1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 75 } 76 77 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 78 /// default alignment of the corresponding LLVM type, which is *not* 79 /// guaranteed to be related in any way to the expected alignment of 80 /// an AST type that might have been lowered to Ty. 81 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 82 const Twine &Name) { 83 CharUnits Align = 84 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 85 return CreateTempAlloca(Ty, Align, Name); 86 } 87 88 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 89 assert(isa<llvm::AllocaInst>(Var.getPointer())); 90 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 91 Store->setAlignment(Var.getAlignment().getQuantity()); 92 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 93 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 94 } 95 96 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 97 CharUnits Align = getContext().getTypeAlignInChars(Ty); 98 return CreateTempAlloca(ConvertType(Ty), Align, Name); 99 } 100 101 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 102 // FIXME: Should we prefer the preferred type alignment here? 103 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 104 } 105 106 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 107 const Twine &Name) { 108 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 109 } 110 111 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 112 /// expression and compare the result against zero, returning an Int1Ty value. 113 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 114 PGO.setCurrentStmt(E); 115 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 116 llvm::Value *MemPtr = EmitScalarExpr(E); 117 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 118 } 119 120 QualType BoolTy = getContext().BoolTy; 121 SourceLocation Loc = E->getExprLoc(); 122 if (!E->getType()->isAnyComplexType()) 123 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 124 125 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 126 Loc); 127 } 128 129 /// EmitIgnoredExpr - Emit code to compute the specified expression, 130 /// ignoring the result. 131 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 132 if (E->isRValue()) 133 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 134 135 // Just emit it as an l-value and drop the result. 136 EmitLValue(E); 137 } 138 139 /// EmitAnyExpr - Emit code to compute the specified expression which 140 /// can have any type. The result is returned as an RValue struct. 141 /// If this is an aggregate expression, AggSlot indicates where the 142 /// result should be returned. 143 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 144 AggValueSlot aggSlot, 145 bool ignoreResult) { 146 switch (getEvaluationKind(E->getType())) { 147 case TEK_Scalar: 148 return RValue::get(EmitScalarExpr(E, ignoreResult)); 149 case TEK_Complex: 150 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 151 case TEK_Aggregate: 152 if (!ignoreResult && aggSlot.isIgnored()) 153 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 154 EmitAggExpr(E, aggSlot); 155 return aggSlot.asRValue(); 156 } 157 llvm_unreachable("bad evaluation kind"); 158 } 159 160 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 161 /// always be accessible even if no aggregate location is provided. 162 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 163 AggValueSlot AggSlot = AggValueSlot::ignored(); 164 165 if (hasAggregateEvaluationKind(E->getType())) 166 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 167 return EmitAnyExpr(E, AggSlot); 168 } 169 170 /// EmitAnyExprToMem - Evaluate an expression into a given memory 171 /// location. 172 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 173 Address Location, 174 Qualifiers Quals, 175 bool IsInit) { 176 // FIXME: This function should take an LValue as an argument. 177 switch (getEvaluationKind(E->getType())) { 178 case TEK_Complex: 179 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 180 /*isInit*/ false); 181 return; 182 183 case TEK_Aggregate: { 184 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 185 AggValueSlot::IsDestructed_t(IsInit), 186 AggValueSlot::DoesNotNeedGCBarriers, 187 AggValueSlot::IsAliased_t(!IsInit))); 188 return; 189 } 190 191 case TEK_Scalar: { 192 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 193 LValue LV = MakeAddrLValue(Location, E->getType()); 194 EmitStoreThroughLValue(RV, LV); 195 return; 196 } 197 } 198 llvm_unreachable("bad evaluation kind"); 199 } 200 201 static void 202 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 203 const Expr *E, Address ReferenceTemporary) { 204 // Objective-C++ ARC: 205 // If we are binding a reference to a temporary that has ownership, we 206 // need to perform retain/release operations on the temporary. 207 // 208 // FIXME: This should be looking at E, not M. 209 if (auto Lifetime = M->getType().getObjCLifetime()) { 210 switch (Lifetime) { 211 case Qualifiers::OCL_None: 212 case Qualifiers::OCL_ExplicitNone: 213 // Carry on to normal cleanup handling. 214 break; 215 216 case Qualifiers::OCL_Autoreleasing: 217 // Nothing to do; cleaned up by an autorelease pool. 218 return; 219 220 case Qualifiers::OCL_Strong: 221 case Qualifiers::OCL_Weak: 222 switch (StorageDuration Duration = M->getStorageDuration()) { 223 case SD_Static: 224 // Note: we intentionally do not register a cleanup to release 225 // the object on program termination. 226 return; 227 228 case SD_Thread: 229 // FIXME: We should probably register a cleanup in this case. 230 return; 231 232 case SD_Automatic: 233 case SD_FullExpression: 234 CodeGenFunction::Destroyer *Destroy; 235 CleanupKind CleanupKind; 236 if (Lifetime == Qualifiers::OCL_Strong) { 237 const ValueDecl *VD = M->getExtendingDecl(); 238 bool Precise = 239 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 240 CleanupKind = CGF.getARCCleanupKind(); 241 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 242 : &CodeGenFunction::destroyARCStrongImprecise; 243 } else { 244 // __weak objects always get EH cleanups; otherwise, exceptions 245 // could cause really nasty crashes instead of mere leaks. 246 CleanupKind = NormalAndEHCleanup; 247 Destroy = &CodeGenFunction::destroyARCWeak; 248 } 249 if (Duration == SD_FullExpression) 250 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 251 M->getType(), *Destroy, 252 CleanupKind & EHCleanup); 253 else 254 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 255 M->getType(), 256 *Destroy, CleanupKind & EHCleanup); 257 return; 258 259 case SD_Dynamic: 260 llvm_unreachable("temporary cannot have dynamic storage duration"); 261 } 262 llvm_unreachable("unknown storage duration"); 263 } 264 } 265 266 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 267 if (const RecordType *RT = 268 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 269 // Get the destructor for the reference temporary. 270 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 271 if (!ClassDecl->hasTrivialDestructor()) 272 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 273 } 274 275 if (!ReferenceTemporaryDtor) 276 return; 277 278 // Call the destructor for the temporary. 