1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   switch (getEvaluationKind(E->getType())) {
118   case TEK_Scalar:
119     return RValue::get(EmitScalarExpr(E, ignoreResult));
120   case TEK_Complex:
121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122   case TEK_Aggregate:
123     if (!ignoreResult && aggSlot.isIgnored())
124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125     EmitAggExpr(E, aggSlot);
126     return aggSlot.asRValue();
127   }
128   llvm_unreachable("bad evaluation kind");
129 }
130 
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134   AggValueSlot AggSlot = AggValueSlot::ignored();
135 
136   if (hasAggregateEvaluationKind(E->getType()))
137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138   return EmitAnyExpr(E, AggSlot);
139 }
140 
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                        llvm::Value *Location,
145                                        Qualifiers Quals,
146                                        bool IsInit) {
147   // FIXME: This function should take an LValue as an argument.
148   switch (getEvaluationKind(E->getType())) {
149   case TEK_Complex:
150     EmitComplexExprIntoLValue(E,
151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
152                               /*isInit*/ false);
153     return;
154 
155   case TEK_Aggregate: {
156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                          AggValueSlot::IsDestructed_t(IsInit),
159                                          AggValueSlot::DoesNotNeedGCBarriers,
160                                          AggValueSlot::IsAliased_t(!IsInit)));
161     return;
162   }
163 
164   case TEK_Scalar: {
165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166     LValue LV = MakeAddrLValue(Location, E->getType());
167     EmitStoreThroughLValue(RV, LV);
168     return;
169   }
170   }
171   llvm_unreachable("bad evaluation kind");
172 }
173 
174 static void
175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                      const Expr *E, llvm::Value *ReferenceTemporary) {
177   // Objective-C++ ARC:
178   //   If we are binding a reference to a temporary that has ownership, we
179   //   need to perform retain/release operations on the temporary.
180   //
181   // FIXME: This should be looking at E, not M.
182   if (CGF.getLangOpts().ObjCAutoRefCount &&
183       M->getType()->isObjCLifetimeType()) {
184     QualType ObjCARCReferenceLifetimeType = M->getType();
185     switch (Qualifiers::ObjCLifetime Lifetime =
186                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187     case Qualifiers::OCL_None:
188     case Qualifiers::OCL_ExplicitNone:
189       // Carry on to normal cleanup handling.
190       break;
191 
192     case Qualifiers::OCL_Autoreleasing:
193       // Nothing to do; cleaned up by an autorelease pool.
194       return;
195 
196     case Qualifiers::OCL_Strong:
197     case Qualifiers::OCL_Weak:
198       switch (StorageDuration Duration = M->getStorageDuration()) {
199       case SD_Static:
200         // Note: we intentionally do not register a cleanup to release
201         // the object on program termination.
202         return;
203 
204       case SD_Thread:
205         // FIXME: We should probably register a cleanup in this case.
206         return;
207 
208       case SD_Automatic:
209       case SD_FullExpression:
210         assert(!ObjCARCReferenceLifetimeType->isArrayType());
211         CodeGenFunction::Destroyer *Destroy;
212         CleanupKind CleanupKind;
213         if (Lifetime == Qualifiers::OCL_Strong) {
214           const ValueDecl *VD = M->getExtendingDecl();
215           bool Precise =
216               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217           CleanupKind = CGF.getARCCleanupKind();
218           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                             : &CodeGenFunction::destroyARCStrongImprecise;
220         } else {
221           // __weak objects always get EH cleanups; otherwise, exceptions
222           // could cause really nasty crashes instead of mere leaks.
223           CleanupKind = NormalAndEHCleanup;
224           Destroy = &CodeGenFunction::destroyARCWeak;
225         }
226         if (Duration == SD_FullExpression)
227           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                           ObjCARCReferenceLifetimeType, *Destroy,
229                           CleanupKind & EHCleanup);
230         else
231           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                           ObjCARCReferenceLifetimeType,
233                                           *Destroy, CleanupKind & EHCleanup);
234         return;
235 
236       case SD_Dynamic:
237         llvm_unreachable("temporary cannot have dynamic storage duration");
238       }
239       llvm_unreachable("unknown storage duration");
240     }
241   }
242 
243   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244   if (const RecordType *RT =
245           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246     // Get the destructor for the reference temporary.
247     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248     if (!ClassDecl->hasTrivialDestructor())
249       ReferenceTemporaryDtor = ClassDecl->getDestructor();
250   }
251 
252   if (!ReferenceTemporaryDtor)
253     return;
254 
255   // Call the destructor for the temporary.
256   switch (M->getStorageDuration()) {
257   case SD_Static:
258   case SD_Thread: {
259     llvm::Constant *CleanupFn;
260     llvm::Constant *CleanupArg;
261     if (E->getType()->isArrayType()) {
262       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
265           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
266       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
267     } else {
268       CleanupFn =
269         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
270       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
271     }
272     CGF.CGM.getCXXABI().registerGlobalDtor(
273         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
274     break;
275   }
276 
277   case SD_FullExpression:
278     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
279                     CodeGenFunction::destroyCXXObject,
280                     CGF.getLangOpts().Exceptions);
281     break;
282 
283   case SD_Automatic:
284     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
285                                     ReferenceTemporary, E->getType(),
286                                     CodeGenFunction::destroyCXXObject,
287                                     CGF.getLangOpts().Exceptions);
288     break;
289 
290   case SD_Dynamic:
291     llvm_unreachable("temporary cannot have dynamic storage duration");
292   }
293 }
294 
295 static llvm::Value *
296 createReferenceTemporary(CodeGenFunction &CGF,
297                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
298   switch (M->getStorageDuration()) {
299   case SD_FullExpression:
300   case SD_Automatic:
301     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
302 
303   case SD_Thread:
304   case SD_Static:
305     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
306 
307   case SD_Dynamic:
308     llvm_unreachable("temporary can't have dynamic storage duration");
309   }
310   llvm_unreachable("unknown storage duration");
311 }
312 
313 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
314                                            const MaterializeTemporaryExpr *M) {
315   const Expr *E = M->GetTemporaryExpr();
316 
317   if (getLangOpts().ObjCAutoRefCount &&
318       M->getType()->isObjCLifetimeType() &&
319       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
320       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
321     // FIXME: Fold this into the general case below.
322     llvm::Value *Object = createReferenceTemporary(*this, M, E);
323     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
324 
325     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
326       // We should not have emitted the initializer for this temporary as a
327       // constant.
328       assert(!Var->hasInitializer());
329       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
330     }
331 
332     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
333 
334     pushTemporaryCleanup(*this, M, E, Object);
335     return RefTempDst;
336   }
337 
338   SmallVector<const Expr *, 2> CommaLHSs;
339   SmallVector<SubobjectAdjustment, 2> Adjustments;
340   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
341 
342   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
343     EmitIgnoredExpr(CommaLHSs[I]);
344 
345   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
346     if (opaque->getType()->isRecordType()) {
347       assert(Adjustments.empty());
348       return EmitOpaqueValueLValue(opaque);
349     }
350   }
351 
352   // Create and initialize the reference temporary.
353   llvm::Value *Object = createReferenceTemporary(*this, M, E);
354   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
355     // If the temporary is a global and has a constant initializer, we may
356     // have already initialized it.
357     if (!Var->hasInitializer()) {
358       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
359       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
360     }
361   } else {
362     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
363   }
364   pushTemporaryCleanup(*this, M, E, Object);
365 
366   // Perform derived-to-base casts and/or field accesses, to get from the
367   // temporary object we created (and, potentially, for which we extended
368   // the lifetime) to the subobject we're binding the reference to.
369   for (unsigned I = Adjustments.size(); I != 0; --I) {
370     SubobjectAdjustment &Adjustment = Adjustments[I-1];
371     switch (Adjustment.Kind) {
372     case SubobjectAdjustment::DerivedToBaseAdjustment:
373       Object =
374           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
375                                 Adjustment.DerivedToBase.BasePath->path_begin(),
376                                 Adjustment.DerivedToBase.BasePath->path_end(),
377                                 /*NullCheckValue=*/ false);
378       break;
379 
380     case SubobjectAdjustment::FieldAdjustment: {
381       LValue LV = MakeAddrLValue(Object, E->getType());
382       LV = EmitLValueForField(LV, Adjustment.Field);
383       assert(LV.isSimple() &&
384              "materialized temporary field is not a simple lvalue");
385       Object = LV.getAddress();
386       break;
387     }
388 
389     case SubobjectAdjustment::MemberPointerAdjustment: {
390       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
391       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
392                     *this, Object, Ptr, Adjustment.Ptr.MPT);
393       break;
394     }
395     }
396   }
397 
398   return MakeAddrLValue(Object, M->getType());
399 }
400 
401 RValue
402 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
403   // Emit the expression as an lvalue.
404   LValue LV = EmitLValue(E);
405   assert(LV.isSimple());
406   llvm::Value *Value = LV.getAddress();
407 
408   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409     // C++11 [dcl.ref]p5 (as amended by core issue 453):
410     //   If a glvalue to which a reference is directly bound designates neither
411     //   an existing object or function of an appropriate type nor a region of
412     //   storage of suitable size and alignment to contain an object of the
413     //   reference's type, the behavior is undefined.
414     QualType Ty = E->getType();
415     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416   }
417 
418   return RValue::get(Value);
419 }
420 
421 
422 /// getAccessedFieldNo - Given an encoded value and a result number, return the
423 /// input field number being accessed.
424 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                              const llvm::Constant *Elts) {
426   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427       ->getZExtValue();
428 }
429 
430 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                     llvm::Value *High) {
433   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434   llvm::Value *K47 = Builder.getInt64(47);
435   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439   return Builder.CreateMul(B1, KMul);
440 }
441 
442 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                     llvm::Value *Address,
444                                     QualType Ty, CharUnits Alignment) {
445   if (!SanitizePerformTypeCheck)
446     return;
447 
448   // Don't check pointers outside the default address space. The null check
449   // isn't correct, the object-size check isn't supported by LLVM, and we can't
450   // communicate the addresses to the runtime handler for the vptr check.
451   if (Address->getType()->getPointerAddressSpace())
452     return;
453 
454   llvm::Value *Cond = 0;
455   llvm::BasicBlock *Done = 0;
456 
457   if (SanOpts->Null) {
458     // The glvalue must not be an empty glvalue.
459     Cond = Builder.CreateICmpNE(
460         Address, llvm::Constant::getNullValue(Address->getType()));
461 
462     if (TCK == TCK_DowncastPointer) {
463       // When performing a pointer downcast, it's OK if the value is null.
464       // Skip the remaining checks in that case.
465       Done = createBasicBlock("null");
466       llvm::BasicBlock *Rest = createBasicBlock("not.null");
467       Builder.CreateCondBr(Cond, Rest, Done);
468       EmitBlock(Rest);
469       Cond = 0;
470     }
471   }
472 
473   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475 
476     // The glvalue must refer to a large enough storage region.
477     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478     //        to check this.
479     // FIXME: Get object address space
480     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
481     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
482     llvm::Value *Min = Builder.getFalse();
483     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
484     llvm::Value *LargeEnough =
485         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
486                               llvm::ConstantInt::get(IntPtrTy, Size));
487     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
488   }
489 
490   uint64_t AlignVal = 0;
491 
492   if (SanOpts->Alignment) {
493     AlignVal = Alignment.getQuantity();
494     if (!Ty->isIncompleteType() && !AlignVal)
495       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
496 
497     // The glvalue must be suitably aligned.
498     if (AlignVal) {
499       llvm::Value *Align =
500           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
501                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
502       llvm::Value *Aligned =
503         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
504       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
505     }
506   }
507 
508   if (Cond) {
509     llvm::Constant *StaticData[] = {
510       EmitCheckSourceLocation(Loc),
511       EmitCheckTypeDescriptor(Ty),
512       llvm::ConstantInt::get(SizeTy, AlignVal),
513       llvm::ConstantInt::get(Int8Ty, TCK)
514     };
515     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
516   }
517 
518   // If possible, check that the vptr indicates that there is a subobject of
519   // type Ty at offset zero within this object.
520   //
521   // C++11 [basic.life]p5,6:
522   //   [For storage which does not refer to an object within its lifetime]
523   //   The program has undefined behavior if:
524   //    -- the [pointer or glvalue] is used to access a non-static data member
525   //       or call a non-static member function
526   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
527   if (SanOpts->Vptr &&
528       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
529        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
530       RD && RD->hasDefinition() && RD->isDynamicClass()) {
531     // Compute a hash of the mangled name of the type.
532     //
533     // FIXME: This is not guaranteed to be deterministic! Move to a
534     //        fingerprinting mechanism once LLVM provides one. For the time
535     //        being the implementation happens to be deterministic.
