1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::Constant *CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
343                                                StructorType::Complete);
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297 
1298   case Expr::ExprWithCleanupsClass: {
1299     const auto *cleanups = cast<ExprWithCleanups>(E);
1300     enterFullExpression(cleanups);
1301     RunCleanupsScope Scope(*this);
1302     LValue LV = EmitLValue(cleanups->getSubExpr());
1303     if (LV.isSimple()) {
1304       // Defend against branches out of gnu statement expressions surrounded by
1305       // cleanups.
1306       llvm::Value *V = LV.getPointer();
1307       Scope.ForceCleanup({&V});
1308       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1309                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1310     }
1311     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1312     // bitfield lvalue or some other non-simple lvalue?
1313     return LV;
1314   }
1315 
1316   case Expr::CXXDefaultArgExprClass:
1317     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1318   case Expr::CXXDefaultInitExprClass: {
1319     CXXDefaultInitExprScope Scope(*this);
1320     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1321   }
1322   case Expr::CXXTypeidExprClass:
1323     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1324 
1325   case Expr::ObjCMessageExprClass:
1326     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1327   case Expr::ObjCIvarRefExprClass:
1328     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1329   case Expr::StmtExprClass:
1330     return EmitStmtExprLValue(cast<StmtExpr>(E));
1331   case Expr::UnaryOperatorClass:
1332     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1333   case Expr::ArraySubscriptExprClass:
1334     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1335   case Expr::OMPArraySectionExprClass:
1336     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1337   case Expr::ExtVectorElementExprClass:
1338     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1339   case Expr::MemberExprClass:
1340     return EmitMemberExpr(cast<MemberExpr>(E));
1341   case Expr::CompoundLiteralExprClass:
1342     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1343   case Expr::ConditionalOperatorClass:
1344     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1345   case Expr::BinaryConditionalOperatorClass:
1346     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1347   case Expr::ChooseExprClass:
1348     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1349   case Expr::OpaqueValueExprClass:
1350     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1351   case Expr::SubstNonTypeTemplateParmExprClass:
1352     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1353   case Expr::ImplicitCastExprClass:
1354   case Expr::CStyleCastExprClass:
1355   case Expr::CXXFunctionalCastExprClass:
1356   case Expr::CXXStaticCastExprClass:
1357   case Expr::CXXDynamicCastExprClass:
1358   case Expr::CXXReinterpretCastExprClass:
1359   case Expr::CXXConstCastExprClass:
1360   case Expr::ObjCBridgedCastExprClass:
1361     return EmitCastLValue(cast<CastExpr>(E));
1362 
1363   case Expr::MaterializeTemporaryExprClass:
1364     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1365 
1366   case Expr::CoawaitExprClass:
1367     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1368   case Expr::CoyieldExprClass:
1369     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1370   }
1371 }
1372 
1373 /// Given an object of the given canonical type, can we safely copy a
1374 /// value out of it based on its initializer?
1375 static bool isConstantEmittableObjectType(QualType type) {
1376   assert(type.isCanonical());
1377   assert(!type->isReferenceType());
1378 
1379   // Must be const-qualified but non-volatile.
1380   Qualifiers qs = type.getLocalQualifiers();
1381   if (!qs.hasConst() || qs.hasVolatile()) return false;
1382 
1383   // Otherwise, all object types satisfy this except C++ classes with
1384   // mutable subobjects or non-trivial copy/destroy behavior.
1385   if (const auto *RT = dyn_cast<RecordType>(type))
1386     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1387       if (RD->hasMutableFields() || !RD->isTrivial())
1388         return false;
1389 
1390   return true;
1391 }
1392 
1393 /// Can we constant-emit a load of a reference to a variable of the
1394 /// given type?  This is different from predicates like
1395 /// Decl::isUsableInConstantExpressions because we do want it to apply
1396 /// in situations that don't necessarily satisfy the language's rules
1397 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1398 /// to do this with const float variables even if those variables
1399 /// aren't marked 'constexpr'.
1400 enum ConstantEmissionKind {
1401   CEK_None,
1402   CEK_AsReferenceOnly,
1403   CEK_AsValueOrReference,
1404   CEK_AsValueOnly
1405 };
1406 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1407   type = type.getCanonicalType();
1408   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1409     if (isConstantEmittableObjectType(ref->getPointeeType()))
1410       return CEK_AsValueOrReference;
1411     return CEK_AsReferenceOnly;
1412   }
1413   if (isConstantEmittableObjectType(type))
1414     return CEK_AsValueOnly;
1415   return CEK_None;
1416 }
1417 
1418 /// Try to emit a reference to the given value without producing it as
1419 /// an l-value.  This is actually more than an optimization: we can't
1420 /// produce an l-value for variables that we never actually captured
1421 /// in a block or lambda, which means const int variables or constexpr
1422 /// literals or similar.
1423 CodeGenFunction::ConstantEmission
1424 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1425   ValueDecl *value = refExpr->getDecl();
1426 
1427   // The value needs to be an enum constant or a constant variable.
1428   ConstantEmissionKind CEK;
1429   if (isa<ParmVarDecl>(value)) {
1430     CEK = CEK_None;
1431   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1432     CEK = checkVarTypeForConstantEmission(var->getType());
1433   } else if (isa<EnumConstantDecl>(value)) {
1434     CEK = CEK_AsValueOnly;
1435   } else {
1436     CEK = CEK_None;
1437   }
1438   if (CEK == CEK_None) return ConstantEmission();
1439 
1440   Expr::EvalResult result;
1441   bool resultIsReference;
1442   QualType resultType;
1443 
1444   // It's best to evaluate all the way as an r-value if that's permitted.
1445   if (CEK != CEK_AsReferenceOnly &&
1446       refExpr->EvaluateAsRValue(result, getContext())) {
1447     resultIsReference = false;
1448     resultType = refExpr->getType();
1449 
1450   // Otherwise, try to evaluate as an l-value.
1451   } else if (CEK != CEK_AsValueOnly &&
1452              refExpr->EvaluateAsLValue(result, getContext())) {
1453     resultIsReference = true;
1454     resultType = value->getType();
1455 
1456   // Failure.
1457   } else {
1458     return ConstantEmission();
1459   }
1460 
1461   // In any case, if the initializer has side-effects, abandon ship.
1462   if (result.HasSideEffects)
1463     return ConstantEmission();
1464 
1465   // Emit as a constant.
1466   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1467                                                result.Val, resultType);
1468 
1469   // Make sure we emit a debug reference to the global variable.
1470   // This should probably fire even for
1471   if (isa<VarDecl>(value)) {
1472     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1473       EmitDeclRefExprDbgValue(refExpr, result.Val);
1474   } else {
1475     assert(isa<EnumConstantDecl>(value));
1476     EmitDeclRefExprDbgValue(refExpr, result.Val);
1477   }
1478 
1479   // If we emitted a reference constant, we need to dereference that.
1480   if (resultIsReference)
1481     return ConstantEmission::forReference(C);
1482 
1483   return ConstantEmission::forValue(C);
1484 }
1485 
1486 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1487                                                         const MemberExpr *ME) {
1488   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1489     // Try to emit static variable member expressions as DREs.
1490     return DeclRefExpr::Create(
1491         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1492         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1493         ME->getType(), ME->getValueKind());
1494   }
1495   return nullptr;
1496 }
1497 
1498 CodeGenFunction::ConstantEmission
1499 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1500   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1501     return tryEmitAsConstant(DRE);
1502   return ConstantEmission();
1503 }
1504 
1505 llvm::Value *CodeGenFunction::emitScalarConstant(
1506     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1507   assert(Constant && "not a constant");
1508   if (Constant.isReference())
1509     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1510                             E->getExprLoc())
1511         .getScalarVal();
1512   return Constant.getValue();
1513 }
1514 
1515 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1516                                                SourceLocation Loc) {
1517   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1518                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1519                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1520 }
1521 
1522 static bool hasBooleanRepresentation(QualType Ty) {
1523   if (Ty->isBooleanType())
1524     return true;
1525 
1526   if (const EnumType *ET = Ty->getAs<EnumType>())
1527     return ET->getDecl()->getIntegerType()->isBooleanType();
1528 
1529   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1530     return hasBooleanRepresentation(AT->getValueType());
1531 
1532   return false;
1533 }
1534 
1535 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1536                             llvm::APInt &Min, llvm::APInt &End,
1537                             bool StrictEnums, bool IsBool) {
1538   const EnumType *ET = Ty->getAs<EnumType>();
1539   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1540                                 ET && !ET->getDecl()->isFixed();
1541   if (!IsBool && !IsRegularCPlusPlusEnum)
1542     return false;
1543 
1544   if (IsBool) {
1545     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1546     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1547   } else {
1548     const EnumDecl *ED = ET->getDecl();
1549     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1550     unsigned Bitwidth = LTy->getScalarSizeInBits();
1551     unsigned NumNegativeBits = ED->getNumNegativeBits();
1552     unsigned NumPositiveBits = ED->getNumPositiveBits();
1553 
1554     if (NumNegativeBits) {
1555       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1556       assert(NumBits <= Bitwidth);
1557       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1558       Min = -End;
1559     } else {
1560       assert(NumPositiveBits <= Bitwidth);
1561       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1562       Min = llvm::APInt(Bitwidth, 0);
1563     }
1564   }
1565   return true;
1566 }
1567 
1568 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1569   llvm::APInt Min, End;
1570   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1571                        hasBooleanRepresentation(Ty)))
1572     return nullptr;
1573 
1574   llvm::MDBuilder MDHelper(getLLVMContext());
1575   return MDHelper.createRange(Min, End);
1576 }
1577 
1578 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1579                                            SourceLocation Loc) {
1580   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1581   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1582   if (!HasBoolCheck && !HasEnumCheck)
1583     return false;
1584 
1585   bool IsBool = hasBooleanRepresentation(Ty) ||
1586                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1587   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1588   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1589   if (!NeedsBoolCheck && !NeedsEnumCheck)
1590     return false;
1591 
1592   // Single-bit booleans don't need to be checked. Special-case this to avoid
1593   // a bit width mismatch when handling bitfield values. This is handled by
1594   // EmitFromMemory for the non-bitfield case.
1595   if (IsBool &&
1596       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1597     return false;
1598 
1599   llvm::APInt Min, End;
1600   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1601     return true;
1602 
1603   auto &Ctx = getLLVMContext();
1604   SanitizerScope SanScope(this);
1605   llvm::Value *Check;
1606   --End;
1607   if (!Min) {
1608     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1609   } else {
1610     llvm::Value *Upper =
1611         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1612     llvm::Value *Lower =
1613         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1614     Check = Builder.CreateAnd(Upper, Lower);
1615   }
1616   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1617                                   EmitCheckTypeDescriptor(Ty)};
1618   SanitizerMask Kind =
1619       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1620   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1621             StaticArgs, EmitCheckValue(Value));
1622   return true;
1623 }
1624 
1625 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1626                                                QualType Ty,
1627                                                SourceLocation Loc,
1628                                                LValueBaseInfo BaseInfo,
1629                                                TBAAAccessInfo TBAAInfo,
1630                                                bool isNontemporal) {
1631   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1632     // For better performance, handle vector loads differently.
1633     if (Ty->isVectorType()) {
1634       const llvm::Type *EltTy = Addr.getElementType();
1635 
1636       const auto *VTy = cast<llvm::VectorType>(EltTy);
1637 
1638       // Handle vectors of size 3 like size 4 for better performance.
1639       if (VTy->getNumElements() == 3) {
1640 
1641         // Bitcast to vec4 type.
1642         llvm::VectorType *vec4Ty =
1643             llvm::VectorType::get(VTy->getElementType(), 4);
1644         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1645         // Now load value.
1646         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1647 
1648         // Shuffle vector to get vec3.
1649         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1650                                         {0, 1, 2}, "extractVec");
1651         return EmitFromMemory(V, Ty);
1652       }
1653     }
1654   }
1655 
1656   // Atomic operations have to be done on integral types.
1657   LValue AtomicLValue =
1658       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1659   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1660     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1661   }
1662 
1663   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1664   if (isNontemporal) {
1665     llvm::MDNode *Node = llvm::MDNode::get(
1666         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1667     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1668   }
1669 
1670   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1671 
1672   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1673     // In order to prevent the optimizer from throwing away the check, don't
1674     // attach range metadata to the load.
1675   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1676     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1677       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1678 
1679   return EmitFromMemory(Load, Ty);
1680 }
1681 
1682 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1683   // Bool has a different representation in memory than in registers.
1684   if (hasBooleanRepresentation(Ty)) {
1685     // This should really always be an i1, but sometimes it's already
1686     // an i8, and it's awkward to track those cases down.
1687     if (Value->getType()->isIntegerTy(1))
1688       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1689     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1690            "wrong value rep of bool");
1691   }
1692 
1693   return Value;
1694 }
1695 
1696 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1697   // Bool has a different representation in memory than in registers.
1698   if (hasBooleanRepresentation(Ty)) {
1699     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1700            "wrong value rep of bool");
1701     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1702   }
1703 
1704   return Value;
1705 }
1706 
1707 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1708                                         bool Volatile, QualType Ty,
1709                                         LValueBaseInfo BaseInfo,
1710                                         TBAAAccessInfo TBAAInfo,
1711                                         bool isInit, bool isNontemporal) {
1712   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1713     // Handle vectors differently to get better performance.
1714     if (Ty->isVectorType()) {
1715       llvm::Type *SrcTy = Value->getType();
1716       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1717       // Handle vec3 special.
1718       if (VecTy && VecTy->getNumElements() == 3) {
1719         // Our source is a vec3, do a shuffle vector to make it a vec4.