279 switch (M->getStorageDuration()) { 280 case SD_Static: 281 case SD_Thread: { 282 llvm::Constant *CleanupFn; 283 llvm::Constant *CleanupArg; 284 if (E->getType()->isArrayType()) { 285 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 286 ReferenceTemporary, E->getType(), 287 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 288 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 289 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 290 } else { 291 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 292 StructorType::Complete); 293 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 294 } 295 CGF.CGM.getCXXABI().registerGlobalDtor( 296 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 297 break; 298 } 299 300 case SD_FullExpression: 301 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 302 CodeGenFunction::destroyCXXObject, 303 CGF.getLangOpts().Exceptions); 304 break; 305 306 case SD_Automatic: 307 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 308 ReferenceTemporary, E->getType(), 309 CodeGenFunction::destroyCXXObject, 310 CGF.getLangOpts().Exceptions); 311 break; 312 313 case SD_Dynamic: 314 llvm_unreachable("temporary cannot have dynamic storage duration"); 315 } 316 } 317 318 static Address 319 createReferenceTemporary(CodeGenFunction &CGF, 320 const MaterializeTemporaryExpr *M, const Expr *Inner) { 321 switch (M->getStorageDuration()) { 322 case SD_FullExpression: 323 case SD_Automatic: { 324 // If we have a constant temporary array or record try to promote it into a 325 // constant global under the same rules a normal constant would've been 326 // promoted. This is easier on the optimizer and generally emits fewer 327 // instructions. 328 QualType Ty = Inner->getType(); 329 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 330 (Ty->isArrayType() || Ty->isRecordType()) && 331 CGF.CGM.isTypeConstant(Ty, true)) 332 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 333 auto *GV = new llvm::GlobalVariable( 334 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 335 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 336 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 337 GV->setAlignment(alignment.getQuantity()); 338 // FIXME: Should we put the new global into a COMDAT? 339 return Address(GV, alignment); 340 } 341 return CGF.CreateMemTemp(Ty, "ref.tmp"); 342 } 343 case SD_Thread: 344 case SD_Static: 345 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 346 347 case SD_Dynamic: 348 llvm_unreachable("temporary can't have dynamic storage duration"); 349 } 350 llvm_unreachable("unknown storage duration"); 351 } 352 353 LValue CodeGenFunction:: 354 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 355 const Expr *E = M->GetTemporaryExpr(); 356 357 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 358 // as that will cause the lifetime adjustment to be lost for ARC 359 auto ownership = M->getType().getObjCLifetime(); 360 if (ownership != Qualifiers::OCL_None && 361 ownership != Qualifiers::OCL_ExplicitNone) { 362 Address Object = createReferenceTemporary(*this, M, E); 363 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 364 Object = Address(llvm::ConstantExpr::getBitCast(Var, 365 ConvertTypeForMem(E->getType()) 366 ->getPointerTo(Object.getAddressSpace())), 367 Object.getAlignment()); 368 369 // createReferenceTemporary will promote the temporary to a global with a 370 // constant initializer if it can. It can only do this to a value of 371 // ARC-manageable type if the value is global and therefore "immune" to 372 // ref-counting operations. Therefore we have no need to emit either a 373 // dynamic initialization or a cleanup and we can just return the address 374 // of the temporary. 375 if (Var->hasInitializer()) 376 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 377 378 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 379 } 380 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 381 AlignmentSource::Decl); 382 383 switch (getEvaluationKind(E->getType())) { 384 default: llvm_unreachable("expected scalar or aggregate expression"); 385 case TEK_Scalar: 386 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 387 break; 388 case TEK_Aggregate: { 389 EmitAggExpr(E, AggValueSlot::forAddr(Object, 390 E->getType().getQualifiers(), 391 AggValueSlot::IsDestructed, 392 AggValueSlot::DoesNotNeedGCBarriers, 393 AggValueSlot::IsNotAliased)); 394 break; 395 } 396 } 397 398 pushTemporaryCleanup(*this, M, E, Object); 399 return RefTempDst; 400 } 401 402 SmallVector<const Expr *, 2> CommaLHSs; 403 SmallVector<SubobjectAdjustment, 2> Adjustments; 404 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 405 406 for (const auto &Ignored : CommaLHSs) 407 EmitIgnoredExpr(Ignored); 408 409 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 410 if (opaque->getType()->isRecordType()) { 411 assert(Adjustments.empty()); 412 return EmitOpaqueValueLValue(opaque); 413 } 414 } 415 416 // Create and initialize the reference temporary. 417 Address Object = createReferenceTemporary(*this, M, E); 418 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 419 Object = Address(llvm::ConstantExpr::getBitCast( 420 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 421 Object.getAlignment()); 422 // If the temporary is a global and has a constant initializer or is a 423 // constant temporary that we promoted to a global, we may have already 424 // initialized it. 425 if (!Var->hasInitializer()) { 426 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 427 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 428 } 429 } else { 430 switch (M->getStorageDuration()) { 431 case SD_Automatic: 432 case SD_FullExpression: 433 if (auto *Size = EmitLifetimeStart( 434 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 435 Object.getPointer())) { 436 if (M->getStorageDuration() == SD_Automatic) 437 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 438 Object, Size); 439 else 440 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 441 Size); 442 } 443 break; 444 default: 445 break; 446 } 447 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 448 } 449 pushTemporaryCleanup(*this, M, E, Object); 450 451 // Perform derived-to-base casts and/or field accesses, to get from the 452 // temporary object we created (and, potentially, for which we extended 453 // the lifetime) to the subobject we're binding the reference to. 454 for (unsigned I = Adjustments.size(); I != 0; --I) { 455 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 456 switch (Adjustment.Kind) { 457 case SubobjectAdjustment::DerivedToBaseAdjustment: 458 Object = 459 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 460 Adjustment.DerivedToBase.BasePath->path_begin(), 461 Adjustment.DerivedToBase.BasePath->path_end(), 462 /*NullCheckValue=*/ false, E->getExprLoc()); 463 break; 464 465 case SubobjectAdjustment::FieldAdjustment: { 466 LValue LV = MakeAddrLValue(Object, E->getType(), 467 AlignmentSource::Decl); 468 LV = EmitLValueForField(LV, Adjustment.Field); 469 assert(LV.isSimple() && 470 "materialized temporary field is not a simple lvalue"); 471 Object = LV.getAddress(); 472 break; 473 } 474 475 case SubobjectAdjustment::MemberPointerAdjustment: { 476 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 477 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 478 Adjustment.Ptr.MPT); 479 break; 480 } 481 } 482 } 483 484 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 485 } 486 487 RValue 488 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 489 // Emit the expression as an lvalue. 490 LValue LV = EmitLValue(E); 491 assert(LV.isSimple()); 492 llvm::Value *Value = LV.getPointer(); 493 494 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 495 // C++11 [dcl.ref]p5 (as amended by core issue 453): 496 // If a glvalue to which a reference is directly bound designates neither 497 // an existing object or function of an appropriate type nor a region of 498 // storage of suitable size and alignment to contain an object of the 499 // reference's type, the behavior is undefined. 