536     SmallString<64> MangledName;
537     llvm::raw_svector_ostream Out(MangledName);
538     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
539                                                      Out);
540     llvm::hash_code TypeHash = hash_value(Out.str());
541 
542     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
543     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
544     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
545     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
546     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
547     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
548 
549     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
550     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
551 
552     // Look the hash up in our cache.
553     const int CacheSize = 128;
554     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
555     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
556                                                    "__ubsan_vptr_type_cache");
557     llvm::Value *Slot = Builder.CreateAnd(Hash,
558                                           llvm::ConstantInt::get(IntPtrTy,
559                                                                  CacheSize-1));
560     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
561     llvm::Value *CacheVal =
562       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
563 
564     // If the hash isn't in the cache, call a runtime handler to perform the
565     // hard work of checking whether the vptr is for an object of the right
566     // type. This will either fill in the cache and return, or produce a
567     // diagnostic.
568     llvm::Constant *StaticData[] = {
569       EmitCheckSourceLocation(Loc),
570       EmitCheckTypeDescriptor(Ty),
571       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
572       llvm::ConstantInt::get(Int8Ty, TCK)
573     };
574     llvm::Value *DynamicData[] = { Address, Hash };
575     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
576               "dynamic_type_cache_miss", StaticData, DynamicData,
577               CRK_AlwaysRecoverable);
578   }
579 
580   if (Done) {
581     Builder.CreateBr(Done);
582     EmitBlock(Done);
583   }
584 }
585 
586 /// Determine whether this expression refers to a flexible array member in a
587 /// struct. We disable array bounds checks for such members.
588 static bool isFlexibleArrayMemberExpr(const Expr *E) {
589   // For compatibility with existing code, we treat arrays of length 0 or
590   // 1 as flexible array members.
591   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
592   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
593     if (CAT->getSize().ugt(1))
594       return false;
595   } else if (!isa<IncompleteArrayType>(AT))
596     return false;
597 
598   E = E->IgnoreParens();
599 
600   // A flexible array member must be the last member in the class.
601   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
602     // FIXME: If the base type of the member expr is not FD->getParent(),
603     // this should not be treated as a flexible array member access.
604     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
605       RecordDecl::field_iterator FI(
606           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
607       return ++FI == FD->getParent()->field_end();
608     }
609   }
610 
611   return false;
612 }
613 
614 /// If Base is known to point to the start of an array, return the length of
615 /// that array. Return 0 if the length cannot be determined.
616 static llvm::Value *getArrayIndexingBound(
617     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
618   // For the vector indexing extension, the bound is the number of elements.
619   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
620     IndexedType = Base->getType();
621     return CGF.Builder.getInt32(VT->getNumElements());
622   }
623 
624   Base = Base->IgnoreParens();
625 
626   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
627     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
628         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
629       IndexedType = CE->getSubExpr()->getType();
630       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
631       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
632         return CGF.Builder.getInt(CAT->getSize());
633       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
634         return CGF.getVLASize(VAT).first;
635     }
636   }
637 
638   return 0;
639 }
640 
641 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
642                                       llvm::Value *Index, QualType IndexType,
643                                       bool Accessed) {
644   assert(SanOpts->ArrayBounds &&
645          "should not be called unless adding bounds checks");
646 
647   QualType IndexedType;
648   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
649   if (!Bound)
650     return;
651 
652   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
653   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
654   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
655 
656   llvm::Constant *StaticData[] = {
657     EmitCheckSourceLocation(E->getExprLoc()),
658     EmitCheckTypeDescriptor(IndexedType),
659     EmitCheckTypeDescriptor(IndexType)
660   };
661   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
662                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
663   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
664 }
665 
666 
667 CodeGenFunction::ComplexPairTy CodeGenFunction::
668 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
669                          bool isInc, bool isPre) {
670   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
671 
672   llvm::Value *NextVal;
673   if (isa<llvm::IntegerType>(InVal.first->getType())) {
674     uint64_t AmountVal = isInc ? 1 : -1;
675     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
676 
677     // Add the inc/dec to the real part.
678     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
679   } else {
680     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
681     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
682     if (!isInc)
683       FVal.changeSign();
684     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
685 
686     // Add the inc/dec to the real part.
687     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
688   }
689 
690   ComplexPairTy IncVal(NextVal, InVal.second);
691 
692   // Store the updated result through the lvalue.
693   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
694 
695   // If this is a postinc, return the value read from memory, otherwise use the
696   // updated value.
697   return isPre ? IncVal : InVal;
698 }
699 
700 
701 //===----------------------------------------------------------------------===//
702 //                         LValue Expression Emission
703 //===----------------------------------------------------------------------===//
704 
705 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
706   if (Ty->isVoidType())
707     return RValue::get(0);
708 
709   switch (getEvaluationKind(Ty)) {
710   case TEK_Complex: {
711     llvm::Type *EltTy =
712       ConvertType(Ty->castAs<ComplexType>()->getElementType());
713     llvm::Value *U = llvm::UndefValue::get(EltTy);
714     return RValue::getComplex(std::make_pair(U, U));
715   }
716 
717   // If this is a use of an undefined aggregate type, the aggregate must have an
718   // identifiable address.  Just because the contents of the value are undefined
719   // doesn't mean that the address can't be taken and compared.
720   case TEK_Aggregate: {
721     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
722     return RValue::getAggregate(DestPtr);
723   }
724 
725   case TEK_Scalar:
726     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
727   }
728   llvm_unreachable("bad evaluation kind");
729 }
730 
731 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
732                                               const char *Name) {
733   ErrorUnsupported(E, Name);
734   return GetUndefRValue(E->getType());
735 }
736 
737 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
738                                               const char *Name) {
739   ErrorUnsupported(E, Name);
740   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
741   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
742 }
743 
744 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
745   LValue LV;
746   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
747     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
748   else
749     LV = EmitLValue(E);
750   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
751     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
752                   E->getType(), LV.getAlignment());
753   return LV;
754 }
755 
756 /// EmitLValue - Emit code to compute a designator that specifies the location
757 /// of the expression.
758 ///
759 /// This can return one of two things: a simple address or a bitfield reference.
760 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
761 /// an LLVM pointer type.
762 ///
763 /// If this returns a bitfield reference, nothing about the pointee type of the
764 /// LLVM value is known: For example, it may not be a pointer to an integer.
765 ///
766 /// If this returns a normal address, and if the lvalue's C type is fixed size,
767 /// this method guarantees that the returned pointer type will point to an LLVM
768 /// type of the same size of the lvalue's type.  If the lvalue has a variable
769 /// length type, this is not possible.
770 ///
771 LValue CodeGenFunction::EmitLValue(const Expr *E) {
772   switch (E->getStmtClass()) {
773   default: return EmitUnsupportedLValue(E, "l-value expression");
774 
775   case Expr::ObjCPropertyRefExprClass:
776     llvm_unreachable("cannot emit a property reference directly");
777 
778   case Expr::ObjCSelectorExprClass:
779     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
780   case Expr::ObjCIsaExprClass:
781     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
782   case Expr::BinaryOperatorClass:
783     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
784   case Expr::CompoundAssignOperatorClass:
785     if (!E->getType()->isAnyComplexType())
786       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
787     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
788   case Expr::CallExprClass:
789   case Expr::CXXMemberCallExprClass:
790   case Expr::CXXOperatorCallExprClass:
791   case Expr::UserDefinedLiteralClass:
792     return EmitCallExprLValue(cast<CallExpr>(E));
793   case Expr::VAArgExprClass:
794     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
795   case Expr::DeclRefExprClass:
796     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
797   case Expr::ParenExprClass:
798     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
799   case Expr::GenericSelectionExprClass:
800     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
801   case Expr::PredefinedExprClass:
802     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
803   case Expr::StringLiteralClass:
804     return EmitStringLiteralLValue(cast<StringLiteral>(E));
805   case Expr::ObjCEncodeExprClass:
806     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
807   case Expr::PseudoObjectExprClass:
808     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
809   case Expr::InitListExprClass:
810     return EmitInitListLValue(cast<InitListExpr>(E));
811   case Expr::CXXTemporaryObjectExprClass:
812   case Expr::CXXConstructExprClass:
813     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
814   case Expr::CXXBindTemporaryExprClass:
815     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
816   case Expr::CXXUuidofExprClass:
817     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
818   case Expr::LambdaExprClass:
819     return EmitLambdaLValue(cast<LambdaExpr>(E));
820 
821   case Expr::ExprWithCleanupsClass: {
822     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
823     enterFullExpression(cleanups);
824     RunCleanupsScope Scope(*this);
825     return EmitLValue(cleanups->getSubExpr());
826   }
827 
828   case Expr::CXXDefaultArgExprClass:
829     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
830   case Expr::CXXDefaultInitExprClass: {
831     CXXDefaultInitExprScope Scope(*this);
832     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
833   }
834   case Expr::CXXTypeidExprClass:
835     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
836 
837   case Expr::ObjCMessageExprClass:
838     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
839   case Expr::ObjCIvarRefExprClass:
840     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
841   case Expr::StmtExprClass:
842     return EmitStmtExprLValue(cast<StmtExpr>(E));
843   case Expr::UnaryOperatorClass:
844     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
845   case Expr::ArraySubscriptExprClass:
846     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
847   case Expr::ExtVectorElementExprClass:
848     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
849   case Expr::MemberExprClass:
850     return EmitMemberExpr(cast<MemberExpr>(E));
851   case Expr::CompoundLiteralExprClass:
852     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
853   case Expr::ConditionalOperatorClass:
854     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
855   case Expr::BinaryConditionalOperatorClass:
856     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
857   case Expr::ChooseExprClass:
858     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
859   case Expr::OpaqueValueExprClass:
860     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
861   case Expr::SubstNonTypeTemplateParmExprClass:
862     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
863   case Expr::ImplicitCastExprClass:
864   case Expr::CStyleCastExprClass:
865   case Expr::CXXFunctionalCastExprClass:
866   case Expr::CXXStaticCastExprClass:
867   case Expr::CXXDynamicCastExprClass:
868   case Expr::CXXReinterpretCastExprClass:
869   case Expr::CXXConstCastExprClass:
870   case Expr::ObjCBridgedCastExprClass:
871     return EmitCastLValue(cast<CastExpr>(E));
872 
873   case Expr::MaterializeTemporaryExprClass:
874     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
875   }
876 }
877 
878 /// Given an object of the given canonical type, can we safely copy a
879 /// value out of it based on its initializer?
880 static bool isConstantEmittableObjectType(QualType type) {
881   assert(type.isCanonical());
882   assert(!type->isReferenceType());
883 
884   // Must be const-qualified but non-volatile.
885   Qualifiers qs = type.getLocalQualifiers();
886   if (!qs.hasConst() || qs.hasVolatile()) return false;
887 
888   // Otherwise, all object types satisfy this except C++ classes with
889   // mutable subobjects or non-trivial copy/destroy behavior.
890   if (const RecordType *RT = dyn_cast<RecordType>(type))
891     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
892       if (RD->hasMutableFields() || !RD->isTrivial())
893         return false;
894 
895   return true;
896 }
897 
898 /// Can we constant-emit a load of a reference to a variable of the
899 /// given type?  This is different from predicates like
900 /// Decl::isUsableInConstantExpressions because we do want it to apply
901 /// in situations that don't necessarily satisfy the language's rules
902 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
903 /// to do this with const float variables even if those variables
904 /// aren't marked 'constexpr'.
905 enum ConstantEmissionKind {
906   CEK_None,
907   CEK_AsReferenceOnly,
908   CEK_AsValueOrReference,
909   CEK_AsValueOnly
910 };
911 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
912   type = type.getCanonicalType();
913   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
914     if (isConstantEmittableObjectType(ref->getPointeeType()))
915       return CEK_AsValueOrReference;
916     return CEK_AsReferenceOnly;
917   }
918   if (isConstantEmittableObjectType(type))
919     return CEK_AsValueOnly;
920   return CEK_None;
921 }
922 
923 /// Try to emit a reference to the given value without producing it as
924 /// an l-value.  This is actually more than an optimization: we can't
925 /// produce an l-value for variables that we never actually captured
926 /// in a block or lambda, which means const int variables or constexpr
927 /// literals or similar.
928 CodeGenFunction::ConstantEmission
929 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
930   ValueDecl *value = refExpr->getDecl();
931 
932   // The value needs to be an enum constant or a constant variable.
933   ConstantEmissionKind CEK;
934   if (isa<ParmVarDecl>(value)) {
935     CEK = CEK_None;
936   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
937     CEK = checkVarTypeForConstantEmission(var->getType());
938   } else if (isa<EnumConstantDecl>(value)) {
939     CEK = CEK_AsValueOnly;
940   } else {
941     CEK = CEK_None;
942   }
943   if (CEK == CEK_None) return ConstantEmission();
944 
945   Expr::EvalResult result;
946   bool resultIsReference;
947   QualType resultType;
948 
949   // It's best to evaluate all the way as an r-value if that's permitted.
