // If a glvalue to which a reference is directly bound designates neither 624 // an existing object or function of an appropriate type nor a region of 625 // storage of suitable size and alignment to contain an object of the 626 // reference's type, the behavior is undefined. 627 QualType Ty = E->getType(); 628 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 629 } 630 631 return RValue::get(Value); 632 } 633 634 635 /// getAccessedFieldNo - Given an encoded value and a result number, return the 636 /// input field number being accessed. 637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 638 const llvm::Constant *Elts) { 639 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 640 ->getZExtValue(); 641 } 642 643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 645 llvm::Value *High) { 646 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 647 llvm::Value *K47 = Builder.getInt64(47); 648 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 649 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 650 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 651 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 652 return Builder.CreateMul(B1, KMul); 653 } 654 655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 656 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 657 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 658 } 659 660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 661 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 662 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 663 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 664 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 665 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 666 } 667 668 bool CodeGenFunction::sanitizePerformTypeCheck() const { 669 return SanOpts.has(SanitizerKind::Null) || 670 SanOpts.has(SanitizerKind::Alignment) || 671 SanOpts.has(SanitizerKind::ObjectSize) || 672 SanOpts.has(SanitizerKind::Vptr); 673 } 674 675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 676 llvm::Value *Ptr, QualType Ty, 677 CharUnits Alignment, 678 SanitizerSet SkippedChecks, 679 llvm::Value *ArraySize) { 680 if (!sanitizePerformTypeCheck()) 681 return; 682 683 // Don't check pointers outside the default address space. The null check 684 // isn't correct, the object-size check isn't supported by LLVM, and we can't 685 // communicate the addresses to the runtime handler for the vptr check. 686 if (Ptr->getType()->getPointerAddressSpace()) 687 return; 688 689 // Don't check pointers to volatile data. The behavior here is implementation- 690 // defined. 691 if (Ty.isVolatileQualified()) 692 return; 693 694 SanitizerScope SanScope(this); 695 696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 697 llvm::BasicBlock *Done = nullptr; 698 699 // Quickly determine whether we have a pointer to an alloca. It's possible 700 // to skip null checks, and some alignment checks, for these pointers. This 701 // can reduce compile-time significantly. 702 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 703 704 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 705 llvm::Value *IsNonNull = nullptr; 706 bool IsGuaranteedNonNull = 707 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 708 bool AllowNullPointers = isNullPointerAllowed(TCK); 709 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 710 !IsGuaranteedNonNull) { 711 // The glvalue must not be an empty glvalue. 712 IsNonNull = Builder.CreateIsNotNull(Ptr); 713 714 // The IR builder can constant-fold the null check if the pointer points to 715 // a constant. 716 IsGuaranteedNonNull = IsNonNull == True; 717 718 // Skip the null check if the pointer is known to be non-null. 719 if (!IsGuaranteedNonNull) { 720 if (AllowNullPointers) { 721 // When performing pointer casts, it's OK if the value is null. 722 // Skip the remaining checks in that case. 723 Done = createBasicBlock("null"); 724 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 725 Builder.CreateCondBr(IsNonNull, Rest, Done); 726 EmitBlock(Rest); 727 } else { 728 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 729 } 730 } 731 } 732 733 if (SanOpts.has(SanitizerKind::ObjectSize) && 734 !SkippedChecks.has(SanitizerKind::ObjectSize) && 735 !Ty->isIncompleteType()) { 736 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 737 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 738 if (ArraySize) 739 Size = Builder.CreateMul(Size, ArraySize); 740 741 // Degenerate case: new X[0] does not need an objectsize check. 742 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 743 if (!ConstantSize || !ConstantSize->isNullValue()) { 744 // The glvalue must refer to a large enough storage region. 745 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 746 // to check this. 747 // FIXME: Get object address space 748 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 749 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 750 llvm::Value *Min = Builder.getFalse(); 751 llvm::Value *NullIsUnknown = Builder.getFalse(); 752 llvm::Value *Dynamic = Builder.getFalse(); 753 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 754 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 755 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 756 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 757 } 758 } 759 760 llvm::MaybeAlign AlignVal; 761 llvm::Value *PtrAsInt = nullptr; 762 763 if (SanOpts.has(SanitizerKind::Alignment) && 764 !SkippedChecks.has(SanitizerKind::Alignment)) { 765 AlignVal = Alignment.getAsMaybeAlign(); 766 if (!Ty->isIncompleteType() && !AlignVal) 767 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 768 /*ForPointeeType=*/true) 769 .getAsMaybeAlign(); 770 771 // The glvalue must be suitably aligned. 772 if (AlignVal && *AlignVal > llvm::Align(1) && 773 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 774 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 775 llvm::Value *Align = Builder.CreateAnd( 776 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 777 llvm::Value *Aligned = 778 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 779 if (Aligned != True) 780 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 781 } 782 } 783 784 if (Checks.size() > 0) { 785 llvm::Constant *StaticData[] = { 786 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 787 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 788 llvm::ConstantInt::get(Int8Ty, TCK)}; 789 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 790 PtrAsInt ? PtrAsInt : Ptr); 791 } 792 793 // If possible, check that the vptr indicates that there is a subobject of 794 // type Ty at offset zero within this object. 795 // 796 // C++11 [basic.life]p5,6: 797 // [For storage which does not refer to an object within its lifetime] 798 // The program has undefined behavior if: 799 // -- the [pointer or glvalue] is used to access a non-static data member 800 // or call a non-static member function 801 if (SanOpts.has(SanitizerKind::Vptr) && 802 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 803 // Ensure that the pointer is non-null before loading it. If there is no 804 // compile-time guarantee, reuse the run-time null check or emit a new one. 805 if (!IsGuaranteedNonNull) { 806 if (!IsNonNull) 807 IsNonNull = Builder.CreateIsNotNull(Ptr); 808 if (!Done) 809 Done = createBasicBlock("vptr.null"); 810 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 811 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 812 EmitBlock(VptrNotNull); 813 } 814 815 // Compute a hash of the mangled name of the type. 816 // 817 // FIXME: This is not guaranteed to be deterministic! Move to a 818 // fingerprinting mechanism once LLVM provides one. For the time 819 // being the implementation happens to be deterministic. 820 SmallString<64> MangledName; 821 llvm::raw_svector_ostream Out(MangledName); 822 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 823 Out); 824 825 // Contained in NoSanitizeList based on the mangled type. 826 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 827 Out.str())) { 828 llvm::hash_code TypeHash = hash_value(Out.str()); 829 830 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 831 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 832 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 833 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 834 getPointerAlign()); 835 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 836 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 837 838 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 839 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 840 841 // Look the hash up in our cache. 842 const int CacheSize = 128; 843 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 844 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 845 "__ubsan_vptr_type_cache"); 846 llvm::Value *Slot = Builder.CreateAnd(Hash, 847 llvm::ConstantInt::get(IntPtrTy, 848 CacheSize-1)); 849 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 850 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 851 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 852 getPointerAlign()); 853 854 // If the hash isn't in the cache, call a runtime handler to perform the 855 // hard work of checking whether the vptr is for an object of the right 856 // type. This will either fill in the cache and return, or produce a 857 // diagnostic. 858 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 859 llvm::Constant *StaticData[] = { 860 EmitCheckSourceLocation(Loc), 861 EmitCheckTypeDescriptor(Ty), 862 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 863 llvm::ConstantInt::get(Int8Ty, TCK) 864 }; 865 llvm::Value *DynamicData[] = { Ptr, Hash }; 866 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 867 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 868 DynamicData); 869 } 870 } 871 872 if (Done) { 873 Builder.CreateBr(Done); 874 EmitBlock(Done); 875 } 876 } 877 878 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 879 QualType EltTy) { 880 ASTContext &C = getContext(); 881 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 882 if (!EltSize) 883 return nullptr; 884 885 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 886 if (!ArrayDeclRef) 887 return nullptr; 888 889 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 890 if (!ParamDecl) 891 return nullptr; 892 893 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 894 if (!POSAttr) 895 return nullptr; 896 897 // Don't load the size if it's a lower bound. 898 int POSType = POSAttr->getType(); 899 if (POSType != 0 && POSType != 1) 900 return nullptr; 901 902 // Find the implicit size parameter. 903 auto PassedSizeIt = SizeArguments.find(ParamDecl); 904 if (PassedSizeIt == SizeArguments.end()) 905 return nullptr; 906 907 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 908 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 909 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 910 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 911 C.getSizeType(), E->getExprLoc()); 912 llvm::Value *SizeOfElement = 913 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 914 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 915 } 916 917 /// If Base is known to point to the start of an array, return the length of 918 /// that array. Return 0 if the length cannot be determined. 919 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, 920 const Expr *Base, 921 QualType &IndexedType, 922 ASTContext &Context, 923 int StrictFlexArraysLevel) { 924 // For the vector indexing extension, the bound is the number of elements. 925 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 926 IndexedType = Base->getType(); 927 return CGF.Builder.getInt32(VT->getNumElements()); 928 } 929 930 Base = Base->IgnoreParens(); 931 932 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 933 if (CE->getCastKind() == CK_ArrayToPointerDecay && 934 !CE->getSubExpr()->IgnoreParens()->isFlexibleArrayMember( 935 Context, std::max(StrictFlexArraysLevel, 1))) { 936 IndexedType = CE->getSubExpr()->getType(); 937 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 938 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 939 return CGF.Builder.getInt(CAT->getSize()); 940 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 941 return CGF.getVLASize(VAT).NumElts; 942 // Ignore pass_object_size here. It's not applicable on decayed pointers. 943 } 944 } 945 946 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 947 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 948 IndexedType = Base->getType(); 949 return POS; 950 } 951 952 return nullptr; 953 } 954 955 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 956 llvm::Value *Index, QualType IndexType, 957 bool Accessed) { 958 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 959 "should not be called unless adding bounds checks"); 960 SanitizerScope SanScope(this); 961 962 QualType IndexedType; 963 llvm::Value *Bound = getArrayIndexingBound( 964 *this, Base, IndexedType, getContext(), getLangOpts().StrictFlexArrays); 965 if (!Bound) 966 return; 967 968 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 969 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 970 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 971 972 llvm::Constant *StaticData[] = { 973 EmitCheckSourceLocation(E->getExprLoc()), 974 EmitCheckTypeDescriptor(IndexedType), 975 EmitCheckTypeDescriptor(IndexType) 976 }; 977 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 978 : Builder.CreateICmpULE(IndexVal, BoundVal); 979 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 980 SanitizerHandler::OutOfBounds, StaticData, Index); 981 } 982 983 984 CodeGenFunction::ComplexPairTy CodeGenFunction:: 985 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 986 bool isInc, bool isPre) { 987 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 988 989 llvm::Value *NextVal; 990 if (isa<llvm::IntegerType>(InVal.first->getType())) { 991 uint64_t AmountVal = isInc ? 1 : -1; 992 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 993 994 // Add the inc/dec to the real part. 995 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 996 } else { 997 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 998 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 999 if (!isInc) 1000 FVal.changeSign(); 1001 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1002 1003 // Add the inc/dec to the real part. 1004 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1005 } 1006 1007 ComplexPairTy IncVal(NextVal, InVal.second); 1008 1009 // Store the updated result through the lvalue. 1010 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1011 if (getLangOpts().OpenMP) 1012 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1013 E->getSubExpr()); 1014 1015 // If this is a postinc, return the value read from memory, otherwise use the 1016 // updated value. 1017 return isPre ? IncVal : InVal; 1018 } 1019 1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1021 CodeGenFunction *CGF) { 1022 // Bind VLAs in the cast type. 1023 if (CGF && E->getType()->isVariablyModifiedType()) 1024 CGF->EmitVariablyModifiedType(E->getType()); 1025 1026 if (CGDebugInfo *DI = getModuleDebugInfo()) 1027 DI->EmitExplicitCastType(E->getType()); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // LValue Expression Emission 1032 //===----------------------------------------------------------------------===// 1033 1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1035 /// derive a more accurate bound on the alignment of the pointer. 1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1037 LValueBaseInfo *BaseInfo, 1038 TBAAAccessInfo *TBAAInfo) { 1039 // We allow this with ObjC object pointers because of fragile ABIs. 1040 assert(E->getType()->isPointerType() || 1041 E->getType()->isObjCObjectPointerType()); 1042 E = E->IgnoreParens(); 1043 1044 // Casts: 1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1047 CGM.EmitExplicitCastExprType(ECE, this); 1048 1049 switch (CE->getCastKind()) { 1050 // Non-converting casts (but not C's implicit conversion from void*). 1051 case CK_BitCast: 1052 case CK_NoOp: 1053 case CK_AddressSpaceConversion: 1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1055 if (PtrTy->getPointeeType()->isVoidType()) 1056 break; 1057 1058 LValueBaseInfo InnerBaseInfo; 1059 TBAAAccessInfo InnerTBAAInfo; 1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1061 &InnerBaseInfo, 1062 &InnerTBAAInfo); 1063 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1065 1066 if (isa<ExplicitCastExpr>(CE)) { 1067 LValueBaseInfo TargetTypeBaseInfo; 1068 TBAAAccessInfo TargetTypeTBAAInfo; 1069 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1070 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1071 if (TBAAInfo) 1072 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1073 TargetTypeTBAAInfo); 1074 // If the source l-value is opaque, honor the alignment of the 1075 // casted-to type. 1076 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1077 if (BaseInfo) 1078 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1079 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1080 } 1081 } 1082 1083 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1084 CE->getCastKind() == CK_BitCast) { 1085 if (auto PT = E->getType()->getAs<PointerType>()) 1086 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1087 /*MayBeNull=*/true, 1088 CodeGenFunction::CFITCK_UnrelatedCast, 1089 CE->getBeginLoc()); 1090 } 1091 1092 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1093 Addr = Builder.CreateElementBitCast(Addr, ElemTy); 1094 if (CE->getCastKind() == CK_AddressSpaceConversion) 1095 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1096 return Addr; 1097 } 1098 break; 1099 1100 // Array-to-pointer decay. 1101 case CK_ArrayToPointerDecay: 1102 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1103 1104 // Derived-to-base conversions. 1105 case CK_UncheckedDerivedToBase: 1106 case CK_DerivedToBase: { 1107 // TODO: Support accesses to members of base classes in TBAA. For now, we 1108 // conservatively pretend that the complete object is of the base class 1109 // type. 1110 if (TBAAInfo) 1111 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1112 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1113 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1114 return GetAddressOfBaseClass(Addr, Derived, 1115 CE->path_begin(), CE->path_end(), 1116 ShouldNullCheckClassCastValue(CE), 1117 CE->getExprLoc()); 1118 } 1119 1120 // TODO: Is there any reason to treat base-to-derived conversions 1121 // specially? 1122 default: 1123 break; 1124 } 1125 } 1126 1127 // Unary &. 1128 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1129 if (UO->getOpcode() == UO_AddrOf) { 1130 LValue LV = EmitLValue(UO->getSubExpr()); 1131 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1132 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1133 return LV.getAddress(*this); 1134 } 1135 } 1136 1137 // std::addressof and variants. 1138 if (auto *Call = dyn_cast<CallExpr>(E)) { 1139 switch (Call->getBuiltinCallee()) { 1140 default: 1141 break; 1142 case Builtin::BIaddressof: 1143 case Builtin::BI__addressof: 1144 case Builtin::BI__builtin_addressof: { 1145 LValue LV = EmitLValue(Call->getArg(0)); 1146 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1147 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1148 return LV.getAddress(*this); 1149 } 1150 } 1151 } 1152 1153 // TODO: conditional operators, comma. 1154 1155 // Otherwise, use the alignment of the type. 1156 CharUnits Align = 1157 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1158 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1159 return Address(EmitScalarExpr(E), ElemTy, Align); 1160 } 1161 1162 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1163 llvm::Value *V = RV.getScalarVal(); 1164 if (auto MPT = T->getAs<MemberPointerType>()) 1165 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1166 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1167 } 1168 1169 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1170 if (Ty->isVoidType()) 1171 return RValue::get(nullptr); 1172 1173 switch (getEvaluationKind(Ty)) { 1174 case TEK_Complex: { 1175 llvm::Type *EltTy = 1176 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1177 llvm::Value *U = llvm::UndefValue::get(EltTy); 1178 return RValue::getComplex(std::make_pair(U, U)); 1179 } 1180 1181 // If this is a use of an undefined aggregate type, the aggregate must have an 1182 // identifiable address. Just because the contents of the value are undefined 1183 // doesn't mean that the address can't be taken and compared. 1184 case TEK_Aggregate: { 1185 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1186 return RValue::getAggregate(DestPtr); 1187 } 1188 1189 case TEK_Scalar: 1190 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1191 } 1192 llvm_unreachable("bad evaluation kind"); 1193 } 1194 1195 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1196 const char *Name) { 1197 ErrorUnsupported(E, Name); 1198 return GetUndefRValue(E->getType()); 1199 } 1200 1201 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1202 const char *Name) { 1203 ErrorUnsupported(E, Name); 1204 llvm::Type *ElTy = ConvertType(E->getType()); 1205 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 1206 return MakeAddrLValue( 1207 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1208 } 1209 1210 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1211 const Expr *Base = Obj; 1212 while (!isa<CXXThisExpr>(Base)) { 1213 // The result of a dynamic_cast can be null. 1214 if (isa<CXXDynamicCastExpr>(Base)) 1215 return false; 1216 1217 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1218 Base = CE->getSubExpr(); 1219 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1220 Base = PE->getSubExpr(); 1221 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1222 if (UO->getOpcode() == UO_Extension) 1223 Base = UO->getSubExpr(); 1224 else 1225 return false; 1226 } else { 1227 return false; 1228 } 1229 } 1230 return true; 1231 } 1232 1233 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1234 LValue LV; 1235 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1236 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1237 else 1238 LV = EmitLValue(E); 1239 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1240 SanitizerSet SkippedChecks; 1241 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1242 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1243 if (IsBaseCXXThis) 1244 SkippedChecks.set(SanitizerKind::Alignment, true); 1245 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1246 SkippedChecks.set(SanitizerKind::Null, true); 1247 } 1248 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1249 LV.getAlignment(), SkippedChecks); 1250 } 1251 return LV; 1252 } 1253 1254 /// EmitLValue - Emit code to compute a designator that specifies the location 1255 /// of the expression. 1256 /// 1257 /// This can return one of two things: a simple address or a bitfield reference. 1258 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1259 /// an LLVM pointer type. 1260 /// 1261 /// If this returns a bitfield reference, nothing about the pointee type of the 1262 /// LLVM value is known: For example, it may not be a pointer to an integer. 