1720         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1721                                   Builder.getInt32(2),
1722                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1723         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1724         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1725                                             MaskV, "extractVec");
1726         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1727       }
1728       if (Addr.getElementType() != SrcTy) {
1729         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1730       }
1731     }
1732   }
1733 
1734   Value = EmitToMemory(Value, Ty);
1735 
1736   LValue AtomicLValue =
1737       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1738   if (Ty->isAtomicType() ||
1739       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1740     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1741     return;
1742   }
1743 
1744   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1745   if (isNontemporal) {
1746     llvm::MDNode *Node =
1747         llvm::MDNode::get(Store->getContext(),
1748                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1749     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1750   }
1751 
1752   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1753 }
1754 
1755 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1756                                         bool isInit) {
1757   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1758                     lvalue.getType(), lvalue.getBaseInfo(),
1759                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1760 }
1761 
1762 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1763 /// method emits the address of the lvalue, then loads the result as an rvalue,
1764 /// returning the rvalue.
1765 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1766   if (LV.isObjCWeak()) {
1767     // load of a __weak object.
1768     Address AddrWeakObj = LV.getAddress();
1769     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1770                                                              AddrWeakObj));
1771   }
1772   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1773     // In MRC mode, we do a load+autorelease.
1774     if (!getLangOpts().ObjCAutoRefCount) {
1775       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1776     }
1777 
1778     // In ARC mode, we load retained and then consume the value.
1779     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1780     Object = EmitObjCConsumeObject(LV.getType(), Object);
1781     return RValue::get(Object);
1782   }
1783 
1784   if (LV.isSimple()) {
1785     assert(!LV.getType()->isFunctionType());
1786 
1787     // Everything needs a load.
1788     return RValue::get(EmitLoadOfScalar(LV, Loc));
1789   }
1790 
1791   if (LV.isVectorElt()) {
1792     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1793                                               LV.isVolatileQualified());
1794     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1795                                                     "vecext"));
1796   }
1797 
1798   // If this is a reference to a subset of the elements of a vector, either
1799   // shuffle the input or extract/insert them as appropriate.
1800   if (LV.isExtVectorElt())
1801     return EmitLoadOfExtVectorElementLValue(LV);
1802 
1803   // Global Register variables always invoke intrinsics
1804   if (LV.isGlobalReg())
1805     return EmitLoadOfGlobalRegLValue(LV);
1806 
1807   assert(LV.isBitField() && "Unknown LValue type!");
1808   return EmitLoadOfBitfieldLValue(LV, Loc);
1809 }
1810 
1811 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1812                                                  SourceLocation Loc) {
1813   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1814 
1815   // Get the output type.
1816   llvm::Type *ResLTy = ConvertType(LV.getType());
1817 
1818   Address Ptr = LV.getBitFieldAddress();
1819   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1820 
1821   if (Info.IsSigned) {
1822     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1823     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1824     if (HighBits)
1825       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1826     if (Info.Offset + HighBits)
1827       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1828   } else {
1829     if (Info.Offset)
1830       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1831     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1832       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1833                                                               Info.Size),
1834                               "bf.clear");
1835   }
1836   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1837   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1838   return RValue::get(Val);
1839 }
1840 
1841 // If this is a reference to a subset of the elements of a vector, create an
1842 // appropriate shufflevector.
1843 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1844   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1845                                         LV.isVolatileQualified());
1846 
1847   const llvm::Constant *Elts = LV.getExtVectorElts();
1848 
1849   // If the result of the expression is a non-vector type, we must be extracting
1850   // a single element.  Just codegen as an extractelement.
1851   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1852   if (!ExprVT) {
1853     unsigned InIdx = getAccessedFieldNo(0, Elts);
1854     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1855     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1856   }
1857 
1858   // Always use shuffle vector to try to retain the original program structure
1859   unsigned NumResultElts = ExprVT->getNumElements();
1860 
1861   SmallVector<llvm::Constant*, 4> Mask;
1862   for (unsigned i = 0; i != NumResultElts; ++i)
1863     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1864 
1865   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1866   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1867                                     MaskV);
1868   return RValue::get(Vec);
1869 }
1870 
1871 /// Generates lvalue for partial ext_vector access.
1872 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1873   Address VectorAddress = LV.getExtVectorAddress();
1874   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1875   QualType EQT = ExprVT->getElementType();
1876   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1877 
1878   Address CastToPointerElement =
1879     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1880                                  "conv.ptr.element");
1881 
1882   const llvm::Constant *Elts = LV.getExtVectorElts();
1883   unsigned ix = getAccessedFieldNo(0, Elts);
1884 
1885   Address VectorBasePtrPlusIx =
1886     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1887                                    getContext().getTypeSizeInChars(EQT),
1888                                    "vector.elt");
1889 
1890   return VectorBasePtrPlusIx;
1891 }
1892 
1893 /// Load of global gamed gegisters are always calls to intrinsics.
1894 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1895   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1896          "Bad type for register variable");
1897   llvm::MDNode *RegName = cast<llvm::MDNode>(
1898       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1899 
1900   // We accept integer and pointer types only
1901   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1902   llvm::Type *Ty = OrigTy;
1903   if (OrigTy->isPointerTy())
1904     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1905   llvm::Type *Types[] = { Ty };
1906 
1907   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1908   llvm::Value *Call = Builder.CreateCall(
1909       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1910   if (OrigTy->isPointerTy())
1911     Call = Builder.CreateIntToPtr(Call, OrigTy);
1912   return RValue::get(Call);
1913 }
1914 
1915 
1916 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1917 /// lvalue, where both are guaranteed to the have the same type, and that type
1918 /// is 'Ty'.
1919 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1920                                              bool isInit) {
1921   if (!Dst.isSimple()) {
1922     if (Dst.isVectorElt()) {
1923       // Read/modify/write the vector, inserting the new element.
1924       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1925                                             Dst.isVolatileQualified());
1926       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1927                                         Dst.getVectorIdx(), "vecins");
1928       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1929                           Dst.isVolatileQualified());
1930       return;
1931     }
1932 
1933     // If this is an update of extended vector elements, insert them as
1934     // appropriate.
1935     if (Dst.isExtVectorElt())
1936       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1937 
1938     if (Dst.isGlobalReg())
1939       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1940 
1941     assert(Dst.isBitField() && "Unknown LValue type");
1942     return EmitStoreThroughBitfieldLValue(Src, Dst);
1943   }
1944 
1945   // There's special magic for assigning into an ARC-qualified l-value.
1946   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1947     switch (Lifetime) {
1948     case Qualifiers::OCL_None:
1949       llvm_unreachable("present but none");
1950 
1951     case Qualifiers::OCL_ExplicitNone:
1952       // nothing special
1953       break;
1954 
1955     case Qualifiers::OCL_Strong:
1956       if (isInit) {
1957         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1958         break;
1959       }
1960       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1961       return;
1962 
1963     case Qualifiers::OCL_Weak:
1964       if (isInit)
1965         // Initialize and then skip the primitive store.
1966         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1967       else
1968         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1969       return;
1970 
1971     case Qualifiers::OCL_Autoreleasing:
1972       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1973                                                      Src.getScalarVal()));
1974       // fall into the normal path
1975       break;
1976     }
1977   }
1978 
1979   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1980     // load of a __weak object.
1981     Address LvalueDst = Dst.getAddress();
1982     llvm::Value *src = Src.getScalarVal();
1983      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1984     return;
1985   }
1986 
1987   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1988     // load of a __strong object.
1989     Address LvalueDst = Dst.getAddress();
1990     llvm::Value *src = Src.getScalarVal();
1991     if (Dst.isObjCIvar()) {
1992       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1993       llvm::Type *ResultType = IntPtrTy;
1994       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1995       llvm::Value *RHS = dst.getPointer();
1996       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1997       llvm::Value *LHS =
1998         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1999                                "sub.ptr.lhs.cast");
2000       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2001       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2002                                               BytesBetween);
2003     } else if (Dst.isGlobalObjCRef()) {
2004       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2005                                                 Dst.isThreadLocalRef());
2006     }
2007     else
2008       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2009     return;
2010   }
2011 
2012   assert(Src.isScalar() && "Can't emit an agg store with this method");
2013   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2014 }
2015 
2016 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2017                                                      llvm::Value **Result) {
2018   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2019   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2020   Address Ptr = Dst.getBitFieldAddress();
2021 
2022   // Get the source value, truncated to the width of the bit-field.
2023   llvm::Value *SrcVal = Src.getScalarVal();
2024 
2025   // Cast the source to the storage type and shift it into place.
2026   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2027                                  /*IsSigned=*/false);
2028   llvm::Value *MaskedVal = SrcVal;
2029 
2030   // See if there are other bits in the bitfield's storage we'll need to load
2031   // and mask together with source before storing.
2032   if (Info.StorageSize != Info.Size) {
2033     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2034     llvm::Value *Val =
2035       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2036 
2037     // Mask the source value as needed.
2038     if (!hasBooleanRepresentation(Dst.getType()))
2039       SrcVal = Builder.CreateAnd(SrcVal,
2040                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2041                                                             Info.Size),
2042                                  "bf.value");
2043     MaskedVal = SrcVal;
2044     if (Info.Offset)
2045       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2046 
2047     // Mask out the original value.
2048     Val = Builder.CreateAnd(Val,
2049                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2050                                                      Info.Offset,
2051                                                      Info.Offset + Info.Size),
2052                             "bf.clear");
2053 
2054     // Or together the unchanged values and the source value.
2055     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2056   } else {
2057     assert(Info.Offset == 0);
2058   }
2059 
2060   // Write the new value back out.
2061   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2062 
2063   // Return the new value of the bit-field, if requested.
2064   if (Result) {
2065     llvm::Value *ResultVal = MaskedVal;
2066 
2067     // Sign extend the value if needed.
2068     if (Info.IsSigned) {
2069       assert(Info.Size <= Info.StorageSize);
2070       unsigned HighBits = Info.StorageSize - Info.Size;
2071       if (HighBits) {
2072         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2073         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2074       }
2075     }
2076 
2077     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2078                                       "bf.result.cast");
2079     *Result = EmitFromMemory(ResultVal, Dst.getType());
2080   }
2081 }
2082 
2083 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2084                                                                LValue Dst) {
2085   // This access turns into a read/modify/write of the vector.  Load the input
2086   // value now.
2087   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2088                                         Dst.isVolatileQualified());
2089   const llvm::Constant *Elts = Dst.getExtVectorElts();
2090 
2091   llvm::Value *SrcVal = Src.getScalarVal();
2092 
2093   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2094     unsigned NumSrcElts = VTy->getNumElements();
2095     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2096     if (NumDstElts == NumSrcElts) {
2097       // Use shuffle vector is the src and destination are the same number of
2098       // elements and restore the vector mask since it is on the side it will be
2099       // stored.
2100       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2101       for (unsigned i = 0; i != NumSrcElts; ++i)
2102         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2103 
2104       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2105       Vec = Builder.CreateShuffleVector(SrcVal,
2106                                         llvm::UndefValue::get(Vec->getType()),
2107                                         MaskV);
2108     } else if (NumDstElts > NumSrcElts) {
2109       // Extended the source vector to the same length and then shuffle it
2110       // into the destination.
2111       // FIXME: since we're shuffling with undef, can we just use the indices
2112       //        into that?  This could be simpler.
2113       SmallVector<llvm::Constant*, 4> ExtMask;
2114       for (unsigned i = 0; i != NumSrcElts; ++i)
2115         ExtMask.push_back(Builder.getInt32(i));
2116       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2117       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2118       llvm::Value *ExtSrcVal =
2119         Builder.CreateShuffleVector(SrcVal,
2120                                     llvm::UndefValue::get(SrcVal->getType()),
2121                                     ExtMaskV);
2122       // build identity
2123       SmallVector<llvm::Constant*, 4> Mask;
2124       for (unsigned i = 0; i != NumDstElts; ++i)
2125         Mask.push_back(Builder.getInt32(i));
2126 
2127       // When the vector size is odd and .odd or .hi is used, the last element
2128       // of the Elts constant array will be one past the size of the vector.
2129       // Ignore the last element here, if it is greater than the mask size.
2130       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2131         NumSrcElts--;
2132 
2133       // modify when what gets shuffled in
2134       for (unsigned i = 0; i != NumSrcElts; ++i)
2135         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2136       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2137       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2138     } else {
2139       // We should never shorten the vector
2140       llvm_unreachable("unexpected shorten vector length");
2141     }
2142   } else {
2143     // If the Src is a scalar (not a vector) it must be updating one element.
2144     unsigned InIdx = getAccessedFieldNo(0, Elts);
2145     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2146     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2147   }
2148 
2149   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2150                       Dst.isVolatileQualified());
2151 }
2152 
2153 /// Store of global named registers are always calls to intrinsics.
2154 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2155   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2156          "Bad type for register variable");
2157   llvm::MDNode *RegName = cast<llvm::MDNode>(
2158       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2159   assert(RegName && "Register LValue is not metadata");
2160 
2161   // We accept integer and pointer types only
2162   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2163   llvm::Type *Ty = OrigTy;
2164   if (OrigTy->isPointerTy())
2165     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2166   llvm::Type *Types[] = { Ty };
2167 
2168   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2169   llvm::Value *Value = Src.getScalarVal();
2170   if (OrigTy->isPointerTy())
2171     Value = Builder.CreatePtrToInt(Value, Ty);
2172   Builder.CreateCall(
2173       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2174 }
2175 
2176 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2177 // generating write-barries API. It is currently a global, ivar,
2178 // or neither.
2179 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2180                                  LValue &LV,
2181                                  bool IsMemberAccess=false) {
2182   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2183     return;
2184 
2185   if (isa<ObjCIvarRefExpr>(E)) {
2186     QualType ExpTy = E->getType();
2187     if (IsMemberAccess && ExpTy->isPointerType()) {
2188       // If ivar is a structure pointer, assigning to field of
2189       // this struct follows gcc's behavior and makes it a non-ivar
2190       // writer-barrier conservatively.
