1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 75 } 76 77 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 78 /// default alignment of the corresponding LLVM type, which is *not* 79 /// guaranteed to be related in any way to the expected alignment of 80 /// an AST type that might have been lowered to Ty. 81 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 82 const Twine &Name) { 83 CharUnits Align = 84 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 85 return CreateTempAlloca(Ty, Align, Name); 86 } 87 88 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 89 assert(isa<llvm::AllocaInst>(Var.getPointer())); 90 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 91 Store->setAlignment(Var.getAlignment().getQuantity()); 92 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 93 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 94 } 95 96 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 97 CharUnits Align = getContext().getTypeAlignInChars(Ty); 98 return CreateTempAlloca(ConvertType(Ty), Align, Name); 99 } 100 101 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 102 // FIXME: Should we prefer the preferred type alignment here? 103 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 104 } 105 106 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 107 const Twine &Name) { 108 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 109 } 110 111 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 112 /// expression and compare the result against zero, returning an Int1Ty value. 113 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 114 PGO.setCurrentStmt(E); 115 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 116 llvm::Value *MemPtr = EmitScalarExpr(E); 117 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 118 } 119 120 QualType BoolTy = getContext().BoolTy; 121 SourceLocation Loc = E->getExprLoc(); 122 if (!E->getType()->isAnyComplexType()) 123 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 124 125 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 126 Loc); 127 } 128 129 /// EmitIgnoredExpr - Emit code to compute the specified expression, 130 /// ignoring the result. 131 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 132 if (E->isRValue()) 133 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 134 135 // Just emit it as an l-value and drop the result. 136 EmitLValue(E); 137 } 138 139 /// EmitAnyExpr - Emit code to compute the specified expression which 140 /// can have any type. The result is returned as an RValue struct. 141 /// If this is an aggregate expression, AggSlot indicates where the 142 /// result should be returned. 143 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 144 AggValueSlot aggSlot, 145 bool ignoreResult) { 146 switch (getEvaluationKind(E->getType())) { 147 case TEK_Scalar: 148 return RValue::get(EmitScalarExpr(E, ignoreResult)); 149 case TEK_Complex: 150 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 151 case TEK_Aggregate: 152 if (!ignoreResult && aggSlot.isIgnored()) 153 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 154 EmitAggExpr(E, aggSlot); 155 return aggSlot.asRValue(); 156 } 157 llvm_unreachable("bad evaluation kind"); 158 } 159 160 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 161 /// always be accessible even if no aggregate location is provided. 162 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 163 AggValueSlot AggSlot = AggValueSlot::ignored(); 164 165 if (hasAggregateEvaluationKind(E->getType())) 166 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 167 return EmitAnyExpr(E, AggSlot); 168 } 169 170 /// EmitAnyExprToMem - Evaluate an expression into a given memory 171 /// location. 172 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 173 Address Location, 174 Qualifiers Quals, 175 bool IsInit) { 176 // FIXME: This function should take an LValue as an argument. 177 switch (getEvaluationKind(E->getType())) { 178 case TEK_Complex: 179 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 180 /*isInit*/ false); 181 return; 182 183 case TEK_Aggregate: { 184 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 185 AggValueSlot::IsDestructed_t(IsInit), 186 AggValueSlot::DoesNotNeedGCBarriers, 187 AggValueSlot::IsAliased_t(!IsInit))); 188 return; 189 } 190 191 case TEK_Scalar: { 192 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 193 LValue LV = MakeAddrLValue(Location, E->getType()); 194 EmitStoreThroughLValue(RV, LV); 195 return; 196 } 197 } 198 llvm_unreachable("bad evaluation kind"); 199 } 200 201 static void 202 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 203 const Expr *E, Address ReferenceTemporary) { 204 // Objective-C++ ARC: 205 // If we are binding a reference to a temporary that has ownership, we 206 // need to perform retain/release operations on the temporary. 207 // 208 // FIXME: This should be looking at E, not M. 209 if (auto Lifetime = M->getType().getObjCLifetime()) { 210 switch (Lifetime) { 211 case Qualifiers::OCL_None: 212 case Qualifiers::OCL_ExplicitNone: 213 // Carry on to normal cleanup handling. 214 break; 215 216 case Qualifiers::OCL_Autoreleasing: 217 // Nothing to do; cleaned up by an autorelease pool. 218 return; 219 220 case Qualifiers::OCL_Strong: 221 case Qualifiers::OCL_Weak: 222 switch (StorageDuration Duration = M->getStorageDuration()) { 223 case SD_Static: 224 // Note: we intentionally do not register a cleanup to release 225 // the object on program termination. 226 return; 227 228 case SD_Thread: 229 // FIXME: We should probably register a cleanup in this case. 230 return; 231 232 case SD_Automatic: 233 case SD_FullExpression: 234 CodeGenFunction::Destroyer *Destroy; 235 CleanupKind CleanupKind; 236 if (Lifetime == Qualifiers::OCL_Strong) { 237 const ValueDecl *VD = M->getExtendingDecl(); 238 bool Precise = 239 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 240 CleanupKind = CGF.getARCCleanupKind(); 241 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 242 : &CodeGenFunction::destroyARCStrongImprecise; 243 } else { 244 // __weak objects always get EH cleanups; otherwise, exceptions 245 // could cause really nasty crashes instead of mere leaks. 246 CleanupKind = NormalAndEHCleanup; 247 Destroy = &CodeGenFunction::destroyARCWeak; 248 } 249 if (Duration == SD_FullExpression) 250 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 251 M->getType(), *Destroy, 252 CleanupKind & EHCleanup); 253 else 254 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 255 M->getType(), 256 *Destroy, CleanupKind & EHCleanup); 257 return; 258 259 case SD_Dynamic: 260 llvm_unreachable("temporary cannot have dynamic storage duration"); 261 } 262 llvm_unreachable("unknown storage duration"); 263 } 264 } 265 266 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 267 if (const RecordType *RT = 268 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 269 // Get the destructor for the reference temporary. 270 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 271 if (!ClassDecl->hasTrivialDestructor()) 272 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 273 } 274 275 if (!ReferenceTemporaryDtor) 276 return; 277 278 // Call the destructor for the temporary. 279 switch (M->getStorageDuration()) { 280 case SD_Static: 281 case SD_Thread: { 282 llvm::Constant *CleanupFn; 283 llvm::Constant *CleanupArg; 284 if (E->getType()->isArrayType()) { 285 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 286 ReferenceTemporary, E->getType(), 287 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 288 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 289 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 290 } else { 291 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 292 StructorType::Complete); 293 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 294 } 295 CGF.CGM.getCXXABI().registerGlobalDtor( 296 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 297 break; 298 } 299 300 case SD_FullExpression: 301 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 302 CodeGenFunction::destroyCXXObject, 303 CGF.getLangOpts().Exceptions); 304 break; 305 306 case SD_Automatic: 307 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 308 ReferenceTemporary, E->getType(), 309 CodeGenFunction::destroyCXXObject, 310 CGF.getLangOpts().Exceptions); 311 break; 312 313 case SD_Dynamic: 314 llvm_unreachable("temporary cannot have dynamic storage duration"); 315 } 316 } 317 318 static Address 319 createReferenceTemporary(CodeGenFunction &CGF, 320 const MaterializeTemporaryExpr *M, const Expr *Inner) { 321 switch (M->getStorageDuration()) { 322 case SD_FullExpression: 323 case SD_Automatic: { 324 // If we have a constant temporary array or record try to promote it into a 325 // constant global under the same rules a normal constant would've been 326 // promoted. This is easier on the optimizer and generally emits fewer 327 // instructions. 328 QualType Ty = Inner->getType(); 329 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 330 (Ty->isArrayType() || Ty->isRecordType()) && 331 CGF.CGM.isTypeConstant(Ty, true)) 332 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 333 auto *GV = new llvm::GlobalVariable( 334 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 335 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 336 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 337 GV->setAlignment(alignment.getQuantity()); 338 // FIXME: Should we put the new global into a COMDAT? 339 return Address(GV, alignment); 340 } 341 return CGF.CreateMemTemp(Ty, "ref.tmp"); 342 } 343 case SD_Thread: 344 case SD_Static: 345 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 346 347 case SD_Dynamic: 348 llvm_unreachable("temporary can't have dynamic storage duration"); 349 } 350 llvm_unreachable("unknown storage duration"); 351 } 352 353 LValue CodeGenFunction:: 354 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 355 const Expr *E = M->GetTemporaryExpr(); 356 357 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 358 // as that will cause the lifetime adjustment to be lost for ARC 359 auto ownership = M->getType().getObjCLifetime(); 360 if (ownership != Qualifiers::OCL_None && 361 ownership != Qualifiers::OCL_ExplicitNone) { 362 Address Object = createReferenceTemporary(*this, M, E); 363 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 364 Object = Address(llvm::ConstantExpr::getBitCast(Var, 365 ConvertTypeForMem(E->getType()) 366 ->getPointerTo(Object.getAddressSpace())), 367 Object.getAlignment()); 368 369 // createReferenceTemporary will promote the temporary to a global with a 370 // constant initializer if it can. It can only do this to a value of 371 // ARC-manageable type if the value is global and therefore "immune" to 372 // ref-counting operations. Therefore we have no need to emit either a 373 // dynamic initialization or a cleanup and we can just return the address 374 // of the temporary. 375 if (Var->hasInitializer()) 376 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 377 378 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 379 } 380 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 381 AlignmentSource::Decl); 382 383 switch (getEvaluationKind(E->getType())) { 384 default: llvm_unreachable("expected scalar or aggregate expression"); 385 case TEK_Scalar: 386 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 387 break; 388 case TEK_Aggregate: { 389 EmitAggExpr(E, AggValueSlot::forAddr(Object, 390 E->getType().getQualifiers(), 391 AggValueSlot::IsDestructed, 392 AggValueSlot::DoesNotNeedGCBarriers, 393 AggValueSlot::IsNotAliased)); 394 break; 395 } 396 } 397 398 pushTemporaryCleanup(*this, M, E, Object); 399 return RefTempDst; 400 } 401 402 SmallVector<const Expr *, 2> CommaLHSs; 403 SmallVector<SubobjectAdjustment, 2> Adjustments; 404 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 405 406 for (const auto &Ignored : CommaLHSs) 407 EmitIgnoredExpr(Ignored); 408 409 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 410 if (opaque->getType()->isRecordType()) { 411 assert(Adjustments.empty()); 412 return EmitOpaqueValueLValue(opaque); 413 } 414 } 415 416 // Create and initialize the reference temporary. 417 Address Object = createReferenceTemporary(*this, M, E); 418 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 419 Object = Address(llvm::ConstantExpr::getBitCast( 420 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 421 Object.getAlignment()); 422 // If the temporary is a global and has a constant initializer or is a 423 // constant temporary that we promoted to a global, we may have already 424 // initialized it. 425 if (!Var->hasInitializer()) { 426 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 427 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 428 } 429 } else { 430 switch (M->getStorageDuration()) { 431 case SD_Automatic: 432 case SD_FullExpression: 433 if (auto *Size = EmitLifetimeStart( 434 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 435 Object.getPointer())) { 436 if (M->getStorageDuration() == SD_Automatic) 437 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 438 Object, Size); 439 else 440 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 441 Size); 442 } 443 break; 444 default: 445 break; 446 } 447 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 448 } 449 pushTemporaryCleanup(*this, M, E, Object); 450 451 // Perform derived-to-base casts and/or field accesses, to get from the 452 // temporary object we created (and, potentially, for which we extended 453 // the lifetime) to the subobject we're binding the reference to. 454 for (unsigned I = Adjustments.size(); I != 0; --I) { 455 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 456 switch (Adjustment.Kind) { 457 case SubobjectAdjustment::DerivedToBaseAdjustment: 458 Object = 459 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 460 Adjustment.DerivedToBase.BasePath->path_begin(), 461 Adjustment.DerivedToBase.BasePath->path_end(), 462 /*NullCheckValue=*/ false, E->getExprLoc()); 463 break; 464 465 case SubobjectAdjustment::FieldAdjustment: { 466 LValue LV = MakeAddrLValue(Object, E->getType(), 467 AlignmentSource::Decl); 468 LV = EmitLValueForField(LV, Adjustment.Field); 469 assert(LV.isSimple() && 470 "materialized temporary field is not a simple lvalue"); 471 Object = LV.getAddress(); 472 break; 473 } 474 475 case SubobjectAdjustment::MemberPointerAdjustment: { 476 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 477 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 478 Adjustment.Ptr.MPT); 479 break; 480 } 481 } 482 } 483 484 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 485 } 486 487 RValue 488 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 489 // Emit the expression as an lvalue. 490 LValue LV = EmitLValue(E); 491 assert(LV.isSimple()); 492 llvm::Value *Value = LV.getPointer(); 493 494 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 495 // C++11 [dcl.ref]p5 (as amended by core issue 453): 496 // If a glvalue to which a reference is directly bound designates neither 497 // an existing object or function of an appropriate type nor a region of 498 // storage of suitable size and alignment to contain an object of the 499 // reference's type, the behavior is undefined. 500 QualType Ty = E->getType(); 501 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 502 } 503 504 return RValue::get(Value); 505 } 506 507 508 /// getAccessedFieldNo - Given an encoded value and a result number, return the 509 /// input field number being accessed. 510 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 511 const llvm::Constant *Elts) { 512 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 513 ->getZExtValue(); 514 } 515 516 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 517 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 518 llvm::Value *High) { 519 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 520 llvm::Value *K47 = Builder.getInt64(47); 521 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 522 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 523 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 524 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 525 return Builder.CreateMul(B1, KMul); 526 } 527 528 bool CodeGenFunction::sanitizePerformTypeCheck() const { 529 return SanOpts.has(SanitizerKind::Null) | 530 SanOpts.has(SanitizerKind::Alignment) | 531 SanOpts.has(SanitizerKind::ObjectSize) | 532 SanOpts.has(SanitizerKind::Vptr); 533 } 534 535 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 536 llvm::Value *Ptr, QualType Ty, 537 CharUnits Alignment, bool SkipNullCheck) { 538 if (!sanitizePerformTypeCheck()) 539 return; 540 541 // Don't check pointers outside the default address space. The null check 542 // isn't correct, the object-size check isn't supported by LLVM, and we can't 543 // communicate the addresses to the runtime handler for the vptr check. 544 if (Ptr->getType()->getPointerAddressSpace()) 545 return; 546 547 SanitizerScope SanScope(this); 548 549 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 550 llvm::BasicBlock *Done = nullptr; 551 552 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 553 TCK == TCK_UpcastToVirtualBase; 554 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 555 !SkipNullCheck) { 556 // The glvalue must not be an empty glvalue. 557 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 558 559 if (AllowNullPointers) { 560 // When performing pointer casts, it's OK if the value is null. 561 // Skip the remaining checks in that case. 562 Done = createBasicBlock("null"); 563 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 564 Builder.CreateCondBr(IsNonNull, Rest, Done); 565 EmitBlock(Rest); 566 } else { 567 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 568 } 569 } 570 571 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 572 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 573 574 // The glvalue must refer to a large enough storage region. 575 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 576 // to check this. 577 // FIXME: Get object address space 578 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 579 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 580 llvm::Value *Min = Builder.getFalse(); 581 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 582 llvm::Value *LargeEnough = 583 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 584 llvm::ConstantInt::get(IntPtrTy, Size)); 585 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 586 } 587 588 uint64_t AlignVal = 0; 589 590 if (SanOpts.has(SanitizerKind::Alignment)) { 591 AlignVal = Alignment.getQuantity(); 592 if (!Ty->isIncompleteType() && !AlignVal) 593 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 594 595 // The glvalue must be suitably aligned. 596 if (AlignVal) { 597 llvm::Value *Align = 598 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 599 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 600 llvm::Value *Aligned = 601 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 602 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 603 } 604 } 605 606 if (Checks.size() > 0) { 607 llvm::Constant *StaticData[] = { 608 EmitCheckSourceLocation(Loc), 609 EmitCheckTypeDescriptor(Ty), 610 llvm::ConstantInt::get(SizeTy, AlignVal), 611 llvm::ConstantInt::get(Int8Ty, TCK) 612 }; 613 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 614 } 615 616 // If possible, check that the vptr indicates that there is a subobject of 617 // type Ty at offset zero within this object. 