950   if (CEK != CEK_AsReferenceOnly &&
951       refExpr->EvaluateAsRValue(result, getContext())) {
952     resultIsReference = false;
953     resultType = refExpr->getType();
954 
955   // Otherwise, try to evaluate as an l-value.
956   } else if (CEK != CEK_AsValueOnly &&
957              refExpr->EvaluateAsLValue(result, getContext())) {
958     resultIsReference = true;
959     resultType = value->getType();
960 
961   // Failure.
962   } else {
963     return ConstantEmission();
964   }
965 
966   // In any case, if the initializer has side-effects, abandon ship.
967   if (result.HasSideEffects)
968     return ConstantEmission();
969 
970   // Emit as a constant.
971   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
972 
973   // Make sure we emit a debug reference to the global variable.
974   // This should probably fire even for
975   if (isa<VarDecl>(value)) {
976     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
977       EmitDeclRefExprDbgValue(refExpr, C);
978   } else {
979     assert(isa<EnumConstantDecl>(value));
980     EmitDeclRefExprDbgValue(refExpr, C);
981   }
982 
983   // If we emitted a reference constant, we need to dereference that.
984   if (resultIsReference)
985     return ConstantEmission::forReference(C);
986 
987   return ConstantEmission::forValue(C);
988 }
989 
990 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
991                                                SourceLocation Loc) {
992   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
993                           lvalue.getAlignment().getQuantity(),
994                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
995                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
996 }
997 
998 static bool hasBooleanRepresentation(QualType Ty) {
999   if (Ty->isBooleanType())
1000     return true;
1001 
1002   if (const EnumType *ET = Ty->getAs<EnumType>())
1003     return ET->getDecl()->getIntegerType()->isBooleanType();
1004 
1005   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1006     return hasBooleanRepresentation(AT->getValueType());
1007 
1008   return false;
1009 }
1010 
1011 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1012                             llvm::APInt &Min, llvm::APInt &End,
1013                             bool StrictEnums) {
1014   const EnumType *ET = Ty->getAs<EnumType>();
1015   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1016                                 ET && !ET->getDecl()->isFixed();
1017   bool IsBool = hasBooleanRepresentation(Ty);
1018   if (!IsBool && !IsRegularCPlusPlusEnum)
1019     return false;
1020 
1021   if (IsBool) {
1022     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1023     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1024   } else {
1025     const EnumDecl *ED = ET->getDecl();
1026     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1027     unsigned Bitwidth = LTy->getScalarSizeInBits();
1028     unsigned NumNegativeBits = ED->getNumNegativeBits();
1029     unsigned NumPositiveBits = ED->getNumPositiveBits();
1030 
1031     if (NumNegativeBits) {
1032       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1033       assert(NumBits <= Bitwidth);
1034       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1035       Min = -End;
1036     } else {
1037       assert(NumPositiveBits <= Bitwidth);
1038       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1039       Min = llvm::APInt(Bitwidth, 0);
1040     }
1041   }
1042   return true;
1043 }
1044 
1045 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1046   llvm::APInt Min, End;
1047   if (!getRangeForType(*this, Ty, Min, End,
1048                        CGM.getCodeGenOpts().StrictEnums))
1049     return 0;
1050 
1051   llvm::MDBuilder MDHelper(getLLVMContext());
1052   return MDHelper.createRange(Min, End);
1053 }
1054 
1055 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1056                                                unsigned Alignment, QualType Ty,
1057                                                SourceLocation Loc,
1058                                                llvm::MDNode *TBAAInfo,
1059                                                QualType TBAABaseType,
1060                                                uint64_t TBAAOffset) {
1061   // For better performance, handle vector loads differently.
1062   if (Ty->isVectorType()) {
1063     llvm::Value *V;
1064     const llvm::Type *EltTy =
1065     cast<llvm::PointerType>(Addr->getType())->getElementType();
1066 
1067     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1068 
1069     // Handle vectors of size 3, like size 4 for better performance.
1070     if (VTy->getNumElements() == 3) {
1071 
1072       // Bitcast to vec4 type.
1073       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1074                                                          4);
1075       llvm::PointerType *ptVec4Ty =
1076       llvm::PointerType::get(vec4Ty,
1077                              (cast<llvm::PointerType>(
1078                                       Addr->getType()))->getAddressSpace());
1079       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1080                                                 "castToVec4");
1081       // Now load value.
1082       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1083 
1084       // Shuffle vector to get vec3.
1085       llvm::Constant *Mask[] = {
1086         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1087         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1088         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1089       };
1090 
1091       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1092       V = Builder.CreateShuffleVector(LoadVal,
1093                                       llvm::UndefValue::get(vec4Ty),
1094                                       MaskV, "extractVec");
1095       return EmitFromMemory(V, Ty);
1096     }
1097   }
1098 
1099   // Atomic operations have to be done on integral types.
1100   if (Ty->isAtomicType()) {
1101     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1102                                      CharUnits::fromQuantity(Alignment),
1103                                      getContext(), TBAAInfo);
1104     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1105   }
1106 
1107   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1108   if (Volatile)
1109     Load->setVolatile(true);
1110   if (Alignment)
1111     Load->setAlignment(Alignment);
1112   if (TBAAInfo) {
1113     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1114                                                       TBAAOffset);
1115     if (TBAAPath)
1116       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1117   }
1118 
1119   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1120       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1121     llvm::APInt Min, End;
1122     if (getRangeForType(*this, Ty, Min, End, true)) {
1123       --End;
1124       llvm::Value *Check;
1125       if (!Min)
1126         Check = Builder.CreateICmpULE(
1127           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1128       else {
1129         llvm::Value *Upper = Builder.CreateICmpSLE(
1130           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1131         llvm::Value *Lower = Builder.CreateICmpSGE(
1132           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1133         Check = Builder.CreateAnd(Upper, Lower);
1134       }
1135       llvm::Constant *StaticArgs[] = {
1136         EmitCheckSourceLocation(Loc),
1137         EmitCheckTypeDescriptor(Ty)
1138       };
1139       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1140                 CRK_Recoverable);
1141     }
1142   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1143     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1144       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1145 
1146   return EmitFromMemory(Load, Ty);
1147 }
1148 
1149 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1150   // Bool has a different representation in memory than in registers.
1151   if (hasBooleanRepresentation(Ty)) {
1152     // This should really always be an i1, but sometimes it's already
1153     // an i8, and it's awkward to track those cases down.
1154     if (Value->getType()->isIntegerTy(1))
1155       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1156     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1157            "wrong value rep of bool");
1158   }
1159 
1160   return Value;
1161 }
1162 
1163 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1164   // Bool has a different representation in memory than in registers.
1165   if (hasBooleanRepresentation(Ty)) {
1166     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1167            "wrong value rep of bool");
1168     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1169   }
1170 
1171   return Value;
1172 }
1173 
1174 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1175                                         bool Volatile, unsigned Alignment,
1176                                         QualType Ty, llvm::MDNode *TBAAInfo,
1177                                         bool isInit, QualType TBAABaseType,
1178                                         uint64_t TBAAOffset) {
1179 
1180   // Handle vectors differently to get better performance.
1181   if (Ty->isVectorType()) {
1182     llvm::Type *SrcTy = Value->getType();
1183     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1184     // Handle vec3 special.
1185     if (VecTy->getNumElements() == 3) {
1186       llvm::LLVMContext &VMContext = getLLVMContext();
1187 
1188       // Our source is a vec3, do a shuffle vector to make it a vec4.
1189       SmallVector<llvm::Constant*, 4> Mask;
1190       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1191                                             0));
1192       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1193                                             1));
1194       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1195                                             2));
1196       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1197 
1198       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1199       Value = Builder.CreateShuffleVector(Value,
1200                                           llvm::UndefValue::get(VecTy),
1201                                           MaskV, "extractVec");
1202       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1203     }
1204     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1205     if (DstPtr->getElementType() != SrcTy) {
1206       llvm::Type *MemTy =
1207       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1208       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1209     }
1210   }
1211 
1212   Value = EmitToMemory(Value, Ty);
1213 
1214   if (Ty->isAtomicType()) {
1215     EmitAtomicStore(RValue::get(Value),
1216                     LValue::MakeAddr(Addr, Ty,
1217                                      CharUnits::fromQuantity(Alignment),
1218                                      getContext(), TBAAInfo),
1219                     isInit);
1220     return;
1221   }
1222 
1223   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1224   if (Alignment)
1225     Store->setAlignment(Alignment);
1226   if (TBAAInfo) {
1227     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1228                                                       TBAAOffset);
1229     if (TBAAPath)
1230       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1231   }
1232 }
1233 
1234 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1235                                         bool isInit) {
1236   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1237                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1238                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1239                     lvalue.getTBAAOffset());
1240 }
1241 
1242 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1243 /// method emits the address of the lvalue, then loads the result as an rvalue,
1244 /// returning the rvalue.
1245 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1246   if (LV.isObjCWeak()) {
1247     // load of a __weak object.
1248     llvm::Value *AddrWeakObj = LV.getAddress();
1249     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1250                                                              AddrWeakObj));
1251   }
1252   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1253     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1254     Object = EmitObjCConsumeObject(LV.getType(), Object);
1255     return RValue::get(Object);
1256   }
1257 
1258   if (LV.isSimple()) {
1259     assert(!LV.getType()->isFunctionType());
1260 
1261     // Everything needs a load.
1262     return RValue::get(EmitLoadOfScalar(LV, Loc));
1263   }
1264 
1265   if (LV.isVectorElt()) {
1266     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1267                                               LV.isVolatileQualified());
1268     Load->setAlignment(LV.getAlignment().getQuantity());
1269     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1270                                                     "vecext"));
1271   }
1272 
1273   // If this is a reference to a subset of the elements of a vector, either
1274   // shuffle the input or extract/insert them as appropriate.
1275   if (LV.isExtVectorElt())
1276     return EmitLoadOfExtVectorElementLValue(LV);
1277 
1278   assert(LV.isBitField() && "Unknown LValue type!");
1279   return EmitLoadOfBitfieldLValue(LV);
1280 }
1281 
1282 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1283   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1284 
1285   // Get the output type.
1286   llvm::Type *ResLTy = ConvertType(LV.getType());
1287 
1288   llvm::Value *Ptr = LV.getBitFieldAddr();
1289   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1290                                         "bf.load");
1291   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1292 
1293   if (Info.IsSigned) {
1294     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1295     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1296     if (HighBits)
1297       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1298     if (Info.Offset + HighBits)
1299       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1300   } else {
1301     if (Info.Offset)
1302       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1303     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1304       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1305                                                               Info.Size),
1306                               "bf.clear");
1307   }
1308   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1309 
1310   return RValue::get(Val);
1311 }
1312 
1313 // If this is a reference to a subset of the elements of a vector, create an
1314 // appropriate shufflevector.
1315 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1316   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1317                                             LV.isVolatileQualified());
1318   Load->setAlignment(LV.getAlignment().getQuantity());
1319   llvm::Value *Vec = Load;
1320 
1321   const llvm::Constant *Elts = LV.getExtVectorElts();
1322 
1323   // If the result of the expression is a non-vector type, we must be extracting
1324   // a single element.  Just codegen as an extractelement.
1325   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1326   if (!ExprVT) {
1327     unsigned InIdx = getAccessedFieldNo(0, Elts);
1328     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1329     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1330   }
1331 
1332   // Always use shuffle vector to try to retain the original program structure
1333   unsigned NumResultElts = ExprVT->getNumElements();
1334 
1335   SmallVector<llvm::Constant*, 4> Mask;
1336   for (unsigned i = 0; i != NumResultElts; ++i)
1337     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1338 
1339   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1340   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1341                                     MaskV);
1342   return RValue::get(Vec);
1343 }
1344 
1345 
1346 
1347 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1348 /// lvalue, where both are guaranteed to the have the same type, and that type
1349 /// is 'Ty'.
1350 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1351                                              bool isInit) {
1352   if (!Dst.isSimple()) {
1353     if (Dst.isVectorElt()) {
1354       // Read/modify/write the vector, inserting the new element.
1355       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1356                                                 Dst.isVolatileQualified());
1357       Load->setAlignment(Dst.getAlignment().getQuantity());
1358       llvm::Value *Vec = Load;
1359       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1360                                         Dst.getVectorIdx(), "vecins");
1361       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1362                                                    Dst.isVolatileQualified());
1363       Store->setAlignment(Dst.getAlignment().getQuantity());
1364       return;
1365     }
1366 
1367     // If this is an update of extended vector elements, insert them as
1368     // appropriate.