2191       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2192       if (ExpTy->isRecordType()) {
2193         LV.setObjCIvar(false);
2194         return;
2195       }
2196     }
2197     LV.setObjCIvar(true);
2198     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2199     LV.setBaseIvarExp(Exp->getBase());
2200     LV.setObjCArray(E->getType()->isArrayType());
2201     return;
2202   }
2203 
2204   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2205     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2206       if (VD->hasGlobalStorage()) {
2207         LV.setGlobalObjCRef(true);
2208         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2209       }
2210     }
2211     LV.setObjCArray(E->getType()->isArrayType());
2212     return;
2213   }
2214 
2215   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2216     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2217     return;
2218   }
2219 
2220   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2221     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2222     if (LV.isObjCIvar()) {
2223       // If cast is to a structure pointer, follow gcc's behavior and make it
2224       // a non-ivar write-barrier.
2225       QualType ExpTy = E->getType();
2226       if (ExpTy->isPointerType())
2227         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2228       if (ExpTy->isRecordType())
2229         LV.setObjCIvar(false);
2230     }
2231     return;
2232   }
2233 
2234   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2235     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2236     return;
2237   }
2238 
2239   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2240     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2241     return;
2242   }
2243 
2244   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2245     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2246     return;
2247   }
2248 
2249   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2250     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2251     return;
2252   }
2253 
2254   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2255     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2256     if (LV.isObjCIvar() && !LV.isObjCArray())
2257       // Using array syntax to assigning to what an ivar points to is not
2258       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2259       LV.setObjCIvar(false);
2260     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2261       // Using array syntax to assigning to what global points to is not
2262       // same as assigning to the global itself. {id *G;} G[i] = 0;
2263       LV.setGlobalObjCRef(false);
2264     return;
2265   }
2266 
2267   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2268     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2269     // We don't know if member is an 'ivar', but this flag is looked at
2270     // only in the context of LV.isObjCIvar().
2271     LV.setObjCArray(E->getType()->isArrayType());
2272     return;
2273   }
2274 }
2275 
2276 static llvm::Value *
2277 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2278                                 llvm::Value *V, llvm::Type *IRType,
2279                                 StringRef Name = StringRef()) {
2280   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2281   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2282 }
2283 
2284 static LValue EmitThreadPrivateVarDeclLValue(
2285     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2286     llvm::Type *RealVarTy, SourceLocation Loc) {
2287   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2288   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2289   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2290 }
2291 
2292 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2293                                                const VarDecl *VD, QualType T) {
2294   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2295       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2296   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2297     return Address::invalid();
2298   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2299   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2300   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2301   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2302 }
2303 
2304 Address
2305 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2306                                      LValueBaseInfo *PointeeBaseInfo,
2307                                      TBAAAccessInfo *PointeeTBAAInfo) {
2308   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2309                                             RefLVal.isVolatile());
2310   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2311 
2312   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2313                                             PointeeBaseInfo, PointeeTBAAInfo,
2314                                             /* forPointeeType= */ true);
2315   return Address(Load, Align);
2316 }
2317 
2318 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2319   LValueBaseInfo PointeeBaseInfo;
2320   TBAAAccessInfo PointeeTBAAInfo;
2321   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2322                                             &PointeeTBAAInfo);
2323   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2324                         PointeeBaseInfo, PointeeTBAAInfo);
2325 }
2326 
2327 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2328                                            const PointerType *PtrTy,
2329                                            LValueBaseInfo *BaseInfo,
2330                                            TBAAAccessInfo *TBAAInfo) {
2331   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2332   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2333                                                BaseInfo, TBAAInfo,
2334                                                /*forPointeeType=*/true));
2335 }
2336 
2337 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2338                                                 const PointerType *PtrTy) {
2339   LValueBaseInfo BaseInfo;
2340   TBAAAccessInfo TBAAInfo;
2341   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2342   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2343 }
2344 
2345 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2346                                       const Expr *E, const VarDecl *VD) {
2347   QualType T = E->getType();
2348 
2349   // If it's thread_local, emit a call to its wrapper function instead.
2350   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2351       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2352     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2353   // Check if the variable is marked as declare target with link clause in
2354   // device codegen.
2355   if (CGF.getLangOpts().OpenMPIsDevice) {
2356     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2357     if (Addr.isValid())
2358       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2359   }
2360 
2361   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2362   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2363   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2364   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2365   Address Addr(V, Alignment);
2366   // Emit reference to the private copy of the variable if it is an OpenMP
2367   // threadprivate variable.
2368   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2369       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2370     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2371                                           E->getExprLoc());
2372   }
2373   LValue LV = VD->getType()->isReferenceType() ?
2374       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2375                                     AlignmentSource::Decl) :
2376       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2377   setObjCGCLValueClass(CGF.getContext(), E, LV);
2378   return LV;
2379 }
2380 
2381 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2382                                                const FunctionDecl *FD) {
2383   if (FD->hasAttr<WeakRefAttr>()) {
2384     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2385     return aliasee.getPointer();
2386   }
2387 
2388   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2389   if (!FD->hasPrototype()) {
2390     if (const FunctionProtoType *Proto =
2391             FD->getType()->getAs<FunctionProtoType>()) {
2392       // Ugly case: for a K&R-style definition, the type of the definition
2393       // isn't the same as the type of a use.  Correct for this with a
2394       // bitcast.
2395       QualType NoProtoType =
2396           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2397       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2398       V = llvm::ConstantExpr::getBitCast(V,
2399                                       CGM.getTypes().ConvertType(NoProtoType));
2400     }
2401   }
2402   return V;
2403 }
2404 
2405 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2406                                      const Expr *E, const FunctionDecl *FD) {
2407   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2408   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2409   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2410                             AlignmentSource::Decl);
2411 }
2412 
2413 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2414                                       llvm::Value *ThisValue) {
2415   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2416   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2417   return CGF.EmitLValueForField(LV, FD);
2418 }
2419 
2420 /// Named Registers are named metadata pointing to the register name
2421 /// which will be read from/written to as an argument to the intrinsic
2422 /// @llvm.read/write_register.
2423 /// So far, only the name is being passed down, but other options such as
2424 /// register type, allocation type or even optimization options could be
2425 /// passed down via the metadata node.
2426 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2427   SmallString<64> Name("llvm.named.register.");
2428   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2429   assert(Asm->getLabel().size() < 64-Name.size() &&
2430       "Register name too big");
2431   Name.append(Asm->getLabel());
2432   llvm::NamedMDNode *M =
2433     CGM.getModule().getOrInsertNamedMetadata(Name);
2434   if (M->getNumOperands() == 0) {
2435     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2436                                               Asm->getLabel());
2437     llvm::Metadata *Ops[] = {Str};
2438     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2439   }
2440 
2441   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2442 
2443   llvm::Value *Ptr =
2444     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2445   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2446 }
2447 
2448 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2449   const NamedDecl *ND = E->getDecl();
2450   QualType T = E->getType();
2451 
2452   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2453     // Global Named registers access via intrinsics only
2454     if (VD->getStorageClass() == SC_Register &&
2455         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2456       return EmitGlobalNamedRegister(VD, CGM);
2457 
2458     // A DeclRefExpr for a reference initialized by a constant expression can
2459     // appear without being odr-used. Directly emit the constant initializer.
2460     const Expr *Init = VD->getAnyInitializer(VD);
2461     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2462     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2463         VD->isUsableInConstantExpressions(getContext()) &&
2464         VD->checkInitIsICE() &&
2465         // Do not emit if it is private OpenMP variable.
2466         !(E->refersToEnclosingVariableOrCapture() &&
2467           ((CapturedStmtInfo &&
2468             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2469              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2470            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2471            (BD && BD->capturesVariable(VD))))) {
2472       llvm::Constant *Val =
2473         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2474                                             *VD->evaluateValue(),
2475                                             VD->getType());
2476       assert(Val && "failed to emit reference constant expression");
2477       // FIXME: Eventually we will want to emit vector element references.
2478 
2479       // Should we be using the alignment of the constant pointer we emitted?
2480       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2481                                                     /* BaseInfo= */ nullptr,
2482                                                     /* TBAAInfo= */ nullptr,
2483                                                     /* forPointeeType= */ true);
2484       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2485     }
2486 
2487     // Check for captured variables.
2488     if (E->refersToEnclosingVariableOrCapture()) {
2489       VD = VD->getCanonicalDecl();
2490       if (auto *FD = LambdaCaptureFields.lookup(VD))
2491         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2492       else if (CapturedStmtInfo) {
2493         auto I = LocalDeclMap.find(VD);
2494         if (I != LocalDeclMap.end()) {
2495           if (VD->getType()->isReferenceType())
2496             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2497                                              AlignmentSource::Decl);
2498           return MakeAddrLValue(I->second, T);
2499         }
2500         LValue CapLVal =
2501             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2502                                     CapturedStmtInfo->getContextValue());
2503         return MakeAddrLValue(
2504             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2505             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2506             CapLVal.getTBAAInfo());
2507       }
2508 
2509       assert(isa<BlockDecl>(CurCodeDecl));
2510       Address addr = GetAddrOfBlockDecl(VD);
2511       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2512     }
2513   }
2514 
2515   // FIXME: We should be able to assert this for FunctionDecls as well!
2516   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2517   // those with a valid source location.
2518   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2519           !E->getLocation().isValid()) &&
2520          "Should not use decl without marking it used!");
2521 
2522   if (ND->hasAttr<WeakRefAttr>()) {
2523     const auto *VD = cast<ValueDecl>(ND);
2524     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2525     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2526   }
2527 
2528   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2529     // Check if this is a global variable.
2530     if (VD->hasLinkage() || VD->isStaticDataMember())
2531       return EmitGlobalVarDeclLValue(*this, E, VD);
2532 
2533     Address addr = Address::invalid();
2534 
2535     // The variable should generally be present in the local decl map.
2536     auto iter = LocalDeclMap.find(VD);
2537     if (iter != LocalDeclMap.end()) {
2538       addr = iter->second;
2539 
2540     // Otherwise, it might be static local we haven't emitted yet for
2541     // some reason; most likely, because it's in an outer function.
2542     } else if (VD->isStaticLocal()) {
2543       addr = Address(CGM.getOrCreateStaticVarDecl(
2544           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2545                      getContext().getDeclAlign(VD));
2546 
2547     // No other cases for now.
2548     } else {
2549       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2550     }
2551 
2552 
2553     // Check for OpenMP threadprivate variables.
2554     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2555         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2556       return EmitThreadPrivateVarDeclLValue(
2557           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2558           E->getExprLoc());
2559     }
2560 
2561     // Drill into block byref variables.
2562     bool isBlockByref = VD->isEscapingByref();
2563     if (isBlockByref) {
2564       addr = emitBlockByrefAddress(addr, VD);
2565     }
2566 
2567     // Drill into reference types.
2568     LValue LV = VD->getType()->isReferenceType() ?
2569         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2570         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2571 
2572     bool isLocalStorage = VD->hasLocalStorage();
2573 
2574     bool NonGCable = isLocalStorage &&
2575                      !VD->getType()->isReferenceType() &&
2576                      !isBlockByref;
2577     if (NonGCable) {
2578       LV.getQuals().removeObjCGCAttr();
2579       LV.setNonGC(true);
2580     }
2581 
2582     bool isImpreciseLifetime =
2583       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2584     if (isImpreciseLifetime)
2585       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2586     setObjCGCLValueClass(getContext(), E, LV);
2587     return LV;
2588   }
2589 
2590   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2591     return EmitFunctionDeclLValue(*this, E, FD);
2592 
2593   // FIXME: While we're emitting a binding from an enclosing scope, all other
2594   // DeclRefExprs we see should be implicitly treated as if they also refer to
2595   // an enclosing scope.
2596   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2597     return EmitLValue(BD->getBinding());
2598 
2599   llvm_unreachable("Unhandled DeclRefExpr");
2600 }
2601 
2602 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2603   // __extension__ doesn't affect lvalue-ness.
2604   if (E->getOpcode() == UO_Extension)
2605     return EmitLValue(E->getSubExpr());
2606 
2607   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2608   switch (E->getOpcode()) {
2609   default: llvm_unreachable("Unknown unary operator lvalue!");
2610   case UO_Deref: {
2611     QualType T = E->getSubExpr()->getType()->getPointeeType();
2612     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2613 
2614     LValueBaseInfo BaseInfo;
2615     TBAAAccessInfo TBAAInfo;
2616     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2617                                             &TBAAInfo);
2618     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2619     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2620 
2621     // We should not generate __weak write barrier on indirect reference
2622     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2623     // But, we continue to generate __strong write barrier on indirect write
2624     // into a pointer to object.
2625     if (getLangOpts().ObjC &&
2626         getLangOpts().getGC() != LangOptions::NonGC &&
2627         LV.isObjCWeak())
2628       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2629     return LV;
2630   }
2631   case UO_Real:
2632   case UO_Imag: {
2633     LValue LV = EmitLValue(E->getSubExpr());
2634     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2635 
2636     // __real is valid on scalars.  This is a faster way of testing that.
2637     // __imag can only produce an rvalue on scalars.
2638     if (E->getOpcode() == UO_Real &&
2639         !LV.getAddress().getElementType()->isStructTy()) {
2640       assert(E->getSubExpr()->getType()->isArithmeticType());
2641       return LV;
2642     }
2643 
2644     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2645 
2646     Address Component =
2647       (E->getOpcode() == UO_Real
2648          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2649          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2650     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2651                                    CGM.getTBAAInfoForSubobject(LV, T));
2652     ElemLV.getQuals().addQualifiers(LV.getQuals());
2653     return ElemLV;
2654   }
2655   case UO_PreInc:
2656   case UO_PreDec: {
2657     LValue LV = EmitLValue(E->getSubExpr());
2658     bool isInc = E->getOpcode() == UO_PreInc;
2659 
2660     if (E->getType()->isAnyComplexType())
2661       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2662     else
2663       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2664     return LV;
2665   }
2666   }
2667 }
2668 
2669 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2670   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2671                         E->getType(), AlignmentSource::Decl);
2672 }
2673 
2674 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2675   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2676                         E->getType(), AlignmentSource::Decl);
2677 }
2678 
2679 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2680   auto SL = E->getFunctionName();
2681   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2682   StringRef FnName = CurFn->getName();
2683   if (FnName.startswith("\01"))
2684     FnName = FnName.substr(1);
2685   StringRef NameItems[] = {
2686       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2687   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2688   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2689     std::string Name = SL->getString();
2690     if (!Name.empty()) {
2691       unsigned Discriminator =
2692           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2693       if (Discriminator)
2694         Name += "_" + Twine(Discriminator + 1).str();
2695       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2696       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2697     } else {
2698       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2699       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2700     }
2701   }
2702   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2703   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2704 }
2705 
2706 /// Emit a type description suitable for use by a runtime sanitizer library. The
2707 /// format of a type descriptor is
2708 ///
2709 /// \code
2710 ///   { i16 TypeKind, i16 TypeInfo }
2711 /// \endcode
2712 ///
2713 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2714 /// integer, 1 for a floating point value, and -1 for anything else.