1263 /// 1264 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1265 /// this method guarantees that the returned pointer type will point to an LLVM 1266 /// type of the same size of the lvalue's type. If the lvalue has a variable 1267 /// length type, this is not possible. 1268 /// 1269 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1270 ApplyDebugLocation DL(*this, E); 1271 switch (E->getStmtClass()) { 1272 default: return EmitUnsupportedLValue(E, "l-value expression"); 1273 1274 case Expr::ObjCPropertyRefExprClass: 1275 llvm_unreachable("cannot emit a property reference directly"); 1276 1277 case Expr::ObjCSelectorExprClass: 1278 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1279 case Expr::ObjCIsaExprClass: 1280 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1281 case Expr::BinaryOperatorClass: 1282 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1283 case Expr::CompoundAssignOperatorClass: { 1284 QualType Ty = E->getType(); 1285 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1286 Ty = AT->getValueType(); 1287 if (!Ty->isAnyComplexType()) 1288 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1289 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1290 } 1291 case Expr::CallExprClass: 1292 case Expr::CXXMemberCallExprClass: 1293 case Expr::CXXOperatorCallExprClass: 1294 case Expr::UserDefinedLiteralClass: 1295 return EmitCallExprLValue(cast<CallExpr>(E)); 1296 case Expr::CXXRewrittenBinaryOperatorClass: 1297 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1298 case Expr::VAArgExprClass: 1299 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1300 case Expr::DeclRefExprClass: 1301 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1302 case Expr::ConstantExprClass: { 1303 const ConstantExpr *CE = cast<ConstantExpr>(E); 1304 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1305 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1306 ->getCallReturnType(getContext()) 1307 ->getPointeeType(); 1308 return MakeNaturalAlignAddrLValue(Result, RetType); 1309 } 1310 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1311 } 1312 case Expr::ParenExprClass: 1313 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1314 case Expr::GenericSelectionExprClass: 1315 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1316 case Expr::PredefinedExprClass: 1317 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1318 case Expr::StringLiteralClass: 1319 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1320 case Expr::ObjCEncodeExprClass: 1321 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1322 case Expr::PseudoObjectExprClass: 1323 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1324 case Expr::InitListExprClass: 1325 return EmitInitListLValue(cast<InitListExpr>(E)); 1326 case Expr::CXXTemporaryObjectExprClass: 1327 case Expr::CXXConstructExprClass: 1328 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1329 case Expr::CXXBindTemporaryExprClass: 1330 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1331 case Expr::CXXUuidofExprClass: 1332 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1333 case Expr::LambdaExprClass: 1334 return EmitAggExprToLValue(E); 1335 1336 case Expr::ExprWithCleanupsClass: { 1337 const auto *cleanups = cast<ExprWithCleanups>(E); 1338 RunCleanupsScope Scope(*this); 1339 LValue LV = EmitLValue(cleanups->getSubExpr()); 1340 if (LV.isSimple()) { 1341 // Defend against branches out of gnu statement expressions surrounded by 1342 // cleanups. 1343 Address Addr = LV.getAddress(*this); 1344 llvm::Value *V = Addr.getPointer(); 1345 Scope.ForceCleanup({&V}); 1346 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1347 LV.getBaseInfo(), LV.getTBAAInfo()); 1348 } 1349 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1350 // bitfield lvalue or some other non-simple lvalue? 1351 return LV; 1352 } 1353 1354 case Expr::CXXDefaultArgExprClass: { 1355 auto *DAE = cast<CXXDefaultArgExpr>(E); 1356 CXXDefaultArgExprScope Scope(*this, DAE); 1357 return EmitLValue(DAE->getExpr()); 1358 } 1359 case Expr::CXXDefaultInitExprClass: { 1360 auto *DIE = cast<CXXDefaultInitExpr>(E); 1361 CXXDefaultInitExprScope Scope(*this, DIE); 1362 return EmitLValue(DIE->getExpr()); 1363 } 1364 case Expr::CXXTypeidExprClass: 1365 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1366 1367 case Expr::ObjCMessageExprClass: 1368 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1369 case Expr::ObjCIvarRefExprClass: 1370 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1371 case Expr::StmtExprClass: 1372 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1373 case Expr::UnaryOperatorClass: 1374 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1375 case Expr::ArraySubscriptExprClass: 1376 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1377 case Expr::MatrixSubscriptExprClass: 1378 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1379 case Expr::OMPArraySectionExprClass: 1380 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1381 case Expr::ExtVectorElementExprClass: 1382 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1383 case Expr::MemberExprClass: 1384 return EmitMemberExpr(cast<MemberExpr>(E)); 1385 case Expr::CompoundLiteralExprClass: 1386 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1387 case Expr::ConditionalOperatorClass: 1388 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1389 case Expr::BinaryConditionalOperatorClass: 1390 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1391 case Expr::ChooseExprClass: 1392 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1393 case Expr::OpaqueValueExprClass: 1394 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1395 case Expr::SubstNonTypeTemplateParmExprClass: 1396 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1397 case Expr::ImplicitCastExprClass: 1398 case Expr::CStyleCastExprClass: 1399 case Expr::CXXFunctionalCastExprClass: 1400 case Expr::CXXStaticCastExprClass: 1401 case Expr::CXXDynamicCastExprClass: 1402 case Expr::CXXReinterpretCastExprClass: 1403 case Expr::CXXConstCastExprClass: 1404 case Expr::CXXAddrspaceCastExprClass: 1405 case Expr::ObjCBridgedCastExprClass: 1406 return EmitCastLValue(cast<CastExpr>(E)); 1407 1408 case Expr::MaterializeTemporaryExprClass: 1409 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1410 1411 case Expr::CoawaitExprClass: 1412 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1413 case Expr::CoyieldExprClass: 1414 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1415 } 1416 } 1417 1418 /// Given an object of the given canonical type, can we safely copy a 1419 /// value out of it based on its initializer? 1420 static bool isConstantEmittableObjectType(QualType type) { 1421 assert(type.isCanonical()); 1422 assert(!type->isReferenceType()); 1423 1424 // Must be const-qualified but non-volatile. 1425 Qualifiers qs = type.getLocalQualifiers(); 1426 if (!qs.hasConst() || qs.hasVolatile()) return false; 1427 1428 // Otherwise, all object types satisfy this except C++ classes with 1429 // mutable subobjects or non-trivial copy/destroy behavior. 1430 if (const auto *RT = dyn_cast<RecordType>(type)) 1431 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1432 if (RD->hasMutableFields() || !RD->isTrivial()) 1433 return false; 1434 1435 return true; 1436 } 1437 1438 /// Can we constant-emit a load of a reference to a variable of the 1439 /// given type? This is different from predicates like 1440 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1441 /// in situations that don't necessarily satisfy the language's rules 1442 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1443 /// to do this with const float variables even if those variables 1444 /// aren't marked 'constexpr'. 1445 enum ConstantEmissionKind { 1446 CEK_None, 1447 CEK_AsReferenceOnly, 1448 CEK_AsValueOrReference, 1449 CEK_AsValueOnly 1450 }; 1451 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1452 type = type.getCanonicalType(); 1453 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1454 if (isConstantEmittableObjectType(ref->getPointeeType())) 1455 return CEK_AsValueOrReference; 1456 return CEK_AsReferenceOnly; 1457 } 1458 if (isConstantEmittableObjectType(type)) 1459 return CEK_AsValueOnly; 1460 return CEK_None; 1461 } 1462 1463 /// Try to emit a reference to the given value without producing it as 1464 /// an l-value. This is just an optimization, but it avoids us needing 1465 /// to emit global copies of variables if they're named without triggering 1466 /// a formal use in a context where we can't emit a direct reference to them, 1467 /// for instance if a block or lambda or a member of a local class uses a 1468 /// const int variable or constexpr variable from an enclosing function. 1469 CodeGenFunction::ConstantEmission 1470 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1471 ValueDecl *value = refExpr->getDecl(); 1472 1473 // The value needs to be an enum constant or a constant variable. 1474 ConstantEmissionKind CEK; 1475 if (isa<ParmVarDecl>(value)) { 1476 CEK = CEK_None; 1477 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1478 CEK = checkVarTypeForConstantEmission(var->getType()); 1479 } else if (isa<EnumConstantDecl>(value)) { 1480 CEK = CEK_AsValueOnly; 1481 } else { 1482 CEK = CEK_None; 1483 } 1484 if (CEK == CEK_None) return ConstantEmission(); 1485 1486 Expr::EvalResult result; 1487 bool resultIsReference; 1488 QualType resultType; 1489 1490 // It's best to evaluate all the way as an r-value if that's permitted. 1491 if (CEK != CEK_AsReferenceOnly && 1492 refExpr->EvaluateAsRValue(result, getContext())) { 1493 resultIsReference = false; 1494 resultType = refExpr->getType(); 1495 1496 // Otherwise, try to evaluate as an l-value. 1497 } else if (CEK != CEK_AsValueOnly && 1498 refExpr->EvaluateAsLValue(result, getContext())) { 1499 resultIsReference = true; 1500 resultType = value->getType(); 1501 1502 // Failure. 1503 } else { 1504 return ConstantEmission(); 1505 } 1506 1507 // In any case, if the initializer has side-effects, abandon ship. 1508 if (result.HasSideEffects) 1509 return ConstantEmission(); 1510 1511 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1512 // referencing a global host variable by copy. In this case the lambda should 1513 // make a copy of the value of the global host variable. The DRE of the 1514 // captured reference variable cannot be emitted as load from the host 1515 // global variable as compile time constant, since the host variable is not 1516 // accessible on device. The DRE of the captured reference variable has to be 1517 // loaded from captures. 1518 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1519 refExpr->refersToEnclosingVariableOrCapture()) { 1520 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1521 if (MD && MD->getParent()->isLambda() && 1522 MD->getOverloadedOperator() == OO_Call) { 1523 const APValue::LValueBase &base = result.Val.getLValueBase(); 1524 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1525 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1526 if (!VD->hasAttr<CUDADeviceAttr>()) { 1527 return ConstantEmission(); 1528 } 1529 } 1530 } 1531 } 1532 } 1533 1534 // Emit as a constant. 1535 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1536 result.Val, resultType); 1537 1538 // Make sure we emit a debug reference to the global variable. 1539 // This should probably fire even for 1540 if (isa<VarDecl>(value)) { 1541 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1542 EmitDeclRefExprDbgValue(refExpr, result.Val); 1543 } else { 1544 assert(isa<EnumConstantDecl>(value)); 1545 EmitDeclRefExprDbgValue(refExpr, result.Val); 1546 } 1547 1548 // If we emitted a reference constant, we need to dereference that. 1549 if (resultIsReference) 1550 return ConstantEmission::forReference(C); 1551 1552 return ConstantEmission::forValue(C); 1553 } 1554 1555 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1556 const MemberExpr *ME) { 1557 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1558 // Try to emit static variable member expressions as DREs. 1559 return DeclRefExpr::Create( 1560 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1561 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1562 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1563 } 1564 return nullptr; 1565 } 1566 1567 CodeGenFunction::ConstantEmission 1568 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1569 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1570 return tryEmitAsConstant(DRE); 1571 return ConstantEmission(); 1572 } 1573 1574 llvm::Value *CodeGenFunction::emitScalarConstant( 1575 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1576 assert(Constant && "not a constant"); 1577 if (Constant.isReference()) 1578 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1579 E->getExprLoc()) 1580 .getScalarVal(); 1581 return Constant.getValue(); 1582 } 1583 1584 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1585 SourceLocation Loc) { 1586 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1587 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1588 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1589 } 1590 1591 static bool hasBooleanRepresentation(QualType Ty) { 1592 if (Ty->isBooleanType()) 1593 return true; 1594 1595 if (const EnumType *ET = Ty->getAs<EnumType>()) 1596 return ET->getDecl()->getIntegerType()->isBooleanType(); 1597 1598 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1599 return hasBooleanRepresentation(AT->getValueType()); 1600 1601 return false; 1602 } 1603 1604 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1605 llvm::APInt &Min, llvm::APInt &End, 1606 bool StrictEnums, bool IsBool) { 1607 const EnumType *ET = Ty->getAs<EnumType>(); 1608 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1609 ET && !ET->getDecl()->isFixed(); 1610 if (!IsBool && !IsRegularCPlusPlusEnum) 1611 return false; 1612 1613 if (IsBool) { 1614 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1615 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1616 } else { 1617 const EnumDecl *ED = ET->getDecl(); 1618 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1619 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1620 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1621 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1622 1623 if (NumNegativeBits) { 1624 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1625 assert(NumBits <= Bitwidth); 1626 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1627 Min = -End; 1628 } else { 1629 assert(NumPositiveBits <= Bitwidth); 1630 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1631 Min = llvm::APInt::getZero(Bitwidth); 1632 } 1633 } 1634 return true; 1635 } 1636 1637 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1638 llvm::APInt Min, End; 1639 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1640 hasBooleanRepresentation(Ty))) 1641 return nullptr; 1642 1643 llvm::MDBuilder MDHelper(getLLVMContext()); 1644 return MDHelper.createRange(Min, End); 1645 } 1646 1647 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1648 SourceLocation Loc) { 1649 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1650 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1651 if (!HasBoolCheck && !HasEnumCheck) 1652 return false; 1653 1654 bool IsBool = hasBooleanRepresentation(Ty) || 1655 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1656 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1657 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1658 if (!NeedsBoolCheck && !NeedsEnumCheck) 1659 return false; 1660 1661 // Single-bit booleans don't need to be checked. Special-case this to avoid 1662 // a bit width mismatch when handling bitfield values. This is handled by 1663 // EmitFromMemory for the non-bitfield case. 1664 if (IsBool && 1665 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1666 return false; 1667 1668 llvm::APInt Min, End; 1669 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1670 return true; 1671 1672 auto &Ctx = getLLVMContext(); 1673 SanitizerScope SanScope(this); 1674 llvm::Value *Check; 1675 --End; 1676 if (!Min) { 1677 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1678 } else { 1679 llvm::Value *Upper = 1680 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1681 llvm::Value *Lower = 1682 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1683 Check = Builder.CreateAnd(Upper, Lower); 1684 } 1685 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1686 EmitCheckTypeDescriptor(Ty)}; 1687 SanitizerMask Kind = 1688 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1689 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1690 StaticArgs, EmitCheckValue(Value)); 1691 return true; 1692 } 1693 1694 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1695 QualType Ty, 1696 SourceLocation Loc, 1697 LValueBaseInfo BaseInfo, 1698 TBAAAccessInfo TBAAInfo, 1699 bool isNontemporal) { 1700 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1701 // Boolean vectors use `iN` as storage type. 1702 if (ClangVecTy->isExtVectorBoolType()) { 1703 llvm::Type *ValTy = ConvertType(Ty); 1704 unsigned ValNumElems = 1705 cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1706 // Load the `iP` storage object (P is the padded vector size). 1707 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 1708 const auto *RawIntTy = RawIntV->getType(); 1709 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 1710 // Bitcast iP --> <P x i1>. 1711 auto *PaddedVecTy = llvm::FixedVectorType::get( 1712 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1713 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 1714 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1715 V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 1716 1717 return EmitFromMemory(V, Ty); 1718 } 1719 1720 // Handle vectors of size 3 like size 4 for better performance. 1721 const llvm::Type *EltTy = Addr.getElementType(); 1722 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1723 1724 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 1725 1726 // Bitcast to vec4 type. 1727 llvm::VectorType *vec4Ty = 1728 llvm::FixedVectorType::get(VTy->getElementType(), 4); 1729 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1730 // Now load value. 1731 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1732 1733 // Shuffle vector to get vec3. 1734 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 1735 return EmitFromMemory(V, Ty); 1736 } 1737 } 1738 1739 // Atomic operations have to be done on integral types. 1740 LValue AtomicLValue = 1741 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1742 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1743 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1744 } 1745 1746 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1747 if (isNontemporal) { 1748 llvm::MDNode *Node = llvm::MDNode::get( 1749 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1750 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1751 } 1752 1753 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1754 1755 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1756 // In order to prevent the optimizer from throwing away the check, don't 1757 // attach range metadata to the load. 1758 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1759 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1760 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1761 1762 return EmitFromMemory(Load, Ty); 1763 } 1764 1765 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1766 // Bool has a different representation in memory than in registers. 1767 if (hasBooleanRepresentation(Ty)) { 1768 // This should really always be an i1, but sometimes it's already 1769 // an i8, and it's awkward to track those cases down. 1770 if (Value->getType()->isIntegerTy(1)) 1771 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1772 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1773 "wrong value rep of bool"); 1774 } 1775 1776 return Value; 1777 } 1778 1779 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1780 // Bool has a different representation in memory than in registers. 1781 if (hasBooleanRepresentation(Ty)) { 1782 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1783 "wrong value rep of bool"); 1784 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1785 } 1786 if (Ty->isExtVectorBoolType()) { 1787 const auto *RawIntTy = Value->getType(); 1788 // Bitcast iP --> <P x i1>. 1789 auto *PaddedVecTy = llvm::FixedVectorType::get( 1790 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1791 auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 1792 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1793 llvm::Type *ValTy = ConvertType(Ty); 1794 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1795 return emitBoolVecConversion(V, ValNumElems, "extractvec"); 1796 } 1797 1798 return Value; 1799 } 1800 1801 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1802 // MatrixType), if it points to a array (the memory type of MatrixType). 1803 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1804 bool IsVector = true) { 1805 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1806 if (ArrayTy && IsVector) { 1807 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1808 ArrayTy->getNumElements()); 1809 1810 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1811 } 1812 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1813 if (VectorTy && !IsVector) { 1814 auto *ArrayTy = llvm::ArrayType::get( 1815 VectorTy->getElementType(), 1816 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1817 1818 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1819 } 1820 1821 return Addr; 1822 } 1823 1824 // Emit a store of a matrix LValue. This may require casting the original 1825 // pointer to memory address (ArrayType) to a pointer to the value type 1826 // (VectorType). 1827 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1828 bool isInit, CodeGenFunction &CGF) { 1829 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1830 value->getType()->isVectorTy()); 1831 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1832 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1833 lvalue.isNontemporal()); 1834 } 1835 1836 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1837 bool Volatile, QualType Ty, 1838 LValueBaseInfo BaseInfo, 1839 TBAAAccessInfo TBAAInfo, 1840 bool isInit, bool isNontemporal) { 1841 llvm::Type *SrcTy = Value->getType(); 1842 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1843 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 1844 if (VecTy && ClangVecTy->isExtVectorBoolType()) { 1845 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 1846 // Expand to the memory bit width. 1847 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 1848 // <N x i1> --> <P x i1>. 1849 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 1850 // <P x i1> --> iP. 1851 Value = Builder.CreateBitCast(Value, MemIntTy); 1852 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1853 // Handle vec3 special. 1854 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1855 // Our source is a vec3, do a shuffle vector to make it a vec4. 