500 QualType Ty = E->getType(); 501 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 502 } 503 504 return RValue::get(Value); 505 } 506 507 508 /// getAccessedFieldNo - Given an encoded value and a result number, return the 509 /// input field number being accessed. 510 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 511 const llvm::Constant *Elts) { 512 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 513 ->getZExtValue(); 514 } 515 516 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 517 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 518 llvm::Value *High) { 519 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 520 llvm::Value *K47 = Builder.getInt64(47); 521 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 522 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 523 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 524 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 525 return Builder.CreateMul(B1, KMul); 526 } 527 528 bool CodeGenFunction::sanitizePerformTypeCheck() const { 529 return SanOpts.has(SanitizerKind::Null) | 530 SanOpts.has(SanitizerKind::Alignment) | 531 SanOpts.has(SanitizerKind::ObjectSize) | 532 SanOpts.has(SanitizerKind::Vptr); 533 } 534 535 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 536 llvm::Value *Ptr, QualType Ty, 537 CharUnits Alignment, 538 SanitizerSet SkippedChecks) { 539 if (!sanitizePerformTypeCheck()) 540 return; 541 542 // Don't check pointers outside the default address space. The null check 543 // isn't correct, the object-size check isn't supported by LLVM, and we can't 544 // communicate the addresses to the runtime handler for the vptr check. 545 if (Ptr->getType()->getPointerAddressSpace()) 546 return; 547 548 SanitizerScope SanScope(this); 549 550 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 551 llvm::BasicBlock *Done = nullptr; 552 553 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 554 TCK == TCK_UpcastToVirtualBase; 555 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 556 !SkippedChecks.has(SanitizerKind::Null)) { 557 // The glvalue must not be an empty glvalue. 558 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 559 560 if (AllowNullPointers) { 561 // When performing pointer casts, it's OK if the value is null. 562 // Skip the remaining checks in that case. 563 Done = createBasicBlock("null"); 564 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 565 Builder.CreateCondBr(IsNonNull, Rest, Done); 566 EmitBlock(Rest); 567 } else { 568 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 569 } 570 } 571 572 if (SanOpts.has(SanitizerKind::ObjectSize) && 573 !SkippedChecks.has(SanitizerKind::ObjectSize) && 574 !Ty->isIncompleteType()) { 575 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 576 577 // The glvalue must refer to a large enough storage region. 578 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 579 // to check this. 580 // FIXME: Get object address space 581 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 582 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 583 llvm::Value *Min = Builder.getFalse(); 584 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 585 llvm::Value *LargeEnough = 586 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 587 llvm::ConstantInt::get(IntPtrTy, Size)); 588 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 589 } 590 591 uint64_t AlignVal = 0; 592 593 if (SanOpts.has(SanitizerKind::Alignment) && 594 !SkippedChecks.has(SanitizerKind::Alignment)) { 595 AlignVal = Alignment.getQuantity(); 596 if (!Ty->isIncompleteType() && !AlignVal) 597 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 598 599 // The glvalue must be suitably aligned. 600 if (AlignVal) { 601 llvm::Value *Align = 602 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 603 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 604 llvm::Value *Aligned = 605 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 606 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 607 } 608 } 609 610 if (Checks.size() > 0) { 611 // Make sure we're not losing information. Alignment needs to be a power of 612 // 2 613 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 614 llvm::Constant *StaticData[] = { 615 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 616 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 617 llvm::ConstantInt::get(Int8Ty, TCK)}; 618 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 619 } 620 621 // If possible, check that the vptr indicates that there is a subobject of 622 // type Ty at offset zero within this object. 623 // 624 // C++11 [basic.life]p5,6: 625 // [For storage which does not refer to an object within its lifetime] 626 // The program has undefined behavior if: 627 // -- the [pointer or glvalue] is used to access a non-static data member 628 // or call a non-static member function 629 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 630 if (SanOpts.has(SanitizerKind::Vptr) && 631 !SkippedChecks.has(SanitizerKind::Vptr) && 632 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 633 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 634 TCK == TCK_UpcastToVirtualBase) && 635 RD && RD->hasDefinition() && RD->isDynamicClass()) { 636 // Compute a hash of the mangled name of the type. 637 // 638 // FIXME: This is not guaranteed to be deterministic! Move to a 639 // fingerprinting mechanism once LLVM provides one. For the time 640 // being the implementation happens to be deterministic. 641 SmallString<64> MangledName; 642 llvm::raw_svector_ostream Out(MangledName); 643 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 644 Out); 645 646 // Blacklist based on the mangled type. 647 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 648 Out.str())) { 649 llvm::hash_code TypeHash = hash_value(Out.str()); 650 651 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 652 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 653 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 654 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 655 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 656 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 657 658 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 659 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 660 661 // Look the hash up in our cache. 662 const int CacheSize = 128; 663 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 664 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 665 "__ubsan_vptr_type_cache"); 666 llvm::Value *Slot = Builder.CreateAnd(Hash, 667 llvm::ConstantInt::get(IntPtrTy, 668 CacheSize-1)); 669 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 670 llvm::Value *CacheVal = 671 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 672 getPointerAlign()); 673 674 // If the hash isn't in the cache, call a runtime handler to perform the 675 // hard work of checking whether the vptr is for an object of the right 676 // type. This will either fill in the cache and return, or produce a 677 // diagnostic. 678 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 679 llvm::Constant *StaticData[] = { 680 EmitCheckSourceLocation(Loc), 681 EmitCheckTypeDescriptor(Ty), 682 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 683 llvm::ConstantInt::get(Int8Ty, TCK) 684 }; 685 llvm::Value *DynamicData[] = { Ptr, Hash }; 686 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 687 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 688 DynamicData); 689 } 690 } 691 692 if (Done) { 693 Builder.CreateBr(Done); 694 EmitBlock(Done); 695 } 696 } 697 698 /// Determine whether this expression refers to a flexible array member in a 699 /// struct. We disable array bounds checks for such members. 