2715 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2716   // Only emit each type's descriptor once.
2717   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2718     return C;
2719 
2720   uint16_t TypeKind = -1;
2721   uint16_t TypeInfo = 0;
2722 
2723   if (T->isIntegerType()) {
2724     TypeKind = 0;
2725     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2726                (T->isSignedIntegerType() ? 1 : 0);
2727   } else if (T->isFloatingType()) {
2728     TypeKind = 1;
2729     TypeInfo = getContext().getTypeSize(T);
2730   }
2731 
2732   // Format the type name as if for a diagnostic, including quotes and
2733   // optionally an 'aka'.
2734   SmallString<32> Buffer;
2735   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2736                                     (intptr_t)T.getAsOpaquePtr(),
2737                                     StringRef(), StringRef(), None, Buffer,
2738                                     None);
2739 
2740   llvm::Constant *Components[] = {
2741     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2742     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2743   };
2744   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2745 
2746   auto *GV = new llvm::GlobalVariable(
2747       CGM.getModule(), Descriptor->getType(),
2748       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2749   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2750   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2751 
2752   // Remember the descriptor for this type.
2753   CGM.setTypeDescriptorInMap(T, GV);
2754 
2755   return GV;
2756 }
2757 
2758 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2759   llvm::Type *TargetTy = IntPtrTy;
2760 
2761   if (V->getType() == TargetTy)
2762     return V;
2763 
2764   // Floating-point types which fit into intptr_t are bitcast to integers
2765   // and then passed directly (after zero-extension, if necessary).
2766   if (V->getType()->isFloatingPointTy()) {
2767     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2768     if (Bits <= TargetTy->getIntegerBitWidth())
2769       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2770                                                          Bits));
2771   }
2772 
2773   // Integers which fit in intptr_t are zero-extended and passed directly.
2774   if (V->getType()->isIntegerTy() &&
2775       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2776     return Builder.CreateZExt(V, TargetTy);
2777 
2778   // Pointers are passed directly, everything else is passed by address.
2779   if (!V->getType()->isPointerTy()) {
2780     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2781     Builder.CreateStore(V, Ptr);
2782     V = Ptr.getPointer();
2783   }
2784   return Builder.CreatePtrToInt(V, TargetTy);
2785 }
2786 
2787 /// Emit a representation of a SourceLocation for passing to a handler
2788 /// in a sanitizer runtime library. The format for this data is:
2789 /// \code
2790 ///   struct SourceLocation {
2791 ///     const char *Filename;
2792 ///     int32_t Line, Column;
2793 ///   };
2794 /// \endcode
2795 /// For an invalid SourceLocation, the Filename pointer is null.
2796 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2797   llvm::Constant *Filename;
2798   int Line, Column;
2799 
2800   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2801   if (PLoc.isValid()) {
2802     StringRef FilenameString = PLoc.getFilename();
2803 
2804     int PathComponentsToStrip =
2805         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2806     if (PathComponentsToStrip < 0) {
2807       assert(PathComponentsToStrip != INT_MIN);
2808       int PathComponentsToKeep = -PathComponentsToStrip;
2809       auto I = llvm::sys::path::rbegin(FilenameString);
2810       auto E = llvm::sys::path::rend(FilenameString);
2811       while (I != E && --PathComponentsToKeep)
2812         ++I;
2813 
2814       FilenameString = FilenameString.substr(I - E);
2815     } else if (PathComponentsToStrip > 0) {
2816       auto I = llvm::sys::path::begin(FilenameString);
2817       auto E = llvm::sys::path::end(FilenameString);
2818       while (I != E && PathComponentsToStrip--)
2819         ++I;
2820 
2821       if (I != E)
2822         FilenameString =
2823             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2824       else
2825         FilenameString = llvm::sys::path::filename(FilenameString);
2826     }
2827 
2828     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2829     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2830                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2831     Filename = FilenameGV.getPointer();
2832     Line = PLoc.getLine();
2833     Column = PLoc.getColumn();
2834   } else {
2835     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2836     Line = Column = 0;
2837   }
2838 
2839   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2840                             Builder.getInt32(Column)};
2841 
2842   return llvm::ConstantStruct::getAnon(Data);
2843 }
2844 
2845 namespace {
2846 /// Specify under what conditions this check can be recovered
2847 enum class CheckRecoverableKind {
2848   /// Always terminate program execution if this check fails.
2849   Unrecoverable,
2850   /// Check supports recovering, runtime has both fatal (noreturn) and
2851   /// non-fatal handlers for this check.
2852   Recoverable,
2853   /// Runtime conditionally aborts, always need to support recovery.
2854   AlwaysRecoverable
2855 };
2856 }
2857 
2858 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2859   assert(llvm::countPopulation(Kind) == 1);
2860   switch (Kind) {
2861   case SanitizerKind::Vptr:
2862     return CheckRecoverableKind::AlwaysRecoverable;
2863   case SanitizerKind::Return:
2864   case SanitizerKind::Unreachable:
2865     return CheckRecoverableKind::Unrecoverable;
2866   default:
2867     return CheckRecoverableKind::Recoverable;
2868   }
2869 }
2870 
2871 namespace {
2872 struct SanitizerHandlerInfo {
2873   char const *const Name;
2874   unsigned Version;
2875 };
2876 }
2877 
2878 const SanitizerHandlerInfo SanitizerHandlers[] = {
2879 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2880     LIST_SANITIZER_CHECKS
2881 #undef SANITIZER_CHECK
2882 };
2883 
2884 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2885                                  llvm::FunctionType *FnType,
2886                                  ArrayRef<llvm::Value *> FnArgs,
2887                                  SanitizerHandler CheckHandler,
2888                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2889                                  llvm::BasicBlock *ContBB) {
2890   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2891   Optional<ApplyDebugLocation> DL;
2892   if (!CGF.Builder.getCurrentDebugLocation()) {
2893     // Ensure that the call has at least an artificial debug location.
2894     DL.emplace(CGF, SourceLocation());
2895   }
2896   bool NeedsAbortSuffix =
2897       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2898   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2899   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2900   const StringRef CheckName = CheckInfo.Name;
2901   std::string FnName = "__ubsan_handle_" + CheckName.str();
2902   if (CheckInfo.Version && !MinimalRuntime)
2903     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2904   if (MinimalRuntime)
2905     FnName += "_minimal";
2906   if (NeedsAbortSuffix)
2907     FnName += "_abort";
2908   bool MayReturn =
2909       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2910 
2911   llvm::AttrBuilder B;
2912   if (!MayReturn) {
2913     B.addAttribute(llvm::Attribute::NoReturn)
2914         .addAttribute(llvm::Attribute::NoUnwind);
2915   }
2916   B.addAttribute(llvm::Attribute::UWTable);
2917 
2918   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2919       FnType, FnName,
2920       llvm::AttributeList::get(CGF.getLLVMContext(),
2921                                llvm::AttributeList::FunctionIndex, B),
2922       /*Local=*/true);
2923   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2924   if (!MayReturn) {
2925     HandlerCall->setDoesNotReturn();
2926     CGF.Builder.CreateUnreachable();
2927   } else {
2928     CGF.Builder.CreateBr(ContBB);
2929   }
2930 }
2931 
2932 void CodeGenFunction::EmitCheck(
2933     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2934     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2935     ArrayRef<llvm::Value *> DynamicArgs) {
2936   assert(IsSanitizerScope);
2937   assert(Checked.size() > 0);
2938   assert(CheckHandler >= 0 &&
2939          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2940   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2941 
2942   llvm::Value *FatalCond = nullptr;
2943   llvm::Value *RecoverableCond = nullptr;
2944   llvm::Value *TrapCond = nullptr;
2945   for (int i = 0, n = Checked.size(); i < n; ++i) {
2946     llvm::Value *Check = Checked[i].first;
2947     // -fsanitize-trap= overrides -fsanitize-recover=.
2948     llvm::Value *&Cond =
2949         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2950             ? TrapCond
2951             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2952                   ? RecoverableCond
2953                   : FatalCond;
2954     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2955   }
2956 
2957   if (TrapCond)
2958     EmitTrapCheck(TrapCond);
2959   if (!FatalCond && !RecoverableCond)
2960     return;
2961 
2962   llvm::Value *JointCond;
2963   if (FatalCond && RecoverableCond)
2964     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2965   else
2966     JointCond = FatalCond ? FatalCond : RecoverableCond;
2967   assert(JointCond);
2968 
2969   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2970   assert(SanOpts.has(Checked[0].second));
2971 #ifndef NDEBUG
2972   for (int i = 1, n = Checked.size(); i < n; ++i) {
2973     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2974            "All recoverable kinds in a single check must be same!");
2975     assert(SanOpts.has(Checked[i].second));
2976   }
2977 #endif
2978 
2979   llvm::BasicBlock *Cont = createBasicBlock("cont");
2980   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2981   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2982   // Give hint that we very much don't expect to execute the handler
2983   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2984   llvm::MDBuilder MDHelper(getLLVMContext());
2985   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2986   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2987   EmitBlock(Handlers);
2988 
2989   // Handler functions take an i8* pointing to the (handler-specific) static
2990   // information block, followed by a sequence of intptr_t arguments
2991   // representing operand values.
2992   SmallVector<llvm::Value *, 4> Args;
2993   SmallVector<llvm::Type *, 4> ArgTypes;
2994   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2995     Args.reserve(DynamicArgs.size() + 1);
2996     ArgTypes.reserve(DynamicArgs.size() + 1);
2997 
2998     // Emit handler arguments and create handler function type.
2999     if (!StaticArgs.empty()) {
3000       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3001       auto *InfoPtr =
3002           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3003                                    llvm::GlobalVariable::PrivateLinkage, Info);
3004       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3005       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3006       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3007       ArgTypes.push_back(Int8PtrTy);
3008     }
3009 
3010     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3011       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3012       ArgTypes.push_back(IntPtrTy);
3013     }
3014   }
3015 
3016   llvm::FunctionType *FnType =
3017     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3018 
3019   if (!FatalCond || !RecoverableCond) {
3020     // Simple case: we need to generate a single handler call, either
3021     // fatal, or non-fatal.
3022     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3023                          (FatalCond != nullptr), Cont);
3024   } else {
3025     // Emit two handler calls: first one for set of unrecoverable checks,
3026     // another one for recoverable.
3027     llvm::BasicBlock *NonFatalHandlerBB =
3028         createBasicBlock("non_fatal." + CheckName);
3029     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3030     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3031     EmitBlock(FatalHandlerBB);
3032     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3033                          NonFatalHandlerBB);
3034     EmitBlock(NonFatalHandlerBB);
3035     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3036                          Cont);
3037   }
3038 
3039   EmitBlock(Cont);
3040 }
3041 
3042 void CodeGenFunction::EmitCfiSlowPathCheck(
3043     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3044     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3045   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3046 
3047   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3048   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3049 
3050   llvm::MDBuilder MDHelper(getLLVMContext());
3051   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3052   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3053 
3054   EmitBlock(CheckBB);
3055 
3056   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3057 
3058   llvm::CallInst *CheckCall;
3059   llvm::Constant *SlowPathFn;
3060   if (WithDiag) {
3061     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3062     auto *InfoPtr =
3063         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3064                                  llvm::GlobalVariable::PrivateLinkage, Info);
3065     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3066     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3067 
3068     SlowPathFn = CGM.getModule().getOrInsertFunction(
3069         "__cfi_slowpath_diag",
3070         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3071                                 false));
3072     CheckCall = Builder.CreateCall(
3073         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3074   } else {
3075     SlowPathFn = CGM.getModule().getOrInsertFunction(
3076         "__cfi_slowpath",
3077         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3078     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3079   }
3080 
3081   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3082   CheckCall->setDoesNotThrow();
3083 
3084   EmitBlock(Cont);
3085 }
3086 
3087 // Emit a stub for __cfi_check function so that the linker knows about this
3088 // symbol in LTO mode.
3089 void CodeGenFunction::EmitCfiCheckStub() {
3090   llvm::Module *M = &CGM.getModule();
3091   auto &Ctx = M->getContext();
3092   llvm::Function *F = llvm::Function::Create(
3093       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3094       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3095   CGM.setDSOLocal(F);
3096   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3097   // FIXME: consider emitting an intrinsic call like
3098   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3099   // which can be lowered in CrossDSOCFI pass to the actual contents of
3100   // __cfi_check. This would allow inlining of __cfi_check calls.
3101   llvm::CallInst::Create(
3102       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3103   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3104 }
3105 
3106 // This function is basically a switch over the CFI failure kind, which is
3107 // extracted from CFICheckFailData (1st function argument). Each case is either
3108 // llvm.trap or a call to one of the two runtime handlers, based on
3109 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3110 // failure kind) traps, but this should really never happen.  CFICheckFailData
3111 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3112 // check kind; in this case __cfi_check_fail traps as well.
3113 void CodeGenFunction::EmitCfiCheckFail() {
3114   SanitizerScope SanScope(this);
3115   FunctionArgList Args;
3116   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3117                             ImplicitParamDecl::Other);
3118   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3119                             ImplicitParamDecl::Other);
3120   Args.push_back(&ArgData);
3121   Args.push_back(&ArgAddr);
3122 
3123   const CGFunctionInfo &FI =
3124     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3125 
3126   llvm::Function *F = llvm::Function::Create(
3127       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3128       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3129   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3130 
3131   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3132                 SourceLocation());
3133 
3134   // This function should not be affected by blacklist. This function does
3135   // not have a source location, but "src:*" would still apply. Revert any
3136   // changes to SanOpts made in StartFunction.