1856 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1857 "extractVec"); 1858 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1859 } 1860 if (Addr.getElementType() != SrcTy) { 1861 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1862 } 1863 } 1864 } 1865 1866 Value = EmitToMemory(Value, Ty); 1867 1868 LValue AtomicLValue = 1869 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1870 if (Ty->isAtomicType() || 1871 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1872 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1873 return; 1874 } 1875 1876 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1877 if (isNontemporal) { 1878 llvm::MDNode *Node = 1879 llvm::MDNode::get(Store->getContext(), 1880 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1881 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1882 } 1883 1884 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1885 } 1886 1887 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1888 bool isInit) { 1889 if (lvalue.getType()->isConstantMatrixType()) { 1890 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1891 return; 1892 } 1893 1894 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1895 lvalue.getType(), lvalue.getBaseInfo(), 1896 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1897 } 1898 1899 // Emit a load of a LValue of matrix type. This may require casting the pointer 1900 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1901 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1902 CodeGenFunction &CGF) { 1903 assert(LV.getType()->isConstantMatrixType()); 1904 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1905 LV.setAddress(Addr); 1906 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1907 } 1908 1909 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1910 /// method emits the address of the lvalue, then loads the result as an rvalue, 1911 /// returning the rvalue. 1912 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1913 if (LV.isObjCWeak()) { 1914 // load of a __weak object. 1915 Address AddrWeakObj = LV.getAddress(*this); 1916 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1917 AddrWeakObj)); 1918 } 1919 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1920 // In MRC mode, we do a load+autorelease. 1921 if (!getLangOpts().ObjCAutoRefCount) { 1922 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1923 } 1924 1925 // In ARC mode, we load retained and then consume the value. 1926 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1927 Object = EmitObjCConsumeObject(LV.getType(), Object); 1928 return RValue::get(Object); 1929 } 1930 1931 if (LV.isSimple()) { 1932 assert(!LV.getType()->isFunctionType()); 1933 1934 if (LV.getType()->isConstantMatrixType()) 1935 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1936 1937 // Everything needs a load. 1938 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1939 } 1940 1941 if (LV.isVectorElt()) { 1942 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1943 LV.isVolatileQualified()); 1944 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1945 "vecext")); 1946 } 1947 1948 // If this is a reference to a subset of the elements of a vector, either 1949 // shuffle the input or extract/insert them as appropriate. 1950 if (LV.isExtVectorElt()) { 1951 return EmitLoadOfExtVectorElementLValue(LV); 1952 } 1953 1954 // Global Register variables always invoke intrinsics 1955 if (LV.isGlobalReg()) 1956 return EmitLoadOfGlobalRegLValue(LV); 1957 1958 if (LV.isMatrixElt()) { 1959 llvm::Value *Idx = LV.getMatrixIdx(); 1960 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1961 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 1962 llvm::MatrixBuilder MB(Builder); 1963 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1964 } 1965 llvm::LoadInst *Load = 1966 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1967 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1968 } 1969 1970 assert(LV.isBitField() && "Unknown LValue type!"); 1971 return EmitLoadOfBitfieldLValue(LV, Loc); 1972 } 1973 1974 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1975 SourceLocation Loc) { 1976 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1977 1978 // Get the output type. 1979 llvm::Type *ResLTy = ConvertType(LV.getType()); 1980 1981 Address Ptr = LV.getBitFieldAddress(); 1982 llvm::Value *Val = 1983 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1984 1985 bool UseVolatile = LV.isVolatileQualified() && 1986 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1987 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1988 const unsigned StorageSize = 1989 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1990 if (Info.IsSigned) { 1991 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1992 unsigned HighBits = StorageSize - Offset - Info.Size; 1993 if (HighBits) 1994 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1995 if (Offset + HighBits) 1996 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1997 } else { 1998 if (Offset) 1999 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2000 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2001 Val = Builder.CreateAnd( 2002 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 2003 } 2004 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 2005 EmitScalarRangeCheck(Val, LV.getType(), Loc); 2006 return RValue::get(Val); 2007 } 2008 2009 // If this is a reference to a subset of the elements of a vector, create an 2010 // appropriate shufflevector. 2011 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 2012 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 2013 LV.isVolatileQualified()); 2014 2015 const llvm::Constant *Elts = LV.getExtVectorElts(); 2016 2017 // If the result of the expression is a non-vector type, we must be extracting 2018 // a single element. Just codegen as an extractelement. 2019 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2020 if (!ExprVT) { 2021 unsigned InIdx = getAccessedFieldNo(0, Elts); 2022 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2023 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2024 } 2025 2026 // Always use shuffle vector to try to retain the original program structure 2027 unsigned NumResultElts = ExprVT->getNumElements(); 2028 2029 SmallVector<int, 4> Mask; 2030 for (unsigned i = 0; i != NumResultElts; ++i) 2031 Mask.push_back(getAccessedFieldNo(i, Elts)); 2032 2033 Vec = Builder.CreateShuffleVector(Vec, Mask); 2034 return RValue::get(Vec); 2035 } 2036 2037 /// Generates lvalue for partial ext_vector access. 2038 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2039 Address VectorAddress = LV.getExtVectorAddress(); 2040 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2041 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2042 2043 Address CastToPointerElement = 2044 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2045 "conv.ptr.element"); 2046 2047 const llvm::Constant *Elts = LV.getExtVectorElts(); 2048 unsigned ix = getAccessedFieldNo(0, Elts); 2049 2050 Address VectorBasePtrPlusIx = 2051 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2052 "vector.elt"); 2053 2054 return VectorBasePtrPlusIx; 2055 } 2056 2057 /// Load of global gamed gegisters are always calls to intrinsics. 2058 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2059 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2060 "Bad type for register variable"); 2061 llvm::MDNode *RegName = cast<llvm::MDNode>( 2062 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2063 2064 // We accept integer and pointer types only 2065 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2066 llvm::Type *Ty = OrigTy; 2067 if (OrigTy->isPointerTy()) 2068 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2069 llvm::Type *Types[] = { Ty }; 2070 2071 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2072 llvm::Value *Call = Builder.CreateCall( 2073 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2074 if (OrigTy->isPointerTy()) 2075 Call = Builder.CreateIntToPtr(Call, OrigTy); 2076 return RValue::get(Call); 2077 } 2078 2079 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2080 /// lvalue, where both are guaranteed to the have the same type, and that type 2081 /// is 'Ty'. 2082 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2083 bool isInit) { 2084 if (!Dst.isSimple()) { 2085 if (Dst.isVectorElt()) { 2086 // Read/modify/write the vector, inserting the new element. 2087 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2088 Dst.isVolatileQualified()); 2089 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 2090 if (IRStoreTy) { 2091 auto *IRVecTy = llvm::FixedVectorType::get( 2092 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 2093 Vec = Builder.CreateBitCast(Vec, IRVecTy); 2094 // iN --> <N x i1>. 2095 } 2096 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2097 Dst.getVectorIdx(), "vecins"); 2098 if (IRStoreTy) { 2099 // <N x i1> --> <iN>. 2100 Vec = Builder.CreateBitCast(Vec, IRStoreTy); 2101 } 2102 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2103 Dst.isVolatileQualified()); 2104 return; 2105 } 2106 2107 // If this is an update of extended vector elements, insert them as 2108 // appropriate. 2109 if (Dst.isExtVectorElt()) 2110 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2111 2112 if (Dst.isGlobalReg()) 2113 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2114 2115 if (Dst.isMatrixElt()) { 2116 llvm::Value *Idx = Dst.getMatrixIdx(); 2117 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2118 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2119 llvm::MatrixBuilder MB(Builder); 2120 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2121 } 2122 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2123 llvm::Value *Vec = 2124 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2125 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2126 Dst.isVolatileQualified()); 2127 return; 2128 } 2129 2130 assert(Dst.isBitField() && "Unknown LValue type"); 2131 return EmitStoreThroughBitfieldLValue(Src, Dst); 2132 } 2133 2134 // There's special magic for assigning into an ARC-qualified l-value. 2135 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2136 switch (Lifetime) { 2137 case Qualifiers::OCL_None: 2138 llvm_unreachable("present but none"); 2139 2140 case Qualifiers::OCL_ExplicitNone: 2141 // nothing special 2142 break; 2143 2144 case Qualifiers::OCL_Strong: 2145 if (isInit) { 2146 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2147 break; 2148 } 2149 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2150 return; 2151 2152 case Qualifiers::OCL_Weak: 2153 if (isInit) 2154 // Initialize and then skip the primitive store. 2155 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2156 else 2157 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2158 /*ignore*/ true); 2159 return; 2160 2161 case Qualifiers::OCL_Autoreleasing: 2162 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2163 Src.getScalarVal())); 2164 // fall into the normal path 2165 break; 2166 } 2167 } 2168 2169 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2170 // load of a __weak object. 2171 Address LvalueDst = Dst.getAddress(*this); 2172 llvm::Value *src = Src.getScalarVal(); 2173 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2174 return; 2175 } 2176 2177 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2178 // load of a __strong object. 2179 Address LvalueDst = Dst.getAddress(*this); 2180 llvm::Value *src = Src.getScalarVal(); 2181 if (Dst.isObjCIvar()) { 2182 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2183 llvm::Type *ResultType = IntPtrTy; 2184 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2185 llvm::Value *RHS = dst.getPointer(); 2186 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2187 llvm::Value *LHS = 2188 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2189 "sub.ptr.lhs.cast"); 2190 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2191 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2192 BytesBetween); 2193 } else if (Dst.isGlobalObjCRef()) { 2194 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2195 Dst.isThreadLocalRef()); 2196 } 2197 else 2198 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2199 return; 2200 } 2201 2202 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2203 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2204 } 2205 2206 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2207 llvm::Value **Result) { 2208 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2209 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2210 Address Ptr = Dst.getBitFieldAddress(); 2211 2212 // Get the source value, truncated to the width of the bit-field. 2213 llvm::Value *SrcVal = Src.getScalarVal(); 2214 2215 // Cast the source to the storage type and shift it into place. 2216 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2217 /*isSigned=*/false); 2218 llvm::Value *MaskedVal = SrcVal; 2219 2220 const bool UseVolatile = 2221 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2222 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2223 const unsigned StorageSize = 2224 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2225 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2226 // See if there are other bits in the bitfield's storage we'll need to load 2227 // and mask together with source before storing. 2228 if (StorageSize != Info.Size) { 2229 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2230 llvm::Value *Val = 2231 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2232 2233 // Mask the source value as needed. 2234 if (!hasBooleanRepresentation(Dst.getType())) 2235 SrcVal = Builder.CreateAnd( 2236 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2237 "bf.value"); 2238 MaskedVal = SrcVal; 2239 if (Offset) 2240 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2241 2242 // Mask out the original value. 2243 Val = Builder.CreateAnd( 2244 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2245 "bf.clear"); 2246 2247 // Or together the unchanged values and the source value. 2248 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2249 } else { 2250 assert(Offset == 0); 2251 // According to the AACPS: 2252 // When a volatile bit-field is written, and its container does not overlap 2253 // with any non-bit-field member, its container must be read exactly once 2254 // and written exactly once using the access width appropriate to the type 2255 // of the container. The two accesses are not atomic. 2256 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2257 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2258 Builder.CreateLoad(Ptr, true, "bf.load"); 2259 } 2260 2261 // Write the new value back out. 2262 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2263 2264 // Return the new value of the bit-field, if requested. 2265 if (Result) { 2266 llvm::Value *ResultVal = MaskedVal; 2267 2268 // Sign extend the value if needed. 2269 if (Info.IsSigned) { 2270 assert(Info.Size <= StorageSize); 2271 unsigned HighBits = StorageSize - Info.Size; 2272 if (HighBits) { 2273 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2274 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2275 } 2276 } 2277 2278 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2279 "bf.result.cast"); 2280 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2281 } 2282 } 2283 2284 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2285 LValue Dst) { 2286 // This access turns into a read/modify/write of the vector. Load the input 2287 // value now. 2288 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2289 Dst.isVolatileQualified()); 2290 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2291 2292 llvm::Value *SrcVal = Src.getScalarVal(); 2293 2294 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2295 unsigned NumSrcElts = VTy->getNumElements(); 2296 unsigned NumDstElts = 2297 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2298 if (NumDstElts == NumSrcElts) { 2299 // Use shuffle vector is the src and destination are the same number of 2300 // elements and restore the vector mask since it is on the side it will be 2301 // stored. 2302 SmallVector<int, 4> Mask(NumDstElts); 2303 for (unsigned i = 0; i != NumSrcElts; ++i) 2304 Mask[getAccessedFieldNo(i, Elts)] = i; 2305 2306 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2307 } else if (NumDstElts > NumSrcElts) { 2308 // Extended the source vector to the same length and then shuffle it 2309 // into the destination. 2310 // FIXME: since we're shuffling with undef, can we just use the indices 2311 // into that? This could be simpler. 2312 SmallVector<int, 4> ExtMask; 2313 for (unsigned i = 0; i != NumSrcElts; ++i) 2314 ExtMask.push_back(i); 2315 ExtMask.resize(NumDstElts, -1); 2316 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2317 // build identity 2318 SmallVector<int, 4> Mask; 2319 for (unsigned i = 0; i != NumDstElts; ++i) 2320 Mask.push_back(i); 2321 2322 // When the vector size is odd and .odd or .hi is used, the last element 2323 // of the Elts constant array will be one past the size of the vector. 2324 // Ignore the last element here, if it is greater than the mask size. 2325 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2326 NumSrcElts--; 2327 2328 // modify when what gets shuffled in 2329 for (unsigned i = 0; i != NumSrcElts; ++i) 2330 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2331 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2332 } else { 2333 // We should never shorten the vector 2334 llvm_unreachable("unexpected shorten vector length"); 2335 } 2336 } else { 2337 // If the Src is a scalar (not a vector) it must be updating one element. 2338 unsigned InIdx = getAccessedFieldNo(0, Elts); 2339 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2340 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2341 } 2342 2343 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2344 Dst.isVolatileQualified()); 2345 } 2346 2347 /// Store of global named registers are always calls to intrinsics. 2348 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2349 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2350 "Bad type for register variable"); 2351 llvm::MDNode *RegName = cast<llvm::MDNode>( 2352 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2353 assert(RegName && "Register LValue is not metadata"); 2354 2355 // We accept integer and pointer types only 2356 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2357 llvm::Type *Ty = OrigTy; 2358 if (OrigTy->isPointerTy()) 2359 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2360 llvm::Type *Types[] = { Ty }; 2361 2362 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2363 llvm::Value *Value = Src.getScalarVal(); 2364 if (OrigTy->isPointerTy()) 2365 Value = Builder.CreatePtrToInt(Value, Ty); 2366 Builder.CreateCall( 2367 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2368 } 2369 2370 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2371 // generating write-barries API. It is currently a global, ivar, 2372 // or neither. 2373 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2374 LValue &LV, 2375 bool IsMemberAccess=false) { 2376 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2377 return; 2378 2379 if (isa<ObjCIvarRefExpr>(E)) { 2380 QualType ExpTy = E->getType(); 2381 if (IsMemberAccess && ExpTy->isPointerType()) { 2382 // If ivar is a structure pointer, assigning to field of 2383 // this struct follows gcc's behavior and makes it a non-ivar 2384 // writer-barrier conservatively. 2385 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2386 if (ExpTy->isRecordType()) { 2387 LV.setObjCIvar(false); 2388 return; 2389 } 2390 } 2391 LV.setObjCIvar(true); 2392 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2393 LV.setBaseIvarExp(Exp->getBase()); 2394 LV.setObjCArray(E->getType()->isArrayType()); 2395 return; 2396 } 2397 2398 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2399 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2400 if (VD->hasGlobalStorage()) { 2401 LV.setGlobalObjCRef(true); 2402 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2403 } 2404 } 2405 LV.setObjCArray(E->getType()->isArrayType()); 2406 return; 2407 } 2408 2409 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2410 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2411 return; 2412 } 2413 2414 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2415 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2416 if (LV.isObjCIvar()) { 2417 // If cast is to a structure pointer, follow gcc's behavior and make it 2418 // a non-ivar write-barrier. 2419 QualType ExpTy = E->getType(); 2420 if (ExpTy->isPointerType()) 2421 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2422 if (ExpTy->isRecordType()) 2423 LV.setObjCIvar(false); 2424 } 2425 return; 2426 } 2427 2428 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2429 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2430 return; 2431 } 2432 2433 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2434 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2435 return; 2436 } 2437 2438 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2439 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2440 return; 2441 } 2442 2443 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2444 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2445 return; 2446 } 2447 2448 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2449 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2450 if (LV.isObjCIvar() && !LV.isObjCArray()) 2451 // Using array syntax to assigning to what an ivar points to is not 2452 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2453 LV.setObjCIvar(false); 2454 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2455 // Using array syntax to assigning to what global points to is not 2456 // same as assigning to the global itself. {id *G;} G[i] = 0; 2457 LV.setGlobalObjCRef(false); 2458 return; 2459 } 2460 2461 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2462 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2463 // We don't know if member is an 'ivar', but this flag is looked at 2464 // only in the context of LV.isObjCIvar(). 2465 LV.setObjCArray(E->getType()->isArrayType()); 2466 return; 2467 } 2468 } 2469 2470 static llvm::Value * 2471 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2472 llvm::Value *V, llvm::Type *IRType, 2473 StringRef Name = StringRef()) { 2474 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2475 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2476 } 2477 2478 static LValue EmitThreadPrivateVarDeclLValue( 2479 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2480 llvm::Type *RealVarTy, SourceLocation Loc) { 2481 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2482 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2483 CGF, VD, Addr, Loc); 2484 else 2485 Addr = 2486 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2487 2488 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2489 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2490 } 2491 2492 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2493 const VarDecl *VD, QualType T) { 2494 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2495 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2496 // Return an invalid address if variable is MT_To and unified 2497 // memory is not enabled. For all other cases: MT_Link and 2498 // MT_To with unified memory, return a valid address. 