618 // 619 // C++11 [basic.life]p5,6: 620 // [For storage which does not refer to an object within its lifetime] 621 // The program has undefined behavior if: 622 // -- the [pointer or glvalue] is used to access a non-static data member 623 // or call a non-static member function 624 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 625 if (SanOpts.has(SanitizerKind::Vptr) && 626 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 627 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 628 TCK == TCK_UpcastToVirtualBase) && 629 RD && RD->hasDefinition() && RD->isDynamicClass()) { 630 // Compute a hash of the mangled name of the type. 631 // 632 // FIXME: This is not guaranteed to be deterministic! Move to a 633 // fingerprinting mechanism once LLVM provides one. For the time 634 // being the implementation happens to be deterministic. 635 SmallString<64> MangledName; 636 llvm::raw_svector_ostream Out(MangledName); 637 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 638 Out); 639 640 // Blacklist based on the mangled type. 641 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 642 Out.str())) { 643 llvm::hash_code TypeHash = hash_value(Out.str()); 644 645 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 646 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 647 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 648 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 649 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 650 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 651 652 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 653 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 654 655 // Look the hash up in our cache. 656 const int CacheSize = 128; 657 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 658 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 659 "__ubsan_vptr_type_cache"); 660 llvm::Value *Slot = Builder.CreateAnd(Hash, 661 llvm::ConstantInt::get(IntPtrTy, 662 CacheSize-1)); 663 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 664 llvm::Value *CacheVal = 665 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 666 getPointerAlign()); 667 668 // If the hash isn't in the cache, call a runtime handler to perform the 669 // hard work of checking whether the vptr is for an object of the right 670 // type. This will either fill in the cache and return, or produce a 671 // diagnostic. 672 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 673 llvm::Constant *StaticData[] = { 674 EmitCheckSourceLocation(Loc), 675 EmitCheckTypeDescriptor(Ty), 676 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 677 llvm::ConstantInt::get(Int8Ty, TCK) 678 }; 679 llvm::Value *DynamicData[] = { Ptr, Hash }; 680 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 681 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 682 DynamicData); 683 } 684 } 685 686 if (Done) { 687 Builder.CreateBr(Done); 688 EmitBlock(Done); 689 } 690 } 691 692 /// Determine whether this expression refers to a flexible array member in a 693 /// struct. We disable array bounds checks for such members. 694 static bool isFlexibleArrayMemberExpr(const Expr *E) { 695 // For compatibility with existing code, we treat arrays of length 0 or 696 // 1 as flexible array members. 697 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 698 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 699 if (CAT->getSize().ugt(1)) 700 return false; 701 } else if (!isa<IncompleteArrayType>(AT)) 702 return false; 703 704 E = E->IgnoreParens(); 705 706 // A flexible array member must be the last member in the class. 707 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 708 // FIXME: If the base type of the member expr is not FD->getParent(), 709 // this should not be treated as a flexible array member access. 710 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 711 RecordDecl::field_iterator FI( 712 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 713 return ++FI == FD->getParent()->field_end(); 714 } 715 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 716 return IRE->getDecl()->getNextIvar() == nullptr; 717 } 718 719 return false; 720 } 721 722 /// If Base is known to point to the start of an array, return the length of 723 /// that array. Return 0 if the length cannot be determined. 724 static llvm::Value *getArrayIndexingBound( 725 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 726 // For the vector indexing extension, the bound is the number of elements. 727 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 728 IndexedType = Base->getType(); 729 return CGF.Builder.getInt32(VT->getNumElements()); 730 } 731 732 Base = Base->IgnoreParens(); 733 734 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 735 if (CE->getCastKind() == CK_ArrayToPointerDecay && 736 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 737 IndexedType = CE->getSubExpr()->getType(); 738 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 739 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 740 return CGF.Builder.getInt(CAT->getSize()); 741 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 742 return CGF.getVLASize(VAT).first; 743 } 744 } 745 746 return nullptr; 747 } 748 749 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 750 llvm::Value *Index, QualType IndexType, 751 bool Accessed) { 752 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 753 "should not be called unless adding bounds checks"); 754 SanitizerScope SanScope(this); 755 756 QualType IndexedType; 757 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 758 if (!Bound) 759 return; 760 761 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 762 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 763 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 764 765 llvm::Constant *StaticData[] = { 766 EmitCheckSourceLocation(E->getExprLoc()), 767 EmitCheckTypeDescriptor(IndexedType), 768 EmitCheckTypeDescriptor(IndexType) 769 }; 770 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 771 : Builder.CreateICmpULE(IndexVal, BoundVal); 772 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 773 SanitizerHandler::OutOfBounds, StaticData, Index); 774 } 775 776 777 CodeGenFunction::ComplexPairTy CodeGenFunction:: 778 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 779 bool isInc, bool isPre) { 780 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 781 782 llvm::Value *NextVal; 783 if (isa<llvm::IntegerType>(InVal.first->getType())) { 784 uint64_t AmountVal = isInc ? 1 : -1; 785 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 786 787 // Add the inc/dec to the real part. 788 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 789 } else { 790 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 791 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 792 if (!isInc) 793 FVal.changeSign(); 794 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 795 796 // Add the inc/dec to the real part. 797 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 798 } 799 800 ComplexPairTy IncVal(NextVal, InVal.second); 801 802 // Store the updated result through the lvalue. 803 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 804 805 // If this is a postinc, return the value read from memory, otherwise use the 806 // updated value. 807 return isPre ? IncVal : InVal; 808 } 809 810 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 811 CodeGenFunction *CGF) { 812 // Bind VLAs in the cast type. 813 if (CGF && E->getType()->isVariablyModifiedType()) 814 CGF->EmitVariablyModifiedType(E->getType()); 815 816 if (CGDebugInfo *DI = getModuleDebugInfo()) 817 DI->EmitExplicitCastType(E->getType()); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // LValue Expression Emission 822 //===----------------------------------------------------------------------===// 823 824 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 825 /// derive a more accurate bound on the alignment of the pointer. 826 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 827 AlignmentSource *Source) { 828 // We allow this with ObjC object pointers because of fragile ABIs. 829 assert(E->getType()->isPointerType() || 830 E->getType()->isObjCObjectPointerType()); 831 E = E->IgnoreParens(); 832 833 // Casts: 834 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 835 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 836 CGM.EmitExplicitCastExprType(ECE, this); 837 838 switch (CE->getCastKind()) { 839 // Non-converting casts (but not C's implicit conversion from void*). 840 case CK_BitCast: 841 case CK_NoOp: 842 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 843 if (PtrTy->getPointeeType()->isVoidType()) 844 break; 845 846 AlignmentSource InnerSource; 847 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 848 if (Source) *Source = InnerSource; 849 850 // If this is an explicit bitcast, and the source l-value is 851 // opaque, honor the alignment of the casted-to type. 852 if (isa<ExplicitCastExpr>(CE) && 853 InnerSource != AlignmentSource::Decl) { 854 Addr = Address(Addr.getPointer(), 855 getNaturalPointeeTypeAlignment(E->getType(), Source)); 856 } 857 858 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 859 CE->getCastKind() == CK_BitCast) { 860 if (auto PT = E->getType()->getAs<PointerType>()) 861 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 862 /*MayBeNull=*/true, 863 CodeGenFunction::CFITCK_UnrelatedCast, 864 CE->getLocStart()); 865 } 866 867 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 868 } 869 break; 870 871 // Array-to-pointer decay. 872 case CK_ArrayToPointerDecay: 873 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 874 875 // Derived-to-base conversions. 876 case CK_UncheckedDerivedToBase: 877 case CK_DerivedToBase: { 878 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 879 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 880 return GetAddressOfBaseClass(Addr, Derived, 881 CE->path_begin(), CE->path_end(), 882 ShouldNullCheckClassCastValue(CE), 883 CE->getExprLoc()); 884 } 885 886 // TODO: Is there any reason to treat base-to-derived conversions 887 // specially? 888 default: 889 break; 890 } 891 } 892 893 // Unary &. 894 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 895 if (UO->getOpcode() == UO_AddrOf) { 896 LValue LV = EmitLValue(UO->getSubExpr()); 897 if (Source) *Source = LV.getAlignmentSource(); 898 return LV.getAddress(); 899 } 900 } 901 902 // TODO: conditional operators, comma. 903 904 // Otherwise, use the alignment of the type. 905 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 906 return Address(EmitScalarExpr(E), Align); 907 } 908 909 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 910 if (Ty->isVoidType()) 911 return RValue::get(nullptr); 912 913 switch (getEvaluationKind(Ty)) { 914 case TEK_Complex: { 915 llvm::Type *EltTy = 916 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 917 llvm::Value *U = llvm::UndefValue::get(EltTy); 918 return RValue::getComplex(std::make_pair(U, U)); 919 } 920 921 // If this is a use of an undefined aggregate type, the aggregate must have an 922 // identifiable address. Just because the contents of the value are undefined 923 // doesn't mean that the address can't be taken and compared. 924 case TEK_Aggregate: { 925 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 926 return RValue::getAggregate(DestPtr); 927 } 928 929 case TEK_Scalar: 930 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 931 } 932 llvm_unreachable("bad evaluation kind"); 933 } 934 935 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 936 const char *Name) { 937 ErrorUnsupported(E, Name); 938 return GetUndefRValue(E->getType()); 939 } 940 941 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 942 const char *Name) { 943 ErrorUnsupported(E, Name); 944 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 945 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 946 E->getType()); 947 } 948 949 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 950 LValue LV; 951 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 952 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 953 else 954 LV = EmitLValue(E); 955 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 956 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 957 E->getType(), LV.getAlignment()); 958 return LV; 959 } 960 961 /// EmitLValue - Emit code to compute a designator that specifies the location 962 /// of the expression. 963 /// 964 /// This can return one of two things: a simple address or a bitfield reference. 965 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 966 /// an LLVM pointer type. 967 /// 968 /// If this returns a bitfield reference, nothing about the pointee type of the 969 /// LLVM value is known: For example, it may not be a pointer to an integer. 970 /// 971 /// If this returns a normal address, and if the lvalue's C type is fixed size, 972 /// this method guarantees that the returned pointer type will point to an LLVM 973 /// type of the same size of the lvalue's type. If the lvalue has a variable 974 /// length type, this is not possible. 975 /// 976 LValue CodeGenFunction::EmitLValue(const Expr *E) { 977 ApplyDebugLocation DL(*this, E); 978 switch (E->getStmtClass()) { 979 default: return EmitUnsupportedLValue(E, "l-value expression"); 980 981 case Expr::ObjCPropertyRefExprClass: 982 llvm_unreachable("cannot emit a property reference directly"); 983 984 case Expr::ObjCSelectorExprClass: 985 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 986 case Expr::ObjCIsaExprClass: 987 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 988 case Expr::BinaryOperatorClass: 989 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 990 case Expr::CompoundAssignOperatorClass: { 991 QualType Ty = E->getType(); 992 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 993 Ty = AT->getValueType(); 994 if (!Ty->isAnyComplexType()) 995 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 996 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 997 } 998 case Expr::CallExprClass: 999 case Expr::CXXMemberCallExprClass: 1000 case Expr::CXXOperatorCallExprClass: 1001 case Expr::UserDefinedLiteralClass: 1002 return EmitCallExprLValue(cast<CallExpr>(E)); 1003 case Expr::VAArgExprClass: 1004 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1005 case Expr::DeclRefExprClass: 1006 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1007 case Expr::ParenExprClass: 1008 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1009 case Expr::GenericSelectionExprClass: 1010 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1011 case Expr::PredefinedExprClass: 1012 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1013 case Expr::StringLiteralClass: 1014 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1015 case Expr::ObjCEncodeExprClass: 1016 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1017 case Expr::PseudoObjectExprClass: 1018 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1019 case Expr::InitListExprClass: 1020 return EmitInitListLValue(cast<InitListExpr>(E)); 1021 case Expr::CXXTemporaryObjectExprClass: 1022 case Expr::CXXConstructExprClass: 1023 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1024 case Expr::CXXBindTemporaryExprClass: 1025 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1026 case Expr::CXXUuidofExprClass: 1027 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1028 case Expr::LambdaExprClass: 1029 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1030 1031 case Expr::ExprWithCleanupsClass: { 1032 const auto *cleanups = cast<ExprWithCleanups>(E); 1033 enterFullExpression(cleanups); 1034 RunCleanupsScope Scope(*this); 1035 return EmitLValue(cleanups->getSubExpr()); 1036 } 1037 1038 case Expr::CXXDefaultArgExprClass: 1039 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1040 case Expr::CXXDefaultInitExprClass: { 1041 CXXDefaultInitExprScope Scope(*this); 1042 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1043 } 1044 case Expr::CXXTypeidExprClass: 1045 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1046 1047 case Expr::ObjCMessageExprClass: 1048 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1049 case Expr::ObjCIvarRefExprClass: 1050 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1051 case Expr::StmtExprClass: 1052 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1053 case Expr::UnaryOperatorClass: 1054 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1055 case Expr::ArraySubscriptExprClass: 1056 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1057 case Expr::OMPArraySectionExprClass: 1058 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1059 case Expr::ExtVectorElementExprClass: 1060 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1061 case Expr::MemberExprClass: 1062 return EmitMemberExpr(cast<MemberExpr>(E)); 1063 case Expr::CompoundLiteralExprClass: 1064 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1065 case Expr::ConditionalOperatorClass: 1066 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1067 case Expr::BinaryConditionalOperatorClass: 1068 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1069 case Expr::ChooseExprClass: 1070 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1071 case Expr::OpaqueValueExprClass: 1072 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1073 case Expr::SubstNonTypeTemplateParmExprClass: 1074 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1075 case Expr::ImplicitCastExprClass: 1076 case Expr::CStyleCastExprClass: 1077 case Expr::CXXFunctionalCastExprClass: 1078 case Expr::CXXStaticCastExprClass: 1079 case Expr::CXXDynamicCastExprClass: 1080 case Expr::CXXReinterpretCastExprClass: 1081 case Expr::CXXConstCastExprClass: 1082 case Expr::ObjCBridgedCastExprClass: 1083 return EmitCastLValue(cast<CastExpr>(E)); 1084 1085 case Expr::MaterializeTemporaryExprClass: 1086 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1087 } 1088 } 1089 1090 /// Given an object of the given canonical type, can we safely copy a 1091 /// value out of it based on its initializer? 1092 static bool isConstantEmittableObjectType(QualType type) { 1093 assert(type.isCanonical()); 1094 assert(!type->isReferenceType()); 1095 1096 // Must be const-qualified but non-volatile. 1097 Qualifiers qs = type.getLocalQualifiers(); 1098 if (!qs.hasConst() || qs.hasVolatile()) return false; 1099 1100 // Otherwise, all object types satisfy this except C++ classes with 1101 // mutable subobjects or non-trivial copy/destroy behavior. 1102 if (const auto *RT = dyn_cast<RecordType>(type)) 1103 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1104 if (RD->hasMutableFields() || !RD->isTrivial()) 1105 return false; 1106 1107 return true; 1108 } 1109 1110 /// Can we constant-emit a load of a reference to a variable of the 1111 /// given type? This is different from predicates like 1112 /// Decl::isUsableInConstantExpressions because we do want it to apply 1113 /// in situations that don't necessarily satisfy the language's rules 1114 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1115 /// to do this with const float variables even if those variables 1116 /// aren't marked 'constexpr'. 1117 enum ConstantEmissionKind { 1118 CEK_None, 1119 CEK_AsReferenceOnly, 1120 CEK_AsValueOrReference, 1121 CEK_AsValueOnly 1122 }; 1123 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1124 type = type.getCanonicalType(); 1125 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1126 if (isConstantEmittableObjectType(ref->getPointeeType())) 1127 return CEK_AsValueOrReference; 1128 return CEK_AsReferenceOnly; 1129 } 1130 if (isConstantEmittableObjectType(type)) 1131 return CEK_AsValueOnly; 1132 return CEK_None; 1133 } 1134 1135 /// Try to emit a reference to the given value without producing it as 1136 /// an l-value. This is actually more than an optimization: we can't 1137 /// produce an l-value for variables that we never actually captured 1138 /// in a block or lambda, which means const int variables or constexpr 1139 /// literals or similar. 1140 CodeGenFunction::ConstantEmission 1141 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1142 ValueDecl *value = refExpr->getDecl(); 1143 1144 // The value needs to be an enum constant or a constant variable. 