3137   SanOpts = CGM.getLangOpts().Sanitize;
3138 
3139   llvm::Value *Data =
3140       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3141                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3142   llvm::Value *Addr =
3143       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3144                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3145 
3146   // Data == nullptr means the calling module has trap behaviour for this check.
3147   llvm::Value *DataIsNotNullPtr =
3148       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3149   EmitTrapCheck(DataIsNotNullPtr);
3150 
3151   llvm::StructType *SourceLocationTy =
3152       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3153   llvm::StructType *CfiCheckFailDataTy =
3154       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3155 
3156   llvm::Value *V = Builder.CreateConstGEP2_32(
3157       CfiCheckFailDataTy,
3158       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3159       0);
3160   Address CheckKindAddr(V, getIntAlign());
3161   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3162 
3163   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3164       CGM.getLLVMContext(),
3165       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3166   llvm::Value *ValidVtable = Builder.CreateZExt(
3167       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3168                          {Addr, AllVtables}),
3169       IntPtrTy);
3170 
3171   const std::pair<int, SanitizerMask> CheckKinds[] = {
3172       {CFITCK_VCall, SanitizerKind::CFIVCall},
3173       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3174       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3175       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3176       {CFITCK_ICall, SanitizerKind::CFIICall}};
3177 
3178   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3179   for (auto CheckKindMaskPair : CheckKinds) {
3180     int Kind = CheckKindMaskPair.first;
3181     SanitizerMask Mask = CheckKindMaskPair.second;
3182     llvm::Value *Cond =
3183         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3184     if (CGM.getLangOpts().Sanitize.has(Mask))
3185       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3186                 {Data, Addr, ValidVtable});
3187     else
3188       EmitTrapCheck(Cond);
3189   }
3190 
3191   FinishFunction();
3192   // The only reference to this function will be created during LTO link.
3193   // Make sure it survives until then.
3194   CGM.addUsedGlobal(F);
3195 }
3196 
3197 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3198   if (SanOpts.has(SanitizerKind::Unreachable)) {
3199     SanitizerScope SanScope(this);
3200     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3201                              SanitizerKind::Unreachable),
3202               SanitizerHandler::BuiltinUnreachable,
3203               EmitCheckSourceLocation(Loc), None);
3204   }
3205   Builder.CreateUnreachable();
3206 }
3207 
3208 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3209   llvm::BasicBlock *Cont = createBasicBlock("cont");
3210 
3211   // If we're optimizing, collapse all calls to trap down to just one per
3212   // function to save on code size.
3213   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3214     TrapBB = createBasicBlock("trap");
3215     Builder.CreateCondBr(Checked, Cont, TrapBB);
3216     EmitBlock(TrapBB);
3217     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3218     TrapCall->setDoesNotReturn();
3219     TrapCall->setDoesNotThrow();
3220     Builder.CreateUnreachable();
3221   } else {
3222     Builder.CreateCondBr(Checked, Cont, TrapBB);
3223   }
3224 
3225   EmitBlock(Cont);
3226 }
3227 
3228 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3229   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3230 
3231   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3232     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3233                                   CGM.getCodeGenOpts().TrapFuncName);
3234     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3235   }
3236 
3237   return TrapCall;
3238 }
3239 
3240 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3241                                                  LValueBaseInfo *BaseInfo,
3242                                                  TBAAAccessInfo *TBAAInfo) {
3243   assert(E->getType()->isArrayType() &&
3244          "Array to pointer decay must have array source type!");
3245 
3246   // Expressions of array type can't be bitfields or vector elements.
3247   LValue LV = EmitLValue(E);
3248   Address Addr = LV.getAddress();
3249 
3250   // If the array type was an incomplete type, we need to make sure
3251   // the decay ends up being the right type.
3252   llvm::Type *NewTy = ConvertType(E->getType());
3253   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3254 
3255   // Note that VLA pointers are always decayed, so we don't need to do
3256   // anything here.
3257   if (!E->getType()->isVariableArrayType()) {
3258     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3259            "Expected pointer to array");
3260     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3261   }
3262 
3263   // The result of this decay conversion points to an array element within the
3264   // base lvalue. However, since TBAA currently does not support representing
3265   // accesses to elements of member arrays, we conservatively represent accesses
3266   // to the pointee object as if it had no any base lvalue specified.
3267   // TODO: Support TBAA for member arrays.
3268   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3269   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3270   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3271 
3272   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3273 }
3274 
3275 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3276 /// array to pointer, return the array subexpression.
3277 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3278   // If this isn't just an array->pointer decay, bail out.
3279   const auto *CE = dyn_cast<CastExpr>(E);
3280   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3281     return nullptr;
3282 
3283   // If this is a decay from variable width array, bail out.
3284   const Expr *SubExpr = CE->getSubExpr();
3285   if (SubExpr->getType()->isVariableArrayType())
3286     return nullptr;
3287 
3288   return SubExpr;
3289 }
3290 
3291 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3292                                           llvm::Value *ptr,
3293                                           ArrayRef<llvm::Value*> indices,
3294                                           bool inbounds,
3295                                           bool signedIndices,
3296                                           SourceLocation loc,
3297                                     const llvm::Twine &name = "arrayidx") {
3298   if (inbounds) {
3299     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3300                                       CodeGenFunction::NotSubtraction, loc,
3301                                       name);
3302   } else {
3303     return CGF.Builder.CreateGEP(ptr, indices, name);
3304   }
3305 }
3306 
3307 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3308                                       llvm::Value *idx,
3309                                       CharUnits eltSize) {
3310   // If we have a constant index, we can use the exact offset of the
3311   // element we're accessing.
3312   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3313     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3314     return arrayAlign.alignmentAtOffset(offset);
3315 
3316   // Otherwise, use the worst-case alignment for any element.
3317   } else {
3318     return arrayAlign.alignmentOfArrayElement(eltSize);
3319   }
3320 }
3321 
3322 static QualType getFixedSizeElementType(const ASTContext &ctx,
3323                                         const VariableArrayType *vla) {
3324   QualType eltType;
3325   do {
3326     eltType = vla->getElementType();
3327   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3328   return eltType;
3329 }
3330 
3331 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3332                                      ArrayRef<llvm::Value *> indices,
3333                                      QualType eltType, bool inbounds,
3334                                      bool signedIndices, SourceLocation loc,
3335                                      const llvm::Twine &name = "arrayidx") {
3336   // All the indices except that last must be zero.
3337 #ifndef NDEBUG
3338   for (auto idx : indices.drop_back())
3339     assert(isa<llvm::ConstantInt>(idx) &&
3340            cast<llvm::ConstantInt>(idx)->isZero());
3341 #endif
3342 
3343   // Determine the element size of the statically-sized base.  This is
3344   // the thing that the indices are expressed in terms of.
3345   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3346     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3347   }
3348 
3349   // We can use that to compute the best alignment of the element.
3350   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3351   CharUnits eltAlign =
3352     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3353 
3354   llvm::Value *eltPtr = emitArraySubscriptGEP(
3355       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3356   return Address(eltPtr, eltAlign);
3357 }
3358 
3359 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3360                                                bool Accessed) {
3361   // The index must always be an integer, which is not an aggregate.  Emit it
3362   // in lexical order (this complexity is, sadly, required by C++17).
3363   llvm::Value *IdxPre =
3364       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3365   bool SignedIndices = false;
3366   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3367     auto *Idx = IdxPre;
3368     if (E->getLHS() != E->getIdx()) {
3369       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3370       Idx = EmitScalarExpr(E->getIdx());
3371     }
3372 
3373     QualType IdxTy = E->getIdx()->getType();
3374     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3375     SignedIndices |= IdxSigned;
3376 
3377     if (SanOpts.has(SanitizerKind::ArrayBounds))
3378       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3379 
3380     // Extend or truncate the index type to 32 or 64-bits.
3381     if (Promote && Idx->getType() != IntPtrTy)
3382       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3383 
3384     return Idx;
3385   };
3386   IdxPre = nullptr;
3387 
3388   // If the base is a vector type, then we are forming a vector element lvalue
3389   // with this subscript.
3390   if (E->getBase()->getType()->isVectorType() &&
3391       !isa<ExtVectorElementExpr>(E->getBase())) {
3392     // Emit the vector as an lvalue to get its address.
3393     LValue LHS = EmitLValue(E->getBase());
3394     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3395     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3396     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3397                                  LHS.getBaseInfo(), TBAAAccessInfo());
3398   }
3399 
3400   // All the other cases basically behave like simple offsetting.
3401 
3402   // Handle the extvector case we ignored above.
3403   if (isa<ExtVectorElementExpr>(E->getBase())) {
3404     LValue LV = EmitLValue(E->getBase());
3405     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3406     Address Addr = EmitExtVectorElementLValue(LV);
3407 
3408     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3409     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3410                                  SignedIndices, E->getExprLoc());
3411     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3412                           CGM.getTBAAInfoForSubobject(LV, EltType));
3413   }
3414 
3415   LValueBaseInfo EltBaseInfo;
3416   TBAAAccessInfo EltTBAAInfo;
3417   Address Addr = Address::invalid();
3418   if (const VariableArrayType *vla =
3419            getContext().getAsVariableArrayType(E->getType())) {
3420     // The base must be a pointer, which is not an aggregate.  Emit
3421     // it.  It needs to be emitted first in case it's what captures
3422     // the VLA bounds.
3423     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3424     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3425 
3426     // The element count here is the total number of non-VLA elements.
3427     llvm::Value *numElements = getVLASize(vla).NumElts;
3428 
3429     // Effectively, the multiply by the VLA size is part of the GEP.
3430     // GEP indexes are signed, and scaling an index isn't permitted to
3431     // signed-overflow, so we use the same semantics for our explicit
3432     // multiply.  We suppress this if overflow is not undefined behavior.
3433     if (getLangOpts().isSignedOverflowDefined()) {
3434       Idx = Builder.CreateMul(Idx, numElements);
3435     } else {
3436       Idx = Builder.CreateNSWMul(Idx, numElements);
3437     }
3438 
3439     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3440                                  !getLangOpts().isSignedOverflowDefined(),
3441                                  SignedIndices, E->getExprLoc());
3442 
3443   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3444     // Indexing over an interface, as in "NSString *P; P[4];"
3445 
3446     // Emit the base pointer.
3447     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3448     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3449 
3450     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3451     llvm::Value *InterfaceSizeVal =
3452         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3453 
3454     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3455 
3456     // We don't necessarily build correct LLVM struct types for ObjC
3457     // interfaces, so we can't rely on GEP to do this scaling
3458     // correctly, so we need to cast to i8*.  FIXME: is this actually
3459     // true?  A lot of other things in the fragile ABI would break...
3460     llvm::Type *OrigBaseTy = Addr.getType();
3461     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3462 
3463     // Do the GEP.
3464     CharUnits EltAlign =
3465       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3466     llvm::Value *EltPtr =
3467         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3468                               SignedIndices, E->getExprLoc());
3469     Addr = Address(EltPtr, EltAlign);
3470 
3471     // Cast back.
3472     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3473   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3474     // If this is A[i] where A is an array, the frontend will have decayed the
3475     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3476     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3477     // "gep x, i" here.  Emit one "gep A, 0, i".
3478     assert(Array->getType()->isArrayType() &&
3479            "Array to pointer decay must have array source type!");
3480     LValue ArrayLV;
3481     // For simple multidimensional array indexing, set the 'accessed' flag for
3482     // better bounds-checking of the base expression.
3483     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3484       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3485     else
3486       ArrayLV = EmitLValue(Array);
3487     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3488 
3489     // Propagate the alignment from the array itself to the result.
3490     Addr = emitArraySubscriptGEP(
3491         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3492         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3493         E->getExprLoc());
3494     EltBaseInfo = ArrayLV.getBaseInfo();
3495     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3496   } else {
3497     // The base must be a pointer; emit it with an estimate of its alignment.
3498     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3499     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3500     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3501                                  !getLangOpts().isSignedOverflowDefined(),
3502                                  SignedIndices, E->getExprLoc());
3503   }
3504 
3505   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3506 
3507   if (getLangOpts().ObjC &&
3508       getLangOpts().getGC() != LangOptions::NonGC) {
3509     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3510     setObjCGCLValueClass(getContext(), E, LV);
3511   }
3512   return LV;
3513 }
3514 
3515 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3516                                        LValueBaseInfo &BaseInfo,
3517                                        TBAAAccessInfo &TBAAInfo,
3518                                        QualType BaseTy, QualType ElTy,
3519                                        bool IsLowerBound) {
3520   LValue BaseLVal;
3521   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3522     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3523     if (BaseTy->isArrayType()) {
3524       Address Addr = BaseLVal.getAddress();
3525       BaseInfo = BaseLVal.getBaseInfo();
3526 
3527       // If the array type was an incomplete type, we need to make sure
3528       // the decay ends up being the right type.
3529       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3530       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3531 
3532       // Note that VLA pointers are always decayed, so we don't need to do
3533       // anything here.
3534       if (!BaseTy->isVariableArrayType()) {
3535         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3536                "Expected pointer to array");
3537         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3538                                            "arraydecay");
3539       }
3540 
3541       return CGF.Builder.CreateElementBitCast(Addr,
3542                                               CGF.ConvertTypeForMem(ElTy));
3543     }
3544     LValueBaseInfo TypeBaseInfo;
3545     TBAAAccessInfo TypeTBAAInfo;
3546     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3547                                                   &TypeTBAAInfo);
3548     BaseInfo.mergeForCast(TypeBaseInfo);
3549     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3550     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3551   }
3552   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3553 }
3554 
3555 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3556                                                 bool IsLowerBound) {
3557   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3558   QualType ResultExprTy;
3559   if (auto *AT = getContext().getAsArrayType(BaseTy))
3560     ResultExprTy = AT->getElementType();
3561   else
3562     ResultExprTy = BaseTy->getPointeeType();
3563   llvm::Value *Idx = nullptr;
3564   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3565     // Requesting lower bound or upper bound, but without provided length and
3566     // without ':' symbol for the default length -> length = 1.