2499 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2500 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2501 return Address::invalid(); 2502 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2503 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2504 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2505 "Expected link clause OR to clause with unified memory enabled."); 2506 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2507 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2508 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2509 } 2510 2511 Address 2512 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2513 LValueBaseInfo *PointeeBaseInfo, 2514 TBAAAccessInfo *PointeeTBAAInfo) { 2515 llvm::LoadInst *Load = 2516 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2517 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2518 2519 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2520 CharUnits Align = CGM.getNaturalTypeAlignment( 2521 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2522 /* forPointeeType= */ true); 2523 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2524 } 2525 2526 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2527 LValueBaseInfo PointeeBaseInfo; 2528 TBAAAccessInfo PointeeTBAAInfo; 2529 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2530 &PointeeTBAAInfo); 2531 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2532 PointeeBaseInfo, PointeeTBAAInfo); 2533 } 2534 2535 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2536 const PointerType *PtrTy, 2537 LValueBaseInfo *BaseInfo, 2538 TBAAAccessInfo *TBAAInfo) { 2539 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2540 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 2541 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 2542 TBAAInfo, 2543 /*forPointeeType=*/true)); 2544 } 2545 2546 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2547 const PointerType *PtrTy) { 2548 LValueBaseInfo BaseInfo; 2549 TBAAAccessInfo TBAAInfo; 2550 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2551 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2552 } 2553 2554 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2555 const Expr *E, const VarDecl *VD) { 2556 QualType T = E->getType(); 2557 2558 // If it's thread_local, emit a call to its wrapper function instead. 2559 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2560 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2561 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2562 // Check if the variable is marked as declare target with link clause in 2563 // device codegen. 2564 if (CGF.getLangOpts().OpenMPIsDevice) { 2565 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2566 if (Addr.isValid()) 2567 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2568 } 2569 2570 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2571 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2572 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2573 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2574 Address Addr(V, RealVarTy, Alignment); 2575 // Emit reference to the private copy of the variable if it is an OpenMP 2576 // threadprivate variable. 2577 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2578 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2579 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2580 E->getExprLoc()); 2581 } 2582 LValue LV = VD->getType()->isReferenceType() ? 2583 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2584 AlignmentSource::Decl) : 2585 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2586 setObjCGCLValueClass(CGF.getContext(), E, LV); 2587 return LV; 2588 } 2589 2590 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2591 GlobalDecl GD) { 2592 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2593 if (FD->hasAttr<WeakRefAttr>()) { 2594 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2595 return aliasee.getPointer(); 2596 } 2597 2598 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2599 if (!FD->hasPrototype()) { 2600 if (const FunctionProtoType *Proto = 2601 FD->getType()->getAs<FunctionProtoType>()) { 2602 // Ugly case: for a K&R-style definition, the type of the definition 2603 // isn't the same as the type of a use. Correct for this with a 2604 // bitcast. 2605 QualType NoProtoType = 2606 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2607 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2608 V = llvm::ConstantExpr::getBitCast(V, 2609 CGM.getTypes().ConvertType(NoProtoType)); 2610 } 2611 } 2612 return V; 2613 } 2614 2615 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2616 GlobalDecl GD) { 2617 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2618 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2619 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2620 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2621 AlignmentSource::Decl); 2622 } 2623 2624 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2625 llvm::Value *ThisValue) { 2626 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2627 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2628 return CGF.EmitLValueForField(LV, FD); 2629 } 2630 2631 /// Named Registers are named metadata pointing to the register name 2632 /// which will be read from/written to as an argument to the intrinsic 2633 /// @llvm.read/write_register. 2634 /// So far, only the name is being passed down, but other options such as 2635 /// register type, allocation type or even optimization options could be 2636 /// passed down via the metadata node. 2637 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2638 SmallString<64> Name("llvm.named.register."); 2639 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2640 assert(Asm->getLabel().size() < 64-Name.size() && 2641 "Register name too big"); 2642 Name.append(Asm->getLabel()); 2643 llvm::NamedMDNode *M = 2644 CGM.getModule().getOrInsertNamedMetadata(Name); 2645 if (M->getNumOperands() == 0) { 2646 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2647 Asm->getLabel()); 2648 llvm::Metadata *Ops[] = {Str}; 2649 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2650 } 2651 2652 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2653 2654 llvm::Value *Ptr = 2655 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2656 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2657 } 2658 2659 /// Determine whether we can emit a reference to \p VD from the current 2660 /// context, despite not necessarily having seen an odr-use of the variable in 2661 /// this context. 2662 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2663 const DeclRefExpr *E, 2664 const VarDecl *VD, 2665 bool IsConstant) { 2666 // For a variable declared in an enclosing scope, do not emit a spurious 2667 // reference even if we have a capture, as that will emit an unwarranted 2668 // reference to our capture state, and will likely generate worse code than 2669 // emitting a local copy. 2670 if (E->refersToEnclosingVariableOrCapture()) 2671 return false; 2672 2673 // For a local declaration declared in this function, we can always reference 2674 // it even if we don't have an odr-use. 2675 if (VD->hasLocalStorage()) { 2676 return VD->getDeclContext() == 2677 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2678 } 2679 2680 // For a global declaration, we can emit a reference to it if we know 2681 // for sure that we are able to emit a definition of it. 2682 VD = VD->getDefinition(CGF.getContext()); 2683 if (!VD) 2684 return false; 2685 2686 // Don't emit a spurious reference if it might be to a variable that only 2687 // exists on a different device / target. 2688 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2689 // cross-target reference. 2690 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2691 CGF.getLangOpts().OpenCL) { 2692 return false; 2693 } 2694 2695 // We can emit a spurious reference only if the linkage implies that we'll 2696 // be emitting a non-interposable symbol that will be retained until link 2697 // time. 2698 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2699 case llvm::GlobalValue::ExternalLinkage: 2700 case llvm::GlobalValue::LinkOnceODRLinkage: 2701 case llvm::GlobalValue::WeakODRLinkage: 2702 case llvm::GlobalValue::InternalLinkage: 2703 case llvm::GlobalValue::PrivateLinkage: 2704 return true; 2705 default: 2706 return false; 2707 } 2708 } 2709 2710 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2711 const NamedDecl *ND = E->getDecl(); 2712 QualType T = E->getType(); 2713 2714 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2715 "should not emit an unevaluated operand"); 2716 2717 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2718 // Global Named registers access via intrinsics only 2719 if (VD->getStorageClass() == SC_Register && 2720 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2721 return EmitGlobalNamedRegister(VD, CGM); 2722 2723 // If this DeclRefExpr does not constitute an odr-use of the variable, 2724 // we're not permitted to emit a reference to it in general, and it might 2725 // not be captured if capture would be necessary for a use. Emit the 2726 // constant value directly instead. 2727 if (E->isNonOdrUse() == NOUR_Constant && 2728 (VD->getType()->isReferenceType() || 2729 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2730 VD->getAnyInitializer(VD); 2731 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2732 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2733 assert(Val && "failed to emit constant expression"); 2734 2735 Address Addr = Address::invalid(); 2736 if (!VD->getType()->isReferenceType()) { 2737 // Spill the constant value to a global. 2738 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2739 getContext().getDeclAlign(VD)); 2740 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2741 auto *PTy = llvm::PointerType::get( 2742 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2743 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 2744 } else { 2745 // Should we be using the alignment of the constant pointer we emitted? 2746 CharUnits Alignment = 2747 CGM.getNaturalTypeAlignment(E->getType(), 2748 /* BaseInfo= */ nullptr, 2749 /* TBAAInfo= */ nullptr, 2750 /* forPointeeType= */ true); 2751 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2752 } 2753 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2754 } 2755 2756 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2757 2758 // Check for captured variables. 2759 if (E->refersToEnclosingVariableOrCapture()) { 2760 VD = VD->getCanonicalDecl(); 2761 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2762 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2763 if (CapturedStmtInfo) { 2764 auto I = LocalDeclMap.find(VD); 2765 if (I != LocalDeclMap.end()) { 2766 LValue CapLVal; 2767 if (VD->getType()->isReferenceType()) 2768 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2769 AlignmentSource::Decl); 2770 else 2771 CapLVal = MakeAddrLValue(I->second, T); 2772 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2773 // in simd context. 2774 if (getLangOpts().OpenMP && 2775 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2776 CapLVal.setNontemporal(/*Value=*/true); 2777 return CapLVal; 2778 } 2779 LValue CapLVal = 2780 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2781 CapturedStmtInfo->getContextValue()); 2782 Address LValueAddress = CapLVal.getAddress(*this); 2783 CapLVal = MakeAddrLValue( 2784 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 2785 getContext().getDeclAlign(VD)), 2786 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2787 CapLVal.getTBAAInfo()); 2788 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2789 // in simd context. 2790 if (getLangOpts().OpenMP && 2791 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2792 CapLVal.setNontemporal(/*Value=*/true); 2793 return CapLVal; 2794 } 2795 2796 assert(isa<BlockDecl>(CurCodeDecl)); 2797 Address addr = GetAddrOfBlockDecl(VD); 2798 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2799 } 2800 } 2801 2802 // FIXME: We should be able to assert this for FunctionDecls as well! 2803 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2804 // those with a valid source location. 2805 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2806 !E->getLocation().isValid()) && 2807 "Should not use decl without marking it used!"); 2808 2809 if (ND->hasAttr<WeakRefAttr>()) { 2810 const auto *VD = cast<ValueDecl>(ND); 2811 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2812 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2813 } 2814 2815 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2816 // Check if this is a global variable. 2817 if (VD->hasLinkage() || VD->isStaticDataMember()) 2818 return EmitGlobalVarDeclLValue(*this, E, VD); 2819 2820 Address addr = Address::invalid(); 2821 2822 // The variable should generally be present in the local decl map. 2823 auto iter = LocalDeclMap.find(VD); 2824 if (iter != LocalDeclMap.end()) { 2825 addr = iter->second; 2826 2827 // Otherwise, it might be static local we haven't emitted yet for 2828 // some reason; most likely, because it's in an outer function. 2829 } else if (VD->isStaticLocal()) { 2830 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2831 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2832 addr = Address( 2833 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2834 2835 // No other cases for now. 2836 } else { 2837 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2838 } 2839 2840 2841 // Check for OpenMP threadprivate variables. 2842 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2843 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2844 return EmitThreadPrivateVarDeclLValue( 2845 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2846 E->getExprLoc()); 2847 } 2848 2849 // Drill into block byref variables. 2850 bool isBlockByref = VD->isEscapingByref(); 2851 if (isBlockByref) { 2852 addr = emitBlockByrefAddress(addr, VD); 2853 } 2854 2855 // Drill into reference types. 2856 LValue LV = VD->getType()->isReferenceType() ? 2857 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2858 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2859 2860 bool isLocalStorage = VD->hasLocalStorage(); 2861 2862 bool NonGCable = isLocalStorage && 2863 !VD->getType()->isReferenceType() && 2864 !isBlockByref; 2865 if (NonGCable) { 2866 LV.getQuals().removeObjCGCAttr(); 2867 LV.setNonGC(true); 2868 } 2869 2870 bool isImpreciseLifetime = 2871 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2872 if (isImpreciseLifetime) 2873 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2874 setObjCGCLValueClass(getContext(), E, LV); 2875 return LV; 2876 } 2877 2878 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2879 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2880 2881 // Emit debuginfo for the function declaration if the target wants to. 2882 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2883 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2884 auto *Fn = 2885 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2886 if (!Fn->getSubprogram()) 2887 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2888 } 2889 } 2890 2891 return LV; 2892 } 2893 2894 // FIXME: While we're emitting a binding from an enclosing scope, all other 2895 // DeclRefExprs we see should be implicitly treated as if they also refer to 2896 // an enclosing scope. 2897 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2898 return EmitLValue(BD->getBinding()); 2899 2900 // We can form DeclRefExprs naming GUID declarations when reconstituting 2901 // non-type template parameters into expressions. 2902 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2903 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2904 AlignmentSource::Decl); 2905 2906 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2907 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2908 AlignmentSource::Decl); 2909 2910 llvm_unreachable("Unhandled DeclRefExpr"); 2911 } 2912 2913 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2914 // __extension__ doesn't affect lvalue-ness. 2915 if (E->getOpcode() == UO_Extension) 2916 return EmitLValue(E->getSubExpr()); 2917 2918 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2919 switch (E->getOpcode()) { 2920 default: llvm_unreachable("Unknown unary operator lvalue!"); 2921 case UO_Deref: { 2922 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2923 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2924 2925 LValueBaseInfo BaseInfo; 2926 TBAAAccessInfo TBAAInfo; 2927 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2928 &TBAAInfo); 2929 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2930 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2931 2932 // We should not generate __weak write barrier on indirect reference 2933 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2934 // But, we continue to generate __strong write barrier on indirect write 2935 // into a pointer to object. 2936 if (getLangOpts().ObjC && 2937 getLangOpts().getGC() != LangOptions::NonGC && 2938 LV.isObjCWeak()) 2939 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2940 return LV; 2941 } 2942 case UO_Real: 2943 case UO_Imag: { 2944 LValue LV = EmitLValue(E->getSubExpr()); 2945 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2946 2947 // __real is valid on scalars. This is a faster way of testing that. 2948 // __imag can only produce an rvalue on scalars. 2949 if (E->getOpcode() == UO_Real && 2950 !LV.getAddress(*this).getElementType()->isStructTy()) { 2951 assert(E->getSubExpr()->getType()->isArithmeticType()); 2952 return LV; 2953 } 2954 2955 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2956 2957 Address Component = 2958 (E->getOpcode() == UO_Real 2959 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2960 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2961 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2962 CGM.getTBAAInfoForSubobject(LV, T)); 2963 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2964 return ElemLV; 2965 } 2966 case UO_PreInc: 2967 case UO_PreDec: { 2968 LValue LV = EmitLValue(E->getSubExpr()); 2969 bool isInc = E->getOpcode() == UO_PreInc; 2970 2971 if (E->getType()->isAnyComplexType()) 2972 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2973 else 2974 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2975 return LV; 2976 } 2977 } 2978 } 2979 2980 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2981 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2982 E->getType(), AlignmentSource::Decl); 2983 } 2984 2985 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2986 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2987 E->getType(), AlignmentSource::Decl); 2988 } 2989 2990 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2991 auto SL = E->getFunctionName(); 2992 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2993 StringRef FnName = CurFn->getName(); 2994 if (FnName.startswith("\01")) 2995 FnName = FnName.substr(1); 2996 StringRef NameItems[] = { 2997 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2998 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2999 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 3000 std::string Name = std::string(SL->getString()); 3001 if (!Name.empty()) { 3002 unsigned Discriminator = 3003 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 3004 if (Discriminator) 3005 Name += "_" + Twine(Discriminator + 1).str(); 3006 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 3007 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3008 } else { 3009 auto C = 3010 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 3011 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3012 } 3013 } 3014 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 3015 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3016 } 3017 3018 /// Emit a type description suitable for use by a runtime sanitizer library. The 3019 /// format of a type descriptor is 3020 /// 3021 /// \code 3022 /// { i16 TypeKind, i16 TypeInfo } 3023 /// \endcode 3024 /// 3025 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 3026 /// integer, 1 for a floating point value, and -1 for anything else. 3027 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 3028 // Only emit each type's descriptor once. 3029 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 3030 return C; 3031 3032 uint16_t TypeKind = -1; 3033 uint16_t TypeInfo = 0; 3034 3035 if (T->isIntegerType()) { 3036 TypeKind = 0; 3037 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3038 (T->isSignedIntegerType() ? 1 : 0); 3039 } else if (T->isFloatingType()) { 3040 TypeKind = 1; 3041 TypeInfo = getContext().getTypeSize(T); 3042 } 3043 3044 // Format the type name as if for a diagnostic, including quotes and 3045 // optionally an 'aka'. 3046 SmallString<32> Buffer; 3047 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3048 (intptr_t)T.getAsOpaquePtr(), 3049 StringRef(), StringRef(), None, Buffer, 3050 None); 3051 3052 llvm::Constant *Components[] = { 3053 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3054 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3055 }; 3056 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3057 3058 auto *GV = new llvm::GlobalVariable( 3059 CGM.getModule(), Descriptor->getType(), 3060 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3061 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3062 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3063 3064 // Remember the descriptor for this type. 3065 CGM.setTypeDescriptorInMap(T, GV); 3066 3067 return GV; 3068 } 3069 3070 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3071 llvm::Type *TargetTy = IntPtrTy; 3072 3073 if (V->getType() == TargetTy) 3074 return V; 3075 3076 // Floating-point types which fit into intptr_t are bitcast to integers 3077 // and then passed directly (after zero-extension, if necessary). 3078 if (V->getType()->isFloatingPointTy()) { 3079 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3080 if (Bits <= TargetTy->getIntegerBitWidth()) 3081 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3082 Bits)); 3083 } 3084 3085 // Integers which fit in intptr_t are zero-extended and passed directly. 3086 if (V->getType()->isIntegerTy() && 3087 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3088 return Builder.CreateZExt(V, TargetTy); 3089 3090 // Pointers are passed directly, everything else is passed by address. 