700 static bool isFlexibleArrayMemberExpr(const Expr *E) { 701 // For compatibility with existing code, we treat arrays of length 0 or 702 // 1 as flexible array members. 703 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 704 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 705 if (CAT->getSize().ugt(1)) 706 return false; 707 } else if (!isa<IncompleteArrayType>(AT)) 708 return false; 709 710 E = E->IgnoreParens(); 711 712 // A flexible array member must be the last member in the class. 713 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 714 // FIXME: If the base type of the member expr is not FD->getParent(), 715 // this should not be treated as a flexible array member access. 716 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 717 RecordDecl::field_iterator FI( 718 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 719 return ++FI == FD->getParent()->field_end(); 720 } 721 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 722 return IRE->getDecl()->getNextIvar() == nullptr; 723 } 724 725 return false; 726 } 727 728 /// If Base is known to point to the start of an array, return the length of 729 /// that array. Return 0 if the length cannot be determined. 730 static llvm::Value *getArrayIndexingBound( 731 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 732 // For the vector indexing extension, the bound is the number of elements. 733 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 734 IndexedType = Base->getType(); 735 return CGF.Builder.getInt32(VT->getNumElements()); 736 } 737 738 Base = Base->IgnoreParens(); 739 740 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 741 if (CE->getCastKind() == CK_ArrayToPointerDecay && 742 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 743 IndexedType = CE->getSubExpr()->getType(); 744 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 745 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 746 return CGF.Builder.getInt(CAT->getSize()); 747 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 748 return CGF.getVLASize(VAT).first; 749 } 750 } 751 752 return nullptr; 753 } 754 755 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 756 llvm::Value *Index, QualType IndexType, 757 bool Accessed) { 758 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 759 "should not be called unless adding bounds checks"); 760 SanitizerScope SanScope(this); 761 762 QualType IndexedType; 763 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 764 if (!Bound) 765 return; 766 767 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 768 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 769 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 770 771 llvm::Constant *StaticData[] = { 772 EmitCheckSourceLocation(E->getExprLoc()), 773 EmitCheckTypeDescriptor(IndexedType), 774 EmitCheckTypeDescriptor(IndexType) 775 }; 776 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 777 : Builder.CreateICmpULE(IndexVal, BoundVal); 778 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 779 SanitizerHandler::OutOfBounds, StaticData, Index); 780 } 781 782 783 CodeGenFunction::ComplexPairTy CodeGenFunction:: 784 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 785 bool isInc, bool isPre) { 786 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 787 788 llvm::Value *NextVal; 789 if (isa<llvm::IntegerType>(InVal.first->getType())) { 790 uint64_t AmountVal = isInc ? 1 : -1; 791 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 792 793 // Add the inc/dec to the real part. 794 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 795 } else { 796 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 797 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 798 if (!isInc) 799 FVal.changeSign(); 800 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 801 802 // Add the inc/dec to the real part. 803 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 804 } 805 806 ComplexPairTy IncVal(NextVal, InVal.second); 807 808 // Store the updated result through the lvalue. 809 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 810 811 // If this is a postinc, return the value read from memory, otherwise use the 812 // updated value. 813 return isPre ? IncVal : InVal; 814 } 815 816 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 817 CodeGenFunction *CGF) { 818 // Bind VLAs in the cast type. 819 if (CGF && E->getType()->isVariablyModifiedType()) 820 CGF->EmitVariablyModifiedType(E->getType()); 821 822 if (CGDebugInfo *DI = getModuleDebugInfo()) 823 DI->EmitExplicitCastType(E->getType()); 824 } 825 826 //===----------------------------------------------------------------------===// 827 // LValue Expression Emission 828 //===----------------------------------------------------------------------===// 829 830 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 831 /// derive a more accurate bound on the alignment of the pointer. 832 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 833 AlignmentSource *Source) { 834 // We allow this with ObjC object pointers because of fragile ABIs. 835 assert(E->getType()->isPointerType() || 836 E->getType()->isObjCObjectPointerType()); 837 E = E->IgnoreParens(); 838 839 // Casts: 840 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 841 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 842 CGM.EmitExplicitCastExprType(ECE, this); 843 844 switch (CE->getCastKind()) { 845 // Non-converting casts (but not C's implicit conversion from void*). 846 case CK_BitCast: 847 case CK_NoOp: 848 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 849 if (PtrTy->getPointeeType()->isVoidType()) 850 break; 851 852 AlignmentSource InnerSource; 853 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 854 if (Source) *Source = InnerSource; 855 856 // If this is an explicit bitcast, and the source l-value is 857 // opaque, honor the alignment of the casted-to type. 858 if (isa<ExplicitCastExpr>(CE) && 859 InnerSource != AlignmentSource::Decl) { 860 Addr = Address(Addr.getPointer(), 861 getNaturalPointeeTypeAlignment(E->getType(), Source)); 862 } 863 864 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 865 CE->getCastKind() == CK_BitCast) { 866 if (auto PT = E->getType()->getAs<PointerType>()) 867 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 868 /*MayBeNull=*/true, 869 CodeGenFunction::CFITCK_UnrelatedCast, 870 CE->getLocStart()); 871 } 872 873 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 874 } 875 break; 876 877 // Array-to-pointer decay. 878 case CK_ArrayToPointerDecay: 879 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 880 881 // Derived-to-base conversions. 882 case CK_UncheckedDerivedToBase: 883 case CK_DerivedToBase: { 884 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 885 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 886 return GetAddressOfBaseClass(Addr, Derived, 887 CE->path_begin(), CE->path_end(), 888 ShouldNullCheckClassCastValue(CE), 889 CE->getExprLoc()); 890 } 891 892 // TODO: Is there any reason to treat base-to-derived conversions 893 // specially? 894 default: 895 break; 896 } 897 } 898 899 // Unary &. 900 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 901 if (UO->getOpcode() == UO_AddrOf) { 902 LValue LV = EmitLValue(UO->getSubExpr()); 903 if (Source) *Source = LV.getAlignmentSource(); 904 return LV.getAddress(); 905 } 906 } 907 908 // TODO: conditional operators, comma. 