3567     // Idx = LowerBound ?: 0;
3568     if (auto *LowerBound = E->getLowerBound()) {
3569       Idx = Builder.CreateIntCast(
3570           EmitScalarExpr(LowerBound), IntPtrTy,
3571           LowerBound->getType()->hasSignedIntegerRepresentation());
3572     } else
3573       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3574   } else {
3575     // Try to emit length or lower bound as constant. If this is possible, 1
3576     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3577     // IR (LB + Len) - 1.
3578     auto &C = CGM.getContext();
3579     auto *Length = E->getLength();
3580     llvm::APSInt ConstLength;
3581     if (Length) {
3582       // Idx = LowerBound + Length - 1;
3583       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3584         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3585         Length = nullptr;
3586       }
3587       auto *LowerBound = E->getLowerBound();
3588       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3589       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3590         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3591         LowerBound = nullptr;
3592       }
3593       if (!Length)
3594         --ConstLength;
3595       else if (!LowerBound)
3596         --ConstLowerBound;
3597 
3598       if (Length || LowerBound) {
3599         auto *LowerBoundVal =
3600             LowerBound
3601                 ? Builder.CreateIntCast(
3602                       EmitScalarExpr(LowerBound), IntPtrTy,
3603                       LowerBound->getType()->hasSignedIntegerRepresentation())
3604                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3605         auto *LengthVal =
3606             Length
3607                 ? Builder.CreateIntCast(
3608                       EmitScalarExpr(Length), IntPtrTy,
3609                       Length->getType()->hasSignedIntegerRepresentation())
3610                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3611         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3612                                 /*HasNUW=*/false,
3613                                 !getLangOpts().isSignedOverflowDefined());
3614         if (Length && LowerBound) {
3615           Idx = Builder.CreateSub(
3616               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3617               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3618         }
3619       } else
3620         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3621     } else {
3622       // Idx = ArraySize - 1;
3623       QualType ArrayTy = BaseTy->isPointerType()
3624                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3625                              : BaseTy;
3626       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3627         Length = VAT->getSizeExpr();
3628         if (Length->isIntegerConstantExpr(ConstLength, C))
3629           Length = nullptr;
3630       } else {
3631         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3632         ConstLength = CAT->getSize();
3633       }
3634       if (Length) {
3635         auto *LengthVal = Builder.CreateIntCast(
3636             EmitScalarExpr(Length), IntPtrTy,
3637             Length->getType()->hasSignedIntegerRepresentation());
3638         Idx = Builder.CreateSub(
3639             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3640             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3641       } else {
3642         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3643         --ConstLength;
3644         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3645       }
3646     }
3647   }
3648   assert(Idx);
3649 
3650   Address EltPtr = Address::invalid();
3651   LValueBaseInfo BaseInfo;
3652   TBAAAccessInfo TBAAInfo;
3653   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3654     // The base must be a pointer, which is not an aggregate.  Emit
3655     // it.  It needs to be emitted first in case it's what captures
3656     // the VLA bounds.
3657     Address Base =
3658         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3659                                 BaseTy, VLA->getElementType(), IsLowerBound);
3660     // The element count here is the total number of non-VLA elements.
3661     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3662 
3663     // Effectively, the multiply by the VLA size is part of the GEP.
3664     // GEP indexes are signed, and scaling an index isn't permitted to
3665     // signed-overflow, so we use the same semantics for our explicit
3666     // multiply.  We suppress this if overflow is not undefined behavior.
3667     if (getLangOpts().isSignedOverflowDefined())
3668       Idx = Builder.CreateMul(Idx, NumElements);
3669     else
3670       Idx = Builder.CreateNSWMul(Idx, NumElements);
3671     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3672                                    !getLangOpts().isSignedOverflowDefined(),
3673                                    /*SignedIndices=*/false, E->getExprLoc());
3674   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3675     // If this is A[i] where A is an array, the frontend will have decayed the
3676     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3677     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3678     // "gep x, i" here.  Emit one "gep A, 0, i".
3679     assert(Array->getType()->isArrayType() &&
3680            "Array to pointer decay must have array source type!");
3681     LValue ArrayLV;
3682     // For simple multidimensional array indexing, set the 'accessed' flag for
3683     // better bounds-checking of the base expression.
3684     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3685       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3686     else
3687       ArrayLV = EmitLValue(Array);
3688 
3689     // Propagate the alignment from the array itself to the result.
3690     EltPtr = emitArraySubscriptGEP(
3691         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3692         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3693         /*SignedIndices=*/false, E->getExprLoc());
3694     BaseInfo = ArrayLV.getBaseInfo();
3695     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3696   } else {
3697     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3698                                            TBAAInfo, BaseTy, ResultExprTy,
3699                                            IsLowerBound);
3700     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3701                                    !getLangOpts().isSignedOverflowDefined(),
3702                                    /*SignedIndices=*/false, E->getExprLoc());
3703   }
3704 
3705   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3706 }
3707 
3708 LValue CodeGenFunction::
3709 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3710   // Emit the base vector as an l-value.
3711   LValue Base;
3712 
3713   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3714   if (E->isArrow()) {
3715     // If it is a pointer to a vector, emit the address and form an lvalue with
3716     // it.
3717     LValueBaseInfo BaseInfo;
3718     TBAAAccessInfo TBAAInfo;
3719     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3720     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3721     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3722     Base.getQuals().removeObjCGCAttr();
3723   } else if (E->getBase()->isGLValue()) {
3724     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3725     // emit the base as an lvalue.
3726     assert(E->getBase()->getType()->isVectorType());
3727     Base = EmitLValue(E->getBase());
3728   } else {
3729     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3730     assert(E->getBase()->getType()->isVectorType() &&
3731            "Result must be a vector");
3732     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3733 
3734     // Store the vector to memory (because LValue wants an address).
3735     Address VecMem = CreateMemTemp(E->getBase()->getType());
3736     Builder.CreateStore(Vec, VecMem);
3737     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3738                           AlignmentSource::Decl);
3739   }
3740 
3741   QualType type =
3742     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3743 
3744   // Encode the element access list into a vector of unsigned indices.
3745   SmallVector<uint32_t, 4> Indices;
3746   E->getEncodedElementAccess(Indices);
3747 
3748   if (Base.isSimple()) {
3749     llvm::Constant *CV =
3750         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3751     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3752                                     Base.getBaseInfo(), TBAAAccessInfo());
3753   }
3754   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3755 
3756   llvm::Constant *BaseElts = Base.getExtVectorElts();
3757   SmallVector<llvm::Constant *, 4> CElts;
3758 
3759   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3760     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3761   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3762   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3763                                   Base.getBaseInfo(), TBAAAccessInfo());
3764 }
3765 
3766 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3767   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3768     EmitIgnoredExpr(E->getBase());
3769     return EmitDeclRefLValue(DRE);
3770   }
3771 
3772   Expr *BaseExpr = E->getBase();
3773   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3774   LValue BaseLV;
3775   if (E->isArrow()) {
3776     LValueBaseInfo BaseInfo;
3777     TBAAAccessInfo TBAAInfo;
3778     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3779     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3780     SanitizerSet SkippedChecks;
3781     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3782     if (IsBaseCXXThis)
3783       SkippedChecks.set(SanitizerKind::Alignment, true);
3784     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3785       SkippedChecks.set(SanitizerKind::Null, true);
3786     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3787                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3788     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3789   } else
3790     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3791 
3792   NamedDecl *ND = E->getMemberDecl();
3793   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3794     LValue LV = EmitLValueForField(BaseLV, Field);
3795     setObjCGCLValueClass(getContext(), E, LV);
3796     return LV;
3797   }
3798 
3799   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3800     return EmitFunctionDeclLValue(*this, E, FD);
3801 
3802   llvm_unreachable("Unhandled member declaration!");
3803 }
3804 
3805 /// Given that we are currently emitting a lambda, emit an l-value for
3806 /// one of its members.
3807 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3808   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3809   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3810   QualType LambdaTagType =
3811     getContext().getTagDeclType(Field->getParent());
3812   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3813   return EmitLValueForField(LambdaLV, Field);
3814 }
3815 
3816 /// Drill down to the storage of a field without walking into
3817 /// reference types.
3818 ///
3819 /// The resulting address doesn't necessarily have the right type.
3820 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3821                                       const FieldDecl *field) {
3822   const RecordDecl *rec = field->getParent();
3823 
3824   unsigned idx =
3825     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3826 
3827   CharUnits offset;
3828   // Adjust the alignment down to the given offset.
3829   // As a special case, if the LLVM field index is 0, we know that this
3830   // is zero.
3831   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3832                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3833          "LLVM field at index zero had non-zero offset?");
3834   if (idx != 0) {
3835     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3836     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3837     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3838   }
3839 
3840   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3841 }
3842 
3843 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3844   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3845   if (!RD)
3846     return false;
3847 
3848   if (RD->isDynamicClass())
3849     return true;
3850 
3851   for (const auto &Base : RD->bases())
3852     if (hasAnyVptr(Base.getType(), Context))
3853       return true;
3854 
3855   for (const FieldDecl *Field : RD->fields())
3856     if (hasAnyVptr(Field->getType(), Context))
3857       return true;
3858 
3859   return false;
3860 }
3861 
3862 LValue CodeGenFunction::EmitLValueForField(LValue base,
3863                                            const FieldDecl *field) {
3864   LValueBaseInfo BaseInfo = base.getBaseInfo();
3865 
3866   if (field->isBitField()) {
3867     const CGRecordLayout &RL =
3868       CGM.getTypes().getCGRecordLayout(field->getParent());
3869     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3870     Address Addr = base.getAddress();
3871     unsigned Idx = RL.getLLVMFieldNo(field);
3872     if (Idx != 0)
3873       // For structs, we GEP to the field that the record layout suggests.
3874       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3875                                      field->getName());
3876     // Get the access type.
3877     llvm::Type *FieldIntTy =
3878       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3879     if (Addr.getElementType() != FieldIntTy)
3880       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3881 
3882     QualType fieldType =
3883       field->getType().withCVRQualifiers(base.getVRQualifiers());
3884     // TODO: Support TBAA for bit fields.
3885     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3886     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3887                                 TBAAAccessInfo());
3888   }
3889 
3890   // Fields of may-alias structures are may-alias themselves.
3891   // FIXME: this should get propagated down through anonymous structs
3892   // and unions.
3893   QualType FieldType = field->getType();
3894   const RecordDecl *rec = field->getParent();
3895   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3896   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3897   TBAAAccessInfo FieldTBAAInfo;
3898   if (base.getTBAAInfo().isMayAlias() ||
3899           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3900     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3901   } else if (rec->isUnion()) {
3902     // TODO: Support TBAA for unions.
3903     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3904   } else {
3905     // If no base type been assigned for the base access, then try to generate
3906     // one for this base lvalue.
3907     FieldTBAAInfo = base.getTBAAInfo();
3908     if (!FieldTBAAInfo.BaseType) {
3909         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3910         assert(!FieldTBAAInfo.Offset &&
3911                "Nonzero offset for an access with no base type!");
3912     }
3913 
3914     // Adjust offset to be relative to the base type.
3915     const ASTRecordLayout &Layout =
3916         getContext().getASTRecordLayout(field->getParent());
3917     unsigned CharWidth = getContext().getCharWidth();
3918     if (FieldTBAAInfo.BaseType)
3919       FieldTBAAInfo.Offset +=
3920           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3921 
3922     // Update the final access type and size.
3923     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3924     FieldTBAAInfo.Size =
3925         getContext().getTypeSizeInChars(FieldType).getQuantity();
3926   }
3927 
3928   Address addr = base.getAddress();
3929   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3930     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3931         ClassDef->isDynamicClass()) {
3932       // Getting to any field of dynamic object requires stripping dynamic
3933       // information provided by invariant.group.  This is because accessing
3934       // fields may leak the real address of dynamic object, which could result
3935       // in miscompilation when leaked pointer would be compared.
3936       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3937       addr = Address(stripped, addr.getAlignment());
3938     }
3939   }
3940 
3941   unsigned RecordCVR = base.getVRQualifiers();
3942   if (rec->isUnion()) {
3943     // For unions, there is no pointer adjustment.
3944     assert(!FieldType->isReferenceType() && "union has reference member");
3945     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3946         hasAnyVptr(FieldType, getContext()))
3947       // Because unions can easily skip invariant.barriers, we need to add
3948       // a barrier every time CXXRecord field with vptr is referenced.
3949       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3950                      addr.getAlignment());
3951   } else {
3952     // For structs, we GEP to the field that the record layout suggests.
3953     addr = emitAddrOfFieldStorage(*this, addr, field);
3954 
3955     // If this is a reference field, load the reference right now.
3956     if (FieldType->isReferenceType()) {
3957       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3958                                       FieldTBAAInfo);
3959       if (RecordCVR & Qualifiers::Volatile)
3960         RefLVal.getQuals().addVolatile();
3961       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3962 
3963       // Qualifiers on the struct don't apply to the referencee.
3964       RecordCVR = 0;
3965       FieldType = FieldType->getPointeeType();
3966     }
3967   }
3968 
3969   // Make sure that the address is pointing to the right type.  This is critical
3970   // for both unions and structs.  A union needs a bitcast, a struct element
3971   // will need a bitcast if the LLVM type laid out doesn't match the desired
3972   // type.
3973   addr = Builder.CreateElementBitCast(
3974       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3975 
3976   if (field->hasAttr<AnnotateAttr>())
3977     addr = EmitFieldAnnotations(field, addr);
3978 
3979   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3980   LV.getQuals().addCVRQualifiers(RecordCVR);
3981 
3982   // __weak attribute on a field is ignored.