3091 if (!V->getType()->isPointerTy()) { 3092 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3093 Builder.CreateStore(V, Ptr); 3094 V = Ptr.getPointer(); 3095 } 3096 return Builder.CreatePtrToInt(V, TargetTy); 3097 } 3098 3099 /// Emit a representation of a SourceLocation for passing to a handler 3100 /// in a sanitizer runtime library. The format for this data is: 3101 /// \code 3102 /// struct SourceLocation { 3103 /// const char *Filename; 3104 /// int32_t Line, Column; 3105 /// }; 3106 /// \endcode 3107 /// For an invalid SourceLocation, the Filename pointer is null. 3108 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3109 llvm::Constant *Filename; 3110 int Line, Column; 3111 3112 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3113 if (PLoc.isValid()) { 3114 StringRef FilenameString = PLoc.getFilename(); 3115 3116 int PathComponentsToStrip = 3117 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3118 if (PathComponentsToStrip < 0) { 3119 assert(PathComponentsToStrip != INT_MIN); 3120 int PathComponentsToKeep = -PathComponentsToStrip; 3121 auto I = llvm::sys::path::rbegin(FilenameString); 3122 auto E = llvm::sys::path::rend(FilenameString); 3123 while (I != E && --PathComponentsToKeep) 3124 ++I; 3125 3126 FilenameString = FilenameString.substr(I - E); 3127 } else if (PathComponentsToStrip > 0) { 3128 auto I = llvm::sys::path::begin(FilenameString); 3129 auto E = llvm::sys::path::end(FilenameString); 3130 while (I != E && PathComponentsToStrip--) 3131 ++I; 3132 3133 if (I != E) 3134 FilenameString = 3135 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3136 else 3137 FilenameString = llvm::sys::path::filename(FilenameString); 3138 } 3139 3140 auto FilenameGV = 3141 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3142 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3143 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3144 Filename = FilenameGV.getPointer(); 3145 Line = PLoc.getLine(); 3146 Column = PLoc.getColumn(); 3147 } else { 3148 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3149 Line = Column = 0; 3150 } 3151 3152 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3153 Builder.getInt32(Column)}; 3154 3155 return llvm::ConstantStruct::getAnon(Data); 3156 } 3157 3158 namespace { 3159 /// Specify under what conditions this check can be recovered 3160 enum class CheckRecoverableKind { 3161 /// Always terminate program execution if this check fails. 3162 Unrecoverable, 3163 /// Check supports recovering, runtime has both fatal (noreturn) and 3164 /// non-fatal handlers for this check. 3165 Recoverable, 3166 /// Runtime conditionally aborts, always need to support recovery. 3167 AlwaysRecoverable 3168 }; 3169 } 3170 3171 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3172 assert(Kind.countPopulation() == 1); 3173 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3174 return CheckRecoverableKind::AlwaysRecoverable; 3175 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3176 return CheckRecoverableKind::Unrecoverable; 3177 else 3178 return CheckRecoverableKind::Recoverable; 3179 } 3180 3181 namespace { 3182 struct SanitizerHandlerInfo { 3183 char const *const Name; 3184 unsigned Version; 3185 }; 3186 } 3187 3188 const SanitizerHandlerInfo SanitizerHandlers[] = { 3189 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3190 LIST_SANITIZER_CHECKS 3191 #undef SANITIZER_CHECK 3192 }; 3193 3194 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3195 llvm::FunctionType *FnType, 3196 ArrayRef<llvm::Value *> FnArgs, 3197 SanitizerHandler CheckHandler, 3198 CheckRecoverableKind RecoverKind, bool IsFatal, 3199 llvm::BasicBlock *ContBB) { 3200 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3201 Optional<ApplyDebugLocation> DL; 3202 if (!CGF.Builder.getCurrentDebugLocation()) { 3203 // Ensure that the call has at least an artificial debug location. 3204 DL.emplace(CGF, SourceLocation()); 3205 } 3206 bool NeedsAbortSuffix = 3207 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3208 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3209 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3210 const StringRef CheckName = CheckInfo.Name; 3211 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3212 if (CheckInfo.Version && !MinimalRuntime) 3213 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3214 if (MinimalRuntime) 3215 FnName += "_minimal"; 3216 if (NeedsAbortSuffix) 3217 FnName += "_abort"; 3218 bool MayReturn = 3219 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3220 3221 llvm::AttrBuilder B(CGF.getLLVMContext()); 3222 if (!MayReturn) { 3223 B.addAttribute(llvm::Attribute::NoReturn) 3224 .addAttribute(llvm::Attribute::NoUnwind); 3225 } 3226 B.addUWTableAttr(llvm::UWTableKind::Default); 3227 3228 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3229 FnType, FnName, 3230 llvm::AttributeList::get(CGF.getLLVMContext(), 3231 llvm::AttributeList::FunctionIndex, B), 3232 /*Local=*/true); 3233 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3234 if (!MayReturn) { 3235 HandlerCall->setDoesNotReturn(); 3236 CGF.Builder.CreateUnreachable(); 3237 } else { 3238 CGF.Builder.CreateBr(ContBB); 3239 } 3240 } 3241 3242 void CodeGenFunction::EmitCheck( 3243 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3244 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3245 ArrayRef<llvm::Value *> DynamicArgs) { 3246 assert(IsSanitizerScope); 3247 assert(Checked.size() > 0); 3248 assert(CheckHandler >= 0 && 3249 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3250 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3251 3252 llvm::Value *FatalCond = nullptr; 3253 llvm::Value *RecoverableCond = nullptr; 3254 llvm::Value *TrapCond = nullptr; 3255 for (int i = 0, n = Checked.size(); i < n; ++i) { 3256 llvm::Value *Check = Checked[i].first; 3257 // -fsanitize-trap= overrides -fsanitize-recover=. 3258 llvm::Value *&Cond = 3259 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3260 ? TrapCond 3261 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3262 ? RecoverableCond 3263 : FatalCond; 3264 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3265 } 3266 3267 if (TrapCond) 3268 EmitTrapCheck(TrapCond, CheckHandler); 3269 if (!FatalCond && !RecoverableCond) 3270 return; 3271 3272 llvm::Value *JointCond; 3273 if (FatalCond && RecoverableCond) 3274 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3275 else 3276 JointCond = FatalCond ? FatalCond : RecoverableCond; 3277 assert(JointCond); 3278 3279 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3280 assert(SanOpts.has(Checked[0].second)); 3281 #ifndef NDEBUG 3282 for (int i = 1, n = Checked.size(); i < n; ++i) { 3283 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3284 "All recoverable kinds in a single check must be same!"); 3285 assert(SanOpts.has(Checked[i].second)); 3286 } 3287 #endif 3288 3289 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3290 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3291 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3292 // Give hint that we very much don't expect to execute the handler 3293 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3294 llvm::MDBuilder MDHelper(getLLVMContext()); 3295 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3296 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3297 EmitBlock(Handlers); 3298 3299 // Handler functions take an i8* pointing to the (handler-specific) static 3300 // information block, followed by a sequence of intptr_t arguments 3301 // representing operand values. 3302 SmallVector<llvm::Value *, 4> Args; 3303 SmallVector<llvm::Type *, 4> ArgTypes; 3304 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3305 Args.reserve(DynamicArgs.size() + 1); 3306 ArgTypes.reserve(DynamicArgs.size() + 1); 3307 3308 // Emit handler arguments and create handler function type. 3309 if (!StaticArgs.empty()) { 3310 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3311 auto *InfoPtr = 3312 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3313 llvm::GlobalVariable::PrivateLinkage, Info); 3314 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3315 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3316 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3317 ArgTypes.push_back(Int8PtrTy); 3318 } 3319 3320 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3321 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3322 ArgTypes.push_back(IntPtrTy); 3323 } 3324 } 3325 3326 llvm::FunctionType *FnType = 3327 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3328 3329 if (!FatalCond || !RecoverableCond) { 3330 // Simple case: we need to generate a single handler call, either 3331 // fatal, or non-fatal. 3332 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3333 (FatalCond != nullptr), Cont); 3334 } else { 3335 // Emit two handler calls: first one for set of unrecoverable checks, 3336 // another one for recoverable. 3337 llvm::BasicBlock *NonFatalHandlerBB = 3338 createBasicBlock("non_fatal." + CheckName); 3339 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3340 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3341 EmitBlock(FatalHandlerBB); 3342 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3343 NonFatalHandlerBB); 3344 EmitBlock(NonFatalHandlerBB); 3345 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3346 Cont); 3347 } 3348 3349 EmitBlock(Cont); 3350 } 3351 3352 void CodeGenFunction::EmitCfiSlowPathCheck( 3353 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3354 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3355 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3356 3357 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3358 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3359 3360 llvm::MDBuilder MDHelper(getLLVMContext()); 3361 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3362 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3363 3364 EmitBlock(CheckBB); 3365 3366 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3367 3368 llvm::CallInst *CheckCall; 3369 llvm::FunctionCallee SlowPathFn; 3370 if (WithDiag) { 3371 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3372 auto *InfoPtr = 3373 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3374 llvm::GlobalVariable::PrivateLinkage, Info); 3375 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3376 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3377 3378 SlowPathFn = CGM.getModule().getOrInsertFunction( 3379 "__cfi_slowpath_diag", 3380 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3381 false)); 3382 CheckCall = Builder.CreateCall( 3383 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3384 } else { 3385 SlowPathFn = CGM.getModule().getOrInsertFunction( 3386 "__cfi_slowpath", 3387 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3388 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3389 } 3390 3391 CGM.setDSOLocal( 3392 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3393 CheckCall->setDoesNotThrow(); 3394 3395 EmitBlock(Cont); 3396 } 3397 3398 // Emit a stub for __cfi_check function so that the linker knows about this 3399 // symbol in LTO mode. 3400 void CodeGenFunction::EmitCfiCheckStub() { 3401 llvm::Module *M = &CGM.getModule(); 3402 auto &Ctx = M->getContext(); 3403 llvm::Function *F = llvm::Function::Create( 3404 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3405 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3406 CGM.setDSOLocal(F); 3407 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3408 // FIXME: consider emitting an intrinsic call like 3409 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3410 // which can be lowered in CrossDSOCFI pass to the actual contents of 3411 // __cfi_check. This would allow inlining of __cfi_check calls. 3412 llvm::CallInst::Create( 3413 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3414 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3415 } 3416 3417 // This function is basically a switch over the CFI failure kind, which is 3418 // extracted from CFICheckFailData (1st function argument). Each case is either 3419 // llvm.trap or a call to one of the two runtime handlers, based on 3420 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3421 // failure kind) traps, but this should really never happen. CFICheckFailData 3422 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3423 // check kind; in this case __cfi_check_fail traps as well. 3424 void CodeGenFunction::EmitCfiCheckFail() { 3425 SanitizerScope SanScope(this); 3426 FunctionArgList Args; 3427 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3428 ImplicitParamDecl::Other); 3429 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3430 ImplicitParamDecl::Other); 3431 Args.push_back(&ArgData); 3432 Args.push_back(&ArgAddr); 3433 3434 const CGFunctionInfo &FI = 3435 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3436 3437 llvm::Function *F = llvm::Function::Create( 3438 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3439 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3440 3441 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3442 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3443 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3444 3445 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3446 SourceLocation()); 3447 3448 // This function is not affected by NoSanitizeList. This function does 3449 // not have a source location, but "src:*" would still apply. Revert any 3450 // changes to SanOpts made in StartFunction. 3451 SanOpts = CGM.getLangOpts().Sanitize; 3452 3453 llvm::Value *Data = 3454 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3455 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3456 llvm::Value *Addr = 3457 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3458 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3459 3460 // Data == nullptr means the calling module has trap behaviour for this check. 3461 llvm::Value *DataIsNotNullPtr = 3462 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3463 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3464 3465 llvm::StructType *SourceLocationTy = 3466 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3467 llvm::StructType *CfiCheckFailDataTy = 3468 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3469 3470 llvm::Value *V = Builder.CreateConstGEP2_32( 3471 CfiCheckFailDataTy, 3472 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3473 0); 3474 3475 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3476 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3477 3478 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3479 CGM.getLLVMContext(), 3480 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3481 llvm::Value *ValidVtable = Builder.CreateZExt( 3482 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3483 {Addr, AllVtables}), 3484 IntPtrTy); 3485 3486 const std::pair<int, SanitizerMask> CheckKinds[] = { 3487 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3488 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3489 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3490 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3491 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3492 3493 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3494 for (auto CheckKindMaskPair : CheckKinds) { 3495 int Kind = CheckKindMaskPair.first; 3496 SanitizerMask Mask = CheckKindMaskPair.second; 3497 llvm::Value *Cond = 3498 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3499 if (CGM.getLangOpts().Sanitize.has(Mask)) 3500 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3501 {Data, Addr, ValidVtable}); 3502 else 3503 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3504 } 3505 3506 FinishFunction(); 3507 // The only reference to this function will be created during LTO link. 3508 // Make sure it survives until then. 3509 CGM.addUsedGlobal(F); 3510 } 3511 3512 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3513 if (SanOpts.has(SanitizerKind::Unreachable)) { 3514 SanitizerScope SanScope(this); 3515 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3516 SanitizerKind::Unreachable), 3517 SanitizerHandler::BuiltinUnreachable, 3518 EmitCheckSourceLocation(Loc), None); 3519 } 3520 Builder.CreateUnreachable(); 3521 } 3522 3523 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3524 SanitizerHandler CheckHandlerID) { 3525 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3526 3527 // If we're optimizing, collapse all calls to trap down to just one per 3528 // check-type per function to save on code size. 3529 if (TrapBBs.size() <= CheckHandlerID) 3530 TrapBBs.resize(CheckHandlerID + 1); 3531 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3532 3533 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3534 TrapBB = createBasicBlock("trap"); 3535 Builder.CreateCondBr(Checked, Cont, TrapBB); 3536 EmitBlock(TrapBB); 3537 3538 llvm::CallInst *TrapCall = 3539 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3540 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3541 3542 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3543 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3544 CGM.getCodeGenOpts().TrapFuncName); 3545 TrapCall->addFnAttr(A); 3546 } 3547 TrapCall->setDoesNotReturn(); 3548 TrapCall->setDoesNotThrow(); 3549 Builder.CreateUnreachable(); 3550 } else { 3551 auto Call = TrapBB->begin(); 3552 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3553 3554 Call->applyMergedLocation(Call->getDebugLoc(), 3555 Builder.getCurrentDebugLocation()); 3556 Builder.CreateCondBr(Checked, Cont, TrapBB); 3557 } 3558 3559 EmitBlock(Cont); 3560 } 3561 3562 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3563 llvm::CallInst *TrapCall = 3564 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3565 3566 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3567 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3568 CGM.getCodeGenOpts().TrapFuncName); 3569 TrapCall->addFnAttr(A); 3570 } 3571 3572 return TrapCall; 3573 } 3574 3575 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3576 LValueBaseInfo *BaseInfo, 3577 TBAAAccessInfo *TBAAInfo) { 3578 assert(E->getType()->isArrayType() && 3579 "Array to pointer decay must have array source type!"); 3580 3581 // Expressions of array type can't be bitfields or vector elements. 3582 LValue LV = EmitLValue(E); 3583 Address Addr = LV.getAddress(*this); 3584 3585 // If the array type was an incomplete type, we need to make sure 3586 // the decay ends up being the right type. 3587 llvm::Type *NewTy = ConvertType(E->getType()); 3588 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3589 3590 // Note that VLA pointers are always decayed, so we don't need to do 3591 // anything here. 3592 if (!E->getType()->isVariableArrayType()) { 3593 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3594 "Expected pointer to array"); 3595 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3596 } 3597 3598 // The result of this decay conversion points to an array element within the 3599 // base lvalue. However, since TBAA currently does not support representing 3600 // accesses to elements of member arrays, we conservatively represent accesses 3601 // to the pointee object as if it had no any base lvalue specified. 3602 // TODO: Support TBAA for member arrays. 3603 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3604 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3605 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3606 3607 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3608 } 3609 3610 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3611 /// array to pointer, return the array subexpression. 3612 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3613 // If this isn't just an array->pointer decay, bail out. 3614 const auto *CE = dyn_cast<CastExpr>(E); 3615 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3616 return nullptr; 3617 3618 // If this is a decay from variable width array, bail out. 3619 const Expr *SubExpr = CE->getSubExpr(); 3620 if (SubExpr->getType()->isVariableArrayType()) 3621 return nullptr; 3622 3623 return SubExpr; 3624 } 3625 3626 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3627 llvm::Type *elemType, 3628 llvm::Value *ptr, 3629 ArrayRef<llvm::Value*> indices, 3630 bool inbounds, 3631 bool signedIndices, 3632 SourceLocation loc, 3633 const llvm::Twine &name = "arrayidx") { 3634 if (inbounds) { 3635 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3636 CodeGenFunction::NotSubtraction, loc, 3637 name); 3638 } else { 3639 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3640 } 3641 } 3642 3643 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3644 llvm::Value *idx, 3645 CharUnits eltSize) { 3646 // If we have a constant index, we can use the exact offset of the 3647 // element we're accessing. 3648 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3649 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3650 return arrayAlign.alignmentAtOffset(offset); 3651 3652 // Otherwise, use the worst-case alignment for any element. 3653 } else { 3654 return arrayAlign.alignmentOfArrayElement(eltSize); 3655 } 3656 } 3657 3658 static QualType getFixedSizeElementType(const ASTContext &ctx, 3659 const VariableArrayType *vla) { 3660 QualType eltType; 3661 do { 3662 eltType = vla->getElementType(); 3663 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3664 return eltType; 3665 } 3666 3667 /// Given an array base, check whether its member access belongs to a record 3668 /// with preserve_access_index attribute or not. 3669 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3670 if (!ArrayBase || !CGF.getDebugInfo()) 3671 return false; 3672 3673 // Only support base as either a MemberExpr or DeclRefExpr. 3674 // DeclRefExpr to cover cases like: 3675 // struct s { int a; int b[10]; }; 3676 // struct s *p; 3677 // p[1].a 3678 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3679 // p->b[5] is a MemberExpr example. 3680 const Expr *E = ArrayBase->IgnoreImpCasts(); 3681 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3682 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3683 3684 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3685 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3686 if (!VarDef) 3687 return false; 3688 3689 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3690 if (!PtrT) 3691 return false; 3692 3693 const auto *PointeeT = PtrT->getPointeeType() 3694 ->getUnqualifiedDesugaredType(); 3695 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3696 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3697 return false; 3698 } 3699 3700 return false; 3701 } 3702 3703 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3704 ArrayRef<llvm::Value *> indices, 3705 QualType eltType, bool inbounds, 3706 bool signedIndices, SourceLocation loc, 3707 QualType *arrayType = nullptr, 3708 const Expr *Base = nullptr, 3709 const llvm::Twine &name = "arrayidx") { 3710 // All the indices except that last must be zero. 3711 #ifndef NDEBUG 3712 for (auto idx : indices.drop_back()) 3713 assert(isa<llvm::ConstantInt>(idx) && 3714 cast<llvm::ConstantInt>(idx)->isZero()); 3715 #endif 3716 3717 // Determine the element size of the statically-sized base. This is 3718 // the thing that the indices are expressed in terms of. 3719 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3720 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3721 } 3722 3723 // We can use that to compute the best alignment of the element. 3724 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3725 CharUnits eltAlign = 3726 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3727 3728 llvm::Value *eltPtr; 3729 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3730 if (!LastIndex || 3731 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3732 eltPtr = emitArraySubscriptGEP( 3733 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3734 signedIndices, loc, name); 3735 } else { 3736 // Remember the original array subscript for bpf target 3737 unsigned idx = LastIndex->getZExtValue(); 3738 llvm::DIType *DbgInfo = nullptr; 3739 if (arrayType) 3740 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3741 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3742 addr.getPointer(), 3743 indices.size() - 1, 3744 idx, DbgInfo); 3745 } 3746 3747 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3748 } 3749 3750 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3751 bool Accessed) { 3752 // The index must always be an integer, which is not an aggregate. Emit it 3753 // in lexical order (this complexity is, sadly, required by C++17). 