909 910 // Otherwise, use the alignment of the type. 911 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 912 return Address(EmitScalarExpr(E), Align); 913 } 914 915 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 916 if (Ty->isVoidType()) 917 return RValue::get(nullptr); 918 919 switch (getEvaluationKind(Ty)) { 920 case TEK_Complex: { 921 llvm::Type *EltTy = 922 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 923 llvm::Value *U = llvm::UndefValue::get(EltTy); 924 return RValue::getComplex(std::make_pair(U, U)); 925 } 926 927 // If this is a use of an undefined aggregate type, the aggregate must have an 928 // identifiable address. Just because the contents of the value are undefined 929 // doesn't mean that the address can't be taken and compared. 930 case TEK_Aggregate: { 931 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 932 return RValue::getAggregate(DestPtr); 933 } 934 935 case TEK_Scalar: 936 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 937 } 938 llvm_unreachable("bad evaluation kind"); 939 } 940 941 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 942 const char *Name) { 943 ErrorUnsupported(E, Name); 944 return GetUndefRValue(E->getType()); 945 } 946 947 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 948 const char *Name) { 949 ErrorUnsupported(E, Name); 950 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 951 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 952 E->getType()); 953 } 954 955 bool CodeGenFunction::IsDeclRefOrWrappedCXXThis(const Expr *Obj) { 956 if (isa<DeclRefExpr>(Obj)) 957 return true; 958 959 const Expr *Base = Obj; 960 while (!isa<CXXThisExpr>(Base)) { 961 // The result of a dynamic_cast can be null. 962 if (isa<CXXDynamicCastExpr>(Base)) 963 return false; 964 965 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 966 Base = CE->getSubExpr(); 967 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 968 Base = PE->getSubExpr(); 969 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 970 if (UO->getOpcode() == UO_Extension) 971 Base = UO->getSubExpr(); 972 else 973 return false; 974 } else { 975 return false; 976 } 977 } 978 return true; 979 } 980 981 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 982 LValue LV; 983 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 984 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 985 else 986 LV = EmitLValue(E); 987 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 988 SanitizerSet SkippedChecks; 989 if (const auto *ME = dyn_cast<MemberExpr>(E)) 990 if (IsDeclRefOrWrappedCXXThis(ME->getBase())) 991 SkippedChecks.set(SanitizerKind::Null, true); 992 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 993 E->getType(), LV.getAlignment(), SkippedChecks); 994 } 995 return LV; 996 } 997 998 /// EmitLValue - Emit code to compute a designator that specifies the location 999 /// of the expression. 1000 /// 1001 /// This can return one of two things: a simple address or a bitfield reference. 1002 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1003 /// an LLVM pointer type. 1004 /// 1005 /// If this returns a bitfield reference, nothing about the pointee type of the 1006 /// LLVM value is known: For example, it may not be a pointer to an integer. 1007 /// 1008 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1009 /// this method guarantees that the returned pointer type will point to an LLVM 1010 /// type of the same size of the lvalue's type. If the lvalue has a variable 1011 /// length type, this is not possible. 1012 /// 1013 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1014 ApplyDebugLocation DL(*this, E); 1015 switch (E->getStmtClass()) { 1016 default: return EmitUnsupportedLValue(E, "l-value expression"); 1017 1018 case Expr::ObjCPropertyRefExprClass: 1019 llvm_unreachable("cannot emit a property reference directly"); 1020 1021 case Expr::ObjCSelectorExprClass: 1022 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1023 case Expr::ObjCIsaExprClass: 1024 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1025 case Expr::BinaryOperatorClass: 1026 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1027 case Expr::CompoundAssignOperatorClass: { 1028 QualType Ty = E->getType(); 1029 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1030 Ty = AT->getValueType(); 1031 if (!Ty->isAnyComplexType()) 1032 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1033 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1034 } 1035 case Expr::CallExprClass: 1036 case Expr::CXXMemberCallExprClass: 1037 case Expr::CXXOperatorCallExprClass: 1038 case Expr::UserDefinedLiteralClass: 1039 return EmitCallExprLValue(cast<CallExpr>(E)); 1040 case Expr::VAArgExprClass: 1041 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1042 case Expr::DeclRefExprClass: 1043 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1044 case Expr::ParenExprClass: 1045 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1046 case Expr::GenericSelectionExprClass: 1047 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1048 case Expr::PredefinedExprClass: 1049 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1050 case Expr::StringLiteralClass: 1051 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1052 case Expr::ObjCEncodeExprClass: 1053 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1054 case Expr::PseudoObjectExprClass: 1055 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1056 case Expr::InitListExprClass: 1057 return EmitInitListLValue(cast<InitListExpr>(E)); 1058 case Expr::CXXTemporaryObjectExprClass: 1059 case Expr::CXXConstructExprClass: 1060 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1061 case Expr::CXXBindTemporaryExprClass: 1062 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1063 case Expr::CXXUuidofExprClass: 1064 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1065 case Expr::LambdaExprClass: 1066 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1067 1068 case Expr::ExprWithCleanupsClass: { 1069 const auto *cleanups = cast<ExprWithCleanups>(E); 1070 enterFullExpression(cleanups); 1071 RunCleanupsScope Scope(*this); 1072 LValue LV = EmitLValue(cleanups->getSubExpr()); 1073 if (LV.isSimple()) { 1074 // Defend against branches out of gnu statement expressions surrounded by 1075 // cleanups. 1076 llvm::Value *V = LV.getPointer(); 1077 Scope.ForceCleanup({&V}); 1078 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1079 getContext(), LV.getAlignmentSource(), 1080 LV.getTBAAInfo()); 1081 } 1082 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1083 // bitfield lvalue or some other non-simple lvalue? 