1145 ConstantEmissionKind CEK; 1146 if (isa<ParmVarDecl>(value)) { 1147 CEK = CEK_None; 1148 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1149 CEK = checkVarTypeForConstantEmission(var->getType()); 1150 } else if (isa<EnumConstantDecl>(value)) { 1151 CEK = CEK_AsValueOnly; 1152 } else { 1153 CEK = CEK_None; 1154 } 1155 if (CEK == CEK_None) return ConstantEmission(); 1156 1157 Expr::EvalResult result; 1158 bool resultIsReference; 1159 QualType resultType; 1160 1161 // It's best to evaluate all the way as an r-value if that's permitted. 1162 if (CEK != CEK_AsReferenceOnly && 1163 refExpr->EvaluateAsRValue(result, getContext())) { 1164 resultIsReference = false; 1165 resultType = refExpr->getType(); 1166 1167 // Otherwise, try to evaluate as an l-value. 1168 } else if (CEK != CEK_AsValueOnly && 1169 refExpr->EvaluateAsLValue(result, getContext())) { 1170 resultIsReference = true; 1171 resultType = value->getType(); 1172 1173 // Failure. 1174 } else { 1175 return ConstantEmission(); 1176 } 1177 1178 // In any case, if the initializer has side-effects, abandon ship. 1179 if (result.HasSideEffects) 1180 return ConstantEmission(); 1181 1182 // Emit as a constant. 1183 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1184 1185 // Make sure we emit a debug reference to the global variable. 1186 // This should probably fire even for 1187 if (isa<VarDecl>(value)) { 1188 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1189 EmitDeclRefExprDbgValue(refExpr, result.Val); 1190 } else { 1191 assert(isa<EnumConstantDecl>(value)); 1192 EmitDeclRefExprDbgValue(refExpr, result.Val); 1193 } 1194 1195 // If we emitted a reference constant, we need to dereference that. 1196 if (resultIsReference) 1197 return ConstantEmission::forReference(C); 1198 1199 return ConstantEmission::forValue(C); 1200 } 1201 1202 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1203 SourceLocation Loc) { 1204 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1205 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1206 lvalue.getTBAAInfo(), 1207 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1208 lvalue.isNontemporal()); 1209 } 1210 1211 static bool hasBooleanRepresentation(QualType Ty) { 1212 if (Ty->isBooleanType()) 1213 return true; 1214 1215 if (const EnumType *ET = Ty->getAs<EnumType>()) 1216 return ET->getDecl()->getIntegerType()->isBooleanType(); 1217 1218 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1219 return hasBooleanRepresentation(AT->getValueType()); 1220 1221 return false; 1222 } 1223 1224 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1225 llvm::APInt &Min, llvm::APInt &End, 1226 bool StrictEnums, bool IsBool) { 1227 const EnumType *ET = Ty->getAs<EnumType>(); 1228 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1229 ET && !ET->getDecl()->isFixed(); 1230 if (!IsBool && !IsRegularCPlusPlusEnum) 1231 return false; 1232 1233 if (IsBool) { 1234 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1235 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1236 } else { 1237 const EnumDecl *ED = ET->getDecl(); 1238 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1239 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1240 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1241 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1242 1243 if (NumNegativeBits) { 1244 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1245 assert(NumBits <= Bitwidth); 1246 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1247 Min = -End; 1248 } else { 1249 assert(NumPositiveBits <= Bitwidth); 1250 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1251 Min = llvm::APInt(Bitwidth, 0); 1252 } 1253 } 1254 return true; 1255 } 1256 1257 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1258 llvm::APInt Min, End; 1259 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1260 hasBooleanRepresentation(Ty))) 1261 return nullptr; 1262 1263 llvm::MDBuilder MDHelper(getLLVMContext()); 1264 return MDHelper.createRange(Min, End); 1265 } 1266 1267 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1268 QualType Ty, 1269 SourceLocation Loc, 1270 AlignmentSource AlignSource, 1271 llvm::MDNode *TBAAInfo, 1272 QualType TBAABaseType, 1273 uint64_t TBAAOffset, 1274 bool isNontemporal) { 1275 // For better performance, handle vector loads differently. 1276 if (Ty->isVectorType()) { 1277 const llvm::Type *EltTy = Addr.getElementType(); 1278 1279 const auto *VTy = cast<llvm::VectorType>(EltTy); 1280 1281 // Handle vectors of size 3 like size 4 for better performance. 1282 if (VTy->getNumElements() == 3) { 1283 1284 // Bitcast to vec4 type. 1285 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1286 4); 1287 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1288 // Now load value. 1289 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1290 1291 // Shuffle vector to get vec3. 1292 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1293 {0, 1, 2}, "extractVec"); 1294 return EmitFromMemory(V, Ty); 1295 } 1296 } 1297 1298 // Atomic operations have to be done on integral types. 1299 LValue AtomicLValue = 1300 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1301 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1302 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1303 } 1304 1305 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1306 if (isNontemporal) { 1307 llvm::MDNode *Node = llvm::MDNode::get( 1308 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1309 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1310 } 1311 if (TBAAInfo) { 1312 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1313 TBAAOffset); 1314 if (TBAAPath) 1315 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1316 false /*ConvertTypeToTag*/); 1317 } 1318 1319 bool IsBool = hasBooleanRepresentation(Ty) || 1320 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1321 bool NeedsBoolCheck = SanOpts.has(SanitizerKind::Bool) && IsBool; 1322 bool NeedsEnumCheck = 1323 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1324 if (NeedsBoolCheck || NeedsEnumCheck) { 1325 SanitizerScope SanScope(this); 1326 llvm::APInt Min, End; 1327 if (getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) { 1328 --End; 1329 llvm::Value *Check; 1330 if (!Min) 1331 Check = Builder.CreateICmpULE( 1332 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1333 else { 1334 llvm::Value *Upper = Builder.CreateICmpSLE( 1335 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1336 llvm::Value *Lower = Builder.CreateICmpSGE( 1337 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1338 Check = Builder.CreateAnd(Upper, Lower); 1339 } 1340 llvm::Constant *StaticArgs[] = { 1341 EmitCheckSourceLocation(Loc), 1342 EmitCheckTypeDescriptor(Ty) 1343 }; 1344 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1345 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1346 StaticArgs, EmitCheckValue(Load)); 1347 } 1348 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1349 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1350 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1351 1352 return EmitFromMemory(Load, Ty); 1353 } 1354 1355 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1356 // Bool has a different representation in memory than in registers. 1357 if (hasBooleanRepresentation(Ty)) { 1358 // This should really always be an i1, but sometimes it's already 1359 // an i8, and it's awkward to track those cases down. 1360 if (Value->getType()->isIntegerTy(1)) 1361 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1362 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1363 "wrong value rep of bool"); 1364 } 1365 1366 return Value; 1367 } 1368 1369 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1370 // Bool has a different representation in memory than in registers. 1371 if (hasBooleanRepresentation(Ty)) { 1372 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1373 "wrong value rep of bool"); 1374 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1375 } 1376 1377 return Value; 1378 } 1379 1380 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1381 bool Volatile, QualType Ty, 1382 AlignmentSource AlignSource, 1383 llvm::MDNode *TBAAInfo, 1384 bool isInit, QualType TBAABaseType, 1385 uint64_t TBAAOffset, 1386 bool isNontemporal) { 1387 1388 // Handle vectors differently to get better performance. 1389 if (Ty->isVectorType()) { 1390 llvm::Type *SrcTy = Value->getType(); 1391 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1392 // Handle vec3 special. 1393 if (VecTy->getNumElements() == 3) { 1394 // Our source is a vec3, do a shuffle vector to make it a vec4. 1395 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1396 Builder.getInt32(2), 1397 llvm::UndefValue::get(Builder.getInt32Ty())}; 1398 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1399 Value = Builder.CreateShuffleVector(Value, 1400 llvm::UndefValue::get(VecTy), 1401 MaskV, "extractVec"); 1402 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1403 } 1404 if (Addr.getElementType() != SrcTy) { 1405 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1406 } 1407 } 1408 1409 Value = EmitToMemory(Value, Ty); 1410 1411 LValue AtomicLValue = 1412 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1413 if (Ty->isAtomicType() || 1414 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1415 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1416 return; 1417 } 1418 1419 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1420 if (isNontemporal) { 1421 llvm::MDNode *Node = 1422 llvm::MDNode::get(Store->getContext(), 1423 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1424 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1425 } 1426 if (TBAAInfo) { 1427 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1428 TBAAOffset); 1429 if (TBAAPath) 1430 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1431 false /*ConvertTypeToTag*/); 1432 } 1433 } 1434 1435 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1436 bool isInit) { 1437 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1438 lvalue.getType(), lvalue.getAlignmentSource(), 1439 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1440 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1441 } 1442 1443 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1444 /// method emits the address of the lvalue, then loads the result as an rvalue, 1445 /// returning the rvalue. 1446 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1447 if (LV.isObjCWeak()) { 1448 // load of a __weak object. 1449 Address AddrWeakObj = LV.getAddress(); 1450 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1451 AddrWeakObj)); 1452 } 1453 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1454 // In MRC mode, we do a load+autorelease. 1455 if (!getLangOpts().ObjCAutoRefCount) { 1456 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1457 } 1458 1459 // In ARC mode, we load retained and then consume the value. 1460 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1461 Object = EmitObjCConsumeObject(LV.getType(), Object); 1462 return RValue::get(Object); 1463 } 1464 1465 if (LV.isSimple()) { 1466 assert(!LV.getType()->isFunctionType()); 1467 1468 // Everything needs a load. 1469 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1470 } 1471 1472 if (LV.isVectorElt()) { 1473 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1474 LV.isVolatileQualified()); 1475 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1476 "vecext")); 1477 } 1478 1479 // If this is a reference to a subset of the elements of a vector, either 1480 // shuffle the input or extract/insert them as appropriate. 1481 if (LV.isExtVectorElt()) 1482 return EmitLoadOfExtVectorElementLValue(LV); 1483 1484 // Global Register variables always invoke intrinsics 1485 if (LV.isGlobalReg()) 1486 return EmitLoadOfGlobalRegLValue(LV); 1487 1488 assert(LV.isBitField() && "Unknown LValue type!"); 1489 return EmitLoadOfBitfieldLValue(LV); 1490 } 1491 1492 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1493 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1494 1495 // Get the output type. 1496 llvm::Type *ResLTy = ConvertType(LV.getType()); 1497 1498 Address Ptr = LV.getBitFieldAddress(); 1499 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1500 1501 if (Info.IsSigned) { 1502 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1503 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1504 if (HighBits) 1505 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1506 if (Info.Offset + HighBits) 1507 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1508 } else { 1509 if (Info.Offset) 1510 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1511 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1512 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1513 Info.Size), 1514 "bf.clear"); 1515 } 1516 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1517 1518 return RValue::get(Val); 1519 } 1520 1521 // If this is a reference to a subset of the elements of a vector, create an 1522 // appropriate shufflevector. 1523 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1524 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1525 LV.isVolatileQualified()); 1526 1527 const llvm::Constant *Elts = LV.getExtVectorElts(); 1528 1529 // If the result of the expression is a non-vector type, we must be extracting 1530 // a single element. Just codegen as an extractelement. 1531 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1532 if (!ExprVT) { 1533 unsigned InIdx = getAccessedFieldNo(0, Elts); 1534 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1535 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1536 } 1537 1538 // Always use shuffle vector to try to retain the original program structure 1539 unsigned NumResultElts = ExprVT->getNumElements(); 1540 1541 SmallVector<llvm::Constant*, 4> Mask; 1542 for (unsigned i = 0; i != NumResultElts; ++i) 1543 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1544 1545 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1546 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1547 MaskV); 1548 return RValue::get(Vec); 1549 } 1550 1551 /// @brief Generates lvalue for partial ext_vector access. 1552 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1553 Address VectorAddress = LV.getExtVectorAddress(); 1554 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1555 QualType EQT = ExprVT->getElementType(); 1556 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1557 1558 Address CastToPointerElement = 1559 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1560 "conv.ptr.element"); 1561 1562 const llvm::Constant *Elts = LV.getExtVectorElts(); 1563 unsigned ix = getAccessedFieldNo(0, Elts); 1564 1565 Address VectorBasePtrPlusIx = 1566 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1567 getContext().getTypeSizeInChars(EQT), 1568 "vector.elt"); 1569 1570 return VectorBasePtrPlusIx; 1571 } 1572 1573 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1574 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1575 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1576 "Bad type for register variable"); 1577 llvm::MDNode *RegName = cast<llvm::MDNode>( 1578 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1579 1580 // We accept integer and pointer types only 1581 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1582 llvm::Type *Ty = OrigTy; 1583 if (OrigTy->isPointerTy()) 1584 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1585 llvm::Type *Types[] = { Ty }; 1586 1587 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1588 llvm::Value *Call = Builder.CreateCall( 1589 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1590 if (OrigTy->isPointerTy()) 1591 Call = Builder.CreateIntToPtr(Call, OrigTy); 1592 return RValue::get(Call); 1593 } 1594 1595 1596 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1597 /// lvalue, where both are guaranteed to the have the same type, and that type 1598 /// is 'Ty'. 1599 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1600 bool isInit) { 1601 if (!Dst.isSimple()) { 1602 if (Dst.isVectorElt()) { 1603 // Read/modify/write the vector, inserting the new element. 1604 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1605 Dst.isVolatileQualified()); 1606 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1607 Dst.getVectorIdx(), "vecins"); 1608 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1609 Dst.isVolatileQualified()); 1610 return; 1611 } 1612 1613 // If this is an update of extended vector elements, insert them as 1614 // appropriate. 1615 if (Dst.isExtVectorElt()) 1616 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1617 1618 if (Dst.isGlobalReg()) 1619 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1620 1621 assert(Dst.isBitField() && "Unknown LValue type"); 1622 return EmitStoreThroughBitfieldLValue(Src, Dst); 1623 } 1624 1625 // There's special magic for assigning into an ARC-qualified l-value. 1626 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1627 switch (Lifetime) { 1628 case Qualifiers::OCL_None: 1629 llvm_unreachable("present but none"); 1630 1631 case Qualifiers::OCL_ExplicitNone: 1632 // nothing special 1633 break; 1634 1635 case Qualifiers::OCL_Strong: 1636 if (isInit) { 1637 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1638 break; 1639 } 1640 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1641 return; 1642 1643 case Qualifiers::OCL_Weak: 1644 if (isInit) 1645 // Initialize and then skip the primitive store. 1646 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1647 else 1648 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1649 return; 1650 1651 case Qualifiers::OCL_Autoreleasing: 1652 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1653 Src.getScalarVal())); 1654 // fall into the normal path 1655 break; 1656 } 1657 } 1658 1659 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1660 // load of a __weak object. 1661 Address LvalueDst = Dst.getAddress(); 1662 llvm::Value *src = Src.getScalarVal(); 1663 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1664 return; 1665 } 1666 1667 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1668 // load of a __strong object. 1669 Address LvalueDst = Dst.getAddress(); 1670 llvm::Value *src = Src.getScalarVal(); 1671 if (Dst.isObjCIvar()) { 1672 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1673 llvm::Type *ResultType = IntPtrTy; 1674 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1675 llvm::Value *RHS = dst.getPointer(); 1676 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1677 llvm::Value *LHS = 1678 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1679 "sub.ptr.lhs.cast"); 1680 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1681 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1682 BytesBetween); 1683 } else if (Dst.isGlobalObjCRef()) { 1684 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1685 Dst.isThreadLocalRef()); 1686 } 1687 else 1688 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1689 return; 1690 } 1691 1692 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1693 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1694 } 1695 1696 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1697 llvm::Value **Result) { 1698 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1699 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1700 Address Ptr = Dst.getBitFieldAddress(); 1701 1702 // Get the source value, truncated to the width of the bit-field. 1703 llvm::Value *SrcVal = Src.getScalarVal(); 1704 1705 // Cast the source to the storage type and shift it into place. 1706 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1707 /*IsSigned=*/false); 1708 llvm::Value *MaskedVal = SrcVal; 1709 1710 // See if there are other bits in the bitfield's storage we'll need to load 1711 // and mask together with source before storing. 