3754 llvm::Value *IdxPre = 3755 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3756 bool SignedIndices = false; 3757 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3758 auto *Idx = IdxPre; 3759 if (E->getLHS() != E->getIdx()) { 3760 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3761 Idx = EmitScalarExpr(E->getIdx()); 3762 } 3763 3764 QualType IdxTy = E->getIdx()->getType(); 3765 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3766 SignedIndices |= IdxSigned; 3767 3768 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3769 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3770 3771 // Extend or truncate the index type to 32 or 64-bits. 3772 if (Promote && Idx->getType() != IntPtrTy) 3773 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3774 3775 return Idx; 3776 }; 3777 IdxPre = nullptr; 3778 3779 // If the base is a vector type, then we are forming a vector element lvalue 3780 // with this subscript. 3781 if (E->getBase()->getType()->isVectorType() && 3782 !isa<ExtVectorElementExpr>(E->getBase())) { 3783 // Emit the vector as an lvalue to get its address. 3784 LValue LHS = EmitLValue(E->getBase()); 3785 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3786 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3787 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3788 E->getBase()->getType(), LHS.getBaseInfo(), 3789 TBAAAccessInfo()); 3790 } 3791 3792 // All the other cases basically behave like simple offsetting. 3793 3794 // Handle the extvector case we ignored above. 3795 if (isa<ExtVectorElementExpr>(E->getBase())) { 3796 LValue LV = EmitLValue(E->getBase()); 3797 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3798 Address Addr = EmitExtVectorElementLValue(LV); 3799 3800 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3801 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3802 SignedIndices, E->getExprLoc()); 3803 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3804 CGM.getTBAAInfoForSubobject(LV, EltType)); 3805 } 3806 3807 LValueBaseInfo EltBaseInfo; 3808 TBAAAccessInfo EltTBAAInfo; 3809 Address Addr = Address::invalid(); 3810 if (const VariableArrayType *vla = 3811 getContext().getAsVariableArrayType(E->getType())) { 3812 // The base must be a pointer, which is not an aggregate. Emit 3813 // it. It needs to be emitted first in case it's what captures 3814 // the VLA bounds. 3815 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3816 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3817 3818 // The element count here is the total number of non-VLA elements. 3819 llvm::Value *numElements = getVLASize(vla).NumElts; 3820 3821 // Effectively, the multiply by the VLA size is part of the GEP. 3822 // GEP indexes are signed, and scaling an index isn't permitted to 3823 // signed-overflow, so we use the same semantics for our explicit 3824 // multiply. We suppress this if overflow is not undefined behavior. 3825 if (getLangOpts().isSignedOverflowDefined()) { 3826 Idx = Builder.CreateMul(Idx, numElements); 3827 } else { 3828 Idx = Builder.CreateNSWMul(Idx, numElements); 3829 } 3830 3831 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3832 !getLangOpts().isSignedOverflowDefined(), 3833 SignedIndices, E->getExprLoc()); 3834 3835 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3836 // Indexing over an interface, as in "NSString *P; P[4];" 3837 3838 // Emit the base pointer. 3839 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3840 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3841 3842 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3843 llvm::Value *InterfaceSizeVal = 3844 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3845 3846 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3847 3848 // We don't necessarily build correct LLVM struct types for ObjC 3849 // interfaces, so we can't rely on GEP to do this scaling 3850 // correctly, so we need to cast to i8*. FIXME: is this actually 3851 // true? A lot of other things in the fragile ABI would break... 3852 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 3853 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3854 3855 // Do the GEP. 3856 CharUnits EltAlign = 3857 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3858 llvm::Value *EltPtr = 3859 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3860 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3861 Addr = Address(EltPtr, Addr.getElementType(), EltAlign); 3862 3863 // Cast back. 3864 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy); 3865 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3866 // If this is A[i] where A is an array, the frontend will have decayed the 3867 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3868 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3869 // "gep x, i" here. Emit one "gep A, 0, i". 3870 assert(Array->getType()->isArrayType() && 3871 "Array to pointer decay must have array source type!"); 3872 LValue ArrayLV; 3873 // For simple multidimensional array indexing, set the 'accessed' flag for 3874 // better bounds-checking of the base expression. 3875 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3876 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3877 else 3878 ArrayLV = EmitLValue(Array); 3879 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3880 3881 // Propagate the alignment from the array itself to the result. 3882 QualType arrayType = Array->getType(); 3883 Addr = emitArraySubscriptGEP( 3884 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3885 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3886 E->getExprLoc(), &arrayType, E->getBase()); 3887 EltBaseInfo = ArrayLV.getBaseInfo(); 3888 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3889 } else { 3890 // The base must be a pointer; emit it with an estimate of its alignment. 3891 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3892 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3893 QualType ptrType = E->getBase()->getType(); 3894 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3895 !getLangOpts().isSignedOverflowDefined(), 3896 SignedIndices, E->getExprLoc(), &ptrType, 3897 E->getBase()); 3898 } 3899 3900 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3901 3902 if (getLangOpts().ObjC && 3903 getLangOpts().getGC() != LangOptions::NonGC) { 3904 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3905 setObjCGCLValueClass(getContext(), E, LV); 3906 } 3907 return LV; 3908 } 3909 3910 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3911 assert( 3912 !E->isIncomplete() && 3913 "incomplete matrix subscript expressions should be rejected during Sema"); 3914 LValue Base = EmitLValue(E->getBase()); 3915 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3916 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3917 llvm::Value *NumRows = Builder.getIntN( 3918 RowIdx->getType()->getScalarSizeInBits(), 3919 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3920 llvm::Value *FinalIdx = 3921 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3922 return LValue::MakeMatrixElt( 3923 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3924 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3925 } 3926 3927 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3928 LValueBaseInfo &BaseInfo, 3929 TBAAAccessInfo &TBAAInfo, 3930 QualType BaseTy, QualType ElTy, 3931 bool IsLowerBound) { 3932 LValue BaseLVal; 3933 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3934 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3935 if (BaseTy->isArrayType()) { 3936 Address Addr = BaseLVal.getAddress(CGF); 3937 BaseInfo = BaseLVal.getBaseInfo(); 3938 3939 // If the array type was an incomplete type, we need to make sure 3940 // the decay ends up being the right type. 3941 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3942 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3943 3944 // Note that VLA pointers are always decayed, so we don't need to do 3945 // anything here. 3946 if (!BaseTy->isVariableArrayType()) { 3947 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3948 "Expected pointer to array"); 3949 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3950 } 3951 3952 return CGF.Builder.CreateElementBitCast(Addr, 3953 CGF.ConvertTypeForMem(ElTy)); 3954 } 3955 LValueBaseInfo TypeBaseInfo; 3956 TBAAAccessInfo TypeTBAAInfo; 3957 CharUnits Align = 3958 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3959 BaseInfo.mergeForCast(TypeBaseInfo); 3960 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3961 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 3962 CGF.ConvertTypeForMem(ElTy), Align); 3963 } 3964 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3965 } 3966 3967 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3968 bool IsLowerBound) { 3969 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3970 QualType ResultExprTy; 3971 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3972 ResultExprTy = AT->getElementType(); 3973 else 3974 ResultExprTy = BaseTy->getPointeeType(); 3975 llvm::Value *Idx = nullptr; 3976 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3977 // Requesting lower bound or upper bound, but without provided length and 3978 // without ':' symbol for the default length -> length = 1. 3979 // Idx = LowerBound ?: 0; 3980 if (auto *LowerBound = E->getLowerBound()) { 3981 Idx = Builder.CreateIntCast( 3982 EmitScalarExpr(LowerBound), IntPtrTy, 3983 LowerBound->getType()->hasSignedIntegerRepresentation()); 3984 } else 3985 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3986 } else { 3987 // Try to emit length or lower bound as constant. If this is possible, 1 3988 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3989 // IR (LB + Len) - 1. 3990 auto &C = CGM.getContext(); 3991 auto *Length = E->getLength(); 3992 llvm::APSInt ConstLength; 3993 if (Length) { 3994 // Idx = LowerBound + Length - 1; 3995 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3996 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3997 Length = nullptr; 3998 } 3999 auto *LowerBound = E->getLowerBound(); 4000 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4001 if (LowerBound) { 4002 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 4003 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 4004 LowerBound = nullptr; 4005 } 4006 } 4007 if (!Length) 4008 --ConstLength; 4009 else if (!LowerBound) 4010 --ConstLowerBound; 4011 4012 if (Length || LowerBound) { 4013 auto *LowerBoundVal = 4014 LowerBound 4015 ? Builder.CreateIntCast( 4016 EmitScalarExpr(LowerBound), IntPtrTy, 4017 LowerBound->getType()->hasSignedIntegerRepresentation()) 4018 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 4019 auto *LengthVal = 4020 Length 4021 ? Builder.CreateIntCast( 4022 EmitScalarExpr(Length), IntPtrTy, 4023 Length->getType()->hasSignedIntegerRepresentation()) 4024 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 4025 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 4026 /*HasNUW=*/false, 4027 !getLangOpts().isSignedOverflowDefined()); 4028 if (Length && LowerBound) { 4029 Idx = Builder.CreateSub( 4030 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 4031 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4032 } 4033 } else 4034 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4035 } else { 4036 // Idx = ArraySize - 1; 4037 QualType ArrayTy = BaseTy->isPointerType() 4038 ? E->getBase()->IgnoreParenImpCasts()->getType() 4039 : BaseTy; 4040 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4041 Length = VAT->getSizeExpr(); 4042 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4043 ConstLength = *L; 4044 Length = nullptr; 4045 } 4046 } else { 4047 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4048 ConstLength = CAT->getSize(); 4049 } 4050 if (Length) { 4051 auto *LengthVal = Builder.CreateIntCast( 4052 EmitScalarExpr(Length), IntPtrTy, 4053 Length->getType()->hasSignedIntegerRepresentation()); 4054 Idx = Builder.CreateSub( 4055 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4056 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4057 } else { 4058 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4059 --ConstLength; 4060 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4061 } 4062 } 4063 } 4064 assert(Idx); 4065 4066 Address EltPtr = Address::invalid(); 4067 LValueBaseInfo BaseInfo; 4068 TBAAAccessInfo TBAAInfo; 4069 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4070 // The base must be a pointer, which is not an aggregate. Emit 4071 // it. It needs to be emitted first in case it's what captures 4072 // the VLA bounds. 4073 Address Base = 4074 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4075 BaseTy, VLA->getElementType(), IsLowerBound); 4076 // The element count here is the total number of non-VLA elements. 4077 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4078 4079 // Effectively, the multiply by the VLA size is part of the GEP. 4080 // GEP indexes are signed, and scaling an index isn't permitted to 4081 // signed-overflow, so we use the same semantics for our explicit 4082 // multiply. We suppress this if overflow is not undefined behavior. 4083 if (getLangOpts().isSignedOverflowDefined()) 4084 Idx = Builder.CreateMul(Idx, NumElements); 4085 else 4086 Idx = Builder.CreateNSWMul(Idx, NumElements); 4087 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4088 !getLangOpts().isSignedOverflowDefined(), 4089 /*signedIndices=*/false, E->getExprLoc()); 4090 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4091 // If this is A[i] where A is an array, the frontend will have decayed the 4092 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4093 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4094 // "gep x, i" here. Emit one "gep A, 0, i". 4095 assert(Array->getType()->isArrayType() && 4096 "Array to pointer decay must have array source type!"); 4097 LValue ArrayLV; 4098 // For simple multidimensional array indexing, set the 'accessed' flag for 4099 // better bounds-checking of the base expression. 4100 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4101 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4102 else 4103 ArrayLV = EmitLValue(Array); 4104 4105 // Propagate the alignment from the array itself to the result. 4106 EltPtr = emitArraySubscriptGEP( 4107 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4108 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4109 /*signedIndices=*/false, E->getExprLoc()); 4110 BaseInfo = ArrayLV.getBaseInfo(); 4111 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4112 } else { 4113 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4114 TBAAInfo, BaseTy, ResultExprTy, 4115 IsLowerBound); 4116 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4117 !getLangOpts().isSignedOverflowDefined(), 4118 /*signedIndices=*/false, E->getExprLoc()); 4119 } 4120 4121 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4122 } 4123 4124 LValue CodeGenFunction:: 4125 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4126 // Emit the base vector as an l-value. 4127 LValue Base; 4128 4129 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4130 if (E->isArrow()) { 4131 // If it is a pointer to a vector, emit the address and form an lvalue with 4132 // it. 4133 LValueBaseInfo BaseInfo; 4134 TBAAAccessInfo TBAAInfo; 4135 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4136 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4137 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4138 Base.getQuals().removeObjCGCAttr(); 4139 } else if (E->getBase()->isGLValue()) { 4140 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4141 // emit the base as an lvalue. 4142 assert(E->getBase()->getType()->isVectorType()); 4143 Base = EmitLValue(E->getBase()); 4144 } else { 4145 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4146 assert(E->getBase()->getType()->isVectorType() && 4147 "Result must be a vector"); 4148 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4149 4150 // Store the vector to memory (because LValue wants an address). 4151 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4152 Builder.CreateStore(Vec, VecMem); 4153 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4154 AlignmentSource::Decl); 4155 } 4156 4157 QualType type = 4158 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4159 4160 // Encode the element access list into a vector of unsigned indices. 4161 SmallVector<uint32_t, 4> Indices; 4162 E->getEncodedElementAccess(Indices); 4163 4164 if (Base.isSimple()) { 4165 llvm::Constant *CV = 4166 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4167 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4168 Base.getBaseInfo(), TBAAAccessInfo()); 4169 } 4170 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4171 4172 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4173 SmallVector<llvm::Constant *, 4> CElts; 4174 4175 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4176 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4177 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4178 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4179 Base.getBaseInfo(), TBAAAccessInfo()); 4180 } 4181 4182 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4183 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4184 EmitIgnoredExpr(E->getBase()); 4185 return EmitDeclRefLValue(DRE); 4186 } 4187 4188 Expr *BaseExpr = E->getBase(); 4189 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4190 LValue BaseLV; 4191 if (E->isArrow()) { 4192 LValueBaseInfo BaseInfo; 4193 TBAAAccessInfo TBAAInfo; 4194 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4195 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4196 SanitizerSet SkippedChecks; 4197 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4198 if (IsBaseCXXThis) 4199 SkippedChecks.set(SanitizerKind::Alignment, true); 4200 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4201 SkippedChecks.set(SanitizerKind::Null, true); 4202 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4203 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4204 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4205 } else 4206 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4207 4208 NamedDecl *ND = E->getMemberDecl(); 4209 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4210 LValue LV = EmitLValueForField(BaseLV, Field); 4211 setObjCGCLValueClass(getContext(), E, LV); 4212 if (getLangOpts().OpenMP) { 4213 // If the member was explicitly marked as nontemporal, mark it as 4214 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4215 // to children as nontemporal too. 4216 if ((IsWrappedCXXThis(BaseExpr) && 4217 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4218 BaseLV.isNontemporal()) 4219 LV.setNontemporal(/*Value=*/true); 4220 } 4221 return LV; 4222 } 4223 4224 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4225 return EmitFunctionDeclLValue(*this, E, FD); 4226 4227 llvm_unreachable("Unhandled member declaration!"); 4228 } 4229 4230 /// Given that we are currently emitting a lambda, emit an l-value for 4231 /// one of its members. 4232 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4233 if (CurCodeDecl) { 4234 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4235 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4236 } 4237 QualType LambdaTagType = 4238 getContext().getTagDeclType(Field->getParent()); 4239 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4240 return EmitLValueForField(LambdaLV, Field); 4241 } 4242 4243 /// Get the field index in the debug info. The debug info structure/union 4244 /// will ignore the unnamed bitfields. 4245 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4246 unsigned FieldIndex) { 4247 unsigned I = 0, Skipped = 0; 4248 4249 for (auto F : Rec->getDefinition()->fields()) { 4250 if (I == FieldIndex) 4251 break; 4252 if (F->isUnnamedBitfield()) 4253 Skipped++; 4254 I++; 4255 } 4256 4257 return FieldIndex - Skipped; 4258 } 4259 4260 /// Get the address of a zero-sized field within a record. The resulting 4261 /// address doesn't necessarily have the right type. 4262 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4263 const FieldDecl *Field) { 4264 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4265 CGF.getContext().getFieldOffset(Field)); 4266 if (Offset.isZero()) 4267 return Base; 4268 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4269 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4270 } 4271 4272 /// Drill down to the storage of a field without walking into 4273 /// reference types. 4274 /// 4275 /// The resulting address doesn't necessarily have the right type. 4276 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4277 const FieldDecl *field) { 4278 if (field->isZeroSize(CGF.getContext())) 4279 return emitAddrOfZeroSizeField(CGF, base, field); 4280 4281 const RecordDecl *rec = field->getParent(); 4282 4283 unsigned idx = 4284 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4285 4286 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4287 } 4288 4289 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4290 Address addr, const FieldDecl *field) { 4291 const RecordDecl *rec = field->getParent(); 4292 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4293 base.getType(), rec->getLocation()); 4294 4295 unsigned idx = 4296 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4297 4298 return CGF.Builder.CreatePreserveStructAccessIndex( 4299 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4300 } 4301 4302 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4303 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4304 if (!RD) 4305 return false; 4306 4307 if (RD->isDynamicClass()) 4308 return true; 4309 4310 for (const auto &Base : RD->bases()) 4311 if (hasAnyVptr(Base.getType(), Context)) 4312 return true; 4313 4314 for (const FieldDecl *Field : RD->fields()) 4315 if (hasAnyVptr(Field->getType(), Context)) 4316 return true; 4317 4318 return false; 4319 } 4320 4321 LValue CodeGenFunction::EmitLValueForField(LValue base, 4322 const FieldDecl *field) { 4323 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4324 4325 if (field->isBitField()) { 4326 const CGRecordLayout &RL = 4327 CGM.getTypes().getCGRecordLayout(field->getParent()); 4328 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4329 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4330 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4331 Info.VolatileStorageSize != 0 && 4332 field->getType() 4333 .withCVRQualifiers(base.getVRQualifiers()) 4334 .isVolatileQualified(); 4335 Address Addr = base.getAddress(*this); 4336 unsigned Idx = RL.getLLVMFieldNo(field); 4337 const RecordDecl *rec = field->getParent(); 4338 if (!UseVolatile) { 4339 if (!IsInPreservedAIRegion && 4340 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4341 if (Idx != 0) 4342 // For structs, we GEP to the field that the record layout suggests. 