1084 return LV; 1085 } 1086 1087 case Expr::CXXDefaultArgExprClass: 1088 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1089 case Expr::CXXDefaultInitExprClass: { 1090 CXXDefaultInitExprScope Scope(*this); 1091 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1092 } 1093 case Expr::CXXTypeidExprClass: 1094 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1095 1096 case Expr::ObjCMessageExprClass: 1097 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1098 case Expr::ObjCIvarRefExprClass: 1099 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1100 case Expr::StmtExprClass: 1101 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1102 case Expr::UnaryOperatorClass: 1103 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1104 case Expr::ArraySubscriptExprClass: 1105 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1106 case Expr::OMPArraySectionExprClass: 1107 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1108 case Expr::ExtVectorElementExprClass: 1109 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1110 case Expr::MemberExprClass: 1111 return EmitMemberExpr(cast<MemberExpr>(E)); 1112 case Expr::CompoundLiteralExprClass: 1113 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1114 case Expr::ConditionalOperatorClass: 1115 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1116 case Expr::BinaryConditionalOperatorClass: 1117 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1118 case Expr::ChooseExprClass: 1119 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1120 case Expr::OpaqueValueExprClass: 1121 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1122 case Expr::SubstNonTypeTemplateParmExprClass: 1123 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1124 case Expr::ImplicitCastExprClass: 1125 case Expr::CStyleCastExprClass: 1126 case Expr::CXXFunctionalCastExprClass: 1127 case Expr::CXXStaticCastExprClass: 1128 case Expr::CXXDynamicCastExprClass: 1129 case Expr::CXXReinterpretCastExprClass: 1130 case Expr::CXXConstCastExprClass: 1131 case Expr::ObjCBridgedCastExprClass: 1132 return EmitCastLValue(cast<CastExpr>(E)); 1133 1134 case Expr::MaterializeTemporaryExprClass: 1135 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1136 } 1137 } 1138 1139 /// Given an object of the given canonical type, can we safely copy a 1140 /// value out of it based on its initializer? 1141 static bool isConstantEmittableObjectType(QualType type) { 1142 assert(type.isCanonical()); 1143 assert(!type->isReferenceType()); 1144 1145 // Must be const-qualified but non-volatile. 1146 Qualifiers qs = type.getLocalQualifiers(); 1147 if (!qs.hasConst() || qs.hasVolatile()) return false; 1148 1149 // Otherwise, all object types satisfy this except C++ classes with 1150 // mutable subobjects or non-trivial copy/destroy behavior. 1151 if (const auto *RT = dyn_cast<RecordType>(type)) 1152 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1153 if (RD->hasMutableFields() || !RD->isTrivial()) 1154 return false; 1155 1156 return true; 1157 } 1158 1159 /// Can we constant-emit a load of a reference to a variable of the 1160 /// given type? This is different from predicates like 1161 /// Decl::isUsableInConstantExpressions because we do want it to apply 1162 /// in situations that don't necessarily satisfy the language's rules 1163 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1164 /// to do this with const float variables even if those variables 1165 /// aren't marked 'constexpr'. 1166 enum ConstantEmissionKind { 1167 CEK_None, 1168 CEK_AsReferenceOnly, 1169 CEK_AsValueOrReference, 1170 CEK_AsValueOnly 1171 }; 1172 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1173 type = type.getCanonicalType(); 1174 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1175 if (isConstantEmittableObjectType(ref->getPointeeType())) 1176 return CEK_AsValueOrReference; 1177 return CEK_AsReferenceOnly; 1178 } 1179 if (isConstantEmittableObjectType(type)) 1180 return CEK_AsValueOnly; 1181 return CEK_None; 1182 } 1183 1184 /// Try to emit a reference to the given value without producing it as 1185 /// an l-value. This is actually more than an optimization: we can't 1186 /// produce an l-value for variables that we never actually captured 1187 /// in a block or lambda, which means const int variables or constexpr 1188 /// literals or similar. 1189 CodeGenFunction::ConstantEmission 1190 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1191 ValueDecl *value = refExpr->getDecl(); 1192 1193 // The value needs to be an enum constant or a constant variable. 1194 ConstantEmissionKind CEK; 1195 if (isa<ParmVarDecl>(value)) { 1196 CEK = CEK_None; 1197 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1198 CEK = checkVarTypeForConstantEmission(var->getType()); 1199 } else if (isa<EnumConstantDecl>(value)) { 1200 CEK = CEK_AsValueOnly; 1201 } else { 1202 CEK = CEK_None; 1203 } 1204 if (CEK == CEK_None) return ConstantEmission(); 1205 1206 Expr::EvalResult result; 1207 bool resultIsReference; 1208 QualType resultType; 1209 1210 // It's best to evaluate all the way as an r-value if that's permitted. 1211 if (CEK != CEK_AsReferenceOnly && 1212 refExpr->EvaluateAsRValue(result, getContext())) { 1213 resultIsReference = false; 1214 resultType = refExpr->getType(); 1215 1216 // Otherwise, try to evaluate as an l-value. 1217 } else if (CEK != CEK_AsValueOnly && 1218 refExpr->EvaluateAsLValue(result, getContext())) { 1219 resultIsReference = true; 1220 resultType = value->getType(); 1221 1222 // Failure. 1223 } else { 1224 return ConstantEmission(); 1225 } 1226 1227 // In any case, if the initializer has side-effects, abandon ship. 1228 if (result.HasSideEffects) 1229 return ConstantEmission(); 1230 1231 // Emit as a constant. 1232 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1233 1234 // Make sure we emit a debug reference to the global variable. 1235 // This should probably fire even for 1236 if (isa<VarDecl>(value)) { 1237 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1238 EmitDeclRefExprDbgValue(refExpr, result.Val); 1239 } else { 1240 assert(isa<EnumConstantDecl>(value)); 1241 EmitDeclRefExprDbgValue(refExpr, result.Val); 1242 } 1243 1244 // If we emitted a reference constant, we need to dereference that. 1245 if (resultIsReference) 1246 return ConstantEmission::forReference(C); 1247 1248 return ConstantEmission::forValue(C); 1249 } 1250 1251 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1252 SourceLocation Loc) { 1253 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1254 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1255 lvalue.getTBAAInfo(), 1256 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1257 lvalue.isNontemporal()); 1258 } 1259 1260 static bool hasBooleanRepresentation(QualType Ty) { 1261 if (Ty->isBooleanType()) 1262 return true; 1263 1264 if (const EnumType *ET = Ty->getAs<EnumType>()) 1265 return ET->getDecl()->getIntegerType()->isBooleanType(); 1266 1267 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1268 return hasBooleanRepresentation(AT->getValueType()); 1269 1270 return false; 1271 } 1272 1273 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1274 llvm::APInt &Min, llvm::APInt &End, 1275 bool StrictEnums, bool IsBool) { 1276 const EnumType *ET = Ty->getAs<EnumType>(); 1277 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1278 ET && !ET->getDecl()->isFixed(); 1279 if (!IsBool && !IsRegularCPlusPlusEnum) 1280 return false; 1281 1282 if (IsBool) { 1283 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1284 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1285 } else { 1286 const EnumDecl *ED = ET->getDecl(); 1287 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1288 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1289 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1290 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1291 1292 if (NumNegativeBits) { 1293 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1294 assert(NumBits <= Bitwidth); 1295 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1296 Min = -End; 1297 } else { 1298 assert(NumPositiveBits <= Bitwidth); 1299 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1300 Min = llvm::APInt(Bitwidth, 0); 1301 } 1302 } 1303 return true; 1304 } 1305 1306 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1307 llvm::APInt Min, End; 1308 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1309 hasBooleanRepresentation(Ty))) 1310 return nullptr; 1311 1312 llvm::MDBuilder MDHelper(getLLVMContext()); 1313 return MDHelper.createRange(Min, End); 1314 } 1315 1316 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1317 