3983   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3984     LV.getQuals().removeObjCGCAttr();
3985 
3986   return LV;
3987 }
3988 
3989 LValue
3990 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3991                                                   const FieldDecl *Field) {
3992   QualType FieldType = Field->getType();
3993 
3994   if (!FieldType->isReferenceType())
3995     return EmitLValueForField(Base, Field);
3996 
3997   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3998 
3999   // Make sure that the address is pointing to the right type.
4000   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4001   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4002 
4003   // TODO: Generate TBAA information that describes this access as a structure
4004   // member access and not just an access to an object of the field's type. This
4005   // should be similar to what we do in EmitLValueForField().
4006   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4007   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4008   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4009   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4010                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4011 }
4012 
4013 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4014   if (E->isFileScope()) {
4015     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4016     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4017   }
4018   if (E->getType()->isVariablyModifiedType())
4019     // make sure to emit the VLA size.
4020     EmitVariablyModifiedType(E->getType());
4021 
4022   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4023   const Expr *InitExpr = E->getInitializer();
4024   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4025 
4026   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4027                    /*Init*/ true);
4028 
4029   return Result;
4030 }
4031 
4032 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4033   if (!E->isGLValue())
4034     // Initializing an aggregate temporary in C++11: T{...}.
4035     return EmitAggExprToLValue(E);
4036 
4037   // An lvalue initializer list must be initializing a reference.
4038   assert(E->isTransparent() && "non-transparent glvalue init list");
4039   return EmitLValue(E->getInit(0));
4040 }
4041 
4042 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4043 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4044 /// LValue is returned and the current block has been terminated.
4045 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4046                                                     const Expr *Operand) {
4047   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4048     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4049     return None;
4050   }
4051 
4052   return CGF.EmitLValue(Operand);
4053 }
4054 
4055 LValue CodeGenFunction::
4056 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4057   if (!expr->isGLValue()) {
4058     // ?: here should be an aggregate.
4059     assert(hasAggregateEvaluationKind(expr->getType()) &&
4060            "Unexpected conditional operator!");
4061     return EmitAggExprToLValue(expr);
4062   }
4063 
4064   OpaqueValueMapping binding(*this, expr);
4065 
4066   const Expr *condExpr = expr->getCond();
4067   bool CondExprBool;
4068   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4069     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4070     if (!CondExprBool) std::swap(live, dead);
4071 
4072     if (!ContainsLabel(dead)) {
4073       // If the true case is live, we need to track its region.
4074       if (CondExprBool)
4075         incrementProfileCounter(expr);
4076       return EmitLValue(live);
4077     }
4078   }
4079 
4080   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4081   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4082   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4083 
4084   ConditionalEvaluation eval(*this);
4085   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4086 
4087   // Any temporaries created here are conditional.
4088   EmitBlock(lhsBlock);
4089   incrementProfileCounter(expr);
4090   eval.begin(*this);
4091   Optional<LValue> lhs =
4092       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4093   eval.end(*this);
4094 
4095   if (lhs && !lhs->isSimple())
4096     return EmitUnsupportedLValue(expr, "conditional operator");
4097 
4098   lhsBlock = Builder.GetInsertBlock();
4099   if (lhs)
4100     Builder.CreateBr(contBlock);
4101 
4102   // Any temporaries created here are conditional.
4103   EmitBlock(rhsBlock);
4104   eval.begin(*this);
4105   Optional<LValue> rhs =
4106       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4107   eval.end(*this);
4108   if (rhs && !rhs->isSimple())
4109     return EmitUnsupportedLValue(expr, "conditional operator");
4110   rhsBlock = Builder.GetInsertBlock();
4111 
4112   EmitBlock(contBlock);
4113 
4114   if (lhs && rhs) {
4115     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4116                                            2, "cond-lvalue");
4117     phi->addIncoming(lhs->getPointer(), lhsBlock);
4118     phi->addIncoming(rhs->getPointer(), rhsBlock);
4119     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4120     AlignmentSource alignSource =
4121       std::max(lhs->getBaseInfo().getAlignmentSource(),
4122                rhs->getBaseInfo().getAlignmentSource());
4123     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4124         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4125     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4126                           TBAAInfo);
4127   } else {
4128     assert((lhs || rhs) &&
4129            "both operands of glvalue conditional are throw-expressions?");
4130     return lhs ? *lhs : *rhs;
4131   }
4132 }
4133 
4134 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4135 /// type. If the cast is to a reference, we can have the usual lvalue result,
4136 /// otherwise if a cast is needed by the code generator in an lvalue context,
4137 /// then it must mean that we need the address of an aggregate in order to
4138 /// access one of its members.  This can happen for all the reasons that casts
4139 /// are permitted with aggregate result, including noop aggregate casts, and
4140 /// cast from scalar to union.
4141 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4142   switch (E->getCastKind()) {
4143   case CK_ToVoid:
4144   case CK_BitCast:
4145   case CK_ArrayToPointerDecay:
4146   case CK_FunctionToPointerDecay:
4147   case CK_NullToMemberPointer:
4148   case CK_NullToPointer:
4149   case CK_IntegralToPointer:
4150   case CK_PointerToIntegral:
4151   case CK_PointerToBoolean:
4152   case CK_VectorSplat:
4153   case CK_IntegralCast:
4154   case CK_BooleanToSignedIntegral:
4155   case CK_IntegralToBoolean:
4156   case CK_IntegralToFloating:
4157   case CK_FloatingToIntegral:
4158   case CK_FloatingToBoolean:
4159   case CK_FloatingCast:
4160   case CK_FloatingRealToComplex:
4161   case CK_FloatingComplexToReal:
4162   case CK_FloatingComplexToBoolean:
4163   case CK_FloatingComplexCast:
4164   case CK_FloatingComplexToIntegralComplex:
4165   case CK_IntegralRealToComplex:
4166   case CK_IntegralComplexToReal:
4167   case CK_IntegralComplexToBoolean:
4168   case CK_IntegralComplexCast:
4169   case CK_IntegralComplexToFloatingComplex:
4170   case CK_DerivedToBaseMemberPointer:
4171   case CK_BaseToDerivedMemberPointer:
4172   case CK_MemberPointerToBoolean:
4173   case CK_ReinterpretMemberPointer:
4174   case CK_AnyPointerToBlockPointerCast:
4175   case CK_ARCProduceObject:
4176   case CK_ARCConsumeObject:
4177   case CK_ARCReclaimReturnedObject:
4178   case CK_ARCExtendBlockObject:
4179   case CK_CopyAndAutoreleaseBlockObject:
4180   case CK_IntToOCLSampler:
4181   case CK_FixedPointCast:
4182   case CK_FixedPointToBoolean:
4183     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4184 
4185   case CK_Dependent:
4186     llvm_unreachable("dependent cast kind in IR gen!");
4187 
4188   case CK_BuiltinFnToFnPtr:
4189     llvm_unreachable("builtin functions are handled elsewhere");
4190 
4191   // These are never l-values; just use the aggregate emission code.
4192   case CK_NonAtomicToAtomic:
4193   case CK_AtomicToNonAtomic:
4194     return EmitAggExprToLValue(E);
4195 
4196   case CK_Dynamic: {
4197     LValue LV = EmitLValue(E->getSubExpr());
4198     Address V = LV.getAddress();
4199     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4200     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4201   }
4202 
4203   case CK_ConstructorConversion:
4204   case CK_UserDefinedConversion:
4205   case CK_CPointerToObjCPointerCast:
4206   case CK_BlockPointerToObjCPointerCast:
4207   case CK_NoOp:
4208   case CK_LValueToRValue:
4209     return EmitLValue(E->getSubExpr());
4210 
4211   case CK_UncheckedDerivedToBase:
4212   case CK_DerivedToBase: {
4213     const RecordType *DerivedClassTy =
4214       E->getSubExpr()->getType()->getAs<RecordType>();
4215     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4216 
4217     LValue LV = EmitLValue(E->getSubExpr());
4218     Address This = LV.getAddress();
4219 
4220     // Perform the derived-to-base conversion
4221     Address Base = GetAddressOfBaseClass(
4222         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4223         /*NullCheckValue=*/false, E->getExprLoc());
4224 
4225     // TODO: Support accesses to members of base classes in TBAA. For now, we
4226     // conservatively pretend that the complete object is of the base class
4227     // type.
4228     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4229                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4230   }
4231   case CK_ToUnion:
4232     return EmitAggExprToLValue(E);
4233   case CK_BaseToDerived: {
4234     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4235     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4236 
4237     LValue LV = EmitLValue(E->getSubExpr());
4238 
4239     // Perform the base-to-derived conversion
4240     Address Derived =
4241       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4242                                E->path_begin(), E->path_end(),
4243                                /*NullCheckValue=*/false);
4244 
4245     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4246     // performed and the object is not of the derived type.
4247     if (sanitizePerformTypeCheck())
4248       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4249                     Derived.getPointer(), E->getType());
4250 
4251     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4252       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4253                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4254                                 E->getBeginLoc());
4255 
4256     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4257                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4258   }
4259   case CK_LValueBitCast: {
4260     // This must be a reinterpret_cast (or c-style equivalent).
4261     const auto *CE = cast<ExplicitCastExpr>(E);
4262 
4263     CGM.EmitExplicitCastExprType(CE, this);
4264     LValue LV = EmitLValue(E->getSubExpr());
4265     Address V = Builder.CreateBitCast(LV.getAddress(),
4266                                       ConvertType(CE->getTypeAsWritten()));
4267 
4268     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4269       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4270                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4271                                 E->getBeginLoc());
4272 
4273     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4274                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4275   }
4276   case CK_AddressSpaceConversion: {
4277     LValue LV = EmitLValue(E->getSubExpr());
4278     QualType DestTy = getContext().getPointerType(E->getType());
4279     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4280         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4281         E->getType().getAddressSpace(), ConvertType(DestTy));
4282     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4283                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4284   }
4285   case CK_ObjCObjectLValueCast: {
4286     LValue LV = EmitLValue(E->getSubExpr());
4287     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4288                                              ConvertType(E->getType()));
4289     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4290                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4291   }
4292   case CK_ZeroToOCLOpaqueType:
4293     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4294   }
4295 
4296   llvm_unreachable("Unhandled lvalue cast kind?");
4297 }
4298 
4299 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4300   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4301   return getOrCreateOpaqueLValueMapping(e);
4302 }
4303 
4304 LValue
4305 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4306   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4307 
4308   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4309       it = OpaqueLValues.find(e);
4310 
4311   if (it != OpaqueLValues.end())
4312     return it->second;
4313 
4314   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4315   return EmitLValue(e->getSourceExpr());
4316 }
4317 
4318 RValue
4319 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4320   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4321 
4322   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4323       it = OpaqueRValues.find(e);
4324 
4325   if (it != OpaqueRValues.end())
4326     return it->second;
4327 
4328   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4329   return EmitAnyExpr(e->getSourceExpr());
4330 }
4331 
4332 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4333                                            const FieldDecl *FD,
4334                                            SourceLocation Loc) {
4335   QualType FT = FD->getType();
4336   LValue FieldLV = EmitLValueForField(LV, FD);
4337   switch (getEvaluationKind(FT)) {
4338   case TEK_Complex:
4339     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4340   case TEK_Aggregate:
4341     return FieldLV.asAggregateRValue();
4342   case TEK_Scalar:
4343     // This routine is used to load fields one-by-one to perform a copy, so
4344     // don't load reference fields.
4345     if (FD->getType()->isReferenceType())
4346       return RValue::get(FieldLV.getPointer());
4347     return EmitLoadOfLValue(FieldLV, Loc);
4348   }
4349   llvm_unreachable("bad evaluation kind");
4350 }
4351 
4352 //===--------------------------------------------------------------------===//
4353 //                             Expression Emission
4354 //===--------------------------------------------------------------------===//
4355 
4356 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4357                                      ReturnValueSlot ReturnValue) {
4358   // Builtins never have block type.
4359   if (E->getCallee()->getType()->isBlockPointerType())
4360     return EmitBlockCallExpr(E, ReturnValue);
4361 
4362   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4363     return EmitCXXMemberCallExpr(CE, ReturnValue);
4364 
4365   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4366     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4367 
4368   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4369     if (const CXXMethodDecl *MD =
4370           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4371       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4372 
4373   CGCallee callee = EmitCallee(E->getCallee());
4374 
4375   if (callee.isBuiltin()) {
4376     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4377                            E, ReturnValue);
4378   }
4379 
4380   if (callee.isPseudoDestructor()) {
4381     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4382   }
4383 
4384   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4385 }
4386 
4387 /// Emit a CallExpr without considering whether it might be a subclass.
4388 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4389                                            ReturnValueSlot ReturnValue) {
4390   CGCallee Callee = EmitCallee(E->getCallee());
4391   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4392 }
4393 
4394 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4395   if (auto builtinID = FD->getBuiltinID()) {
4396     return CGCallee::forBuiltin(builtinID, FD);
4397   }
4398 
4399   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4400   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4401 }
4402 
4403 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4404   E = E->IgnoreParens();
4405 
4406   // Look through function-to-pointer decay.
4407   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4408     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4409         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4410       return EmitCallee(ICE->getSubExpr());
4411     }
4412 
4413   // Resolve direct calls.
4414   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4415     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4416       return EmitDirectCallee(*this, FD);
4417     }
4418   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4419     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4420       EmitIgnoredExpr(ME->getBase());
4421       return EmitDirectCallee(*this, FD);
4422     }
4423 
4424   // Look through template substitutions.
4425   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4426     return EmitCallee(NTTP->getReplacement());
4427 
4428   // Treat pseudo-destructor calls differently.
4429   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4430     return CGCallee::forPseudoDestructor(PDE);
4431   }
4432 
4433   // Otherwise, we have an indirect reference.
4434   llvm::Value *calleePtr;
4435   QualType functionType;
4436   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4437     calleePtr = EmitScalarExpr(E);
4438     functionType = ptrType->getPointeeType();
4439   } else {
4440     functionType = E->getType();
4441     calleePtr = EmitLValue(E).getPointer();
4442   }
4443   assert(functionType->isFunctionType());
4444 
4445   GlobalDecl GD;
4446   if (const auto *VD =
4447           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4448     GD = GlobalDecl(VD);
4449 
4450   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4451   CGCallee callee(calleeInfo, calleePtr);
4452   return callee;
4453 }
4454 
4455 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4456   // Comma expressions just emit their LHS then their RHS as an l-value.