4343 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4344 } else { 4345 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4346 getContext().getRecordType(rec), rec->getLocation()); 4347 Addr = Builder.CreatePreserveStructAccessIndex( 4348 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4349 DbgInfo); 4350 } 4351 } 4352 const unsigned SS = 4353 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4354 // Get the access type. 4355 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4356 if (Addr.getElementType() != FieldIntTy) 4357 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4358 if (UseVolatile) { 4359 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4360 if (VolatileOffset) 4361 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4362 } 4363 4364 QualType fieldType = 4365 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4366 // TODO: Support TBAA for bit fields. 4367 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4368 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4369 TBAAAccessInfo()); 4370 } 4371 4372 // Fields of may-alias structures are may-alias themselves. 4373 // FIXME: this should get propagated down through anonymous structs 4374 // and unions. 4375 QualType FieldType = field->getType(); 4376 const RecordDecl *rec = field->getParent(); 4377 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4378 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4379 TBAAAccessInfo FieldTBAAInfo; 4380 if (base.getTBAAInfo().isMayAlias() || 4381 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4382 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4383 } else if (rec->isUnion()) { 4384 // TODO: Support TBAA for unions. 4385 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4386 } else { 4387 // If no base type been assigned for the base access, then try to generate 4388 // one for this base lvalue. 4389 FieldTBAAInfo = base.getTBAAInfo(); 4390 if (!FieldTBAAInfo.BaseType) { 4391 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4392 assert(!FieldTBAAInfo.Offset && 4393 "Nonzero offset for an access with no base type!"); 4394 } 4395 4396 // Adjust offset to be relative to the base type. 4397 const ASTRecordLayout &Layout = 4398 getContext().getASTRecordLayout(field->getParent()); 4399 unsigned CharWidth = getContext().getCharWidth(); 4400 if (FieldTBAAInfo.BaseType) 4401 FieldTBAAInfo.Offset += 4402 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4403 4404 // Update the final access type and size. 4405 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4406 FieldTBAAInfo.Size = 4407 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4408 } 4409 4410 Address addr = base.getAddress(*this); 4411 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4412 if (CGM.getCodeGenOpts().StrictVTablePointers && 4413 ClassDef->isDynamicClass()) { 4414 // Getting to any field of dynamic object requires stripping dynamic 4415 // information provided by invariant.group. This is because accessing 4416 // fields may leak the real address of dynamic object, which could result 4417 // in miscompilation when leaked pointer would be compared. 4418 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4419 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4420 } 4421 } 4422 4423 unsigned RecordCVR = base.getVRQualifiers(); 4424 if (rec->isUnion()) { 4425 // For unions, there is no pointer adjustment. 4426 if (CGM.getCodeGenOpts().StrictVTablePointers && 4427 hasAnyVptr(FieldType, getContext())) 4428 // Because unions can easily skip invariant.barriers, we need to add 4429 // a barrier every time CXXRecord field with vptr is referenced. 4430 addr = Builder.CreateLaunderInvariantGroup(addr); 4431 4432 if (IsInPreservedAIRegion || 4433 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4434 // Remember the original union field index 4435 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4436 rec->getLocation()); 4437 addr = Address( 4438 Builder.CreatePreserveUnionAccessIndex( 4439 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4440 addr.getElementType(), addr.getAlignment()); 4441 } 4442 4443 if (FieldType->isReferenceType()) 4444 addr = Builder.CreateElementBitCast( 4445 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4446 } else { 4447 if (!IsInPreservedAIRegion && 4448 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4449 // For structs, we GEP to the field that the record layout suggests. 4450 addr = emitAddrOfFieldStorage(*this, addr, field); 4451 else 4452 // Remember the original struct field index 4453 addr = emitPreserveStructAccess(*this, base, addr, field); 4454 } 4455 4456 // If this is a reference field, load the reference right now. 4457 if (FieldType->isReferenceType()) { 4458 LValue RefLVal = 4459 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4460 if (RecordCVR & Qualifiers::Volatile) 4461 RefLVal.getQuals().addVolatile(); 4462 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4463 4464 // Qualifiers on the struct don't apply to the referencee. 4465 RecordCVR = 0; 4466 FieldType = FieldType->getPointeeType(); 4467 } 4468 4469 // Make sure that the address is pointing to the right type. This is critical 4470 // for both unions and structs. A union needs a bitcast, a struct element 4471 // will need a bitcast if the LLVM type laid out doesn't match the desired 4472 // type. 4473 addr = Builder.CreateElementBitCast( 4474 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4475 4476 if (field->hasAttr<AnnotateAttr>()) 4477 addr = EmitFieldAnnotations(field, addr); 4478 4479 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4480 LV.getQuals().addCVRQualifiers(RecordCVR); 4481 4482 // __weak attribute on a field is ignored. 4483 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4484 LV.getQuals().removeObjCGCAttr(); 4485 4486 return LV; 4487 } 4488 4489 LValue 4490 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4491 const FieldDecl *Field) { 4492 QualType FieldType = Field->getType(); 4493 4494 if (!FieldType->isReferenceType()) 4495 return EmitLValueForField(Base, Field); 4496 4497 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4498 4499 // Make sure that the address is pointing to the right type. 4500 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4501 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4502 4503 // TODO: Generate TBAA information that describes this access as a structure 4504 // member access and not just an access to an object of the field's type. This 4505 // should be similar to what we do in EmitLValueForField(). 4506 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4507 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4508 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4509 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4510 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4511 } 4512 4513 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4514 if (E->isFileScope()) { 4515 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4516 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4517 } 4518 if (E->getType()->isVariablyModifiedType()) 4519 // make sure to emit the VLA size. 4520 EmitVariablyModifiedType(E->getType()); 4521 4522 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4523 const Expr *InitExpr = E->getInitializer(); 4524 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4525 4526 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4527 /*Init*/ true); 4528 4529 // Block-scope compound literals are destroyed at the end of the enclosing 4530 // scope in C. 4531 if (!getLangOpts().CPlusPlus) 4532 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4533 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4534 E->getType(), getDestroyer(DtorKind), 4535 DtorKind & EHCleanup); 4536 4537 return Result; 4538 } 4539 4540 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4541 if (!E->isGLValue()) 4542 // Initializing an aggregate temporary in C++11: T{...}. 4543 return EmitAggExprToLValue(E); 4544 4545 // An lvalue initializer list must be initializing a reference. 4546 assert(E->isTransparent() && "non-transparent glvalue init list"); 4547 return EmitLValue(E->getInit(0)); 4548 } 4549 4550 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4551 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4552 /// LValue is returned and the current block has been terminated. 4553 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4554 const Expr *Operand) { 4555 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4556 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4557 return None; 4558 } 4559 4560 return CGF.EmitLValue(Operand); 4561 } 4562 4563 namespace { 4564 // Handle the case where the condition is a constant evaluatable simple integer, 4565 // which means we don't have to separately handle the true/false blocks. 4566 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase( 4567 CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 4568 const Expr *condExpr = E->getCond(); 4569 bool CondExprBool; 4570 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4571 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 4572 if (!CondExprBool) 4573 std::swap(Live, Dead); 4574 4575 if (!CGF.ContainsLabel(Dead)) { 4576 // If the true case is live, we need to track its region. 4577 if (CondExprBool) 4578 CGF.incrementProfileCounter(E); 4579 // If a throw expression we emit it and return an undefined lvalue 4580 // because it can't be used. 4581 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 4582 CGF.EmitCXXThrowExpr(ThrowExpr); 4583 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 4584 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4585 return CGF.MakeAddrLValue( 4586 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4587 Dead->getType()); 4588 } 4589 return CGF.EmitLValue(Live); 4590 } 4591 } 4592 return llvm::None; 4593 } 4594 struct ConditionalInfo { 4595 llvm::BasicBlock *lhsBlock, *rhsBlock; 4596 Optional<LValue> LHS, RHS; 4597 }; 4598 4599 // Create and generate the 3 blocks for a conditional operator. 4600 // Leaves the 'current block' in the continuation basic block. 4601 template<typename FuncTy> 4602 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 4603 const AbstractConditionalOperator *E, 4604 const FuncTy &BranchGenFunc) { 4605 ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 4606 CGF.createBasicBlock("cond.false"), llvm::None, 4607 llvm::None}; 4608 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 4609 4610 CodeGenFunction::ConditionalEvaluation eval(CGF); 4611 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 4612 CGF.getProfileCount(E)); 4613 4614 // Any temporaries created here are conditional. 4615 CGF.EmitBlock(Info.lhsBlock); 4616 CGF.incrementProfileCounter(E); 4617 eval.begin(CGF); 4618 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 4619 eval.end(CGF); 4620 Info.lhsBlock = CGF.Builder.GetInsertBlock(); 4621 4622 if (Info.LHS) 4623 CGF.Builder.CreateBr(endBlock); 4624 4625 // Any temporaries created here are conditional. 4626 CGF.EmitBlock(Info.rhsBlock); 4627 eval.begin(CGF); 4628 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 4629 eval.end(CGF); 4630 Info.rhsBlock = CGF.Builder.GetInsertBlock(); 4631 CGF.EmitBlock(endBlock); 4632 4633 return Info; 4634 } 4635 } // namespace 4636 4637 void CodeGenFunction::EmitIgnoredConditionalOperator( 4638 const AbstractConditionalOperator *E) { 4639 if (!E->isGLValue()) { 4640 // ?: here should be an aggregate. 4641 assert(hasAggregateEvaluationKind(E->getType()) && 4642 "Unexpected conditional operator!"); 4643 return (void)EmitAggExprToLValue(E); 4644 } 4645 4646 OpaqueValueMapping binding(*this, E); 4647 if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 4648 return; 4649 4650 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 4651 CGF.EmitIgnoredExpr(E); 4652 return LValue{}; 4653 }); 4654 } 4655 LValue CodeGenFunction::EmitConditionalOperatorLValue( 4656 const AbstractConditionalOperator *expr) { 4657 if (!expr->isGLValue()) { 4658 // ?: here should be an aggregate. 4659 assert(hasAggregateEvaluationKind(expr->getType()) && 4660 "Unexpected conditional operator!"); 4661 return EmitAggExprToLValue(expr); 4662 } 4663 4664 OpaqueValueMapping binding(*this, expr); 4665 if (llvm::Optional<LValue> Res = 4666 HandleConditionalOperatorLValueSimpleCase(*this, expr)) 4667 return *Res; 4668 4669 ConditionalInfo Info = EmitConditionalBlocks( 4670 *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 4671 return EmitLValueOrThrowExpression(CGF, E); 4672 }); 4673 4674 if ((Info.LHS && !Info.LHS->isSimple()) || 4675 (Info.RHS && !Info.RHS->isSimple())) 4676 return EmitUnsupportedLValue(expr, "conditional operator"); 4677 4678 if (Info.LHS && Info.RHS) { 4679 Address lhsAddr = Info.LHS->getAddress(*this); 4680 Address rhsAddr = Info.RHS->getAddress(*this); 4681 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4682 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 4683 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 4684 Address result(phi, lhsAddr.getElementType(), 4685 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4686 AlignmentSource alignSource = 4687 std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 4688 Info.RHS->getBaseInfo().getAlignmentSource()); 4689 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4690 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 4691 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4692 TBAAInfo); 4693 } else { 4694 assert((Info.LHS || Info.RHS) && 4695 "both operands of glvalue conditional are throw-expressions?"); 4696 return Info.LHS ? *Info.LHS : *Info.RHS; 4697 } 4698 } 4699 4700 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4701 /// type. If the cast is to a reference, we can have the usual lvalue result, 4702 /// otherwise if a cast is needed by the code generator in an lvalue context, 4703 /// then it must mean that we need the address of an aggregate in order to 4704 /// access one of its members. This can happen for all the reasons that casts 4705 /// are permitted with aggregate result, including noop aggregate casts, and 4706 /// cast from scalar to union. 4707 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4708 switch (E->getCastKind()) { 4709 case CK_ToVoid: 4710 case CK_BitCast: 4711 case CK_LValueToRValueBitCast: 4712 case CK_ArrayToPointerDecay: 4713 case CK_FunctionToPointerDecay: 4714 case CK_NullToMemberPointer: 4715 case CK_NullToPointer: 4716 case CK_IntegralToPointer: 4717 case CK_PointerToIntegral: 4718 case CK_PointerToBoolean: 4719 case CK_VectorSplat: 4720 case CK_IntegralCast: 4721 case CK_BooleanToSignedIntegral: 4722 case CK_IntegralToBoolean: 4723 case CK_IntegralToFloating: 4724 case CK_FloatingToIntegral: 4725 case CK_FloatingToBoolean: 4726 case CK_FloatingCast: 4727 case CK_FloatingRealToComplex: 4728 case CK_FloatingComplexToReal: 4729 case CK_FloatingComplexToBoolean: 4730 case CK_FloatingComplexCast: 4731 case CK_FloatingComplexToIntegralComplex: 4732 case CK_IntegralRealToComplex: 4733 case CK_IntegralComplexToReal: 4734 case CK_IntegralComplexToBoolean: 4735 case CK_IntegralComplexCast: 4736 case CK_IntegralComplexToFloatingComplex: 4737 case CK_DerivedToBaseMemberPointer: 4738 case CK_BaseToDerivedMemberPointer: 4739 case CK_MemberPointerToBoolean: 4740 case CK_ReinterpretMemberPointer: 4741 case CK_AnyPointerToBlockPointerCast: 4742 case CK_ARCProduceObject: 4743 case CK_ARCConsumeObject: 4744 case CK_ARCReclaimReturnedObject: 4745 case CK_ARCExtendBlockObject: 4746 case CK_CopyAndAutoreleaseBlockObject: 4747 case CK_IntToOCLSampler: 4748 case CK_FloatingToFixedPoint: 4749 case CK_FixedPointToFloating: 4750 case CK_FixedPointCast: 4751 case CK_FixedPointToBoolean: 4752 case CK_FixedPointToIntegral: 4753 case CK_IntegralToFixedPoint: 4754 case CK_MatrixCast: 4755 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4756 4757 case CK_Dependent: 4758 llvm_unreachable("dependent cast kind in IR gen!"); 4759 4760 case CK_BuiltinFnToFnPtr: 4761 llvm_unreachable("builtin functions are handled elsewhere"); 4762 4763 // These are never l-values; just use the aggregate emission code. 4764 case CK_NonAtomicToAtomic: 4765 case CK_AtomicToNonAtomic: 4766 return EmitAggExprToLValue(E); 4767 4768 case CK_Dynamic: { 4769 LValue LV = EmitLValue(E->getSubExpr()); 4770 Address V = LV.getAddress(*this); 4771 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4772 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4773 } 4774 4775 case CK_ConstructorConversion: 4776 case CK_UserDefinedConversion: 4777 case CK_CPointerToObjCPointerCast: 4778 case CK_BlockPointerToObjCPointerCast: 4779 case CK_LValueToRValue: 4780 return EmitLValue(E->getSubExpr()); 4781 4782 case CK_NoOp: { 4783 // CK_NoOp can model a qualification conversion, which can remove an array 4784 // bound and change the IR type. 4785 // FIXME: Once pointee types are removed from IR, remove this. 4786 LValue LV = EmitLValue(E->getSubExpr()); 4787 if (LV.isSimple()) { 4788 Address V = LV.getAddress(*this); 4789 if (V.isValid()) { 4790 llvm::Type *T = ConvertTypeForMem(E->getType()); 4791 if (V.getElementType() != T) 4792 LV.setAddress(Builder.CreateElementBitCast(V, T)); 4793 } 4794 } 4795 return LV; 4796 } 4797 4798 case CK_UncheckedDerivedToBase: 4799 case CK_DerivedToBase: { 4800 const auto *DerivedClassTy = 4801 E->getSubExpr()->getType()->castAs<RecordType>(); 4802 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4803 4804 LValue LV = EmitLValue(E->getSubExpr()); 4805 Address This = LV.getAddress(*this); 4806 4807 // Perform the derived-to-base conversion 4808 Address Base = GetAddressOfBaseClass( 4809 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4810 /*NullCheckValue=*/false, E->getExprLoc()); 4811 4812 // TODO: Support accesses to members of base classes in TBAA. For now, we 4813 // conservatively pretend that the complete object is of the base class 4814 // type. 4815 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4816 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4817 } 4818 case CK_ToUnion: 4819 return EmitAggExprToLValue(E); 4820 case CK_BaseToDerived: { 4821 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4822 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4823 4824 LValue LV = EmitLValue(E->getSubExpr()); 4825 4826 // Perform the base-to-derived conversion 4827 Address Derived = GetAddressOfDerivedClass( 4828 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4829 /*NullCheckValue=*/false); 4830 4831 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4832 // performed and the object is not of the derived type. 4833 if (sanitizePerformTypeCheck()) 4834 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4835 Derived.getPointer(), E->getType()); 4836 4837 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4838 EmitVTablePtrCheckForCast(E->getType(), Derived, 4839 /*MayBeNull=*/false, CFITCK_DerivedCast, 4840 E->getBeginLoc()); 4841 4842 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4843 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4844 } 4845 case CK_LValueBitCast: { 4846 // This must be a reinterpret_cast (or c-style equivalent). 4847 const auto *CE = cast<ExplicitCastExpr>(E); 4848 4849 CGM.EmitExplicitCastExprType(CE, this); 4850 LValue LV = EmitLValue(E->getSubExpr()); 4851 Address V = Builder.CreateElementBitCast( 4852 LV.getAddress(*this), 4853 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 4854 4855 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4856 EmitVTablePtrCheckForCast(E->getType(), V, 4857 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4858 E->getBeginLoc()); 4859 4860 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4861 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4862 } 4863 case CK_AddressSpaceConversion: { 4864 LValue LV = EmitLValue(E->getSubExpr()); 4865 QualType DestTy = getContext().getPointerType(E->getType()); 4866 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4867 *this, LV.getPointer(*this), 4868 E->getSubExpr()->getType().getAddressSpace(), 4869 E->getType().getAddressSpace(), ConvertType(DestTy)); 4870 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 4871 LV.getAddress(*this).getAlignment()), 4872 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4873 } 4874 case CK_ObjCObjectLValueCast: { 4875 LValue LV = EmitLValue(E->getSubExpr()); 4876 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4877 ConvertType(E->getType())); 4878 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4879 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4880 } 4881 case CK_ZeroToOCLOpaqueType: 4882 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4883 } 4884 4885 llvm_unreachable("Unhandled lvalue cast kind?"); 4886 } 4887 4888 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4889 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4890 return getOrCreateOpaqueLValueMapping(e); 4891 } 4892 4893 LValue 4894 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4895 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4896 4897 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4898 it = OpaqueLValues.find(e); 4899 4900 if (it != OpaqueLValues.end()) 4901 return it->second; 4902 4903 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4904 return EmitLValue(e->getSourceExpr()); 4905 } 4906 4907 RValue 4908 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4909 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4910 4911 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4912 it = OpaqueRValues.find(e); 4913 4914 if (it != OpaqueRValues.end()) 4915 return it->second; 4916 4917 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4918 return EmitAnyExpr(e->getSourceExpr()); 4919 } 4920 4921 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4922 const FieldDecl *FD, 4923 SourceLocation Loc) { 4924 QualType FT = FD->getType(); 4925 LValue FieldLV = EmitLValueForField(LV, FD); 4926 switch (getEvaluationKind(FT)) { 4927 case TEK_Complex: 4928 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4929 case TEK_Aggregate: 4930 return FieldLV.asAggregateRValue(*this); 4931 case TEK_Scalar: 4932 // This routine is used to load fields one-by-one to perform a copy, so 4933 // don't load reference fields. 4934 if (FD->getType()->isReferenceType()) 4935 return RValue::get(FieldLV.getPointer(*this)); 4936 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4937 // primitive load. 4938 if (FieldLV.isBitField()) 4939 return EmitLoadOfLValue(FieldLV, Loc); 4940 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4941 } 4942 llvm_unreachable("bad evaluation kind"); 4943 } 4944 4945 //===--------------------------------------------------------------------===// 4946 // Expression Emission 4947 //===--------------------------------------------------------------------===// 4948 4949 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4950 ReturnValueSlot ReturnValue) { 4951 // Builtins never have block type. 4952 if (E->getCallee()->getType()->isBlockPointerType()) 4953 return EmitBlockCallExpr(E, ReturnValue); 4954 4955 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4956 return EmitCXXMemberCallExpr(CE, ReturnValue); 4957 4958 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4959 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4960 4961 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4962 if (const CXXMethodDecl *MD = 4963 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4964 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4965 4966 CGCallee callee = EmitCallee(E->getCallee()); 4967 4968 if (callee.isBuiltin()) { 4969 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4970 E, ReturnValue); 4971 } 4972 4973 if (callee.isPseudoDestructor()) { 4974 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4975 } 4976 4977 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4978 } 4979 4980 /// Emit a CallExpr without considering whether it might be a subclass. 