SourceLocation Loc) { 1318 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1319 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1320 if (!HasBoolCheck && !HasEnumCheck) 1321 return false; 1322 1323 bool IsBool = hasBooleanRepresentation(Ty) || 1324 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1325 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1326 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1327 if (!NeedsBoolCheck && !NeedsEnumCheck) 1328 return false; 1329 1330 // Single-bit booleans don't need to be checked. Special-case this to avoid 1331 // a bit width mismatch when handling bitfield values. This is handled by 1332 // EmitFromMemory for the non-bitfield case. 1333 if (IsBool && 1334 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1335 return false; 1336 1337 llvm::APInt Min, End; 1338 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1339 return true; 1340 1341 SanitizerScope SanScope(this); 1342 llvm::Value *Check; 1343 --End; 1344 if (!Min) { 1345 Check = Builder.CreateICmpULE( 1346 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1347 } else { 1348 llvm::Value *Upper = Builder.CreateICmpSLE( 1349 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1350 llvm::Value *Lower = Builder.CreateICmpSGE( 1351 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1352 Check = Builder.CreateAnd(Upper, Lower); 1353 } 1354 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1355 EmitCheckTypeDescriptor(Ty)}; 1356 SanitizerMask Kind = 1357 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1358 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1359 StaticArgs, EmitCheckValue(Value)); 1360 return true; 1361 } 1362 1363 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1364 QualType Ty, 1365 SourceLocation Loc, 1366 AlignmentSource AlignSource, 1367 llvm::MDNode *TBAAInfo, 1368 QualType TBAABaseType, 1369 uint64_t TBAAOffset, 1370 bool isNontemporal) { 1371 // For better performance, handle vector loads differently. 1372 if (Ty->isVectorType()) { 1373 const llvm::Type *EltTy = Addr.getElementType(); 1374 1375 const auto *VTy = cast<llvm::VectorType>(EltTy); 1376 1377 // Handle vectors of size 3 like size 4 for better performance. 1378 if (VTy->getNumElements() == 3) { 1379 1380 // Bitcast to vec4 type. 1381 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1382 4); 1383 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1384 // Now load value. 1385 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1386 1387 // Shuffle vector to get vec3. 1388 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1389 {0, 1, 2}, "extractVec"); 1390 return EmitFromMemory(V, Ty); 1391 } 1392 } 1393 1394 // Atomic operations have to be done on integral types. 1395 LValue AtomicLValue = 1396 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1397 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1398 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1399 } 1400 1401 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1402 if (isNontemporal) { 1403 llvm::MDNode *Node = llvm::MDNode::get( 1404 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1405 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1406 } 1407 if (TBAAInfo) { 1408 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1409 TBAAOffset); 1410 if (TBAAPath) 1411 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1412 false /*ConvertTypeToTag*/); 1413 } 1414 1415 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1416 // In order to prevent the optimizer from throwing away the check, don't 1417 // attach range metadata to the load. 1418 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1419 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1420 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1421 1422 return EmitFromMemory(Load, Ty); 1423 } 1424 1425 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1426 // Bool has a different representation in memory than in registers. 1427 if (hasBooleanRepresentation(Ty)) { 1428 // This should really always be an i1, but sometimes it's already 1429 // an i8, and it's awkward to track those cases down. 1430 if (Value->getType()->isIntegerTy(1)) 1431 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1432 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1433 "wrong value rep of bool"); 1434 } 1435 1436 return Value; 1437 } 1438 1439 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1440 // Bool has a different representation in memory than in registers. 1441 if (hasBooleanRepresentation(Ty)) { 1442 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1443 "wrong value rep of bool"); 1444 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1445 } 1446 1447 return Value; 1448 } 1449 1450 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1451 bool Volatile, QualType Ty, 1452 AlignmentSource AlignSource, 1453 llvm::MDNode *TBAAInfo, 1454 bool isInit, QualType TBAABaseType, 1455 uint64_t TBAAOffset, 1456 bool isNontemporal) { 1457 1458 // Handle vectors differently to get better performance. 1459 if (Ty->isVectorType()) { 1460 llvm::Type *SrcTy = Value->getType(); 1461 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1462 // Handle vec3 special. 1463 if (VecTy->getNumElements() == 3) { 1464 // Our source is a vec3, do a shuffle vector to make it a vec4. 1465 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1466 Builder.getInt32(2), 1467 llvm::UndefValue::get(Builder.getInt32Ty())}; 1468 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1469 Value = Builder.CreateShuffleVector(Value, 1470 llvm::UndefValue::get(VecTy), 1471 MaskV, "extractVec"); 1472 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1473 } 1474 if (Addr.getElementType() != SrcTy) { 1475 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1476 } 1477 } 1478 1479 Value = EmitToMemory(Value, Ty); 1480 1481 LValue AtomicLValue = 1482 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1483 if (Ty->isAtomicType() || 1484 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1485 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1486 return; 1487 } 1488 1489 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1490 if (isNontemporal) { 1491 llvm::MDNode *Node = 1492 llvm::MDNode::get(Store->getContext(), 1493 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1494 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1495 } 1496 if (TBAAInfo) { 1497 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1498 TBAAOffset); 1499 if (TBAAPath) 1500 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1501 false /*ConvertTypeToTag*/); 1502 } 1503 } 1504 1505 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1506 bool isInit) { 1507 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1508 lvalue.getType(), lvalue.getAlignmentSource(), 1509 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1510 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1511 } 1512 1513 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1514 /// method emits the address of the lvalue, then loads the result as an rvalue, 1515 /// returning the rvalue. 1516 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1517 if (LV.isObjCWeak()) { 1518 // load of a __weak object. 1519 Address AddrWeakObj = LV.getAddress(); 1520 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1521 AddrWeakObj)); 1522 } 1523 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1524 // In MRC mode, we do a load+autorelease. 1525 if (!getLangOpts().ObjCAutoRefCount) { 1526 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1527 } 1528 1529 // In ARC mode, we load retained and then consume the value. 