1712 if (Info.StorageSize != Info.Size) { 1713 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1714 llvm::Value *Val = 1715 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1716 1717 // Mask the source value as needed. 1718 if (!hasBooleanRepresentation(Dst.getType())) 1719 SrcVal = Builder.CreateAnd(SrcVal, 1720 llvm::APInt::getLowBitsSet(Info.StorageSize, 1721 Info.Size), 1722 "bf.value"); 1723 MaskedVal = SrcVal; 1724 if (Info.Offset) 1725 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1726 1727 // Mask out the original value. 1728 Val = Builder.CreateAnd(Val, 1729 ~llvm::APInt::getBitsSet(Info.StorageSize, 1730 Info.Offset, 1731 Info.Offset + Info.Size), 1732 "bf.clear"); 1733 1734 // Or together the unchanged values and the source value. 1735 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1736 } else { 1737 assert(Info.Offset == 0); 1738 } 1739 1740 // Write the new value back out. 1741 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1742 1743 // Return the new value of the bit-field, if requested. 1744 if (Result) { 1745 llvm::Value *ResultVal = MaskedVal; 1746 1747 // Sign extend the value if needed. 1748 if (Info.IsSigned) { 1749 assert(Info.Size <= Info.StorageSize); 1750 unsigned HighBits = Info.StorageSize - Info.Size; 1751 if (HighBits) { 1752 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1753 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1754 } 1755 } 1756 1757 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1758 "bf.result.cast"); 1759 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1760 } 1761 } 1762 1763 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1764 LValue Dst) { 1765 // This access turns into a read/modify/write of the vector. Load the input 1766 // value now. 1767 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1768 Dst.isVolatileQualified()); 1769 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1770 1771 llvm::Value *SrcVal = Src.getScalarVal(); 1772 1773 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1774 unsigned NumSrcElts = VTy->getNumElements(); 1775 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1776 if (NumDstElts == NumSrcElts) { 1777 // Use shuffle vector is the src and destination are the same number of 1778 // elements and restore the vector mask since it is on the side it will be 1779 // stored. 1780 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1781 for (unsigned i = 0; i != NumSrcElts; ++i) 1782 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1783 1784 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1785 Vec = Builder.CreateShuffleVector(SrcVal, 1786 llvm::UndefValue::get(Vec->getType()), 1787 MaskV); 1788 } else if (NumDstElts > NumSrcElts) { 1789 // Extended the source vector to the same length and then shuffle it 1790 // into the destination. 1791 // FIXME: since we're shuffling with undef, can we just use the indices 1792 // into that? This could be simpler. 1793 SmallVector<llvm::Constant*, 4> ExtMask; 1794 for (unsigned i = 0; i != NumSrcElts; ++i) 1795 ExtMask.push_back(Builder.getInt32(i)); 1796 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1797 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1798 llvm::Value *ExtSrcVal = 1799 Builder.CreateShuffleVector(SrcVal, 1800 llvm::UndefValue::get(SrcVal->getType()), 1801 ExtMaskV); 1802 // build identity 1803 SmallVector<llvm::Constant*, 4> Mask; 1804 for (unsigned i = 0; i != NumDstElts; ++i) 1805 Mask.push_back(Builder.getInt32(i)); 1806 1807 // When the vector size is odd and .odd or .hi is used, the last element 1808 // of the Elts constant array will be one past the size of the vector. 1809 // Ignore the last element here, if it is greater than the mask size. 1810 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1811 NumSrcElts--; 1812 1813 // modify when what gets shuffled in 1814 for (unsigned i = 0; i != NumSrcElts; ++i) 1815 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1816 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1817 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1818 } else { 1819 // We should never shorten the vector 1820 llvm_unreachable("unexpected shorten vector length"); 1821 } 1822 } else { 1823 // If the Src is a scalar (not a vector) it must be updating one element. 1824 unsigned InIdx = getAccessedFieldNo(0, Elts); 1825 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1826 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1827 } 1828 1829 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1830 Dst.isVolatileQualified()); 1831 } 1832 1833 /// @brief Store of global named registers are always calls to intrinsics. 1834 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1835 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1836 "Bad type for register variable"); 1837 llvm::MDNode *RegName = cast<llvm::MDNode>( 1838 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1839 assert(RegName && "Register LValue is not metadata"); 1840 1841 // We accept integer and pointer types only 1842 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1843 llvm::Type *Ty = OrigTy; 1844 if (OrigTy->isPointerTy()) 1845 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1846 llvm::Type *Types[] = { Ty }; 1847 1848 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1849 llvm::Value *Value = Src.getScalarVal(); 1850 if (OrigTy->isPointerTy()) 1851 Value = Builder.CreatePtrToInt(Value, Ty); 1852 Builder.CreateCall( 1853 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1854 } 1855 1856 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1857 // generating write-barries API. It is currently a global, ivar, 1858 // or neither. 1859 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1860 LValue &LV, 1861 bool IsMemberAccess=false) { 1862 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1863 return; 1864 1865 if (isa<ObjCIvarRefExpr>(E)) { 1866 QualType ExpTy = E->getType(); 1867 if (IsMemberAccess && ExpTy->isPointerType()) { 1868 // If ivar is a structure pointer, assigning to field of 1869 // this struct follows gcc's behavior and makes it a non-ivar 1870 // writer-barrier conservatively. 1871 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1872 if (ExpTy->isRecordType()) { 1873 LV.setObjCIvar(false); 1874 return; 1875 } 1876 } 1877 LV.setObjCIvar(true); 1878 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1879 LV.setBaseIvarExp(Exp->getBase()); 1880 LV.setObjCArray(E->getType()->isArrayType()); 1881 return; 1882 } 1883 1884 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1885 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1886 if (VD->hasGlobalStorage()) { 1887 LV.setGlobalObjCRef(true); 1888 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1889 } 1890 } 1891 LV.setObjCArray(E->getType()->isArrayType()); 1892 return; 1893 } 1894 1895 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1896 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1897 return; 1898 } 1899 1900 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1901 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1902 if (LV.isObjCIvar()) { 1903 // If cast is to a structure pointer, follow gcc's behavior and make it 1904 // a non-ivar write-barrier. 1905 QualType ExpTy = E->getType(); 1906 if (ExpTy->isPointerType()) 1907 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1908 if (ExpTy->isRecordType()) 1909 LV.setObjCIvar(false); 1910 } 1911 return; 1912 } 1913 1914 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1915 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1916 return; 1917 } 1918 1919 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1920 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1921 return; 1922 } 1923 1924 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1925 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1926 return; 1927 } 1928 1929 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1930 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1931 return; 1932 } 1933 1934 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1935 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1936 if (LV.isObjCIvar() && !LV.isObjCArray()) 1937 // Using array syntax to assigning to what an ivar points to is not 1938 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1939 LV.setObjCIvar(false); 1940 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1941 // Using array syntax to assigning to what global points to is not 1942 // same as assigning to the global itself. {id *G;} G[i] = 0; 1943 LV.setGlobalObjCRef(false); 1944 return; 1945 } 1946 1947 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1948 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1949 // We don't know if member is an 'ivar', but this flag is looked at 1950 // only in the context of LV.isObjCIvar(). 1951 LV.setObjCArray(E->getType()->isArrayType()); 1952 return; 1953 } 1954 } 1955 1956 static llvm::Value * 1957 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1958 llvm::Value *V, llvm::Type *IRType, 1959 StringRef Name = StringRef()) { 1960 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1961 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1962 } 1963 1964 static LValue EmitThreadPrivateVarDeclLValue( 1965 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 1966 llvm::Type *RealVarTy, SourceLocation Loc) { 1967 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 1968 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 1969 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1970 } 1971 1972 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 1973 const ReferenceType *RefTy, 1974 AlignmentSource *Source) { 1975 llvm::Value *Ptr = Builder.CreateLoad(Addr); 1976 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 1977 Source, /*forPointee*/ true)); 1978 1979 } 1980 1981 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 1982 const ReferenceType *RefTy) { 1983 AlignmentSource Source; 1984 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 1985 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 1986 } 1987 1988 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 1989 const PointerType *PtrTy, 1990 AlignmentSource *Source) { 1991 llvm::Value *Addr = Builder.CreateLoad(Ptr); 1992 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 1993 /*forPointeeType=*/true)); 1994 } 1995 1996 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 1997 const PointerType *PtrTy) { 1998 AlignmentSource Source; 1999 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2000 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2001 } 2002 2003 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2004 const Expr *E, const VarDecl *VD) { 2005 QualType T = E->getType(); 2006 2007 // If it's thread_local, emit a call to its wrapper function instead. 2008 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2009 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2010 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2011 2012 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2013 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2014 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2015 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2016 Address Addr(V, Alignment); 2017 LValue LV; 2018 // Emit reference to the private copy of the variable if it is an OpenMP 2019 // threadprivate variable. 2020 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2021 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2022 E->getExprLoc()); 2023 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2024 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2025 } else { 2026 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2027 } 2028 setObjCGCLValueClass(CGF.getContext(), E, LV); 2029 return LV; 2030 } 2031 2032 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2033 const FunctionDecl *FD) { 2034 if (FD->hasAttr<WeakRefAttr>()) { 2035 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2036 return aliasee.getPointer(); 2037 } 2038 2039 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2040 if (!FD->hasPrototype()) { 2041 if (const FunctionProtoType *Proto = 2042 FD->getType()->getAs<FunctionProtoType>()) { 2043 // Ugly case: for a K&R-style definition, the type of the definition 2044 // isn't the same as the type of a use. Correct for this with a 2045 // bitcast. 2046 QualType NoProtoType = 2047 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2048 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2049 V = llvm::ConstantExpr::getBitCast(V, 2050 CGM.getTypes().ConvertType(NoProtoType)); 2051 } 2052 } 2053 return V; 2054 } 2055 2056 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2057 const Expr *E, const FunctionDecl *FD) { 2058 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2059 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2060 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2061 } 2062 2063 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2064 llvm::Value *ThisValue) { 2065 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2066 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2067 return CGF.EmitLValueForField(LV, FD); 2068 } 2069 2070 /// Named Registers are named metadata pointing to the register name 2071 /// which will be read from/written to as an argument to the intrinsic 2072 /// @llvm.read/write_register. 2073 /// So far, only the name is being passed down, but other options such as 2074 /// register type, allocation type or even optimization options could be 2075 /// passed down via the metadata node. 2076 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2077 SmallString<64> Name("llvm.named.register."); 2078 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2079 assert(Asm->getLabel().size() < 64-Name.size() && 2080 "Register name too big"); 2081 Name.append(Asm->getLabel()); 2082 llvm::NamedMDNode *M = 2083 CGM.getModule().getOrInsertNamedMetadata(Name); 2084 if (M->getNumOperands() == 0) { 2085 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2086 Asm->getLabel()); 2087 llvm::Metadata *Ops[] = {Str}; 2088 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2089 } 2090 2091 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2092 2093 llvm::Value *Ptr = 2094 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2095 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2096 } 2097 2098 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2099 const NamedDecl *ND = E->getDecl(); 2100 QualType T = E->getType(); 2101 2102 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2103 // Global Named registers access via intrinsics only 2104 if (VD->getStorageClass() == SC_Register && 2105 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2106 return EmitGlobalNamedRegister(VD, CGM); 2107 2108 // A DeclRefExpr for a reference initialized by a constant expression can 2109 // appear without being odr-used. Directly emit the constant initializer. 2110 const Expr *Init = VD->getAnyInitializer(VD); 2111 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2112 VD->isUsableInConstantExpressions(getContext()) && 2113 VD->checkInitIsICE() && 2114 // Do not emit if it is private OpenMP variable. 2115 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2116 LocalDeclMap.count(VD))) { 2117 llvm::Constant *Val = 2118 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2119 assert(Val && "failed to emit reference constant expression"); 2120 // FIXME: Eventually we will want to emit vector element references. 2121 2122 // Should we be using the alignment of the constant pointer we emitted? 2123 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2124 /*pointee*/ true); 2125 2126 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2127 } 2128 2129 // Check for captured variables. 2130 if (E->refersToEnclosingVariableOrCapture()) { 2131 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2132 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2133 else if (CapturedStmtInfo) { 2134 auto I = LocalDeclMap.find(VD); 2135 if (I != LocalDeclMap.end()) { 2136 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2137 return EmitLoadOfReferenceLValue(I->second, RefTy); 2138 return MakeAddrLValue(I->second, T); 2139 } 2140 LValue CapLVal = 2141 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2142 CapturedStmtInfo->getContextValue()); 2143 return MakeAddrLValue( 2144 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2145 CapLVal.getType(), AlignmentSource::Decl); 2146 } 2147 2148 assert(isa<BlockDecl>(CurCodeDecl)); 2149 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2150 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2151 } 2152 } 2153 2154 // FIXME: We should be able to assert this for FunctionDecls as well! 2155 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2156 // those with a valid source location. 2157 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2158 !E->getLocation().isValid()) && 2159 "Should not use decl without marking it used!"); 2160 2161 if (ND->hasAttr<WeakRefAttr>()) { 2162 const auto *VD = cast<ValueDecl>(ND); 2163 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2164 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2165 } 2166 2167 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2168 // Check if this is a global variable. 2169 if (VD->hasLinkage() || VD->isStaticDataMember()) 2170 return EmitGlobalVarDeclLValue(*this, E, VD); 2171 2172 Address addr = Address::invalid(); 2173 2174 // The variable should generally be present in the local decl map. 2175 auto iter = LocalDeclMap.find(VD); 2176 if (iter != LocalDeclMap.end()) { 2177 addr = iter->second; 2178 2179 // Otherwise, it might be static local we haven't emitted yet for 2180 // some reason; most likely, because it's in an outer function. 2181 } else if (VD->isStaticLocal()) { 2182 addr = Address(CGM.getOrCreateStaticVarDecl( 2183 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2184 getContext().getDeclAlign(VD)); 2185 2186 // No other cases for now. 2187 } else { 2188 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2189 } 2190 2191 2192 // Check for OpenMP threadprivate variables. 2193 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2194 return EmitThreadPrivateVarDeclLValue( 2195 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2196 E->getExprLoc()); 2197 } 2198 2199 // Drill into block byref variables. 2200 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2201 if (isBlockByref) { 2202 addr = emitBlockByrefAddress(addr, VD); 2203 } 2204 2205 // Drill into reference types. 2206 LValue LV; 2207 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2208 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2209 } else { 2210 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2211 } 2212 2213 bool isLocalStorage = VD->hasLocalStorage(); 2214 2215 bool NonGCable = isLocalStorage && 2216 !VD->getType()->isReferenceType() && 2217 !isBlockByref; 2218 if (NonGCable) { 2219 LV.getQuals().removeObjCGCAttr(); 2220 LV.setNonGC(true); 2221 } 2222 2223 bool isImpreciseLifetime = 2224 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2225 if (isImpreciseLifetime) 2226 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2227 setObjCGCLValueClass(getContext(), E, LV); 2228 return LV; 2229 } 2230 2231 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2232 return EmitFunctionDeclLValue(*this, E, FD); 2233 2234 // FIXME: While we're emitting a binding from an enclosing scope, all other 2235 // DeclRefExprs we see should be implicitly treated as if they also refer to 2236 // an enclosing scope. 