1369     if (Dst.isExtVectorElt())
1370       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1371 
1372     assert(Dst.isBitField() && "Unknown LValue type");
1373     return EmitStoreThroughBitfieldLValue(Src, Dst);
1374   }
1375 
1376   // There's special magic for assigning into an ARC-qualified l-value.
1377   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1378     switch (Lifetime) {
1379     case Qualifiers::OCL_None:
1380       llvm_unreachable("present but none");
1381 
1382     case Qualifiers::OCL_ExplicitNone:
1383       // nothing special
1384       break;
1385 
1386     case Qualifiers::OCL_Strong:
1387       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1388       return;
1389 
1390     case Qualifiers::OCL_Weak:
1391       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1392       return;
1393 
1394     case Qualifiers::OCL_Autoreleasing:
1395       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1396                                                      Src.getScalarVal()));
1397       // fall into the normal path
1398       break;
1399     }
1400   }
1401 
1402   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1403     // load of a __weak object.
1404     llvm::Value *LvalueDst = Dst.getAddress();
1405     llvm::Value *src = Src.getScalarVal();
1406      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1407     return;
1408   }
1409 
1410   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1411     // load of a __strong object.
1412     llvm::Value *LvalueDst = Dst.getAddress();
1413     llvm::Value *src = Src.getScalarVal();
1414     if (Dst.isObjCIvar()) {
1415       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1416       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1417       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1418       llvm::Value *dst = RHS;
1419       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1420       llvm::Value *LHS =
1421         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1422       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1423       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1424                                               BytesBetween);
1425     } else if (Dst.isGlobalObjCRef()) {
1426       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1427                                                 Dst.isThreadLocalRef());
1428     }
1429     else
1430       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1431     return;
1432   }
1433 
1434   assert(Src.isScalar() && "Can't emit an agg store with this method");
1435   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1436 }
1437 
1438 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1439                                                      llvm::Value **Result) {
1440   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1441   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1442   llvm::Value *Ptr = Dst.getBitFieldAddr();
1443 
1444   // Get the source value, truncated to the width of the bit-field.
1445   llvm::Value *SrcVal = Src.getScalarVal();
1446 
1447   // Cast the source to the storage type and shift it into place.
1448   SrcVal = Builder.CreateIntCast(SrcVal,
1449                                  Ptr->getType()->getPointerElementType(),
1450                                  /*IsSigned=*/false);
1451   llvm::Value *MaskedVal = SrcVal;
1452 
1453   // See if there are other bits in the bitfield's storage we'll need to load
1454   // and mask together with source before storing.
1455   if (Info.StorageSize != Info.Size) {
1456     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1457     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1458                                           "bf.load");
1459     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1460 
1461     // Mask the source value as needed.
1462     if (!hasBooleanRepresentation(Dst.getType()))
1463       SrcVal = Builder.CreateAnd(SrcVal,
1464                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1465                                                             Info.Size),
1466                                  "bf.value");
1467     MaskedVal = SrcVal;
1468     if (Info.Offset)
1469       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1470 
1471     // Mask out the original value.
1472     Val = Builder.CreateAnd(Val,
1473                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1474                                                      Info.Offset,
1475                                                      Info.Offset + Info.Size),
1476                             "bf.clear");
1477 
1478     // Or together the unchanged values and the source value.
1479     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1480   } else {
1481     assert(Info.Offset == 0);
1482   }
1483 
1484   // Write the new value back out.
1485   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1486                                                Dst.isVolatileQualified());
1487   Store->setAlignment(Info.StorageAlignment);
1488 
1489   // Return the new value of the bit-field, if requested.
1490   if (Result) {
1491     llvm::Value *ResultVal = MaskedVal;
1492 
1493     // Sign extend the value if needed.
1494     if (Info.IsSigned) {
1495       assert(Info.Size <= Info.StorageSize);
1496       unsigned HighBits = Info.StorageSize - Info.Size;
1497       if (HighBits) {
1498         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1499         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1500       }
1501     }
1502 
1503     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1504                                       "bf.result.cast");
1505     *Result = EmitFromMemory(ResultVal, Dst.getType());
1506   }
1507 }
1508 
1509 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1510                                                                LValue Dst) {
1511   // This access turns into a read/modify/write of the vector.  Load the input
1512   // value now.
1513   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1514                                             Dst.isVolatileQualified());
1515   Load->setAlignment(Dst.getAlignment().getQuantity());
1516   llvm::Value *Vec = Load;
1517   const llvm::Constant *Elts = Dst.getExtVectorElts();
1518 
1519   llvm::Value *SrcVal = Src.getScalarVal();
1520 
1521   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1522     unsigned NumSrcElts = VTy->getNumElements();
1523     unsigned NumDstElts =
1524        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1525     if (NumDstElts == NumSrcElts) {
1526       // Use shuffle vector is the src and destination are the same number of
1527       // elements and restore the vector mask since it is on the side it will be
1528       // stored.
1529       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1530       for (unsigned i = 0; i != NumSrcElts; ++i)
1531         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1532 
1533       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1534       Vec = Builder.CreateShuffleVector(SrcVal,
1535                                         llvm::UndefValue::get(Vec->getType()),
1536                                         MaskV);
1537     } else if (NumDstElts > NumSrcElts) {
1538       // Extended the source vector to the same length and then shuffle it
1539       // into the destination.
1540       // FIXME: since we're shuffling with undef, can we just use the indices
1541       //        into that?  This could be simpler.
1542       SmallVector<llvm::Constant*, 4> ExtMask;
1543       for (unsigned i = 0; i != NumSrcElts; ++i)
1544         ExtMask.push_back(Builder.getInt32(i));
1545       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1546       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1547       llvm::Value *ExtSrcVal =
1548         Builder.CreateShuffleVector(SrcVal,
1549                                     llvm::UndefValue::get(SrcVal->getType()),
1550                                     ExtMaskV);
1551       // build identity
1552       SmallVector<llvm::Constant*, 4> Mask;
1553       for (unsigned i = 0; i != NumDstElts; ++i)
1554         Mask.push_back(Builder.getInt32(i));
1555 
1556       // modify when what gets shuffled in
1557       for (unsigned i = 0; i != NumSrcElts; ++i)
1558         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1559       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1560       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1561     } else {
1562       // We should never shorten the vector
1563       llvm_unreachable("unexpected shorten vector length");
1564     }
1565   } else {
1566     // If the Src is a scalar (not a vector) it must be updating one element.
1567     unsigned InIdx = getAccessedFieldNo(0, Elts);
1568     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1569     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1570   }
1571 
1572   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1573                                                Dst.isVolatileQualified());
1574   Store->setAlignment(Dst.getAlignment().getQuantity());
1575 }
1576 
1577 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1578 // generating write-barries API. It is currently a global, ivar,
1579 // or neither.
1580 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1581                                  LValue &LV,
1582                                  bool IsMemberAccess=false) {
1583   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1584     return;
1585 
1586   if (isa<ObjCIvarRefExpr>(E)) {
1587     QualType ExpTy = E->getType();
1588     if (IsMemberAccess && ExpTy->isPointerType()) {
1589       // If ivar is a structure pointer, assigning to field of
1590       // this struct follows gcc's behavior and makes it a non-ivar
1591       // writer-barrier conservatively.
1592       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1593       if (ExpTy->isRecordType()) {
1594         LV.setObjCIvar(false);
1595         return;
1596       }
1597     }
1598     LV.setObjCIvar(true);
1599     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1600     LV.setBaseIvarExp(Exp->getBase());
1601     LV.setObjCArray(E->getType()->isArrayType());
1602     return;
1603   }
1604 
1605   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1606     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1607       if (VD->hasGlobalStorage()) {
1608         LV.setGlobalObjCRef(true);
1609         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1610       }
1611     }
1612     LV.setObjCArray(E->getType()->isArrayType());
1613     return;
1614   }
1615 
1616   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1617     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1618     return;
1619   }
1620 
1621   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1622     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1623     if (LV.isObjCIvar()) {
1624       // If cast is to a structure pointer, follow gcc's behavior and make it
1625       // a non-ivar write-barrier.
1626       QualType ExpTy = E->getType();
1627       if (ExpTy->isPointerType())
1628         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1629       if (ExpTy->isRecordType())
1630         LV.setObjCIvar(false);
1631     }
1632     return;
1633   }
1634 
1635   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1636     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1637     return;
1638   }
1639 
1640   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1641     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1642     return;
1643   }
1644 
1645   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1646     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1647     return;
1648   }
1649 
1650   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1651     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1652     return;
1653   }
1654 
1655   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1656     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1657     if (LV.isObjCIvar() && !LV.isObjCArray())
1658       // Using array syntax to assigning to what an ivar points to is not
1659       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1660       LV.setObjCIvar(false);
1661     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1662       // Using array syntax to assigning to what global points to is not
1663       // same as assigning to the global itself. {id *G;} G[i] = 0;
1664       LV.setGlobalObjCRef(false);
1665     return;
1666   }
1667 
1668   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1669     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1670     // We don't know if member is an 'ivar', but this flag is looked at
1671     // only in the context of LV.isObjCIvar().
1672     LV.setObjCArray(E->getType()->isArrayType());
1673     return;
1674   }
1675 }
1676 
1677 static llvm::Value *
1678 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1679                                 llvm::Value *V, llvm::Type *IRType,
1680                                 StringRef Name = StringRef()) {
1681   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1682   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1683 }
1684 
1685 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1686                                       const Expr *E, const VarDecl *VD) {
1687   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1688   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1689   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1690   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1691   QualType T = E->getType();
1692   LValue LV;
1693   if (VD->getType()->isReferenceType()) {
1694     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1695     LI->setAlignment(Alignment.getQuantity());
1696     V = LI;
1697     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1698   } else {
1699     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1700   }
1701   setObjCGCLValueClass(CGF.getContext(), E, LV);
1702   return LV;
1703 }
1704 
1705 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1706                                      const Expr *E, const FunctionDecl *FD) {
1707   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1708   if (!FD->hasPrototype()) {
1709     if (const FunctionProtoType *Proto =
1710             FD->getType()->getAs<FunctionProtoType>()) {
1711       // Ugly case: for a K&R-style definition, the type of the definition
1712       // isn't the same as the type of a use.  Correct for this with a
1713       // bitcast.
1714       QualType NoProtoType =
1715           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1716       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1717       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1718     }
1719   }
1720   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1721   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1722 }
1723 
1724 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1725                                       llvm::Value *ThisValue) {
1726   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1727   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1728   return CGF.EmitLValueForField(LV, FD);
1729 }
1730 
1731 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1732   const NamedDecl *ND = E->getDecl();
1733   CharUnits Alignment = getContext().getDeclAlign(ND);
1734   QualType T = E->getType();
1735 
1736   // A DeclRefExpr for a reference initialized by a constant expression can
1737   // appear without being odr-used. Directly emit the constant initializer.
1738   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1739     const Expr *Init = VD->getAnyInitializer(VD);
1740     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1741         VD->isUsableInConstantExpressions(getContext()) &&
1742         VD->checkInitIsICE()) {
1743       llvm::Constant *Val =
1744         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1745       assert(Val && "failed to emit reference constant expression");
1746       // FIXME: Eventually we will want to emit vector element references.
1747       return MakeAddrLValue(Val, T, Alignment);
1748     }
1749   }
1750 
1751   // FIXME: We should be able to assert this for FunctionDecls as well!
1752   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1753   // those with a valid source location.
1754   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1755           !E->getLocation().isValid()) &&
1756          "Should not use decl without marking it used!");
1757 
1758   if (ND->hasAttr<WeakRefAttr>()) {
1759     const ValueDecl *VD = cast<ValueDecl>(ND);
1760     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1761     return MakeAddrLValue(Aliasee, T, Alignment);
1762   }
1763 
1764   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1765     // Check if this is a global variable.
1766     if (VD->hasLinkage() || VD->isStaticDataMember()) {
1767       // If it's thread_local, emit a call to its wrapper function instead.
1768       if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1769         return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1770       return EmitGlobalVarDeclLValue(*this, E, VD);
1771     }
1772 
1773     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1774 
1775     llvm::Value *V = LocalDeclMap.lookup(VD);
1776     if (!V && VD->isStaticLocal())
1777       V = CGM.getStaticLocalDeclAddress(VD);
1778 
1779     // Use special handling for lambdas.