4457   if (E->getOpcode() == BO_Comma) {
4458     EmitIgnoredExpr(E->getLHS());
4459     EnsureInsertPoint();
4460     return EmitLValue(E->getRHS());
4461   }
4462 
4463   if (E->getOpcode() == BO_PtrMemD ||
4464       E->getOpcode() == BO_PtrMemI)
4465     return EmitPointerToDataMemberBinaryExpr(E);
4466 
4467   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4468 
4469   // Note that in all of these cases, __block variables need the RHS
4470   // evaluated first just in case the variable gets moved by the RHS.
4471 
4472   switch (getEvaluationKind(E->getType())) {
4473   case TEK_Scalar: {
4474     switch (E->getLHS()->getType().getObjCLifetime()) {
4475     case Qualifiers::OCL_Strong:
4476       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4477 
4478     case Qualifiers::OCL_Autoreleasing:
4479       return EmitARCStoreAutoreleasing(E).first;
4480 
4481     // No reason to do any of these differently.
4482     case Qualifiers::OCL_None:
4483     case Qualifiers::OCL_ExplicitNone:
4484     case Qualifiers::OCL_Weak:
4485       break;
4486     }
4487 
4488     RValue RV = EmitAnyExpr(E->getRHS());
4489     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4490     if (RV.isScalar())
4491       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4492     EmitStoreThroughLValue(RV, LV);
4493     return LV;
4494   }
4495 
4496   case TEK_Complex:
4497     return EmitComplexAssignmentLValue(E);
4498 
4499   case TEK_Aggregate:
4500     return EmitAggExprToLValue(E);
4501   }
4502   llvm_unreachable("bad evaluation kind");
4503 }
4504 
4505 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4506   RValue RV = EmitCallExpr(E);
4507 
4508   if (!RV.isScalar())
4509     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4510                           AlignmentSource::Decl);
4511 
4512   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4513          "Can't have a scalar return unless the return type is a "
4514          "reference type!");
4515 
4516   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4517 }
4518 
4519 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4520   // FIXME: This shouldn't require another copy.
4521   return EmitAggExprToLValue(E);
4522 }
4523 
4524 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4525   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4526          && "binding l-value to type which needs a temporary");
4527   AggValueSlot Slot = CreateAggTemp(E->getType());
4528   EmitCXXConstructExpr(E, Slot);
4529   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4530 }
4531 
4532 LValue
4533 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4534   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4535 }
4536 
4537 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4538   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4539                                       ConvertType(E->getType()));
4540 }
4541 
4542 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4543   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4544                         AlignmentSource::Decl);
4545 }
4546 
4547 LValue
4548 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4549   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4550   Slot.setExternallyDestructed();
4551   EmitAggExpr(E->getSubExpr(), Slot);
4552   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4553   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4554 }
4555 
4556 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4557   RValue RV = EmitObjCMessageExpr(E);
4558 
4559   if (!RV.isScalar())
4560     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4561                           AlignmentSource::Decl);
4562 
4563   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4564          "Can't have a scalar return unless the return type is a "
4565          "reference type!");
4566 
4567   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4568 }
4569 
4570 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4571   Address V =
4572     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4573   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4574 }
4575 
4576 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4577                                              const ObjCIvarDecl *Ivar) {
4578   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4579 }
4580 
4581 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4582                                           llvm::Value *BaseValue,
4583                                           const ObjCIvarDecl *Ivar,
4584                                           unsigned CVRQualifiers) {
4585   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4586                                                    Ivar, CVRQualifiers);
4587 }
4588 
4589 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4590   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4591   llvm::Value *BaseValue = nullptr;
4592   const Expr *BaseExpr = E->getBase();
4593   Qualifiers BaseQuals;
4594   QualType ObjectTy;
4595   if (E->isArrow()) {
4596     BaseValue = EmitScalarExpr(BaseExpr);
4597     ObjectTy = BaseExpr->getType()->getPointeeType();
4598     BaseQuals = ObjectTy.getQualifiers();
4599   } else {
4600     LValue BaseLV = EmitLValue(BaseExpr);
4601     BaseValue = BaseLV.getPointer();
4602     ObjectTy = BaseExpr->getType();
4603     BaseQuals = ObjectTy.getQualifiers();
4604   }
4605 
4606   LValue LV =
4607     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4608                       BaseQuals.getCVRQualifiers());
4609   setObjCGCLValueClass(getContext(), E, LV);
4610   return LV;
4611 }
4612 
4613 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4614   // Can only get l-value for message expression returning aggregate type
4615   RValue RV = EmitAnyExprToTemp(E);
4616   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4617                         AlignmentSource::Decl);
4618 }
4619 
4620 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4621                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4622                                  llvm::Value *Chain) {
4623   // Get the actual function type. The callee type will always be a pointer to
4624   // function type or a block pointer type.
4625   assert(CalleeType->isFunctionPointerType() &&
4626          "Call must have function pointer type!");
4627 
4628   const Decl *TargetDecl =
4629       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4630 
4631   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4632     // We can only guarantee that a function is called from the correct
4633     // context/function based on the appropriate target attributes,
4634     // so only check in the case where we have both always_inline and target
4635     // since otherwise we could be making a conditional call after a check for
4636     // the proper cpu features (and it won't cause code generation issues due to
4637     // function based code generation).
4638     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4639         TargetDecl->hasAttr<TargetAttr>())
4640       checkTargetFeatures(E, FD);
4641 
4642   CalleeType = getContext().getCanonicalType(CalleeType);
4643 
4644   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4645 
4646   CGCallee Callee = OrigCallee;
4647 
4648   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4649       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4650     if (llvm::Constant *PrefixSig =
4651             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4652       SanitizerScope SanScope(this);
4653       // Remove any (C++17) exception specifications, to allow calling e.g. a
4654       // noexcept function through a non-noexcept pointer.
4655       auto ProtoTy =
4656         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4657       llvm::Constant *FTRTTIConst =
4658           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4659       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4660       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4661           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4662 
4663       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4664 
4665       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4666           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4667       llvm::Value *CalleeSigPtr =
4668           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4669       llvm::Value *CalleeSig =
4670           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4671       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4672 
4673       llvm::BasicBlock *Cont = createBasicBlock("cont");
4674       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4675       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4676 
4677       EmitBlock(TypeCheck);
4678       llvm::Value *CalleeRTTIPtr =
4679           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4680       llvm::Value *CalleeRTTIEncoded =
4681           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4682       llvm::Value *CalleeRTTI =
4683           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4684       llvm::Value *CalleeRTTIMatch =
4685           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4686       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4687                                       EmitCheckTypeDescriptor(CalleeType)};
4688       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4689                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4690 
4691       Builder.CreateBr(Cont);
4692       EmitBlock(Cont);
4693     }
4694   }
4695 
4696   const auto *FnType = cast<FunctionType>(PointeeType);
4697 
4698   // If we are checking indirect calls and this call is indirect, check that the
4699   // function pointer is a member of the bit set for the function type.
4700   if (SanOpts.has(SanitizerKind::CFIICall) &&
4701       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4702     SanitizerScope SanScope(this);
4703     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4704 
4705     llvm::Metadata *MD;
4706     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4707       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4708     else
4709       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4710 
4711     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4712 
4713     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4714     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4715     llvm::Value *TypeTest = Builder.CreateCall(
4716         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4717 
4718     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4719     llvm::Constant *StaticData[] = {
4720         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4721         EmitCheckSourceLocation(E->getBeginLoc()),
4722         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4723     };
4724     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4725       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4726                            CastedCallee, StaticData);
4727     } else {
4728       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4729                 SanitizerHandler::CFICheckFail, StaticData,
4730                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4731     }
4732   }
4733 
4734   CallArgList Args;
4735   if (Chain)
4736     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4737              CGM.getContext().VoidPtrTy);
4738 
4739   // C++17 requires that we evaluate arguments to a call using assignment syntax
4740   // right-to-left, and that we evaluate arguments to certain other operators
4741   // left-to-right. Note that we allow this to override the order dictated by
4742   // the calling convention on the MS ABI, which means that parameter
4743   // destruction order is not necessarily reverse construction order.
4744   // FIXME: Revisit this based on C++ committee response to unimplementability.
4745   EvaluationOrder Order = EvaluationOrder::Default;
4746   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4747     if (OCE->isAssignmentOp())
4748       Order = EvaluationOrder::ForceRightToLeft;
4749     else {
4750       switch (OCE->getOperator()) {
4751       case OO_LessLess:
4752       case OO_GreaterGreater:
4753       case OO_AmpAmp:
4754       case OO_PipePipe:
4755       case OO_Comma:
4756       case OO_ArrowStar:
4757         Order = EvaluationOrder::ForceLeftToRight;
4758         break;
4759       default:
4760         break;
4761       }
4762     }
4763   }
4764 
4765   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4766                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4767 
4768   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4769       Args, FnType, /*isChainCall=*/Chain);
4770 
4771   // C99 6.5.2.2p6:
4772   //   If the expression that denotes the called function has a type
4773   //   that does not include a prototype, [the default argument
4774   //   promotions are performed]. If the number of arguments does not
4775   //   equal the number of parameters, the behavior is undefined. If
4776   //   the function is defined with a type that includes a prototype,
4777   //   and either the prototype ends with an ellipsis (, ...) or the
4778   //   types of the arguments after promotion are not compatible with
4779   //   the types of the parameters, the behavior is undefined. If the
4780   //   function is defined with a type that does not include a
4781   //   prototype, and the types of the arguments after promotion are
4782   //   not compatible with those of the parameters after promotion,
4783   //   the behavior is undefined [except in some trivial cases].
4784   // That is, in the general case, we should assume that a call
4785   // through an unprototyped function type works like a *non-variadic*
4786   // call.  The way we make this work is to cast to the exact type
4787   // of the promoted arguments.
4788   //
4789   // Chain calls use this same code path to add the invisible chain parameter
4790   // to the function type.
4791   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4792     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4793     CalleeTy = CalleeTy->getPointerTo();
4794 
4795     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4796     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4797     Callee.setFunctionPointer(CalleePtr);
4798   }
4799 
4800   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4801 }
4802 
4803 LValue CodeGenFunction::
4804 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4805   Address BaseAddr = Address::invalid();
4806   if (E->getOpcode() == BO_PtrMemI) {
4807     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4808   } else {
4809     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4810   }
4811 
4812   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4813 
4814   const MemberPointerType *MPT
4815     = E->getRHS()->getType()->getAs<MemberPointerType>();
4816 
4817   LValueBaseInfo BaseInfo;
4818   TBAAAccessInfo TBAAInfo;
4819   Address MemberAddr =
4820     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4821                                     &TBAAInfo);
4822 
4823   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4824 }
4825 
4826 /// Given the address of a temporary variable, produce an r-value of
4827 /// its type.
4828 RValue CodeGenFunction::convertTempToRValue(Address addr,
4829                                             QualType type,
4830                                             SourceLocation loc) {
4831   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4832   switch (getEvaluationKind(type)) {
4833   case TEK_Complex:
4834     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4835   case TEK_Aggregate:
4836     return lvalue.asAggregateRValue();
4837   case TEK_Scalar:
4838     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4839   }
4840   llvm_unreachable("bad evaluation kind");
4841 }
4842 
4843 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4844   assert(Val->getType()->isFPOrFPVectorTy());
4845   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4846     return;
4847 
4848   llvm::MDBuilder MDHelper(getLLVMContext());
4849   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4850 
4851   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4852 }
4853 
4854 namespace {
4855   struct LValueOrRValue {
4856     LValue LV;
4857     RValue RV;
4858   };
4859 }
4860 
4861 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4862                                            const PseudoObjectExpr *E,
4863                                            bool forLValue,
4864                                            AggValueSlot slot) {
4865   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4866 
4867   // Find the result expression, if any.
4868   const Expr *resultExpr = E->getResultExpr();
4869   LValueOrRValue result;
4870 
4871   for (PseudoObjectExpr::const_semantics_iterator
4872          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4873     const Expr *semantic = *i;
4874 
4875     // If this semantic expression is an opaque value, bind it
4876     // to the result of its source expression.
4877     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4878       // Skip unique OVEs.
4879       if (ov->isUnique()) {
4880         assert(ov != resultExpr &&
4881                "A unique OVE cannot be used as the result expression");
4882         continue;
4883       }
4884 
4885       // If this is the result expression, we may need to evaluate
4886       // directly into the slot.
4887       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4888       OVMA opaqueData;
4889       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4890           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4891         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4892         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4893                                        AlignmentSource::Decl);
4894         opaqueData = OVMA::bind(CGF, ov, LV);
4895         result.RV = slot.asRValue();
4896 
4897       // Otherwise, emit as normal.
4898       } else {
4899         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4900 
4901         // If this is the result, also evaluate the result now.
4902         if (ov == resultExpr) {
4903           if (forLValue)
4904             result.LV = CGF.EmitLValue(ov);
4905           else
4906             result.RV = CGF.EmitAnyExpr(ov, slot);
4907         }
4908       }
4909 
4910       opaques.push_back(opaqueData);
4911 
4912     // Otherwise, if the expression is the result, evaluate it
4913     // and remember the result.
4914     } else if (semantic == resultExpr) {
4915       if (forLValue)
4916         result.LV = CGF.EmitLValue(semantic);
4917       else
4918         result.RV = CGF.EmitAnyExpr(semantic, slot);
4919 
4920     // Otherwise, evaluate the expression in an ignored context.
4921     } else {
4922       CGF.EmitIgnoredExpr(semantic);
4923     }
4924   }
4925 
4926   // Unbind all the opaques now.
4927   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4928     opaques[i].unbind(CGF);
4929 
4930   return result;
4931 }
4932 
4933 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4934                                                AggValueSlot slot) {
4935   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4936 }
4937 
4938 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4939   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4940 }
4941