2237 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2238 return EmitLValue(BD->getBinding()); 2239 2240 llvm_unreachable("Unhandled DeclRefExpr"); 2241 } 2242 2243 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2244 // __extension__ doesn't affect lvalue-ness. 2245 if (E->getOpcode() == UO_Extension) 2246 return EmitLValue(E->getSubExpr()); 2247 2248 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2249 switch (E->getOpcode()) { 2250 default: llvm_unreachable("Unknown unary operator lvalue!"); 2251 case UO_Deref: { 2252 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2253 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2254 2255 AlignmentSource AlignSource; 2256 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2257 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2258 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2259 2260 // We should not generate __weak write barrier on indirect reference 2261 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2262 // But, we continue to generate __strong write barrier on indirect write 2263 // into a pointer to object. 2264 if (getLangOpts().ObjC1 && 2265 getLangOpts().getGC() != LangOptions::NonGC && 2266 LV.isObjCWeak()) 2267 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2268 return LV; 2269 } 2270 case UO_Real: 2271 case UO_Imag: { 2272 LValue LV = EmitLValue(E->getSubExpr()); 2273 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2274 2275 // __real is valid on scalars. This is a faster way of testing that. 2276 // __imag can only produce an rvalue on scalars. 2277 if (E->getOpcode() == UO_Real && 2278 !LV.getAddress().getElementType()->isStructTy()) { 2279 assert(E->getSubExpr()->getType()->isArithmeticType()); 2280 return LV; 2281 } 2282 2283 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2284 2285 Address Component = 2286 (E->getOpcode() == UO_Real 2287 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2288 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2289 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2290 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2291 return ElemLV; 2292 } 2293 case UO_PreInc: 2294 case UO_PreDec: { 2295 LValue LV = EmitLValue(E->getSubExpr()); 2296 bool isInc = E->getOpcode() == UO_PreInc; 2297 2298 if (E->getType()->isAnyComplexType()) 2299 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2300 else 2301 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2302 return LV; 2303 } 2304 } 2305 } 2306 2307 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2308 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2309 E->getType(), AlignmentSource::Decl); 2310 } 2311 2312 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2313 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2314 E->getType(), AlignmentSource::Decl); 2315 } 2316 2317 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2318 auto SL = E->getFunctionName(); 2319 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2320 StringRef FnName = CurFn->getName(); 2321 if (FnName.startswith("\01")) 2322 FnName = FnName.substr(1); 2323 StringRef NameItems[] = { 2324 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2325 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2326 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2327 std::string Name = SL->getString(); 2328 if (!Name.empty()) { 2329 unsigned Discriminator = 2330 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2331 if (Discriminator) 2332 Name += "_" + Twine(Discriminator + 1).str(); 2333 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2334 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2335 } else { 2336 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2337 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2338 } 2339 } 2340 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2341 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2342 } 2343 2344 /// Emit a type description suitable for use by a runtime sanitizer library. The 2345 /// format of a type descriptor is 2346 /// 2347 /// \code 2348 /// { i16 TypeKind, i16 TypeInfo } 2349 /// \endcode 2350 /// 2351 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2352 /// integer, 1 for a floating point value, and -1 for anything else. 2353 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2354 // Only emit each type's descriptor once. 2355 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2356 return C; 2357 2358 uint16_t TypeKind = -1; 2359 uint16_t TypeInfo = 0; 2360 2361 if (T->isIntegerType()) { 2362 TypeKind = 0; 2363 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2364 (T->isSignedIntegerType() ? 1 : 0); 2365 } else if (T->isFloatingType()) { 2366 TypeKind = 1; 2367 TypeInfo = getContext().getTypeSize(T); 2368 } 2369 2370 // Format the type name as if for a diagnostic, including quotes and 2371 // optionally an 'aka'. 2372 SmallString<32> Buffer; 2373 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2374 (intptr_t)T.getAsOpaquePtr(), 2375 StringRef(), StringRef(), None, Buffer, 2376 None); 2377 2378 llvm::Constant *Components[] = { 2379 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2380 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2381 }; 2382 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2383 2384 auto *GV = new llvm::GlobalVariable( 2385 CGM.getModule(), Descriptor->getType(), 2386 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2387 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2388 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2389 2390 // Remember the descriptor for this type. 2391 CGM.setTypeDescriptorInMap(T, GV); 2392 2393 return GV; 2394 } 2395 2396 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2397 llvm::Type *TargetTy = IntPtrTy; 2398 2399 // Floating-point types which fit into intptr_t are bitcast to integers 2400 // and then passed directly (after zero-extension, if necessary). 2401 if (V->getType()->isFloatingPointTy()) { 2402 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2403 if (Bits <= TargetTy->getIntegerBitWidth()) 2404 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2405 Bits)); 2406 } 2407 2408 // Integers which fit in intptr_t are zero-extended and passed directly. 2409 if (V->getType()->isIntegerTy() && 2410 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2411 return Builder.CreateZExt(V, TargetTy); 2412 2413 // Pointers are passed directly, everything else is passed by address. 2414 if (!V->getType()->isPointerTy()) { 2415 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2416 Builder.CreateStore(V, Ptr); 2417 V = Ptr.getPointer(); 2418 } 2419 return Builder.CreatePtrToInt(V, TargetTy); 2420 } 2421 2422 /// \brief Emit a representation of a SourceLocation for passing to a handler 2423 /// in a sanitizer runtime library. The format for this data is: 2424 /// \code 2425 /// struct SourceLocation { 2426 /// const char *Filename; 2427 /// int32_t Line, Column; 2428 /// }; 2429 /// \endcode 2430 /// For an invalid SourceLocation, the Filename pointer is null. 2431 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2432 llvm::Constant *Filename; 2433 int Line, Column; 2434 2435 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2436 if (PLoc.isValid()) { 2437 StringRef FilenameString = PLoc.getFilename(); 2438 2439 int PathComponentsToStrip = 2440 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2441 if (PathComponentsToStrip < 0) { 2442 assert(PathComponentsToStrip != INT_MIN); 2443 int PathComponentsToKeep = -PathComponentsToStrip; 2444 auto I = llvm::sys::path::rbegin(FilenameString); 2445 auto E = llvm::sys::path::rend(FilenameString); 2446 while (I != E && --PathComponentsToKeep) 2447 ++I; 2448 2449 FilenameString = FilenameString.substr(I - E); 2450 } else if (PathComponentsToStrip > 0) { 2451 auto I = llvm::sys::path::begin(FilenameString); 2452 auto E = llvm::sys::path::end(FilenameString); 2453 while (I != E && PathComponentsToStrip--) 2454 ++I; 2455 2456 if (I != E) 2457 FilenameString = 2458 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2459 else 2460 FilenameString = llvm::sys::path::filename(FilenameString); 2461 } 2462 2463 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2464 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2465 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2466 Filename = FilenameGV.getPointer(); 2467 Line = PLoc.getLine(); 2468 Column = PLoc.getColumn(); 2469 } else { 2470 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2471 Line = Column = 0; 2472 } 2473 2474 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2475 Builder.getInt32(Column)}; 2476 2477 return llvm::ConstantStruct::getAnon(Data); 2478 } 2479 2480 namespace { 2481 /// \brief Specify under what conditions this check can be recovered 2482 enum class CheckRecoverableKind { 2483 /// Always terminate program execution if this check fails. 2484 Unrecoverable, 2485 /// Check supports recovering, runtime has both fatal (noreturn) and 2486 /// non-fatal handlers for this check. 2487 Recoverable, 2488 /// Runtime conditionally aborts, always need to support recovery. 2489 AlwaysRecoverable 2490 }; 2491 } 2492 2493 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2494 assert(llvm::countPopulation(Kind) == 1); 2495 switch (Kind) { 2496 case SanitizerKind::Vptr: 2497 return CheckRecoverableKind::AlwaysRecoverable; 2498 case SanitizerKind::Return: 2499 case SanitizerKind::Unreachable: 2500 return CheckRecoverableKind::Unrecoverable; 2501 default: 2502 return CheckRecoverableKind::Recoverable; 2503 } 2504 } 2505 2506 namespace { 2507 struct SanitizerHandlerInfo { 2508 char const *const Name; 2509 unsigned Version; 2510 }; 2511 } 2512 2513 const SanitizerHandlerInfo SanitizerHandlers[] = { 2514 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2515 LIST_SANITIZER_CHECKS 2516 #undef SANITIZER_CHECK 2517 }; 2518 2519 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2520 llvm::FunctionType *FnType, 2521 ArrayRef<llvm::Value *> FnArgs, 2522 SanitizerHandler CheckHandler, 2523 CheckRecoverableKind RecoverKind, bool IsFatal, 2524 llvm::BasicBlock *ContBB) { 2525 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2526 bool NeedsAbortSuffix = 2527 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2528 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2529 const StringRef CheckName = CheckInfo.Name; 2530 std::string FnName = 2531 ("__ubsan_handle_" + CheckName + 2532 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2533 (NeedsAbortSuffix ? "_abort" : "")) 2534 .str(); 2535 bool MayReturn = 2536 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2537 2538 llvm::AttrBuilder B; 2539 if (!MayReturn) { 2540 B.addAttribute(llvm::Attribute::NoReturn) 2541 .addAttribute(llvm::Attribute::NoUnwind); 2542 } 2543 B.addAttribute(llvm::Attribute::UWTable); 2544 2545 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2546 FnType, FnName, 2547 llvm::AttributeSet::get(CGF.getLLVMContext(), 2548 llvm::AttributeSet::FunctionIndex, B), 2549 /*Local=*/true); 2550 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2551 if (!MayReturn) { 2552 HandlerCall->setDoesNotReturn(); 2553 CGF.Builder.CreateUnreachable(); 2554 } else { 2555 CGF.Builder.CreateBr(ContBB); 2556 } 2557 } 2558 2559 void CodeGenFunction::EmitCheck( 2560 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2561 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2562 ArrayRef<llvm::Value *> DynamicArgs) { 2563 assert(IsSanitizerScope); 2564 assert(Checked.size() > 0); 2565 assert(CheckHandler >= 0 && 2566 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2567 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2568 2569 llvm::Value *FatalCond = nullptr; 2570 llvm::Value *RecoverableCond = nullptr; 2571 llvm::Value *TrapCond = nullptr; 2572 for (int i = 0, n = Checked.size(); i < n; ++i) { 2573 llvm::Value *Check = Checked[i].first; 2574 // -fsanitize-trap= overrides -fsanitize-recover=. 2575 llvm::Value *&Cond = 2576 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2577 ? TrapCond 2578 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2579 ? RecoverableCond 2580 : FatalCond; 2581 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2582 } 2583 2584 if (TrapCond) 2585 EmitTrapCheck(TrapCond); 2586 if (!FatalCond && !RecoverableCond) 2587 return; 2588 2589 llvm::Value *JointCond; 2590 if (FatalCond && RecoverableCond) 2591 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2592 else 2593 JointCond = FatalCond ? FatalCond : RecoverableCond; 2594 assert(JointCond); 2595 2596 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2597 assert(SanOpts.has(Checked[0].second)); 2598 #ifndef NDEBUG 2599 for (int i = 1, n = Checked.size(); i < n; ++i) { 2600 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2601 "All recoverable kinds in a single check must be same!"); 2602 assert(SanOpts.has(Checked[i].second)); 2603 } 2604 #endif 2605 2606 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2607 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2608 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2609 // Give hint that we very much don't expect to execute the handler 2610 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2611 llvm::MDBuilder MDHelper(getLLVMContext()); 2612 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2613 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2614 EmitBlock(Handlers); 2615 2616 // Handler functions take an i8* pointing to the (handler-specific) static 2617 // information block, followed by a sequence of intptr_t arguments 2618 // representing operand values. 2619 SmallVector<llvm::Value *, 4> Args; 2620 SmallVector<llvm::Type *, 4> ArgTypes; 2621 Args.reserve(DynamicArgs.size() + 1); 2622 ArgTypes.reserve(DynamicArgs.size() + 1); 2623 2624 // Emit handler arguments and create handler function type. 2625 if (!StaticArgs.empty()) { 2626 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2627 auto *InfoPtr = 2628 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2629 llvm::GlobalVariable::PrivateLinkage, Info); 2630 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2631 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2632 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2633 ArgTypes.push_back(Int8PtrTy); 2634 } 2635 2636 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2637 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2638 ArgTypes.push_back(IntPtrTy); 2639 } 2640 2641 llvm::FunctionType *FnType = 2642 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2643 2644 if (!FatalCond || !RecoverableCond) { 2645 // Simple case: we need to generate a single handler call, either 2646 // fatal, or non-fatal. 2647 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2648 (FatalCond != nullptr), Cont); 2649 } else { 2650 // Emit two handler calls: first one for set of unrecoverable checks, 2651 // another one for recoverable. 2652 llvm::BasicBlock *NonFatalHandlerBB = 2653 createBasicBlock("non_fatal." + CheckName); 2654 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2655 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2656 EmitBlock(FatalHandlerBB); 2657 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2658 NonFatalHandlerBB); 2659 EmitBlock(NonFatalHandlerBB); 2660 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2661 Cont); 2662 } 2663 2664 EmitBlock(Cont); 2665 } 2666 2667 void CodeGenFunction::EmitCfiSlowPathCheck( 2668 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2669 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2670 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2671 2672 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2673 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2674 2675 llvm::MDBuilder MDHelper(getLLVMContext()); 2676 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2677 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2678 2679 EmitBlock(CheckBB); 2680 2681 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2682 2683 llvm::CallInst *CheckCall; 2684 if (WithDiag) { 2685 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2686 auto *InfoPtr = 2687 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2688 llvm::GlobalVariable::PrivateLinkage, Info); 2689 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2690 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2691 2692 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2693 "__cfi_slowpath_diag", 2694 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2695 false)); 2696 CheckCall = Builder.CreateCall( 2697 SlowPathDiagFn, 2698 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2699 } else { 2700 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2701 "__cfi_slowpath", 2702 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2703 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2704 } 2705 2706 CheckCall->setDoesNotThrow(); 2707 2708 EmitBlock(Cont); 2709 } 2710 2711 // This function is basically a switch over the CFI failure kind, which is 2712 // extracted from CFICheckFailData (1st function argument). Each case is either 2713 // llvm.trap or a call to one of the two runtime handlers, based on 2714 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2715 // failure kind) traps, but this should really never happen. CFICheckFailData 2716 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2717 // check kind; in this case __cfi_check_fail traps as well. 2718 void CodeGenFunction::EmitCfiCheckFail() { 2719 SanitizerScope SanScope(this); 2720 FunctionArgList Args; 2721 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2722 getContext().VoidPtrTy); 2723 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2724 getContext().VoidPtrTy); 2725 Args.push_back(&ArgData); 2726 Args.push_back(&ArgAddr); 2727 2728 const CGFunctionInfo &FI = 2729 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2730 2731 llvm::Function *F = llvm::Function::Create( 2732 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2733 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2734 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2735 2736 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2737 SourceLocation()); 2738 2739 llvm::Value *Data = 2740 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2741 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2742 llvm::Value *Addr = 2743 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2744 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2745 2746 // Data == nullptr means the calling module has trap behaviour for this check. 