1780     if (!V) {
1781       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1782         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1783       } else if (CapturedStmtInfo) {
1784         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1785           return EmitCapturedFieldLValue(*this, FD,
1786                                          CapturedStmtInfo->getContextValue());
1787       }
1788 
1789       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1790       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1791                             T, Alignment);
1792     }
1793 
1794     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1795 
1796     if (isBlockVariable)
1797       V = BuildBlockByrefAddress(V, VD);
1798 
1799     LValue LV;
1800     if (VD->getType()->isReferenceType()) {
1801       llvm::LoadInst *LI = Builder.CreateLoad(V);
1802       LI->setAlignment(Alignment.getQuantity());
1803       V = LI;
1804       LV = MakeNaturalAlignAddrLValue(V, T);
1805     } else {
1806       LV = MakeAddrLValue(V, T, Alignment);
1807     }
1808 
1809     bool isLocalStorage = VD->hasLocalStorage();
1810 
1811     bool NonGCable = isLocalStorage &&
1812                      !VD->getType()->isReferenceType() &&
1813                      !isBlockVariable;
1814     if (NonGCable) {
1815       LV.getQuals().removeObjCGCAttr();
1816       LV.setNonGC(true);
1817     }
1818 
1819     bool isImpreciseLifetime =
1820       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1821     if (isImpreciseLifetime)
1822       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1823     setObjCGCLValueClass(getContext(), E, LV);
1824     return LV;
1825   }
1826 
1827   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1828     return EmitFunctionDeclLValue(*this, E, FD);
1829 
1830   llvm_unreachable("Unhandled DeclRefExpr");
1831 }
1832 
1833 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1834   // __extension__ doesn't affect lvalue-ness.
1835   if (E->getOpcode() == UO_Extension)
1836     return EmitLValue(E->getSubExpr());
1837 
1838   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1839   switch (E->getOpcode()) {
1840   default: llvm_unreachable("Unknown unary operator lvalue!");
1841   case UO_Deref: {
1842     QualType T = E->getSubExpr()->getType()->getPointeeType();
1843     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1844 
1845     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1846     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1847 
1848     // We should not generate __weak write barrier on indirect reference
1849     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1850     // But, we continue to generate __strong write barrier on indirect write
1851     // into a pointer to object.
1852     if (getLangOpts().ObjC1 &&
1853         getLangOpts().getGC() != LangOptions::NonGC &&
1854         LV.isObjCWeak())
1855       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1856     return LV;
1857   }
1858   case UO_Real:
1859   case UO_Imag: {
1860     LValue LV = EmitLValue(E->getSubExpr());
1861     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1862     llvm::Value *Addr = LV.getAddress();
1863 
1864     // __real is valid on scalars.  This is a faster way of testing that.
1865     // __imag can only produce an rvalue on scalars.
1866     if (E->getOpcode() == UO_Real &&
1867         !cast<llvm::PointerType>(Addr->getType())
1868            ->getElementType()->isStructTy()) {
1869       assert(E->getSubExpr()->getType()->isArithmeticType());
1870       return LV;
1871     }
1872 
1873     assert(E->getSubExpr()->getType()->isAnyComplexType());
1874 
1875     unsigned Idx = E->getOpcode() == UO_Imag;
1876     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1877                                                   Idx, "idx"),
1878                           ExprTy);
1879   }
1880   case UO_PreInc:
1881   case UO_PreDec: {
1882     LValue LV = EmitLValue(E->getSubExpr());
1883     bool isInc = E->getOpcode() == UO_PreInc;
1884 
1885     if (E->getType()->isAnyComplexType())
1886       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1887     else
1888       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1889     return LV;
1890   }
1891   }
1892 }
1893 
1894 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1895   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1896                         E->getType());
1897 }
1898 
1899 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1900   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1901                         E->getType());
1902 }
1903 
1904 static llvm::Constant*
1905 GetAddrOfConstantWideString(StringRef Str,
1906                             const char *GlobalName,
1907                             ASTContext &Context,
1908                             QualType Ty, SourceLocation Loc,
1909                             CodeGenModule &CGM) {
1910 
1911   StringLiteral *SL = StringLiteral::Create(Context,
1912                                             Str,
1913                                             StringLiteral::Wide,
1914                                             /*Pascal = */false,
1915                                             Ty, Loc);
1916   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1917   llvm::GlobalVariable *GV =
1918     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1919                              !CGM.getLangOpts().WritableStrings,
1920                              llvm::GlobalValue::PrivateLinkage,
1921                              C, GlobalName);
1922   const unsigned WideAlignment =
1923     Context.getTypeAlignInChars(Ty).getQuantity();
1924   GV->setAlignment(WideAlignment);
1925   return GV;
1926 }
1927 
1928 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1929                                     SmallString<32>& Target) {
1930   Target.resize(CharByteWidth * (Source.size() + 1));
1931   char *ResultPtr = &Target[0];
1932   const UTF8 *ErrorPtr;
1933   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1934   (void)success;
1935   assert(success);
1936   Target.resize(ResultPtr - &Target[0]);
1937 }
1938 
1939 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1940   switch (E->getIdentType()) {
1941   default:
1942     return EmitUnsupportedLValue(E, "predefined expression");
1943 
1944   case PredefinedExpr::Func:
1945   case PredefinedExpr::Function:
1946   case PredefinedExpr::LFunction:
1947   case PredefinedExpr::FuncDName:
1948   case PredefinedExpr::PrettyFunction: {
1949     PredefinedExpr::IdentType IdentType = E->getIdentType();
1950     std::string GlobalVarName;
1951 
1952     switch (IdentType) {
1953     default: llvm_unreachable("Invalid type");
1954     case PredefinedExpr::Func:
1955       GlobalVarName = "__func__.";
1956       break;
1957     case PredefinedExpr::Function:
1958       GlobalVarName = "__FUNCTION__.";
1959       break;
1960     case PredefinedExpr::FuncDName:
1961       GlobalVarName = "__FUNCDNAME__.";
1962       break;
1963     case PredefinedExpr::LFunction:
1964       GlobalVarName = "L__FUNCTION__.";
1965       break;
1966     case PredefinedExpr::PrettyFunction:
1967       GlobalVarName = "__PRETTY_FUNCTION__.";
1968       break;
1969     }
1970 
1971     StringRef FnName = CurFn->getName();
1972     if (FnName.startswith("\01"))
1973       FnName = FnName.substr(1);
1974     GlobalVarName += FnName;
1975 
1976     // If this is outside of a function use the top level decl.
1977     const Decl *CurDecl = CurCodeDecl;
1978     if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1979       CurDecl = getContext().getTranslationUnitDecl();
1980 
1981     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1982     std::string FunctionName;
1983     if (isa<BlockDecl>(CurDecl)) {
1984       // Blocks use the mangled function name.
1985       // FIXME: ComputeName should handle blocks.
1986       FunctionName = FnName.str();
1987     } else if (isa<CapturedDecl>(CurDecl)) {
1988       // For a captured statement, the function name is its enclosing
1989       // function name not the one compiler generated.
1990       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1991     } else {
1992       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1993       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
1994                  FunctionName.size() &&
1995              "Computed __func__ length differs from type!");
1996     }
1997 
1998     llvm::Constant *C;
1999     if (ElemType->isWideCharType()) {
2000       SmallString<32> RawChars;
2001       ConvertUTF8ToWideString(
2002           getContext().getTypeSizeInChars(ElemType).getQuantity(),
2003           FunctionName, RawChars);
2004       C = GetAddrOfConstantWideString(RawChars,
2005                                       GlobalVarName.c_str(),
2006                                       getContext(),
2007                                       E->getType(),
2008                                       E->getLocation(),
2009                                       CGM);
2010     } else {
2011       C = CGM.GetAddrOfConstantCString(FunctionName,
2012                                        GlobalVarName.c_str(),
2013                                        1);
2014     }
2015     return MakeAddrLValue(C, E->getType());
2016   }
2017   }
2018 }
2019 
2020 /// Emit a type description suitable for use by a runtime sanitizer library. The
2021 /// format of a type descriptor is
2022 ///
2023 /// \code
2024 ///   { i16 TypeKind, i16 TypeInfo }
2025 /// \endcode
2026 ///
2027 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2028 /// integer, 1 for a floating point value, and -1 for anything else.
2029 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2030   // Only emit each type's descriptor once.
2031   if (llvm::Constant *C = CGM.getTypeDescriptor(T))
2032     return C;
2033 
2034   uint16_t TypeKind = -1;
2035   uint16_t TypeInfo = 0;
2036 
2037   if (T->isIntegerType()) {
2038     TypeKind = 0;
2039     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2040                (T->isSignedIntegerType() ? 1 : 0);
2041   } else if (T->isFloatingType()) {
2042     TypeKind = 1;
2043     TypeInfo = getContext().getTypeSize(T);
2044   }
2045 
2046   // Format the type name as if for a diagnostic, including quotes and
2047   // optionally an 'aka'.
2048   SmallString<32> Buffer;
2049   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2050                                     (intptr_t)T.getAsOpaquePtr(),
2051                                     0, 0, 0, 0, 0, 0, Buffer,
2052                                     ArrayRef<intptr_t>());
2053 
2054   llvm::Constant *Components[] = {
2055     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2056     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2057   };
2058   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2059 
2060   llvm::GlobalVariable *GV =
2061     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2062                              /*isConstant=*/true,
2063                              llvm::GlobalVariable::PrivateLinkage,
2064                              Descriptor);
2065   GV->setUnnamedAddr(true);
2066 
2067   // Remember the descriptor for this type.
2068   CGM.setTypeDescriptor(T, GV);
2069 
2070   return GV;
2071 }
2072 
2073 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2074   llvm::Type *TargetTy = IntPtrTy;
2075 
2076   // Floating-point types which fit into intptr_t are bitcast to integers
2077   // and then passed directly (after zero-extension, if necessary).
2078   if (V->getType()->isFloatingPointTy()) {
2079     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2080     if (Bits <= TargetTy->getIntegerBitWidth())
2081       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2082                                                          Bits));
2083   }
2084 
2085   // Integers which fit in intptr_t are zero-extended and passed directly.
2086   if (V->getType()->isIntegerTy() &&
2087       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2088     return Builder.CreateZExt(V, TargetTy);
2089 
2090   // Pointers are passed directly, everything else is passed by address.
2091   if (!V->getType()->isPointerTy()) {
2092     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2093     Builder.CreateStore(V, Ptr);
2094     V = Ptr;
2095   }
2096   return Builder.CreatePtrToInt(V, TargetTy);
2097 }
2098 
2099 /// \brief Emit a representation of a SourceLocation for passing to a handler
2100 /// in a sanitizer runtime library. The format for this data is:
2101 /// \code
2102 ///   struct SourceLocation {
2103 ///     const char *Filename;
2104 ///     int32_t Line, Column;
2105 ///   };
2106 /// \endcode
2107 /// For an invalid SourceLocation, the Filename pointer is null.
2108 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2109   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2110 
2111   llvm::Constant *Data[] = {
2112     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2113                    : llvm::Constant::getNullValue(Int8PtrTy),
2114     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2115     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2116   };
2117 
2118   return llvm::ConstantStruct::getAnon(Data);
2119 }
2120 
2121 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2122                                 ArrayRef<llvm::Constant *> StaticArgs,
2123                                 ArrayRef<llvm::Value *> DynamicArgs,
2124                                 CheckRecoverableKind RecoverKind) {
2125   assert(SanOpts != &SanitizerOptions::Disabled);
2126 
2127   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2128     assert (RecoverKind != CRK_AlwaysRecoverable &&
2129             "Runtime call required for AlwaysRecoverable kind!");
2130     return EmitTrapCheck(Checked);
2131   }
2132 
2133   llvm::BasicBlock *Cont = createBasicBlock("cont");
2134 
2135   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2136 
2137   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2138 
2139   // Give hint that we very much don't expect to execute the handler
2140   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2141   llvm::MDBuilder MDHelper(getLLVMContext());
2142   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2143   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2144 
2145   EmitBlock(Handler);
2146 
2147   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2148   llvm::GlobalValue *InfoPtr =
2149       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2150                                llvm::GlobalVariable::PrivateLinkage, Info);
2151   InfoPtr->setUnnamedAddr(true);
2152 
2153   SmallVector<llvm::Value *, 4> Args;
2154   SmallVector<llvm::Type *, 4> ArgTypes;
2155   Args.reserve(DynamicArgs.size() + 1);
2156   ArgTypes.reserve(DynamicArgs.size() + 1);
2157 
2158   // Handler functions take an i8* pointing to the (handler-specific) static
2159   // information block, followed by a sequence of intptr_t arguments
2160   // representing operand values.