4981 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4982 ReturnValueSlot ReturnValue) { 4983 CGCallee Callee = EmitCallee(E->getCallee()); 4984 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4985 } 4986 4987 // Detect the unusual situation where an inline version is shadowed by a 4988 // non-inline version. In that case we should pick the external one 4989 // everywhere. That's GCC behavior too. 4990 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 4991 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 4992 if (!PD->isInlineBuiltinDeclaration()) 4993 return false; 4994 return true; 4995 } 4996 4997 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4998 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4999 5000 if (auto builtinID = FD->getBuiltinID()) { 5001 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 5002 std::string NoBuiltins = "no-builtins"; 5003 std::string FDInlineName = (FD->getName() + ".inline").str(); 5004 5005 bool IsPredefinedLibFunction = 5006 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 5007 bool HasAttributeNoBuiltin = 5008 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 5009 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 5010 5011 // When directing calling an inline builtin, call it through it's mangled 5012 // name to make it clear it's not the actual builtin. 5013 if (CGF.CurFn->getName() != FDInlineName && 5014 OnlyHasInlineBuiltinDeclaration(FD)) { 5015 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5016 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5017 llvm::Module *M = Fn->getParent(); 5018 llvm::Function *Clone = M->getFunction(FDInlineName); 5019 if (!Clone) { 5020 Clone = llvm::Function::Create(Fn->getFunctionType(), 5021 llvm::GlobalValue::InternalLinkage, 5022 Fn->getAddressSpace(), FDInlineName, M); 5023 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5024 } 5025 return CGCallee::forDirect(Clone, GD); 5026 } 5027 5028 // Replaceable builtins provide their own implementation of a builtin. If we 5029 // are in an inline builtin implementation, avoid trivial infinite 5030 // recursion. Honor __attribute__((no_builtin("foo"))) or 5031 // __attribute__((no_builtin)) on the current function unless foo is 5032 // not a predefined library function which means we must generate the 5033 // builtin no matter what. 5034 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 5035 return CGCallee::forBuiltin(builtinID, FD); 5036 } 5037 5038 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5039 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5040 FD->hasAttr<CUDAGlobalAttr>()) 5041 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5042 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5043 5044 return CGCallee::forDirect(CalleePtr, GD); 5045 } 5046 5047 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 5048 E = E->IgnoreParens(); 5049 5050 // Look through function-to-pointer decay. 5051 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 5052 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 5053 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 5054 return EmitCallee(ICE->getSubExpr()); 5055 } 5056 5057 // Resolve direct calls. 5058 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 5059 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 5060 return EmitDirectCallee(*this, FD); 5061 } 5062 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 5063 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 5064 EmitIgnoredExpr(ME->getBase()); 5065 return EmitDirectCallee(*this, FD); 5066 } 5067 5068 // Look through template substitutions. 5069 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 5070 return EmitCallee(NTTP->getReplacement()); 5071 5072 // Treat pseudo-destructor calls differently. 5073 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 5074 return CGCallee::forPseudoDestructor(PDE); 5075 } 5076 5077 // Otherwise, we have an indirect reference. 5078 llvm::Value *calleePtr; 5079 QualType functionType; 5080 if (auto ptrType = E->getType()->getAs<PointerType>()) { 5081 calleePtr = EmitScalarExpr(E); 5082 functionType = ptrType->getPointeeType(); 5083 } else { 5084 functionType = E->getType(); 5085 calleePtr = EmitLValue(E).getPointer(*this); 5086 } 5087 assert(functionType->isFunctionType()); 5088 5089 GlobalDecl GD; 5090 if (const auto *VD = 5091 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 5092 GD = GlobalDecl(VD); 5093 5094 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 5095 CGCallee callee(calleeInfo, calleePtr); 5096 return callee; 5097 } 5098 5099 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 5100 // Comma expressions just emit their LHS then their RHS as an l-value. 5101 if (E->getOpcode() == BO_Comma) { 5102 EmitIgnoredExpr(E->getLHS()); 5103 EnsureInsertPoint(); 5104 return EmitLValue(E->getRHS()); 5105 } 5106 5107 if (E->getOpcode() == BO_PtrMemD || 5108 E->getOpcode() == BO_PtrMemI) 5109 return EmitPointerToDataMemberBinaryExpr(E); 5110 5111 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5112 5113 // Note that in all of these cases, __block variables need the RHS 5114 // evaluated first just in case the variable gets moved by the RHS. 5115 5116 switch (getEvaluationKind(E->getType())) { 5117 case TEK_Scalar: { 5118 switch (E->getLHS()->getType().getObjCLifetime()) { 5119 case Qualifiers::OCL_Strong: 5120 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5121 5122 case Qualifiers::OCL_Autoreleasing: 5123 return EmitARCStoreAutoreleasing(E).first; 5124 5125 // No reason to do any of these differently. 5126 case Qualifiers::OCL_None: 5127 case Qualifiers::OCL_ExplicitNone: 5128 case Qualifiers::OCL_Weak: 5129 break; 5130 } 5131 5132 RValue RV = EmitAnyExpr(E->getRHS()); 5133 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5134 if (RV.isScalar()) 5135 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5136 EmitStoreThroughLValue(RV, LV); 5137 if (getLangOpts().OpenMP) 5138 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5139 E->getLHS()); 5140 return LV; 5141 } 5142 5143 case TEK_Complex: 5144 return EmitComplexAssignmentLValue(E); 5145 5146 case TEK_Aggregate: 5147 return EmitAggExprToLValue(E); 5148 } 5149 llvm_unreachable("bad evaluation kind"); 5150 } 5151 5152 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5153 RValue RV = EmitCallExpr(E); 5154 5155 if (!RV.isScalar()) 5156 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5157 AlignmentSource::Decl); 5158 5159 assert(E->getCallReturnType(getContext())->isReferenceType() && 5160 "Can't have a scalar return unless the return type is a " 5161 "reference type!"); 5162 5163 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5164 } 5165 5166 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5167 // FIXME: This shouldn't require another copy. 5168 return EmitAggExprToLValue(E); 5169 } 5170 5171 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5172 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5173 && "binding l-value to type which needs a temporary"); 5174 AggValueSlot Slot = CreateAggTemp(E->getType()); 5175 EmitCXXConstructExpr(E, Slot); 5176 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5177 } 5178 5179 LValue 5180 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5181 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5182 } 5183 5184 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5185 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5186 ConvertType(E->getType())); 5187 } 5188 5189 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5190 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5191 AlignmentSource::Decl); 5192 } 5193 5194 LValue 5195 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5196 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5197 Slot.setExternallyDestructed(); 5198 EmitAggExpr(E->getSubExpr(), Slot); 5199 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5200 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5201 } 5202 5203 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5204 RValue RV = EmitObjCMessageExpr(E); 5205 5206 if (!RV.isScalar()) 5207 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5208 AlignmentSource::Decl); 5209 5210 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5211 "Can't have a scalar return unless the return type is a " 5212 "reference type!"); 5213 5214 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5215 } 5216 5217 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5218 Address V = 5219 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5220 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5221 } 5222 5223 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5224 const ObjCIvarDecl *Ivar) { 5225 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5226 } 5227 5228 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5229 llvm::Value *BaseValue, 5230 const ObjCIvarDecl *Ivar, 5231 unsigned CVRQualifiers) { 5232 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5233 Ivar, CVRQualifiers); 5234 } 5235 5236 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5237 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5238 llvm::Value *BaseValue = nullptr; 5239 const Expr *BaseExpr = E->getBase(); 5240 Qualifiers BaseQuals; 5241 QualType ObjectTy; 5242 if (E->isArrow()) { 5243 BaseValue = EmitScalarExpr(BaseExpr); 5244 ObjectTy = BaseExpr->getType()->getPointeeType(); 5245 BaseQuals = ObjectTy.getQualifiers(); 5246 } else { 5247 LValue BaseLV = EmitLValue(BaseExpr); 5248 BaseValue = BaseLV.getPointer(*this); 5249 ObjectTy = BaseExpr->getType(); 5250 BaseQuals = ObjectTy.getQualifiers(); 5251 } 5252 5253 LValue LV = 5254 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5255 BaseQuals.getCVRQualifiers()); 5256 setObjCGCLValueClass(getContext(), E, LV); 5257 return LV; 5258 } 5259 5260 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5261 // Can only get l-value for message expression returning aggregate type 5262 RValue RV = EmitAnyExprToTemp(E); 5263 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5264 AlignmentSource::Decl); 5265 } 5266 5267 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5268 const CallExpr *E, ReturnValueSlot ReturnValue, 5269 llvm::Value *Chain) { 5270 // Get the actual function type. The callee type will always be a pointer to 5271 // function type or a block pointer type. 5272 assert(CalleeType->isFunctionPointerType() && 5273 "Call must have function pointer type!"); 5274 5275 const Decl *TargetDecl = 5276 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5277 5278 CalleeType = getContext().getCanonicalType(CalleeType); 5279 5280 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5281 5282 CGCallee Callee = OrigCallee; 5283 5284 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5285 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5286 if (llvm::Constant *PrefixSig = 5287 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5288 SanitizerScope SanScope(this); 5289 // Remove any (C++17) exception specifications, to allow calling e.g. a 5290 // noexcept function through a non-noexcept pointer. 5291 auto ProtoTy = 5292 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5293 llvm::Constant *FTRTTIConst = 5294 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5295 llvm::Type *PrefixSigType = PrefixSig->getType(); 5296 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5297 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5298 5299 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5300 5301 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5302 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5303 llvm::Value *CalleeSigPtr = 5304 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5305 llvm::Value *CalleeSig = 5306 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5307 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5308 5309 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5310 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5311 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5312 5313 EmitBlock(TypeCheck); 5314 llvm::Value *CalleeRTTIPtr = 5315 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5316 llvm::Value *CalleeRTTIEncoded = 5317 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5318 llvm::Value *CalleeRTTI = 5319 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5320 llvm::Value *CalleeRTTIMatch = 5321 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5322 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5323 EmitCheckTypeDescriptor(CalleeType)}; 5324 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5325 SanitizerHandler::FunctionTypeMismatch, StaticData, 5326 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5327 5328 Builder.CreateBr(Cont); 5329 EmitBlock(Cont); 5330 } 5331 } 5332 5333 const auto *FnType = cast<FunctionType>(PointeeType); 5334 5335 // If we are checking indirect calls and this call is indirect, check that the 5336 // function pointer is a member of the bit set for the function type. 5337 if (SanOpts.has(SanitizerKind::CFIICall) && 5338 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5339 SanitizerScope SanScope(this); 5340 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5341 5342 llvm::Metadata *MD; 5343 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5344 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5345 else 5346 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5347 5348 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5349 5350 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5351 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5352 llvm::Value *TypeTest = Builder.CreateCall( 5353 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5354 5355 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5356 llvm::Constant *StaticData[] = { 5357 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5358 EmitCheckSourceLocation(E->getBeginLoc()), 5359 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5360 }; 5361 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5362 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5363 CastedCallee, StaticData); 5364 } else { 5365 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5366 SanitizerHandler::CFICheckFail, StaticData, 5367 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5368 } 5369 } 5370 5371 CallArgList Args; 5372 if (Chain) 5373 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5374 CGM.getContext().VoidPtrTy); 5375 5376 // C++17 requires that we evaluate arguments to a call using assignment syntax 5377 // right-to-left, and that we evaluate arguments to certain other operators 5378 // left-to-right. Note that we allow this to override the order dictated by 5379 // the calling convention on the MS ABI, which means that parameter 5380 // destruction order is not necessarily reverse construction order. 5381 // FIXME: Revisit this based on C++ committee response to unimplementability. 5382 EvaluationOrder Order = EvaluationOrder::Default; 5383 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5384 if (OCE->isAssignmentOp()) 5385 Order = EvaluationOrder::ForceRightToLeft; 5386 else { 5387 switch (OCE->getOperator()) { 5388 case OO_LessLess: 5389 case OO_GreaterGreater: 5390 case OO_AmpAmp: 5391 case OO_PipePipe: 5392 case OO_Comma: 5393 case OO_ArrowStar: 5394 Order = EvaluationOrder::ForceLeftToRight; 5395 break; 5396 default: 5397 break; 5398 } 5399 } 5400 } 5401 5402 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5403 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5404 5405 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5406 Args, FnType, /*ChainCall=*/Chain); 5407 5408 // C99 6.5.2.2p6: 5409 // If the expression that denotes the called function has a type 5410 // that does not include a prototype, [the default argument 5411 // promotions are performed]. If the number of arguments does not 5412 // equal the number of parameters, the behavior is undefined. If 5413 // the function is defined with a type that includes a prototype, 5414 // and either the prototype ends with an ellipsis (, ...) or the 5415 // types of the arguments after promotion are not compatible with 5416 // the types of the parameters, the behavior is undefined. If the 5417 // function is defined with a type that does not include a 5418 // prototype, and the types of the arguments after promotion are 5419 // not compatible with those of the parameters after promotion, 5420 // the behavior is undefined [except in some trivial cases]. 5421 // That is, in the general case, we should assume that a call 5422 // through an unprototyped function type works like a *non-variadic* 5423 // call. The way we make this work is to cast to the exact type 5424 // of the promoted arguments. 5425 // 5426 // Chain calls use this same code path to add the invisible chain parameter 5427 // to the function type. 5428 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5429 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5430 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5431 CalleeTy = CalleeTy->getPointerTo(AS); 5432 5433 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5434 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5435 Callee.setFunctionPointer(CalleePtr); 5436 } 5437 5438 // HIP function pointer contains kernel handle when it is used in triple 5439 // chevron. The kernel stub needs to be loaded from kernel handle and used 5440 // as callee. 5441 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5442 isa<CUDAKernelCallExpr>(E) && 5443 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5444 llvm::Value *Handle = Callee.getFunctionPointer(); 5445 auto *Cast = 5446 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5447 auto *Stub = Builder.CreateLoad( 5448 Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5449 Callee.setFunctionPointer(Stub); 5450 } 5451 llvm::CallBase *CallOrInvoke = nullptr; 5452 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5453 E == MustTailCall, E->getExprLoc()); 5454 5455 // Generate function declaration DISuprogram in order to be used 5456 // in debug info about call sites. 5457 if (CGDebugInfo *DI = getDebugInfo()) { 5458 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5459 FunctionArgList Args; 5460 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5461 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5462 DI->getFunctionType(CalleeDecl, ResTy, Args), 5463 CalleeDecl); 5464 } 5465 } 5466 5467 return Call; 5468 } 5469 5470 LValue CodeGenFunction:: 5471 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5472 Address BaseAddr = Address::invalid(); 5473 if (E->getOpcode() == BO_PtrMemI) { 5474 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5475 } else { 5476 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5477 } 5478 5479 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5480 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5481 5482 LValueBaseInfo BaseInfo; 5483 TBAAAccessInfo TBAAInfo; 5484 Address MemberAddr = 5485 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5486 &TBAAInfo); 5487 5488 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5489 } 5490 5491 /// Given the address of a temporary variable, produce an r-value of 5492 /// its type. 5493 RValue CodeGenFunction::convertTempToRValue(Address addr, 5494 QualType type, 5495 SourceLocation loc) { 5496 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5497 switch (getEvaluationKind(type)) { 5498 case TEK_Complex: 5499 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5500 case TEK_Aggregate: 5501 return lvalue.asAggregateRValue(*this); 5502 case TEK_Scalar: 5503 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5504 } 5505 llvm_unreachable("bad evaluation kind"); 5506 } 5507 5508 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5509 assert(Val->getType()->isFPOrFPVectorTy()); 5510 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5511 return; 5512 5513 llvm::MDBuilder MDHelper(getLLVMContext()); 5514 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5515 5516 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5517 } 5518 5519 namespace { 5520 struct LValueOrRValue { 5521 LValue LV; 5522 RValue RV; 5523 }; 5524 } 5525 5526 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5527 const PseudoObjectExpr *E, 5528 bool forLValue, 5529 AggValueSlot slot) { 5530 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5531 5532 // Find the result expression, if any. 5533 const Expr *resultExpr = E->getResultExpr(); 5534 LValueOrRValue result; 5535 5536 for (PseudoObjectExpr::const_semantics_iterator 5537 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5538 const Expr *semantic = *i; 5539 5540 // If this semantic expression is an opaque value, bind it 5541 // to the result of its source expression. 5542 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5543 // Skip unique OVEs. 5544 if (ov->isUnique()) { 5545 assert(ov != resultExpr && 5546 "A unique OVE cannot be used as the result expression"); 5547 continue; 5548 } 5549 5550 // If this is the result expression, we may need to evaluate 5551 // directly into the slot. 5552 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5553 OVMA opaqueData; 5554 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5555 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5556 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5557 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5558 AlignmentSource::Decl); 5559 opaqueData = OVMA::bind(CGF, ov, LV); 5560 result.RV = slot.asRValue(); 5561 5562 // Otherwise, emit as normal. 5563 } else { 5564 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5565 5566 // If this is the result, also evaluate the result now. 5567 if (ov == resultExpr) { 5568 if (forLValue) 5569 result.LV = CGF.EmitLValue(ov); 5570 else 5571 result.RV = CGF.EmitAnyExpr(ov, slot); 5572 } 5573 } 5574 5575 opaques.push_back(opaqueData); 5576 5577 // Otherwise, if the expression is the result, evaluate it 5578 // and remember the result. 5579 } else if (semantic == resultExpr) { 5580 if (forLValue) 5581 result.LV = CGF.EmitLValue(semantic); 5582 else 5583 result.RV = CGF.EmitAnyExpr(semantic, slot); 5584 5585 // Otherwise, evaluate the expression in an ignored context. 5586 } else { 5587 CGF.EmitIgnoredExpr(semantic); 5588 } 5589 } 5590 5591 // Unbind all the opaques now. 5592 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5593 opaques[i].unbind(CGF); 5594 5595 return result; 5596 } 5597 5598 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5599 AggValueSlot slot) { 5600 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5601 } 5602 5603 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5604 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5605 } 5606