2747 llvm::Value *DataIsNotNullPtr = 2748 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2749 EmitTrapCheck(DataIsNotNullPtr); 2750 2751 llvm::StructType *SourceLocationTy = 2752 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2753 llvm::StructType *CfiCheckFailDataTy = 2754 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2755 2756 llvm::Value *V = Builder.CreateConstGEP2_32( 2757 CfiCheckFailDataTy, 2758 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2759 0); 2760 Address CheckKindAddr(V, getIntAlign()); 2761 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2762 2763 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2764 CGM.getLLVMContext(), 2765 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2766 llvm::Value *ValidVtable = Builder.CreateZExt( 2767 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2768 {Addr, AllVtables}), 2769 IntPtrTy); 2770 2771 const std::pair<int, SanitizerMask> CheckKinds[] = { 2772 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2773 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2774 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2775 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2776 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2777 2778 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2779 for (auto CheckKindMaskPair : CheckKinds) { 2780 int Kind = CheckKindMaskPair.first; 2781 SanitizerMask Mask = CheckKindMaskPair.second; 2782 llvm::Value *Cond = 2783 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2784 if (CGM.getLangOpts().Sanitize.has(Mask)) 2785 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2786 {Data, Addr, ValidVtable}); 2787 else 2788 EmitTrapCheck(Cond); 2789 } 2790 2791 FinishFunction(); 2792 // The only reference to this function will be created during LTO link. 2793 // Make sure it survives until then. 2794 CGM.addUsedGlobal(F); 2795 } 2796 2797 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2798 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2799 2800 // If we're optimizing, collapse all calls to trap down to just one per 2801 // function to save on code size. 2802 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2803 TrapBB = createBasicBlock("trap"); 2804 Builder.CreateCondBr(Checked, Cont, TrapBB); 2805 EmitBlock(TrapBB); 2806 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2807 TrapCall->setDoesNotReturn(); 2808 TrapCall->setDoesNotThrow(); 2809 Builder.CreateUnreachable(); 2810 } else { 2811 Builder.CreateCondBr(Checked, Cont, TrapBB); 2812 } 2813 2814 EmitBlock(Cont); 2815 } 2816 2817 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2818 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2819 2820 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2821 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2822 CGM.getCodeGenOpts().TrapFuncName); 2823 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A); 2824 } 2825 2826 return TrapCall; 2827 } 2828 2829 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2830 AlignmentSource *AlignSource) { 2831 assert(E->getType()->isArrayType() && 2832 "Array to pointer decay must have array source type!"); 2833 2834 // Expressions of array type can't be bitfields or vector elements. 2835 LValue LV = EmitLValue(E); 2836 Address Addr = LV.getAddress(); 2837 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2838 2839 // If the array type was an incomplete type, we need to make sure 2840 // the decay ends up being the right type. 2841 llvm::Type *NewTy = ConvertType(E->getType()); 2842 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2843 2844 // Note that VLA pointers are always decayed, so we don't need to do 2845 // anything here. 2846 if (!E->getType()->isVariableArrayType()) { 2847 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2848 "Expected pointer to array"); 2849 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2850 } 2851 2852 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2853 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2854 } 2855 2856 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2857 /// array to pointer, return the array subexpression. 2858 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2859 // If this isn't just an array->pointer decay, bail out. 2860 const auto *CE = dyn_cast<CastExpr>(E); 2861 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2862 return nullptr; 2863 2864 // If this is a decay from variable width array, bail out. 2865 const Expr *SubExpr = CE->getSubExpr(); 2866 if (SubExpr->getType()->isVariableArrayType()) 2867 return nullptr; 2868 2869 return SubExpr; 2870 } 2871 2872 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2873 llvm::Value *ptr, 2874 ArrayRef<llvm::Value*> indices, 2875 bool inbounds, 2876 const llvm::Twine &name = "arrayidx") { 2877 if (inbounds) { 2878 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2879 } else { 2880 return CGF.Builder.CreateGEP(ptr, indices, name); 2881 } 2882 } 2883 2884 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2885 llvm::Value *idx, 2886 CharUnits eltSize) { 2887 // If we have a constant index, we can use the exact offset of the 2888 // element we're accessing. 2889 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2890 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2891 return arrayAlign.alignmentAtOffset(offset); 2892 2893 // Otherwise, use the worst-case alignment for any element. 2894 } else { 2895 return arrayAlign.alignmentOfArrayElement(eltSize); 2896 } 2897 } 2898 2899 static QualType getFixedSizeElementType(const ASTContext &ctx, 2900 const VariableArrayType *vla) { 2901 QualType eltType; 2902 do { 2903 eltType = vla->getElementType(); 2904 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2905 return eltType; 2906 } 2907 2908 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2909 ArrayRef<llvm::Value*> indices, 2910 QualType eltType, bool inbounds, 2911 const llvm::Twine &name = "arrayidx") { 2912 // All the indices except that last must be zero. 2913 #ifndef NDEBUG 2914 for (auto idx : indices.drop_back()) 2915 assert(isa<llvm::ConstantInt>(idx) && 2916 cast<llvm::ConstantInt>(idx)->isZero()); 2917 #endif 2918 2919 // Determine the element size of the statically-sized base. This is 2920 // the thing that the indices are expressed in terms of. 2921 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2922 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2923 } 2924 2925 // We can use that to compute the best alignment of the element. 2926 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2927 CharUnits eltAlign = 2928 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 2929 2930 llvm::Value *eltPtr = 2931 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 2932 return Address(eltPtr, eltAlign); 2933 } 2934 2935 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2936 bool Accessed) { 2937 // The index must always be an integer, which is not an aggregate. Emit it 2938 // in lexical order (this complexity is, sadly, required by C++17). 2939 llvm::Value *IdxPre = 2940 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 2941 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 2942 auto *Idx = IdxPre; 2943 if (E->getLHS() != E->getIdx()) { 2944 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 2945 Idx = EmitScalarExpr(E->getIdx()); 2946 } 2947 2948 QualType IdxTy = E->getIdx()->getType(); 2949 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2950 2951 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2952 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2953 2954 // Extend or truncate the index type to 32 or 64-bits. 2955 if (Promote && Idx->getType() != IntPtrTy) 2956 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2957 2958 return Idx; 2959 }; 2960 IdxPre = nullptr; 2961 2962 // If the base is a vector type, then we are forming a vector element lvalue 2963 // with this subscript. 2964 if (E->getBase()->getType()->isVectorType() && 2965 !isa<ExtVectorElementExpr>(E->getBase())) { 2966 // Emit the vector as an lvalue to get its address. 2967 LValue LHS = EmitLValue(E->getBase()); 2968 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 2969 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2970 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2971 E->getBase()->getType(), 2972 LHS.getAlignmentSource()); 2973 } 2974 2975 // All the other cases basically behave like simple offsetting. 2976 2977 // Handle the extvector case we ignored above. 2978 if (isa<ExtVectorElementExpr>(E->getBase())) { 2979 LValue LV = EmitLValue(E->getBase()); 2980 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 2981 Address Addr = EmitExtVectorElementLValue(LV); 2982 2983 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 2984 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 2985 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 2986 } 2987 2988 AlignmentSource AlignSource; 2989 Address Addr = Address::invalid(); 2990 if (const VariableArrayType *vla = 2991 getContext().getAsVariableArrayType(E->getType())) { 2992 // The base must be a pointer, which is not an aggregate. Emit 2993 // it. It needs to be emitted first in case it's what captures 2994 // the VLA bounds. 2995 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2996 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 2997 2998 // The element count here is the total number of non-VLA elements. 2999 llvm::Value *numElements = getVLASize(vla).first; 3000 3001 // Effectively, the multiply by the VLA size is part of the GEP. 3002 // GEP indexes are signed, and scaling an index isn't permitted to 3003 // signed-overflow, so we use the same semantics for our explicit 3004 // multiply. We suppress this if overflow is not undefined behavior. 3005 if (getLangOpts().isSignedOverflowDefined()) { 3006 Idx = Builder.CreateMul(Idx, numElements); 3007 } else { 3008 Idx = Builder.CreateNSWMul(Idx, numElements); 3009 } 3010 3011 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3012 !getLangOpts().isSignedOverflowDefined()); 3013 3014 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3015 // Indexing over an interface, as in "NSString *P; P[4];" 3016 3017 // Emit the base pointer. 3018 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3019 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3020 3021 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3022 llvm::Value *InterfaceSizeVal = 3023 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3024 3025 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3026 3027 // We don't necessarily build correct LLVM struct types for ObjC 3028 // interfaces, so we can't rely on GEP to do this scaling 3029 // correctly, so we need to cast to i8*. FIXME: is this actually 3030 // true? A lot of other things in the fragile ABI would break... 3031 llvm::Type *OrigBaseTy = Addr.getType(); 3032 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3033 3034 // Do the GEP. 3035 CharUnits EltAlign = 3036 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3037 llvm::Value *EltPtr = 3038 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3039 Addr = Address(EltPtr, EltAlign); 3040 3041 // Cast back. 3042 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3043 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3044 // If this is A[i] where A is an array, the frontend will have decayed the 3045 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3046 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3047 // "gep x, i" here. Emit one "gep A, 0, i". 3048 assert(Array->getType()->isArrayType() && 3049 "Array to pointer decay must have array source type!"); 3050 LValue ArrayLV; 3051 // For simple multidimensional array indexing, set the 'accessed' flag for 3052 // better bounds-checking of the base expression. 3053 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3054 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3055 else 3056 ArrayLV = EmitLValue(Array); 3057 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3058 3059 // Propagate the alignment from the array itself to the result. 3060 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3061 {CGM.getSize(CharUnits::Zero()), Idx}, 3062 E->getType(), 3063 !getLangOpts().isSignedOverflowDefined()); 3064 AlignSource = ArrayLV.getAlignmentSource(); 3065 } else { 3066 // The base must be a pointer; emit it with an estimate of its alignment. 3067 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3068 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3069 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3070 !getLangOpts().isSignedOverflowDefined()); 3071 } 3072 3073 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3074 3075 // TODO: Preserve/extend path TBAA metadata? 3076 3077 if (getLangOpts().ObjC1 && 3078 getLangOpts().getGC() != LangOptions::NonGC) { 3079 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3080 setObjCGCLValueClass(getContext(), E, LV); 3081 } 3082 return LV; 3083 } 3084 3085 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3086 AlignmentSource &AlignSource, 3087 QualType BaseTy, QualType ElTy, 3088 bool IsLowerBound) { 3089 LValue BaseLVal; 3090 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3091 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3092 if (BaseTy->isArrayType()) { 3093 Address Addr = BaseLVal.getAddress(); 3094 AlignSource = BaseLVal.getAlignmentSource(); 3095 3096 // If the array type was an incomplete type, we need to make sure 3097 // the decay ends up being the right type. 3098 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3099 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3100 3101 // Note that VLA pointers are always decayed, so we don't need to do 3102 // anything here. 3103 if (!BaseTy->isVariableArrayType()) { 3104 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3105 "Expected pointer to array"); 3106 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3107 "arraydecay"); 3108 } 3109 3110 return CGF.Builder.CreateElementBitCast(Addr, 3111 CGF.ConvertTypeForMem(ElTy)); 3112 } 3113 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3114 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3115 } 3116 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3117 } 3118 3119 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3120 bool IsLowerBound) { 3121 QualType BaseTy; 3122 if (auto *ASE = 3123 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3124 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3125 else 3126 BaseTy = E->getBase()->getType(); 3127 QualType ResultExprTy; 3128 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3129 ResultExprTy = AT->getElementType(); 3130 else 3131 ResultExprTy = BaseTy->getPointeeType(); 3132 llvm::Value *Idx = nullptr; 3133 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3134 // Requesting lower bound or upper bound, but without provided length and 3135 // without ':' symbol for the default length -> length = 1. 3136 // Idx = LowerBound ?: 0; 3137 if (auto *LowerBound = E->getLowerBound()) { 3138 Idx = Builder.CreateIntCast( 3139 EmitScalarExpr(LowerBound), IntPtrTy, 3140 LowerBound->getType()->hasSignedIntegerRepresentation()); 3141 } else 3142 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3143 } else { 3144 // Try to emit length or lower bound as constant. If this is possible, 1 3145 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3146 // IR (LB + Len) - 1. 3147 auto &C = CGM.getContext(); 3148 auto *Length = E->getLength(); 3149 llvm::APSInt ConstLength; 3150 if (Length) { 3151 // Idx = LowerBound + Length - 1; 3152 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3153 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3154 Length = nullptr; 3155 } 3156 auto *LowerBound = E->getLowerBound(); 3157 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3158 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3159 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3160 LowerBound = nullptr; 3161 } 3162 if (!Length) 3163 --ConstLength; 3164 else if (!LowerBound) 3165 --ConstLowerBound; 3166 3167 if (Length || LowerBound) { 3168 auto *LowerBoundVal = 3169 LowerBound 3170 ? Builder.CreateIntCast( 3171 EmitScalarExpr(LowerBound), IntPtrTy, 3172 LowerBound->getType()->hasSignedIntegerRepresentation()) 3173 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3174 auto *LengthVal = 3175 Length 3176 ? Builder.CreateIntCast( 3177 EmitScalarExpr(Length), IntPtrTy, 3178 Length->getType()->hasSignedIntegerRepresentation()) 3179 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3180 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3181 /*HasNUW=*/false, 3182 !getLangOpts().isSignedOverflowDefined()); 3183 if (Length && LowerBound) { 3184 Idx = Builder.CreateSub( 3185 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3186 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3187 } 3188 } else 3189 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3190 } else { 3191 // Idx = ArraySize - 1; 3192 QualType ArrayTy = BaseTy->isPointerType() 3193 ? E->getBase()->IgnoreParenImpCasts()->getType() 3194 : BaseTy; 3195 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3196 Length = VAT->getSizeExpr(); 3197 if (Length->isIntegerConstantExpr(ConstLength, C)) 3198 Length = nullptr; 3199 } else { 3200 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3201 ConstLength = CAT->getSize(); 3202 } 3203 if (Length) { 3204 auto *LengthVal = Builder.CreateIntCast( 3205 EmitScalarExpr(Length), IntPtrTy, 3206 Length->getType()->hasSignedIntegerRepresentation()); 3207 Idx = Builder.CreateSub( 3208 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3209 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3210 } else { 3211 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3212 --ConstLength; 3213 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3214 } 3215 } 3216 } 3217 assert(Idx); 3218 3219 Address EltPtr = Address::invalid(); 3220 AlignmentSource AlignSource; 3221 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3222 // The base must be a pointer, which is not an aggregate. Emit 3223 // it. It needs to be emitted first in case it's what captures 3224 // the VLA bounds. 3225 Address Base = 3226 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3227 VLA->getElementType(), IsLowerBound); 3228 // The element count here is the total number of non-VLA elements. 3229 llvm::Value *NumElements = getVLASize(VLA).first; 3230 3231 // Effectively, the multiply by the VLA size is part of the GEP. 3232 // GEP indexes are signed, and scaling an index isn't permitted to 3233 // signed-overflow, so we use the same semantics for our explicit 3234 // multiply. We suppress this if overflow is not undefined behavior. 3235 if (getLangOpts().isSignedOverflowDefined()) 3236 Idx = Builder.CreateMul(Idx, NumElements); 3237 else 3238 Idx = Builder.CreateNSWMul(Idx, NumElements); 3239 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3240 !getLangOpts().isSignedOverflowDefined()); 3241 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3242 // If this is A[i] where A is an array, the frontend will have decayed the 3243 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3244 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3245 // "gep x, i" here. Emit one "gep A, 0, i". 3246 assert(Array->getType()->isArrayType() && 3247 "Array to pointer decay must have array source type!"); 3248 LValue ArrayLV; 3249 // For simple multidimensional array indexing, set the 'accessed' flag for 3250 // better bounds-checking of the base expression. 3251 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3252 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3253 else 3254 ArrayLV = EmitLValue(Array); 3255 3256 // Propagate the alignment from the array itself to the result. 3257 EltPtr = emitArraySubscriptGEP( 3258 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3259 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3260 AlignSource = ArrayLV.getAlignmentSource(); 3261 } else { 3262 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3263 BaseTy, ResultExprTy, IsLowerBound); 3264 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3265 !getLangOpts().isSignedOverflowDefined()); 3266 } 3267 3268 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3269 } 3270 3271 LValue CodeGenFunction:: 3272 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3273 // Emit the base vector as an l-value. 3274 LValue Base; 3275 3276 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3277 if (E->isArrow()) { 3278 // If it is a pointer to a vector, emit the address and form an lvalue with 3279 // it. 3280 AlignmentSource AlignSource; 3281 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3282 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3283 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3284 Base.getQuals().removeObjCGCAttr(); 3285 } else if (E->getBase()->isGLValue()) { 3286 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3287 // emit the base as an lvalue. 