2161   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2162   ArgTypes.push_back(Int8PtrTy);
2163   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2164     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2165     ArgTypes.push_back(IntPtrTy);
2166   }
2167 
2168   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2169                  ((RecoverKind == CRK_Recoverable) &&
2170                    CGM.getCodeGenOpts().SanitizeRecover);
2171 
2172   llvm::FunctionType *FnType =
2173     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2174   llvm::AttrBuilder B;
2175   if (!Recover) {
2176     B.addAttribute(llvm::Attribute::NoReturn)
2177      .addAttribute(llvm::Attribute::NoUnwind);
2178   }
2179   B.addAttribute(llvm::Attribute::UWTable);
2180 
2181   // Checks that have two variants use a suffix to differentiate them
2182   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2183                            !CGM.getCodeGenOpts().SanitizeRecover;
2184   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2185                               (NeedsAbortSuffix? "_abort" : "")).str();
2186   llvm::Value *Fn =
2187     CGM.CreateRuntimeFunction(FnType, FunctionName,
2188                               llvm::AttributeSet::get(getLLVMContext(),
2189                                               llvm::AttributeSet::FunctionIndex,
2190                                                       B));
2191   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2192   if (Recover) {
2193     Builder.CreateBr(Cont);
2194   } else {
2195     HandlerCall->setDoesNotReturn();
2196     Builder.CreateUnreachable();
2197   }
2198 
2199   EmitBlock(Cont);
2200 }
2201 
2202 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2203   llvm::BasicBlock *Cont = createBasicBlock("cont");
2204 
2205   // If we're optimizing, collapse all calls to trap down to just one per
2206   // function to save on code size.
2207   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2208     TrapBB = createBasicBlock("trap");
2209     Builder.CreateCondBr(Checked, Cont, TrapBB);
2210     EmitBlock(TrapBB);
2211     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2212     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2213     TrapCall->setDoesNotReturn();
2214     TrapCall->setDoesNotThrow();
2215     Builder.CreateUnreachable();
2216   } else {
2217     Builder.CreateCondBr(Checked, Cont, TrapBB);
2218   }
2219 
2220   EmitBlock(Cont);
2221 }
2222 
2223 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2224 /// array to pointer, return the array subexpression.
2225 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2226   // If this isn't just an array->pointer decay, bail out.
2227   const CastExpr *CE = dyn_cast<CastExpr>(E);
2228   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2229     return 0;
2230 
2231   // If this is a decay from variable width array, bail out.
2232   const Expr *SubExpr = CE->getSubExpr();
2233   if (SubExpr->getType()->isVariableArrayType())
2234     return 0;
2235 
2236   return SubExpr;
2237 }
2238 
2239 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2240                                                bool Accessed) {
2241   // The index must always be an integer, which is not an aggregate.  Emit it.
2242   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2243   QualType IdxTy  = E->getIdx()->getType();
2244   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2245 
2246   if (SanOpts->ArrayBounds)
2247     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2248 
2249   // If the base is a vector type, then we are forming a vector element lvalue
2250   // with this subscript.
2251   if (E->getBase()->getType()->isVectorType()) {
2252     // Emit the vector as an lvalue to get its address.
2253     LValue LHS = EmitLValue(E->getBase());
2254     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2255     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2256     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2257                                  E->getBase()->getType(), LHS.getAlignment());
2258   }
2259 
2260   // Extend or truncate the index type to 32 or 64-bits.
2261   if (Idx->getType() != IntPtrTy)
2262     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2263 
2264   // We know that the pointer points to a type of the correct size, unless the
2265   // size is a VLA or Objective-C interface.
2266   llvm::Value *Address = 0;
2267   CharUnits ArrayAlignment;
2268   if (const VariableArrayType *vla =
2269         getContext().getAsVariableArrayType(E->getType())) {
2270     // The base must be a pointer, which is not an aggregate.  Emit
2271     // it.  It needs to be emitted first in case it's what captures
2272     // the VLA bounds.
2273     Address = EmitScalarExpr(E->getBase());
2274 
2275     // The element count here is the total number of non-VLA elements.
2276     llvm::Value *numElements = getVLASize(vla).first;
2277 
2278     // Effectively, the multiply by the VLA size is part of the GEP.
2279     // GEP indexes are signed, and scaling an index isn't permitted to
2280     // signed-overflow, so we use the same semantics for our explicit
2281     // multiply.  We suppress this if overflow is not undefined behavior.
2282     if (getLangOpts().isSignedOverflowDefined()) {
2283       Idx = Builder.CreateMul(Idx, numElements);
2284       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2285     } else {
2286       Idx = Builder.CreateNSWMul(Idx, numElements);
2287       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2288     }
2289   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2290     // Indexing over an interface, as in "NSString *P; P[4];"
2291     llvm::Value *InterfaceSize =
2292       llvm::ConstantInt::get(Idx->getType(),
2293           getContext().getTypeSizeInChars(OIT).getQuantity());
2294 
2295     Idx = Builder.CreateMul(Idx, InterfaceSize);
2296 
2297     // The base must be a pointer, which is not an aggregate.  Emit it.
2298     llvm::Value *Base = EmitScalarExpr(E->getBase());
2299     Address = EmitCastToVoidPtr(Base);
2300     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2301     Address = Builder.CreateBitCast(Address, Base->getType());
2302   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2303     // If this is A[i] where A is an array, the frontend will have decayed the
2304     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2305     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2306     // "gep x, i" here.  Emit one "gep A, 0, i".
2307     assert(Array->getType()->isArrayType() &&
2308            "Array to pointer decay must have array source type!");
2309     LValue ArrayLV;
2310     // For simple multidimensional array indexing, set the 'accessed' flag for
2311     // better bounds-checking of the base expression.
2312     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2313       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2314     else
2315       ArrayLV = EmitLValue(Array);
2316     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2317     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2318     llvm::Value *Args[] = { Zero, Idx };
2319 
2320     // Propagate the alignment from the array itself to the result.
2321     ArrayAlignment = ArrayLV.getAlignment();
2322 
2323     if (getLangOpts().isSignedOverflowDefined())
2324       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2325     else
2326       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2327   } else {
2328     // The base must be a pointer, which is not an aggregate.  Emit it.
2329     llvm::Value *Base = EmitScalarExpr(E->getBase());
2330     if (getLangOpts().isSignedOverflowDefined())
2331       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2332     else
2333       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2334   }
2335 
2336   QualType T = E->getBase()->getType()->getPointeeType();
2337   assert(!T.isNull() &&
2338          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2339 
2340 
2341   // Limit the alignment to that of the result type.
2342   LValue LV;
2343   if (!ArrayAlignment.isZero()) {
2344     CharUnits Align = getContext().getTypeAlignInChars(T);
2345     ArrayAlignment = std::min(Align, ArrayAlignment);
2346     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2347   } else {
2348     LV = MakeNaturalAlignAddrLValue(Address, T);
2349   }
2350 
2351   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2352 
2353   if (getLangOpts().ObjC1 &&
2354       getLangOpts().getGC() != LangOptions::NonGC) {
2355     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2356     setObjCGCLValueClass(getContext(), E, LV);
2357   }
2358   return LV;
2359 }
2360 
2361 static
2362 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2363                                        SmallVectorImpl<unsigned> &Elts) {
2364   SmallVector<llvm::Constant*, 4> CElts;
2365   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2366     CElts.push_back(Builder.getInt32(Elts[i]));
2367 
2368   return llvm::ConstantVector::get(CElts);
2369 }
2370 
2371 LValue CodeGenFunction::
2372 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2373   // Emit the base vector as an l-value.
2374   LValue Base;
2375 
2376   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2377   if (E->isArrow()) {
2378     // If it is a pointer to a vector, emit the address and form an lvalue with
2379     // it.
2380     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2381     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2382     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2383     Base.getQuals().removeObjCGCAttr();
2384   } else if (E->getBase()->isGLValue()) {
2385     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2386     // emit the base as an lvalue.
2387     assert(E->getBase()->getType()->isVectorType());
2388     Base = EmitLValue(E->getBase());
2389   } else {
2390     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2391     assert(E->getBase()->getType()->isVectorType() &&
2392            "Result must be a vector");
2393     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2394 
2395     // Store the vector to memory (because LValue wants an address).
2396     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2397     Builder.CreateStore(Vec, VecMem);
2398     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2399   }
2400 
2401   QualType type =
2402     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2403 
2404   // Encode the element access list into a vector of unsigned indices.
2405   SmallVector<unsigned, 4> Indices;
2406   E->getEncodedElementAccess(Indices);
2407 
2408   if (Base.isSimple()) {
2409     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2410     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2411                                     Base.getAlignment());
2412   }
2413   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2414 
2415   llvm::Constant *BaseElts = Base.getExtVectorElts();
2416   SmallVector<llvm::Constant *, 4> CElts;
2417 
2418   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2419     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2420   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2421   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2422                                   Base.getAlignment());
2423 }
2424 
2425 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2426   Expr *BaseExpr = E->getBase();
2427 
2428   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2429   LValue BaseLV;
2430   if (E->isArrow()) {
2431     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2432     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2433     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2434     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2435   } else
2436     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2437 
2438   NamedDecl *ND = E->getMemberDecl();
2439   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2440     LValue LV = EmitLValueForField(BaseLV, Field);
2441     setObjCGCLValueClass(getContext(), E, LV);
2442     return LV;
2443   }
2444 
2445   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2446     return EmitGlobalVarDeclLValue(*this, E, VD);
2447 
2448   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2449     return EmitFunctionDeclLValue(*this, E, FD);
2450 
2451   llvm_unreachable("Unhandled member declaration!");
2452 }
2453 
2454 /// Given that we are currently emitting a lambda, emit an l-value for
2455 /// one of its members.
2456 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2457   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2458   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2459   QualType LambdaTagType =
2460     getContext().getTagDeclType(Field->getParent());
2461   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2462   return EmitLValueForField(LambdaLV, Field);
2463 }
2464 
2465 LValue CodeGenFunction::EmitLValueForField(LValue base,
2466                                            const FieldDecl *field) {
2467   if (field->isBitField()) {
2468     const CGRecordLayout &RL =
2469       CGM.getTypes().getCGRecordLayout(field->getParent());
2470     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2471     llvm::Value *Addr = base.getAddress();
2472     unsigned Idx = RL.getLLVMFieldNo(field);
2473     if (Idx != 0)
2474       // For structs, we GEP to the field that the record layout suggests.
2475       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2476     // Get the access type.
2477     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2478       getLLVMContext(), Info.StorageSize,
2479       CGM.getContext().getTargetAddressSpace(base.getType()));
2480     if (Addr->getType() != PtrTy)
2481       Addr = Builder.CreateBitCast(Addr, PtrTy);
2482 
2483     QualType fieldType =
2484       field->getType().withCVRQualifiers(base.getVRQualifiers());
2485     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2486   }
2487 
2488   const RecordDecl *rec = field->getParent();
2489   QualType type = field->getType();
2490   CharUnits alignment = getContext().getDeclAlign(field);
2491 
2492   // FIXME: It should be impossible to have an LValue without alignment for a
2493   // complete type.
2494   if (!base.getAlignment().isZero())
2495     alignment = std::min(alignment, base.getAlignment());
2496 
2497   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2498 
2499   llvm::Value *addr = base.getAddress();
2500   unsigned cvr = base.getVRQualifiers();
2501   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2502   if (rec->isUnion()) {
2503     // For unions, there is no pointer adjustment.
2504     assert(!type->isReferenceType() && "union has reference member");
2505     // TODO: handle path-aware TBAA for union.
2506     TBAAPath = false;
2507   } else {
2508     // For structs, we GEP to the field that the record layout suggests.
2509     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2510     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2511 
2512     // If this is a reference field, load the reference right now.
2513     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2514       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2515       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2516       load->setAlignment(alignment.getQuantity());
2517 
2518       // Loading the reference will disable path-aware TBAA.
2519       TBAAPath = false;
2520       if (CGM.shouldUseTBAA()) {
2521         llvm::MDNode *tbaa;
2522         if (mayAlias)
2523           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2524         else
2525           tbaa = CGM.getTBAAInfo(type);
2526         if (tbaa)
2527           CGM.DecorateInstruction(load, tbaa);
2528       }
2529 
2530       addr = load;
2531       mayAlias = false;
2532       type = refType->getPointeeType();
2533       if (type->isIncompleteType())
2534         alignment = CharUnits();
2535       else
2536         alignment = getContext().getTypeAlignInChars(type);
2537       cvr = 0; // qualifiers don't recursively apply to referencee
2538     }
2539   }
2540 
2541   // Make sure that the address is pointing to the right type.  This is critical
2542   // for both unions and structs.  A union needs a bitcast, a struct element
2543   // will need a bitcast if the LLVM type laid out doesn't match the desired
2544   // type.
2545   addr = EmitBitCastOfLValueToProperType(*this, addr,
2546                                          CGM.getTypes().ConvertTypeForMem(type),
2547                                          field->getName());
2548 
2549   if (field->hasAttr<AnnotateAttr>())
2550     addr = EmitFieldAnnotations(field, addr);
2551 
2552   LValue LV = MakeAddrLValue(addr, type, alignment);
2553   LV.getQuals().addCVRQualifiers(cvr);
2554   if (TBAAPath) {
2555     const ASTRecordLayout &Layout =
2556         getContext().getASTRecordLayout(field->getParent());
2557     // Set the base type to be the base type of the base LValue and
2558     // update offset to be relative to the base type.