3288 assert(E->getBase()->getType()->isVectorType()); 3289 Base = EmitLValue(E->getBase()); 3290 } else { 3291 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3292 assert(E->getBase()->getType()->isVectorType() && 3293 "Result must be a vector"); 3294 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3295 3296 // Store the vector to memory (because LValue wants an address). 3297 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3298 Builder.CreateStore(Vec, VecMem); 3299 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3300 AlignmentSource::Decl); 3301 } 3302 3303 QualType type = 3304 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3305 3306 // Encode the element access list into a vector of unsigned indices. 3307 SmallVector<uint32_t, 4> Indices; 3308 E->getEncodedElementAccess(Indices); 3309 3310 if (Base.isSimple()) { 3311 llvm::Constant *CV = 3312 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3313 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3314 Base.getAlignmentSource()); 3315 } 3316 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3317 3318 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3319 SmallVector<llvm::Constant *, 4> CElts; 3320 3321 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3322 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3323 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3324 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3325 Base.getAlignmentSource()); 3326 } 3327 3328 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3329 Expr *BaseExpr = E->getBase(); 3330 3331 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3332 LValue BaseLV; 3333 if (E->isArrow()) { 3334 AlignmentSource AlignSource; 3335 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3336 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3337 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy); 3338 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3339 } else 3340 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3341 3342 NamedDecl *ND = E->getMemberDecl(); 3343 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3344 LValue LV = EmitLValueForField(BaseLV, Field); 3345 setObjCGCLValueClass(getContext(), E, LV); 3346 return LV; 3347 } 3348 3349 if (auto *VD = dyn_cast<VarDecl>(ND)) 3350 return EmitGlobalVarDeclLValue(*this, E, VD); 3351 3352 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3353 return EmitFunctionDeclLValue(*this, E, FD); 3354 3355 llvm_unreachable("Unhandled member declaration!"); 3356 } 3357 3358 /// Given that we are currently emitting a lambda, emit an l-value for 3359 /// one of its members. 3360 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3361 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3362 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3363 QualType LambdaTagType = 3364 getContext().getTagDeclType(Field->getParent()); 3365 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3366 return EmitLValueForField(LambdaLV, Field); 3367 } 3368 3369 /// Drill down to the storage of a field without walking into 3370 /// reference types. 3371 /// 3372 /// The resulting address doesn't necessarily have the right type. 3373 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3374 const FieldDecl *field) { 3375 const RecordDecl *rec = field->getParent(); 3376 3377 unsigned idx = 3378 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3379 3380 CharUnits offset; 3381 // Adjust the alignment down to the given offset. 3382 // As a special case, if the LLVM field index is 0, we know that this 3383 // is zero. 3384 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3385 .getFieldOffset(field->getFieldIndex()) == 0) && 3386 "LLVM field at index zero had non-zero offset?"); 3387 if (idx != 0) { 3388 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3389 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3390 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3391 } 3392 3393 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3394 } 3395 3396 LValue CodeGenFunction::EmitLValueForField(LValue base, 3397 const FieldDecl *field) { 3398 AlignmentSource fieldAlignSource = 3399 getFieldAlignmentSource(base.getAlignmentSource()); 3400 3401 if (field->isBitField()) { 3402 const CGRecordLayout &RL = 3403 CGM.getTypes().getCGRecordLayout(field->getParent()); 3404 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3405 Address Addr = base.getAddress(); 3406 unsigned Idx = RL.getLLVMFieldNo(field); 3407 if (Idx != 0) 3408 // For structs, we GEP to the field that the record layout suggests. 3409 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3410 field->getName()); 3411 // Get the access type. 3412 llvm::Type *FieldIntTy = 3413 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3414 if (Addr.getElementType() != FieldIntTy) 3415 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3416 3417 QualType fieldType = 3418 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3419 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3420 } 3421 3422 const RecordDecl *rec = field->getParent(); 3423 QualType type = field->getType(); 3424 3425 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3426 3427 Address addr = base.getAddress(); 3428 unsigned cvr = base.getVRQualifiers(); 3429 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3430 if (rec->isUnion()) { 3431 // For unions, there is no pointer adjustment. 3432 assert(!type->isReferenceType() && "union has reference member"); 3433 // TODO: handle path-aware TBAA for union. 3434 TBAAPath = false; 3435 } else { 3436 // For structs, we GEP to the field that the record layout suggests. 3437 addr = emitAddrOfFieldStorage(*this, addr, field); 3438 3439 // If this is a reference field, load the reference right now. 3440 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3441 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3442 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3443 3444 // Loading the reference will disable path-aware TBAA. 3445 TBAAPath = false; 3446 if (CGM.shouldUseTBAA()) { 3447 llvm::MDNode *tbaa; 3448 if (mayAlias) 3449 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3450 else 3451 tbaa = CGM.getTBAAInfo(type); 3452 if (tbaa) 3453 CGM.DecorateInstructionWithTBAA(load, tbaa); 3454 } 3455 3456 mayAlias = false; 3457 type = refType->getPointeeType(); 3458 3459 CharUnits alignment = 3460 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3461 addr = Address(load, alignment); 3462 3463 // Qualifiers on the struct don't apply to the referencee, and 3464 // we'll pick up CVR from the actual type later, so reset these 3465 // additional qualifiers now. 3466 cvr = 0; 3467 } 3468 } 3469 3470 // Make sure that the address is pointing to the right type. This is critical 3471 // for both unions and structs. A union needs a bitcast, a struct element 3472 // will need a bitcast if the LLVM type laid out doesn't match the desired 3473 // type. 3474 addr = Builder.CreateElementBitCast(addr, 3475 CGM.getTypes().ConvertTypeForMem(type), 3476 field->getName()); 3477 3478 if (field->hasAttr<AnnotateAttr>()) 3479 addr = EmitFieldAnnotations(field, addr); 3480 3481 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3482 LV.getQuals().addCVRQualifiers(cvr); 3483 if (TBAAPath) { 3484 const ASTRecordLayout &Layout = 3485 getContext().getASTRecordLayout(field->getParent()); 3486 // Set the base type to be the base type of the base LValue and 3487 // update offset to be relative to the base type. 3488 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3489 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3490 Layout.getFieldOffset(field->getFieldIndex()) / 3491 getContext().getCharWidth()); 3492 } 3493 3494 // __weak attribute on a field is ignored. 3495 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3496 LV.getQuals().removeObjCGCAttr(); 3497 3498 // Fields of may_alias structs act like 'char' for TBAA purposes. 3499 // FIXME: this should get propagated down through anonymous structs 3500 // and unions. 3501 if (mayAlias && LV.getTBAAInfo()) 3502 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3503 3504 return LV; 3505 } 3506 3507 LValue 3508 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3509 const FieldDecl *Field) { 3510 QualType FieldType = Field->getType(); 3511 3512 if (!FieldType->isReferenceType()) 3513 return EmitLValueForField(Base, Field); 3514 3515 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3516 3517 // Make sure that the address is pointing to the right type. 3518 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3519 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3520 3521 // TODO: access-path TBAA? 3522 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3523 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3524 } 3525 3526 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3527 if (E->isFileScope()) { 3528 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3529 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3530 } 3531 if (E->getType()->isVariablyModifiedType()) 3532 // make sure to emit the VLA size. 3533 EmitVariablyModifiedType(E->getType()); 3534 3535 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3536 const Expr *InitExpr = E->getInitializer(); 3537 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3538 3539 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3540 /*Init*/ true); 3541 3542 return Result; 3543 } 3544 3545 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3546 if (!E->isGLValue()) 3547 // Initializing an aggregate temporary in C++11: T{...}. 3548 return EmitAggExprToLValue(E); 3549 3550 // An lvalue initializer list must be initializing a reference. 3551 assert(E->isTransparent() && "non-transparent glvalue init list"); 3552 return EmitLValue(E->getInit(0)); 3553 } 3554 3555 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3556 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3557 /// LValue is returned and the current block has been terminated. 3558 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3559 const Expr *Operand) { 3560 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3561 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3562 return None; 3563 } 3564 3565 return CGF.EmitLValue(Operand); 3566 } 3567 3568 LValue CodeGenFunction:: 3569 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3570 if (!expr->isGLValue()) { 3571 // ?: here should be an aggregate. 3572 assert(hasAggregateEvaluationKind(expr->getType()) && 3573 "Unexpected conditional operator!"); 3574 return EmitAggExprToLValue(expr); 3575 } 3576 3577 OpaqueValueMapping binding(*this, expr); 3578 3579 const Expr *condExpr = expr->getCond(); 3580 bool CondExprBool; 3581 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3582 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3583 if (!CondExprBool) std::swap(live, dead); 3584 3585 if (!ContainsLabel(dead)) { 3586 // If the true case is live, we need to track its region. 3587 if (CondExprBool) 3588 incrementProfileCounter(expr); 3589 return EmitLValue(live); 3590 } 3591 } 3592 3593 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3594 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3595 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3596 3597 ConditionalEvaluation eval(*this); 3598 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3599 3600 // Any temporaries created here are conditional. 3601 EmitBlock(lhsBlock); 3602 incrementProfileCounter(expr); 3603 eval.begin(*this); 3604 Optional<LValue> lhs = 3605 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3606 eval.end(*this); 3607 3608 if (lhs && !lhs->isSimple()) 3609 return EmitUnsupportedLValue(expr, "conditional operator"); 3610 3611 lhsBlock = Builder.GetInsertBlock(); 3612 if (lhs) 3613 Builder.CreateBr(contBlock); 3614 3615 // Any temporaries created here are conditional. 3616 EmitBlock(rhsBlock); 3617 eval.begin(*this); 3618 Optional<LValue> rhs = 3619 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3620 eval.end(*this); 3621 if (rhs && !rhs->isSimple()) 3622 return EmitUnsupportedLValue(expr, "conditional operator"); 3623 rhsBlock = Builder.GetInsertBlock(); 3624 3625 EmitBlock(contBlock); 3626 3627 if (lhs && rhs) { 3628 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3629 2, "cond-lvalue"); 3630 phi->addIncoming(lhs->getPointer(), lhsBlock); 3631 phi->addIncoming(rhs->getPointer(), rhsBlock); 3632 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3633 AlignmentSource alignSource = 3634 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3635 return MakeAddrLValue(result, expr->getType(), alignSource); 3636 } else { 3637 assert((lhs || rhs) && 3638 "both operands of glvalue conditional are throw-expressions?"); 3639 return lhs ? *lhs : *rhs; 3640 } 3641 } 3642 3643 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3644 /// type. If the cast is to a reference, we can have the usual lvalue result, 3645 /// otherwise if a cast is needed by the code generator in an lvalue context, 3646 /// then it must mean that we need the address of an aggregate in order to 3647 /// access one of its members. This can happen for all the reasons that casts 3648 /// are permitted with aggregate result, including noop aggregate casts, and 3649 /// cast from scalar to union. 3650 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3651 switch (E->getCastKind()) { 3652 case CK_ToVoid: 3653 case CK_BitCast: 3654 case CK_ArrayToPointerDecay: 3655 case CK_FunctionToPointerDecay: 3656 case CK_NullToMemberPointer: 3657 case CK_NullToPointer: 3658 case CK_IntegralToPointer: 3659 case CK_PointerToIntegral: 3660 case CK_PointerToBoolean: 3661 case CK_VectorSplat: 3662 case CK_IntegralCast: 3663 case CK_BooleanToSignedIntegral: 3664 case CK_IntegralToBoolean: 3665 case CK_IntegralToFloating: 3666 case CK_FloatingToIntegral: 3667 case CK_FloatingToBoolean: 3668 case CK_FloatingCast: 3669 case CK_FloatingRealToComplex: 3670 case CK_FloatingComplexToReal: 3671 case CK_FloatingComplexToBoolean: 3672 case CK_FloatingComplexCast: 3673 case CK_FloatingComplexToIntegralComplex: 3674 case CK_IntegralRealToComplex: 3675 case CK_IntegralComplexToReal: 3676 case CK_IntegralComplexToBoolean: 3677 case CK_IntegralComplexCast: 3678 case CK_IntegralComplexToFloatingComplex: 3679 case CK_DerivedToBaseMemberPointer: 3680 case CK_BaseToDerivedMemberPointer: 3681 case CK_MemberPointerToBoolean: 3682 case CK_ReinterpretMemberPointer: 3683 case CK_AnyPointerToBlockPointerCast: 3684 case CK_ARCProduceObject: 3685 case CK_ARCConsumeObject: 3686 case CK_ARCReclaimReturnedObject: 3687 case CK_ARCExtendBlockObject: 3688 case CK_CopyAndAutoreleaseBlockObject: 3689 case CK_AddressSpaceConversion: 3690 case CK_IntToOCLSampler: 3691 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3692 3693 case CK_Dependent: 3694 llvm_unreachable("dependent cast kind in IR gen!"); 3695 3696 case CK_BuiltinFnToFnPtr: 3697 llvm_unreachable("builtin functions are handled elsewhere"); 3698 3699 // These are never l-values; just use the aggregate emission code. 3700 case CK_NonAtomicToAtomic: 3701 case CK_AtomicToNonAtomic: 3702 return EmitAggExprToLValue(E); 3703 3704 case CK_Dynamic: { 3705 LValue LV = EmitLValue(E->getSubExpr()); 3706 Address V = LV.getAddress(); 3707 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3708 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3709 } 3710 3711 case CK_ConstructorConversion: 3712 case CK_UserDefinedConversion: 3713 case CK_CPointerToObjCPointerCast: 3714 case CK_BlockPointerToObjCPointerCast: 3715 case CK_NoOp: 3716 case CK_LValueToRValue: 3717 return EmitLValue(E->getSubExpr()); 3718 3719 case CK_UncheckedDerivedToBase: 3720 case CK_DerivedToBase: { 3721 const RecordType *DerivedClassTy = 3722 E->getSubExpr()->getType()->getAs<RecordType>(); 3723 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3724 3725 LValue LV = EmitLValue(E->getSubExpr()); 3726 Address This = LV.getAddress(); 3727 3728 // Perform the derived-to-base conversion 3729 Address Base = GetAddressOfBaseClass( 3730 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3731 /*NullCheckValue=*/false, E->getExprLoc()); 3732 3733 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3734 } 3735 case CK_ToUnion: 3736 return EmitAggExprToLValue(E); 3737 case CK_BaseToDerived: { 3738 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3739 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3740 3741 LValue LV = EmitLValue(E->getSubExpr()); 3742 3743 // Perform the base-to-derived conversion 3744 Address Derived = 3745 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3746 E->path_begin(), E->path_end(), 3747 /*NullCheckValue=*/false); 3748 3749 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3750 // performed and the object is not of the derived type. 3751 if (sanitizePerformTypeCheck()) 3752 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3753 Derived.getPointer(), E->getType()); 3754 3755 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3756 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3757 /*MayBeNull=*/false, 3758 CFITCK_DerivedCast, E->getLocStart()); 3759 3760 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3761 } 3762 case CK_LValueBitCast: { 3763 // This must be a reinterpret_cast (or c-style equivalent). 3764 const auto *CE = cast<ExplicitCastExpr>(E); 3765 3766 CGM.EmitExplicitCastExprType(CE, this); 3767 LValue LV = EmitLValue(E->getSubExpr()); 3768 Address V = Builder.CreateBitCast(LV.getAddress(), 3769 ConvertType(CE->getTypeAsWritten())); 3770 3771 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3772 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3773 /*MayBeNull=*/false, 3774 CFITCK_UnrelatedCast, E->getLocStart()); 3775 3776 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3777 } 3778 case CK_ObjCObjectLValueCast: { 3779 LValue LV = EmitLValue(E->getSubExpr()); 3780 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3781 ConvertType(E->getType())); 3782 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3783 } 3784 case CK_ZeroToOCLQueue: 3785 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3786 case CK_ZeroToOCLEvent: 3787 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3788 } 3789 3790 llvm_unreachable("Unhandled lvalue cast kind?"); 3791 } 3792 3793 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3794 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3795 return getOpaqueLValueMapping(e); 3796 } 3797 3798 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3799 const FieldDecl *FD, 3800 SourceLocation Loc) { 3801 QualType FT = FD->getType(); 3802 LValue FieldLV = EmitLValueForField(LV, FD); 3803 switch (getEvaluationKind(FT)) { 3804 case TEK_Complex: 3805 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3806 case TEK_Aggregate: 3807 return FieldLV.asAggregateRValue(); 3808 case TEK_Scalar: 3809 // This routine is used to load fields one-by-one to perform a copy, so 3810 // don't load reference fields. 3811 if (FD->getType()->isReferenceType()) 3812 return RValue::get(FieldLV.getPointer()); 3813 return EmitLoadOfLValue(FieldLV, Loc); 3814 } 3815 llvm_unreachable("bad evaluation kind"); 3816 } 3817 3818 //===--------------------------------------------------------------------===// 3819 // Expression Emission 3820 //===--------------------------------------------------------------------===// 3821 3822 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3823 ReturnValueSlot ReturnValue) { 3824 // Builtins never have block type. 3825 if (E->getCallee()->getType()->isBlockPointerType()) 3826 return EmitBlockCallExpr(E, ReturnValue); 3827 3828 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3829 return EmitCXXMemberCallExpr(CE, ReturnValue); 3830 3831 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3832 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3833 3834 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3835 if (const CXXMethodDecl *MD = 3836 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3837 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3838 3839 CGCallee callee = EmitCallee(E->getCallee()); 3840 3841 if (callee.isBuiltin()) { 3842 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3843 E, ReturnValue); 3844 } 3845 3846 if (callee.isPseudoDestructor()) { 3847 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3848 } 3849 3850 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3851 } 3852 3853 /// Emit a CallExpr without considering whether it might be a subclass. 