2559     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2560     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2561                      Layout.getFieldOffset(field->getFieldIndex()) /
2562                                            getContext().getCharWidth());
2563   }
2564 
2565   // __weak attribute on a field is ignored.
2566   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2567     LV.getQuals().removeObjCGCAttr();
2568 
2569   // Fields of may_alias structs act like 'char' for TBAA purposes.
2570   // FIXME: this should get propagated down through anonymous structs
2571   // and unions.
2572   if (mayAlias && LV.getTBAAInfo())
2573     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2574 
2575   return LV;
2576 }
2577 
2578 LValue
2579 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2580                                                   const FieldDecl *Field) {
2581   QualType FieldType = Field->getType();
2582 
2583   if (!FieldType->isReferenceType())
2584     return EmitLValueForField(Base, Field);
2585 
2586   const CGRecordLayout &RL =
2587     CGM.getTypes().getCGRecordLayout(Field->getParent());
2588   unsigned idx = RL.getLLVMFieldNo(Field);
2589   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2590   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2591 
2592   // Make sure that the address is pointing to the right type.  This is critical
2593   // for both unions and structs.  A union needs a bitcast, a struct element
2594   // will need a bitcast if the LLVM type laid out doesn't match the desired
2595   // type.
2596   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2597   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2598 
2599   CharUnits Alignment = getContext().getDeclAlign(Field);
2600 
2601   // FIXME: It should be impossible to have an LValue without alignment for a
2602   // complete type.
2603   if (!Base.getAlignment().isZero())
2604     Alignment = std::min(Alignment, Base.getAlignment());
2605 
2606   return MakeAddrLValue(V, FieldType, Alignment);
2607 }
2608 
2609 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2610   if (E->isFileScope()) {
2611     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2612     return MakeAddrLValue(GlobalPtr, E->getType());
2613   }
2614   if (E->getType()->isVariablyModifiedType())
2615     // make sure to emit the VLA size.
2616     EmitVariablyModifiedType(E->getType());
2617 
2618   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2619   const Expr *InitExpr = E->getInitializer();
2620   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2621 
2622   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2623                    /*Init*/ true);
2624 
2625   return Result;
2626 }
2627 
2628 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2629   if (!E->isGLValue())
2630     // Initializing an aggregate temporary in C++11: T{...}.
2631     return EmitAggExprToLValue(E);
2632 
2633   // An lvalue initializer list must be initializing a reference.
2634   assert(E->getNumInits() == 1 && "reference init with multiple values");
2635   return EmitLValue(E->getInit(0));
2636 }
2637 
2638 LValue CodeGenFunction::
2639 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2640   if (!expr->isGLValue()) {
2641     // ?: here should be an aggregate.
2642     assert(hasAggregateEvaluationKind(expr->getType()) &&
2643            "Unexpected conditional operator!");
2644     return EmitAggExprToLValue(expr);
2645   }
2646 
2647   OpaqueValueMapping binding(*this, expr);
2648 
2649   const Expr *condExpr = expr->getCond();
2650   bool CondExprBool;
2651   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2652     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2653     if (!CondExprBool) std::swap(live, dead);
2654 
2655     if (!ContainsLabel(dead))
2656       return EmitLValue(live);
2657   }
2658 
2659   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2660   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2661   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2662 
2663   ConditionalEvaluation eval(*this);
2664   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2665 
2666   // Any temporaries created here are conditional.
2667   EmitBlock(lhsBlock);
2668   eval.begin(*this);
2669   LValue lhs = EmitLValue(expr->getTrueExpr());
2670   eval.end(*this);
2671 
2672   if (!lhs.isSimple())
2673     return EmitUnsupportedLValue(expr, "conditional operator");
2674 
2675   lhsBlock = Builder.GetInsertBlock();
2676   Builder.CreateBr(contBlock);
2677 
2678   // Any temporaries created here are conditional.
2679   EmitBlock(rhsBlock);
2680   eval.begin(*this);
2681   LValue rhs = EmitLValue(expr->getFalseExpr());
2682   eval.end(*this);
2683   if (!rhs.isSimple())
2684     return EmitUnsupportedLValue(expr, "conditional operator");
2685   rhsBlock = Builder.GetInsertBlock();
2686 
2687   EmitBlock(contBlock);
2688 
2689   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2690                                          "cond-lvalue");
2691   phi->addIncoming(lhs.getAddress(), lhsBlock);
2692   phi->addIncoming(rhs.getAddress(), rhsBlock);
2693   return MakeAddrLValue(phi, expr->getType());
2694 }
2695 
2696 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2697 /// type. If the cast is to a reference, we can have the usual lvalue result,
2698 /// otherwise if a cast is needed by the code generator in an lvalue context,
2699 /// then it must mean that we need the address of an aggregate in order to
2700 /// access one of its members.  This can happen for all the reasons that casts
2701 /// are permitted with aggregate result, including noop aggregate casts, and
2702 /// cast from scalar to union.
2703 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2704   switch (E->getCastKind()) {
2705   case CK_ToVoid:
2706   case CK_BitCast:
2707   case CK_ArrayToPointerDecay:
2708   case CK_FunctionToPointerDecay:
2709   case CK_NullToMemberPointer:
2710   case CK_NullToPointer:
2711   case CK_IntegralToPointer:
2712   case CK_PointerToIntegral:
2713   case CK_PointerToBoolean:
2714   case CK_VectorSplat:
2715   case CK_IntegralCast:
2716   case CK_IntegralToBoolean:
2717   case CK_IntegralToFloating:
2718   case CK_FloatingToIntegral:
2719   case CK_FloatingToBoolean:
2720   case CK_FloatingCast:
2721   case CK_FloatingRealToComplex:
2722   case CK_FloatingComplexToReal:
2723   case CK_FloatingComplexToBoolean:
2724   case CK_FloatingComplexCast:
2725   case CK_FloatingComplexToIntegralComplex:
2726   case CK_IntegralRealToComplex:
2727   case CK_IntegralComplexToReal:
2728   case CK_IntegralComplexToBoolean:
2729   case CK_IntegralComplexCast:
2730   case CK_IntegralComplexToFloatingComplex:
2731   case CK_DerivedToBaseMemberPointer:
2732   case CK_BaseToDerivedMemberPointer:
2733   case CK_MemberPointerToBoolean:
2734   case CK_ReinterpretMemberPointer:
2735   case CK_AnyPointerToBlockPointerCast:
2736   case CK_ARCProduceObject:
2737   case CK_ARCConsumeObject:
2738   case CK_ARCReclaimReturnedObject:
2739   case CK_ARCExtendBlockObject:
2740   case CK_CopyAndAutoreleaseBlockObject:
2741     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2742 
2743   case CK_Dependent:
2744     llvm_unreachable("dependent cast kind in IR gen!");
2745 
2746   case CK_BuiltinFnToFnPtr:
2747     llvm_unreachable("builtin functions are handled elsewhere");
2748 
2749   // These are never l-values; just use the aggregate emission code.
2750   case CK_NonAtomicToAtomic:
2751   case CK_AtomicToNonAtomic:
2752     return EmitAggExprToLValue(E);
2753 
2754   case CK_Dynamic: {
2755     LValue LV = EmitLValue(E->getSubExpr());
2756     llvm::Value *V = LV.getAddress();
2757     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2758     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2759   }
2760 
2761   case CK_ConstructorConversion:
2762   case CK_UserDefinedConversion:
2763   case CK_CPointerToObjCPointerCast:
2764   case CK_BlockPointerToObjCPointerCast:
2765   case CK_NoOp:
2766   case CK_LValueToRValue:
2767     return EmitLValue(E->getSubExpr());
2768 
2769   case CK_UncheckedDerivedToBase:
2770   case CK_DerivedToBase: {
2771     const RecordType *DerivedClassTy =
2772       E->getSubExpr()->getType()->getAs<RecordType>();
2773     CXXRecordDecl *DerivedClassDecl =
2774       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2775 
2776     LValue LV = EmitLValue(E->getSubExpr());
2777     llvm::Value *This = LV.getAddress();
2778 
2779     // Perform the derived-to-base conversion
2780     llvm::Value *Base =
2781       GetAddressOfBaseClass(This, DerivedClassDecl,
2782                             E->path_begin(), E->path_end(),
2783                             /*NullCheckValue=*/false);
2784 
2785     return MakeAddrLValue(Base, E->getType());
2786   }
2787   case CK_ToUnion:
2788     return EmitAggExprToLValue(E);
2789   case CK_BaseToDerived: {
2790     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2791     CXXRecordDecl *DerivedClassDecl =
2792       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2793 
2794     LValue LV = EmitLValue(E->getSubExpr());
2795 
2796     // Perform the base-to-derived conversion
2797     llvm::Value *Derived =
2798       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2799                                E->path_begin(), E->path_end(),
2800                                /*NullCheckValue=*/false);
2801 
2802     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2803     // performed and the object is not of the derived type.
2804     if (SanitizePerformTypeCheck)
2805       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2806                     Derived, E->getType());
2807 
2808     return MakeAddrLValue(Derived, E->getType());
2809   }
2810   case CK_LValueBitCast: {
2811     // This must be a reinterpret_cast (or c-style equivalent).
2812     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2813 
2814     LValue LV = EmitLValue(E->getSubExpr());
2815     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2816                                            ConvertType(CE->getTypeAsWritten()));
2817     return MakeAddrLValue(V, E->getType());
2818   }
2819   case CK_ObjCObjectLValueCast: {
2820     LValue LV = EmitLValue(E->getSubExpr());
2821     QualType ToType = getContext().getLValueReferenceType(E->getType());
2822     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2823                                            ConvertType(ToType));
2824     return MakeAddrLValue(V, E->getType());
2825   }
2826   case CK_ZeroToOCLEvent:
2827     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2828   }
2829 
2830   llvm_unreachable("Unhandled lvalue cast kind?");
2831 }
2832 
2833 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2834   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2835   return getOpaqueLValueMapping(e);
2836 }
2837 
2838 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2839                                            const FieldDecl *FD,
2840                                            SourceLocation Loc) {
2841   QualType FT = FD->getType();
2842   LValue FieldLV = EmitLValueForField(LV, FD);
2843   switch (getEvaluationKind(FT)) {
2844   case TEK_Complex:
2845     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2846   case TEK_Aggregate:
2847     return FieldLV.asAggregateRValue();
2848   case TEK_Scalar:
2849     return EmitLoadOfLValue(FieldLV, Loc);
2850   }
2851   llvm_unreachable("bad evaluation kind");
2852 }
2853 
2854 //===--------------------------------------------------------------------===//
2855 //                             Expression Emission
2856 //===--------------------------------------------------------------------===//
2857 
2858 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2859                                      ReturnValueSlot ReturnValue) {
2860   if (CGDebugInfo *DI = getDebugInfo()) {
2861     SourceLocation Loc = E->getLocStart();
2862     // Force column info to be generated so we can differentiate
2863     // multiple call sites on the same line in the debug info.
2864     const FunctionDecl* Callee = E->getDirectCallee();
2865     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2866     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2867   }
2868 
2869   // Builtins never have block type.
2870   if (E->getCallee()->getType()->isBlockPointerType())
2871     return EmitBlockCallExpr(E, ReturnValue);
2872 
2873   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2874     return EmitCXXMemberCallExpr(CE, ReturnValue);
2875 
2876   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2877     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2878 
2879   const Decl *TargetDecl = E->getCalleeDecl();
2880   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2881     if (unsigned builtinID = FD->getBuiltinID())
2882       return EmitBuiltinExpr(FD, builtinID, E);
2883   }
2884 
2885   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2886     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2887       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2888 
2889   if (const CXXPseudoDestructorExpr *PseudoDtor
2890           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2891     QualType DestroyedType = PseudoDtor->getDestroyedType();
2892     if (getLangOpts().ObjCAutoRefCount &&
2893         DestroyedType->isObjCLifetimeType() &&
2894         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2895          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2896       // Automatic Reference Counting:
2897       //   If the pseudo-expression names a retainable object with weak or
2898       //   strong lifetime, the object shall be released.