3854 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3855 ReturnValueSlot ReturnValue) { 3856 CGCallee Callee = EmitCallee(E->getCallee()); 3857 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3858 } 3859 3860 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3861 if (auto builtinID = FD->getBuiltinID()) { 3862 return CGCallee::forBuiltin(builtinID, FD); 3863 } 3864 3865 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3866 return CGCallee::forDirect(calleePtr, FD); 3867 } 3868 3869 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3870 E = E->IgnoreParens(); 3871 3872 // Look through function-to-pointer decay. 3873 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3874 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3875 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3876 return EmitCallee(ICE->getSubExpr()); 3877 } 3878 3879 // Resolve direct calls. 3880 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3881 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3882 return EmitDirectCallee(*this, FD); 3883 } 3884 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 3885 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 3886 EmitIgnoredExpr(ME->getBase()); 3887 return EmitDirectCallee(*this, FD); 3888 } 3889 3890 // Look through template substitutions. 3891 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 3892 return EmitCallee(NTTP->getReplacement()); 3893 3894 // Treat pseudo-destructor calls differently. 3895 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 3896 return CGCallee::forPseudoDestructor(PDE); 3897 } 3898 3899 // Otherwise, we have an indirect reference. 3900 llvm::Value *calleePtr; 3901 QualType functionType; 3902 if (auto ptrType = E->getType()->getAs<PointerType>()) { 3903 calleePtr = EmitScalarExpr(E); 3904 functionType = ptrType->getPointeeType(); 3905 } else { 3906 functionType = E->getType(); 3907 calleePtr = EmitLValue(E).getPointer(); 3908 } 3909 assert(functionType->isFunctionType()); 3910 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 3911 E->getReferencedDeclOfCallee()); 3912 CGCallee callee(calleeInfo, calleePtr); 3913 return callee; 3914 } 3915 3916 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3917 // Comma expressions just emit their LHS then their RHS as an l-value. 3918 if (E->getOpcode() == BO_Comma) { 3919 EmitIgnoredExpr(E->getLHS()); 3920 EnsureInsertPoint(); 3921 return EmitLValue(E->getRHS()); 3922 } 3923 3924 if (E->getOpcode() == BO_PtrMemD || 3925 E->getOpcode() == BO_PtrMemI) 3926 return EmitPointerToDataMemberBinaryExpr(E); 3927 3928 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3929 3930 // Note that in all of these cases, __block variables need the RHS 3931 // evaluated first just in case the variable gets moved by the RHS. 3932 3933 switch (getEvaluationKind(E->getType())) { 3934 case TEK_Scalar: { 3935 switch (E->getLHS()->getType().getObjCLifetime()) { 3936 case Qualifiers::OCL_Strong: 3937 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3938 3939 case Qualifiers::OCL_Autoreleasing: 3940 return EmitARCStoreAutoreleasing(E).first; 3941 3942 // No reason to do any of these differently. 3943 case Qualifiers::OCL_None: 3944 case Qualifiers::OCL_ExplicitNone: 3945 case Qualifiers::OCL_Weak: 3946 break; 3947 } 3948 3949 RValue RV = EmitAnyExpr(E->getRHS()); 3950 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3951 EmitStoreThroughLValue(RV, LV); 3952 return LV; 3953 } 3954 3955 case TEK_Complex: 3956 return EmitComplexAssignmentLValue(E); 3957 3958 case TEK_Aggregate: 3959 return EmitAggExprToLValue(E); 3960 } 3961 llvm_unreachable("bad evaluation kind"); 3962 } 3963 3964 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3965 RValue RV = EmitCallExpr(E); 3966 3967 if (!RV.isScalar()) 3968 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3969 AlignmentSource::Decl); 3970 3971 assert(E->getCallReturnType(getContext())->isReferenceType() && 3972 "Can't have a scalar return unless the return type is a " 3973 "reference type!"); 3974 3975 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3976 } 3977 3978 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3979 // FIXME: This shouldn't require another copy. 3980 return EmitAggExprToLValue(E); 3981 } 3982 3983 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3984 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3985 && "binding l-value to type which needs a temporary"); 3986 AggValueSlot Slot = CreateAggTemp(E->getType()); 3987 EmitCXXConstructExpr(E, Slot); 3988 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3989 AlignmentSource::Decl); 3990 } 3991 3992 LValue 3993 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3994 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3995 } 3996 3997 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3998 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 3999 ConvertType(E->getType())); 4000 } 4001 4002 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4003 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4004 AlignmentSource::Decl); 4005 } 4006 4007 LValue 4008 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4009 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4010 Slot.setExternallyDestructed(); 4011 EmitAggExpr(E->getSubExpr(), Slot); 4012 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4013 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4014 AlignmentSource::Decl); 4015 } 4016 4017 LValue 4018 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4019 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4020 EmitLambdaExpr(E, Slot); 4021 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4022 AlignmentSource::Decl); 4023 } 4024 4025 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4026 RValue RV = EmitObjCMessageExpr(E); 4027 4028 if (!RV.isScalar()) 4029 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4030 AlignmentSource::Decl); 4031 4032 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4033 "Can't have a scalar return unless the return type is a " 4034 "reference type!"); 4035 4036 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4037 } 4038 4039 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4040 Address V = 4041 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4042 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4043 } 4044 4045 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4046 const ObjCIvarDecl *Ivar) { 4047 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4048 } 4049 4050 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4051 llvm::Value *BaseValue, 4052 const ObjCIvarDecl *Ivar, 4053 unsigned CVRQualifiers) { 4054 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4055 Ivar, CVRQualifiers); 4056 } 4057 4058 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4059 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4060 llvm::Value *BaseValue = nullptr; 4061 const Expr *BaseExpr = E->getBase(); 4062 Qualifiers BaseQuals; 4063 QualType ObjectTy; 4064 if (E->isArrow()) { 4065 BaseValue = EmitScalarExpr(BaseExpr); 4066 ObjectTy = BaseExpr->getType()->getPointeeType(); 4067 BaseQuals = ObjectTy.getQualifiers(); 4068 } else { 4069 LValue BaseLV = EmitLValue(BaseExpr); 4070 BaseValue = BaseLV.getPointer(); 4071 ObjectTy = BaseExpr->getType(); 4072 BaseQuals = ObjectTy.getQualifiers(); 4073 } 4074 4075 LValue LV = 4076 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4077 BaseQuals.getCVRQualifiers()); 4078 setObjCGCLValueClass(getContext(), E, LV); 4079 return LV; 4080 } 4081 4082 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4083 // Can only get l-value for message expression returning aggregate type 4084 RValue RV = EmitAnyExprToTemp(E); 4085 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4086 AlignmentSource::Decl); 4087 } 4088 4089 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4090 const CallExpr *E, ReturnValueSlot ReturnValue, 4091 llvm::Value *Chain) { 4092 // Get the actual function type. The callee type will always be a pointer to 4093 // function type or a block pointer type. 4094 assert(CalleeType->isFunctionPointerType() && 4095 "Call must have function pointer type!"); 4096 4097 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4098 4099 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4100 // We can only guarantee that a function is called from the correct 4101 // context/function based on the appropriate target attributes, 4102 // so only check in the case where we have both always_inline and target 4103 // since otherwise we could be making a conditional call after a check for 4104 // the proper cpu features (and it won't cause code generation issues due to 4105 // function based code generation). 4106 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4107 TargetDecl->hasAttr<TargetAttr>()) 4108 checkTargetFeatures(E, FD); 4109 4110 CalleeType = getContext().getCanonicalType(CalleeType); 4111 4112 const auto *FnType = 4113 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4114 4115 CGCallee Callee = OrigCallee; 4116 4117 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4118 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4119 if (llvm::Constant *PrefixSig = 4120 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4121 SanitizerScope SanScope(this); 4122 llvm::Constant *FTRTTIConst = 4123 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4124 llvm::Type *PrefixStructTyElems[] = { 4125 PrefixSig->getType(), 4126 FTRTTIConst->getType() 4127 }; 4128 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4129 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4130 4131 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4132 4133 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4134 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4135 llvm::Value *CalleeSigPtr = 4136 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4137 llvm::Value *CalleeSig = 4138 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4139 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4140 4141 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4142 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4143 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4144 4145 EmitBlock(TypeCheck); 4146 llvm::Value *CalleeRTTIPtr = 4147 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4148 llvm::Value *CalleeRTTI = 4149 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4150 llvm::Value *CalleeRTTIMatch = 4151 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4152 llvm::Constant *StaticData[] = { 4153 EmitCheckSourceLocation(E->getLocStart()), 4154 EmitCheckTypeDescriptor(CalleeType) 4155 }; 4156 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4157 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4158 4159 Builder.CreateBr(Cont); 4160 EmitBlock(Cont); 4161 } 4162 } 4163 4164 // If we are checking indirect calls and this call is indirect, check that the 4165 // function pointer is a member of the bit set for the function type. 4166 if (SanOpts.has(SanitizerKind::CFIICall) && 4167 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4168 SanitizerScope SanScope(this); 4169 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4170 4171 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4172 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4173 4174 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4175 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4176 llvm::Value *TypeTest = Builder.CreateCall( 4177 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4178 4179 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4180 llvm::Constant *StaticData[] = { 4181 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4182 EmitCheckSourceLocation(E->getLocStart()), 4183 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4184 }; 4185 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4186 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4187 CastedCallee, StaticData); 4188 } else { 4189 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4190 SanitizerHandler::CFICheckFail, StaticData, 4191 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4192 } 4193 } 4194 4195 CallArgList Args; 4196 if (Chain) 4197 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4198 CGM.getContext().VoidPtrTy); 4199 4200 // C++17 requires that we evaluate arguments to a call using assignment syntax 4201 // right-to-left, and that we evaluate arguments to certain other operators 4202 // left-to-right. Note that we allow this to override the order dictated by 4203 // the calling convention on the MS ABI, which means that parameter 4204 // destruction order is not necessarily reverse construction order. 4205 // FIXME: Revisit this based on C++ committee response to unimplementability. 4206 EvaluationOrder Order = EvaluationOrder::Default; 4207 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4208 if (OCE->isAssignmentOp()) 4209 Order = EvaluationOrder::ForceRightToLeft; 4210 else { 4211 switch (OCE->getOperator()) { 4212 case OO_LessLess: 4213 case OO_GreaterGreater: 4214 case OO_AmpAmp: 4215 case OO_PipePipe: 4216 case OO_Comma: 4217 case OO_ArrowStar: 4218 Order = EvaluationOrder::ForceLeftToRight; 4219 break; 4220 default: 4221 break; 4222 } 4223 } 4224 } 4225 4226 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4227 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4228 4229 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4230 Args, FnType, /*isChainCall=*/Chain); 4231 4232 // C99 6.5.2.2p6: 4233 // If the expression that denotes the called function has a type 4234 // that does not include a prototype, [the default argument 4235 // promotions are performed]. If the number of arguments does not 4236 // equal the number of parameters, the behavior is undefined. If 4237 // the function is defined with a type that includes a prototype, 4238 // and either the prototype ends with an ellipsis (, ...) or the 4239 // types of the arguments after promotion are not compatible with 4240 // the types of the parameters, the behavior is undefined. If the 4241 // function is defined with a type that does not include a 4242 // prototype, and the types of the arguments after promotion are 4243 // not compatible with those of the parameters after promotion, 4244 // the behavior is undefined [except in some trivial cases]. 4245 // That is, in the general case, we should assume that a call 4246 // through an unprototyped function type works like a *non-variadic* 4247 // call. The way we make this work is to cast to the exact type 4248 // of the promoted arguments. 4249 // 4250 // Chain calls use this same code path to add the invisible chain parameter 4251 // to the function type. 4252 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4253 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4254 CalleeTy = CalleeTy->getPointerTo(); 4255 4256 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4257 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4258 Callee.setFunctionPointer(CalleePtr); 4259 } 4260 4261 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4262 } 4263 4264 LValue CodeGenFunction:: 4265 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4266 Address BaseAddr = Address::invalid(); 4267 if (E->getOpcode() == BO_PtrMemI) { 4268 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4269 } else { 4270 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4271 } 4272 4273 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4274 4275 const MemberPointerType *MPT 4276 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4277 4278 AlignmentSource AlignSource; 4279 Address MemberAddr = 4280 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4281 &AlignSource); 4282 4283 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4284 } 4285 4286 /// Given the address of a temporary variable, produce an r-value of 4287 /// its type. 4288 RValue CodeGenFunction::convertTempToRValue(Address addr, 4289 QualType type, 4290 SourceLocation loc) { 4291 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4292 switch (getEvaluationKind(type)) { 4293 case TEK_Complex: 4294 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4295 case TEK_Aggregate: 4296 return lvalue.asAggregateRValue(); 4297 case TEK_Scalar: 4298 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4299 } 4300 llvm_unreachable("bad evaluation kind"); 4301 } 4302 4303 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4304 assert(Val->getType()->isFPOrFPVectorTy()); 4305 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4306 return; 4307 4308 llvm::MDBuilder MDHelper(getLLVMContext()); 4309 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4310 4311 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4312 } 4313 4314 namespace { 4315 struct LValueOrRValue { 4316 LValue LV; 4317 RValue RV; 4318 }; 4319 } 4320 4321 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4322 const PseudoObjectExpr *E, 4323 bool forLValue, 4324 AggValueSlot slot) { 4325 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4326 4327 // Find the result expression, if any. 4328 const Expr *resultExpr = E->getResultExpr(); 4329 LValueOrRValue result; 4330 4331 for (PseudoObjectExpr::const_semantics_iterator 4332 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4333 const Expr *semantic = *i; 4334 4335 // If this semantic expression is an opaque value, bind it 4336 // to the result of its source expression. 4337 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4338 4339 // If this is the result expression, we may need to evaluate 4340 // directly into the slot. 4341 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4342 OVMA opaqueData; 4343 if (ov == resultExpr && ov->isRValue() && !forLValue && 4344 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4345 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4346 4347 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4348 AlignmentSource::Decl); 4349 opaqueData = OVMA::bind(CGF, ov, LV); 4350 result.RV = slot.asRValue(); 4351 4352 // Otherwise, emit as normal. 4353 } else { 4354 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4355 4356 // If this is the result, also evaluate the result now. 4357 if (ov == resultExpr) { 4358 if (forLValue) 4359 result.LV = CGF.EmitLValue(ov); 4360 else 4361 result.RV = CGF.EmitAnyExpr(ov, slot); 4362 } 4363 } 4364 4365 opaques.push_back(opaqueData); 4366 4367 // Otherwise, if the expression is the result, evaluate it 4368 // and remember the result. 4369 } else if (semantic == resultExpr) { 4370 if (forLValue) 4371 result.LV = CGF.EmitLValue(semantic); 4372 else 4373 result.RV = CGF.EmitAnyExpr(semantic, slot); 4374 4375 // Otherwise, evaluate the expression in an ignored context. 4376 } else { 4377 CGF.EmitIgnoredExpr(semantic); 4378 } 4379 } 4380 4381 // Unbind all the opaques now. 4382 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4383 opaques[i].unbind(CGF); 4384 4385 return result; 4386 } 4387 4388 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4389 AggValueSlot slot) { 4390 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4391 } 4392 4393 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4394 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4395 } 4396