2899       Expr *BaseExpr = PseudoDtor->getBase();
2900       llvm::Value *BaseValue = NULL;
2901       Qualifiers BaseQuals;
2902 
2903       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2904       if (PseudoDtor->isArrow()) {
2905         BaseValue = EmitScalarExpr(BaseExpr);
2906         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2907         BaseQuals = PTy->getPointeeType().getQualifiers();
2908       } else {
2909         LValue BaseLV = EmitLValue(BaseExpr);
2910         BaseValue = BaseLV.getAddress();
2911         QualType BaseTy = BaseExpr->getType();
2912         BaseQuals = BaseTy.getQualifiers();
2913       }
2914 
2915       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2916       case Qualifiers::OCL_None:
2917       case Qualifiers::OCL_ExplicitNone:
2918       case Qualifiers::OCL_Autoreleasing:
2919         break;
2920 
2921       case Qualifiers::OCL_Strong:
2922         EmitARCRelease(Builder.CreateLoad(BaseValue,
2923                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2924                        ARCPreciseLifetime);
2925         break;
2926 
2927       case Qualifiers::OCL_Weak:
2928         EmitARCDestroyWeak(BaseValue);
2929         break;
2930       }
2931     } else {
2932       // C++ [expr.pseudo]p1:
2933       //   The result shall only be used as the operand for the function call
2934       //   operator (), and the result of such a call has type void. The only
2935       //   effect is the evaluation of the postfix-expression before the dot or
2936       //   arrow.
2937       EmitScalarExpr(E->getCallee());
2938     }
2939 
2940     return RValue::get(0);
2941   }
2942 
2943   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2944   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
2945                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
2946 }
2947 
2948 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2949   // Comma expressions just emit their LHS then their RHS as an l-value.
2950   if (E->getOpcode() == BO_Comma) {
2951     EmitIgnoredExpr(E->getLHS());
2952     EnsureInsertPoint();
2953     return EmitLValue(E->getRHS());
2954   }
2955 
2956   if (E->getOpcode() == BO_PtrMemD ||
2957       E->getOpcode() == BO_PtrMemI)
2958     return EmitPointerToDataMemberBinaryExpr(E);
2959 
2960   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2961 
2962   // Note that in all of these cases, __block variables need the RHS
2963   // evaluated first just in case the variable gets moved by the RHS.
2964 
2965   switch (getEvaluationKind(E->getType())) {
2966   case TEK_Scalar: {
2967     switch (E->getLHS()->getType().getObjCLifetime()) {
2968     case Qualifiers::OCL_Strong:
2969       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2970 
2971     case Qualifiers::OCL_Autoreleasing:
2972       return EmitARCStoreAutoreleasing(E).first;
2973 
2974     // No reason to do any of these differently.
2975     case Qualifiers::OCL_None:
2976     case Qualifiers::OCL_ExplicitNone:
2977     case Qualifiers::OCL_Weak:
2978       break;
2979     }
2980 
2981     RValue RV = EmitAnyExpr(E->getRHS());
2982     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2983     EmitStoreThroughLValue(RV, LV);
2984     return LV;
2985   }
2986 
2987   case TEK_Complex:
2988     return EmitComplexAssignmentLValue(E);
2989 
2990   case TEK_Aggregate:
2991     return EmitAggExprToLValue(E);
2992   }
2993   llvm_unreachable("bad evaluation kind");
2994 }
2995 
2996 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2997   RValue RV = EmitCallExpr(E);
2998 
2999   if (!RV.isScalar())
3000     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3001 
3002   assert(E->getCallReturnType()->isReferenceType() &&
3003          "Can't have a scalar return unless the return type is a "
3004          "reference type!");
3005 
3006   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3007 }
3008 
3009 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3010   // FIXME: This shouldn't require another copy.
3011   return EmitAggExprToLValue(E);
3012 }
3013 
3014 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3015   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3016          && "binding l-value to type which needs a temporary");
3017   AggValueSlot Slot = CreateAggTemp(E->getType());
3018   EmitCXXConstructExpr(E, Slot);
3019   return MakeAddrLValue(Slot.getAddr(), E->getType());
3020 }
3021 
3022 LValue
3023 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3024   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3025 }
3026 
3027 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3028   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3029                                ConvertType(E->getType())->getPointerTo());
3030 }
3031 
3032 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3033   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3034 }
3035 
3036 LValue
3037 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3038   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3039   Slot.setExternallyDestructed();
3040   EmitAggExpr(E->getSubExpr(), Slot);
3041   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3042   return MakeAddrLValue(Slot.getAddr(), E->getType());
3043 }
3044 
3045 LValue
3046 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3047   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3048   EmitLambdaExpr(E, Slot);
3049   return MakeAddrLValue(Slot.getAddr(), E->getType());
3050 }
3051 
3052 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3053   RValue RV = EmitObjCMessageExpr(E);
3054 
3055   if (!RV.isScalar())
3056     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3057 
3058   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3059          "Can't have a scalar return unless the return type is a "
3060          "reference type!");
3061 
3062   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3063 }
3064 
3065 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3066   llvm::Value *V =
3067     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3068   return MakeAddrLValue(V, E->getType());
3069 }
3070 
3071 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3072                                              const ObjCIvarDecl *Ivar) {
3073   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3074 }
3075 
3076 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3077                                           llvm::Value *BaseValue,
3078                                           const ObjCIvarDecl *Ivar,
3079                                           unsigned CVRQualifiers) {
3080   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3081                                                    Ivar, CVRQualifiers);
3082 }
3083 
3084 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3085   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3086   llvm::Value *BaseValue = 0;
3087   const Expr *BaseExpr = E->getBase();
3088   Qualifiers BaseQuals;
3089   QualType ObjectTy;
3090   if (E->isArrow()) {
3091     BaseValue = EmitScalarExpr(BaseExpr);
3092     ObjectTy = BaseExpr->getType()->getPointeeType();
3093     BaseQuals = ObjectTy.getQualifiers();
3094   } else {
3095     LValue BaseLV = EmitLValue(BaseExpr);
3096     // FIXME: this isn't right for bitfields.
3097     BaseValue = BaseLV.getAddress();
3098     ObjectTy = BaseExpr->getType();
3099     BaseQuals = ObjectTy.getQualifiers();
3100   }
3101 
3102   LValue LV =
3103     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3104                       BaseQuals.getCVRQualifiers());
3105   setObjCGCLValueClass(getContext(), E, LV);
3106   return LV;
3107 }
3108 
3109 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3110   // Can only get l-value for message expression returning aggregate type
3111   RValue RV = EmitAnyExprToTemp(E);
3112   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3113 }
3114 
3115 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3116                                  SourceLocation CallLoc,
3117                                  ReturnValueSlot ReturnValue,
3118                                  CallExpr::const_arg_iterator ArgBeg,
3119                                  CallExpr::const_arg_iterator ArgEnd,
3120                                  const Decl *TargetDecl) {
3121   // Get the actual function type. The callee type will always be a pointer to
3122   // function type or a block pointer type.
3123   assert(CalleeType->isFunctionPointerType() &&
3124          "Call must have function pointer type!");
3125 
3126   CalleeType = getContext().getCanonicalType(CalleeType);
3127 
3128   const FunctionType *FnType
3129     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3130 
3131   // Force column info to differentiate multiple inlined call sites on
3132   // the same line, analoguous to EmitCallExpr.
3133   bool ForceColumnInfo = false;
3134   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3135     ForceColumnInfo = FD->isInlineSpecified();
3136 
3137   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3138       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3139     if (llvm::Constant *PrefixSig =
3140             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3141       llvm::Constant *FTRTTIConst =
3142           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3143       llvm::Type *PrefixStructTyElems[] = {
3144         PrefixSig->getType(),
3145         FTRTTIConst->getType()
3146       };
3147       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3148           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3149 
3150       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3151           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3152       llvm::Value *CalleeSigPtr =
3153           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3154       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3155       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3156 
3157       llvm::BasicBlock *Cont = createBasicBlock("cont");
3158       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3159       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3160 
3161       EmitBlock(TypeCheck);
3162       llvm::Value *CalleeRTTIPtr =
3163           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3164       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3165       llvm::Value *CalleeRTTIMatch =
3166           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3167       llvm::Constant *StaticData[] = {
3168         EmitCheckSourceLocation(CallLoc),
3169         EmitCheckTypeDescriptor(CalleeType)
3170       };
3171       EmitCheck(CalleeRTTIMatch,
3172                 "function_type_mismatch",
3173                 StaticData,
3174                 Callee,
3175                 CRK_Recoverable);
3176 
3177       Builder.CreateBr(Cont);
3178       EmitBlock(Cont);
3179     }
3180   }
3181 
3182   CallArgList Args;
3183   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3184                ForceColumnInfo);
3185 
3186   const CGFunctionInfo &FnInfo =
3187     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3188 
3189   // C99 6.5.2.2p6:
3190   //   If the expression that denotes the called function has a type
3191   //   that does not include a prototype, [the default argument
3192   //   promotions are performed]. If the number of arguments does not
3193   //   equal the number of parameters, the behavior is undefined. If
3194   //   the function is defined with a type that includes a prototype,
3195   //   and either the prototype ends with an ellipsis (, ...) or the
3196   //   types of the arguments after promotion are not compatible with
3197   //   the types of the parameters, the behavior is undefined. If the
3198   //   function is defined with a type that does not include a
3199   //   prototype, and the types of the arguments after promotion are
3200   //   not compatible with those of the parameters after promotion,
3201   //   the behavior is undefined [except in some trivial cases].
3202   // That is, in the general case, we should assume that a call
3203   // through an unprototyped function type works like a *non-variadic*
3204   // call.  The way we make this work is to cast to the exact type
3205   // of the promoted arguments.
3206   if (isa<FunctionNoProtoType>(FnType)) {
3207     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3208     CalleeTy = CalleeTy->getPointerTo();
3209     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3210   }
3211 
3212   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3213 }
3214 
3215 LValue CodeGenFunction::
3216 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3217   llvm::Value *BaseV;
3218   if (E->getOpcode() == BO_PtrMemI)
3219     BaseV = EmitScalarExpr(E->getLHS());
3220   else
3221     BaseV = EmitLValue(E->getLHS()).getAddress();
3222 
3223   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3224 
3225   const MemberPointerType *MPT
3226     = E->getRHS()->getType()->getAs<MemberPointerType>();
3227 
3228   llvm::Value *AddV =
3229     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3230 
3231   return MakeAddrLValue(AddV, MPT->getPointeeType());
3232 }
3233 
3234 /// Given the address of a temporary variable, produce an r-value of
3235 /// its type.
3236 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3237                                             QualType type,
3238                                             SourceLocation loc) {
3239   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3240   switch (getEvaluationKind(type)) {
3241   case TEK_Complex:
3242     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3243   case TEK_Aggregate:
3244     return lvalue.asAggregateRValue();
3245   case TEK_Scalar:
3246     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3247   }
3248   llvm_unreachable("bad evaluation kind");
3249 }
3250 
3251 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3252   assert(Val->getType()->isFPOrFPVectorTy());
3253   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3254     return;
3255 
3256   llvm::MDBuilder MDHelper(getLLVMContext());
3257   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3258 
3259   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3260 }
3261 
3262 namespace {
3263   struct LValueOrRValue {
3264     LValue LV;
3265     RValue RV;
3266   };
3267 }
3268 
3269 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3270                                            const PseudoObjectExpr *E,
3271                                            bool forLValue,
3272                                            AggValueSlot slot) {
3273   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3274 
3275   // Find the result expression, if any.
3276   const Expr *resultExpr = E->getResultExpr();
3277   LValueOrRValue result;
3278 
3279   for (PseudoObjectExpr::const_semantics_iterator
3280          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3281     const Expr *semantic = *i;
3282 
3283     // If this semantic expression is an opaque value, bind it
3284     // to the result of its source expression.
3285     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3286 
3287       // If this is the result expression, we may need to evaluate
3288       // directly into the slot.
3289       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3290       OVMA opaqueData;
3291       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3292           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3293         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3294 
3295         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3296         opaqueData = OVMA::bind(CGF, ov, LV);
3297         result.RV = slot.asRValue();
3298 
3299       // Otherwise, emit as normal.
3300       } else {
3301         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3302 
3303         // If this is the result, also evaluate the result now.
3304         if (ov == resultExpr) {
3305           if (forLValue)
3306             result.LV = CGF.EmitLValue(ov);
3307           else
3308             result.RV = CGF.EmitAnyExpr(ov, slot);
3309         }
3310       }
3311 
3312       opaques.push_back(opaqueData);
3313 
3314     // Otherwise, if the expression is the result, evaluate it
3315     // and remember the result.
3316     } else if (semantic == resultExpr) {
3317       if (forLValue)
3318         result.LV = CGF.EmitLValue(semantic);
3319       else
3320         result.RV = CGF.EmitAnyExpr(semantic, slot);
3321 
3322     // Otherwise, evaluate the expression in an ignored context.
3323     } else {
3324       CGF.EmitIgnoredExpr(semantic);
3325     }
3326   }
3327 
3328   // Unbind all the opaques now.
3329   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3330     opaques[i].unbind(CGF);
3331 
3332   return result;
3333 }
3334 
3335 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3336                                                AggValueSlot slot) {
3337   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3338 }
3339 
3340 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3341   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3342 }
3343