1530 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1531 Object = EmitObjCConsumeObject(LV.getType(), Object); 1532 return RValue::get(Object); 1533 } 1534 1535 if (LV.isSimple()) { 1536 assert(!LV.getType()->isFunctionType()); 1537 1538 // Everything needs a load. 1539 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1540 } 1541 1542 if (LV.isVectorElt()) { 1543 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1544 LV.isVolatileQualified()); 1545 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1546 "vecext")); 1547 } 1548 1549 // If this is a reference to a subset of the elements of a vector, either 1550 // shuffle the input or extract/insert them as appropriate. 1551 if (LV.isExtVectorElt()) 1552 return EmitLoadOfExtVectorElementLValue(LV); 1553 1554 // Global Register variables always invoke intrinsics 1555 if (LV.isGlobalReg()) 1556 return EmitLoadOfGlobalRegLValue(LV); 1557 1558 assert(LV.isBitField() && "Unknown LValue type!"); 1559 return EmitLoadOfBitfieldLValue(LV, Loc); 1560 } 1561 1562 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1563 SourceLocation Loc) { 1564 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1565 1566 // Get the output type. 1567 llvm::Type *ResLTy = ConvertType(LV.getType()); 1568 1569 Address Ptr = LV.getBitFieldAddress(); 1570 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1571 1572 if (Info.IsSigned) { 1573 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1574 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1575 if (HighBits) 1576 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1577 if (Info.Offset + HighBits) 1578 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1579 } else { 1580 if (Info.Offset) 1581 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1582 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1583 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1584 Info.Size), 1585 "bf.clear"); 1586 } 1587 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1588 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1589 return RValue::get(Val); 1590 } 1591 1592 // If this is a reference to a subset of the elements of a vector, create an 1593 // appropriate shufflevector. 1594 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1595 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1596 LV.isVolatileQualified()); 1597 1598 const llvm::Constant *Elts = LV.getExtVectorElts(); 1599 1600 // If the result of the expression is a non-vector type, we must be extracting 1601 // a single element. Just codegen as an extractelement. 1602 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1603 if (!ExprVT) { 1604 unsigned InIdx = getAccessedFieldNo(0, Elts); 1605 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1606 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1607 } 1608 1609 // Always use shuffle vector to try to retain the original program structure 1610 unsigned NumResultElts = ExprVT->getNumElements(); 1611 1612 SmallVector<llvm::Constant*, 4> Mask; 1613 for (unsigned i = 0; i != NumResultElts; ++i) 1614 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1615 1616 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1617 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1618 MaskV); 1619 return RValue::get(Vec); 1620 } 1621 1622 /// @brief Generates lvalue for partial ext_vector access. 1623 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1624 Address VectorAddress = LV.getExtVectorAddress(); 1625 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1626 QualType EQT = ExprVT->getElementType(); 1627 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1628 1629 Address CastToPointerElement = 1630 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1631 "conv.ptr.element"); 1632 1633 const llvm::Constant *Elts = LV.getExtVectorElts(); 1634 unsigned ix = getAccessedFieldNo(0, Elts); 1635 1636 Address VectorBasePtrPlusIx = 1637 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1638 getContext().getTypeSizeInChars(EQT), 1639 "vector.elt"); 1640 1641 return VectorBasePtrPlusIx; 1642 } 1643 1644 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1645 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1646 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1647 "Bad type for register variable"); 1648 llvm::MDNode *RegName = cast<llvm::MDNode>( 1649 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1650 1651 // We accept integer and pointer types only 1652 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1653 llvm::Type *Ty = OrigTy; 1654 if (OrigTy->isPointerTy()) 1655 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1656 llvm::Type *Types[] = { Ty }; 1657 1658 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1659 llvm::Value *Call = Builder.CreateCall( 1660 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1661 if (OrigTy->isPointerTy()) 1662 Call = Builder.CreateIntToPtr(Call, OrigTy); 1663 return RValue::get(Call); 1664 } 1665 1666 1667 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1668 /// lvalue, where both are guaranteed to the have the same type, and that type 1669 /// is 'Ty'. 1670 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1671 bool isInit) { 1672 if (!Dst.isSimple()) { 1673 if (Dst.isVectorElt()) { 1674 // Read/modify/write the vector, inserting the new element. 1675 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1676 Dst.isVolatileQualified()); 1677 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1678 Dst.getVectorIdx(), "vecins"); 1679 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1680 Dst.isVolatileQualified()); 1681 return; 1682 } 1683 1684 // If this is an update of extended vector elements, insert them as 1685 // appropriate. 1686 if (Dst.isExtVectorElt()) 1687 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1688 1689 if (Dst.isGlobalReg()) 1690 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1691 1692 assert(Dst.isBitField() && "Unknown LValue type"); 1693 return EmitStoreThroughBitfieldLValue(Src, Dst); 1694 } 1695 1696 // There's special magic for assigning into an ARC-qualified l-value. 1697 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1698 switch (Lifetime) { 1699 case Qualifiers::OCL_None: 1700 llvm_unreachable("present but none"); 1701 1702 case Qualifiers::OCL_ExplicitNone: 1703 // nothing special 1704 break; 1705 1706 case Qualifiers::OCL_Strong: 1707 if (isInit) { 1708 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1709 break; 1710 } 1711 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1712 return; 1713 1714 case Qualifiers::OCL_Weak: 1715 if (isInit) 1716 // Initialize and then skip the primitive store. 1717 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1718 else 1719 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1720 return; 1721 1722 case Qualifiers::OCL_Autoreleasing: 1723 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1724 Src.getScalarVal())); 1725 // fall into the normal path 1726 break; 1727 } 1728 } 1729 1730 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1731 // load of a __weak object. 1732 Address LvalueDst = Dst.getAddress(); 1733 llvm::Value *src = Src.getScalarVal(); 1734 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1735 return; 1736 } 1737 1738 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1739 // load of a __strong object. 1740 Address LvalueDst = Dst.getAddress(); 1741 llvm::Value *src = Src.getScalarVal(); 1742 if (Dst.isObjCIvar()) { 1743 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1744 llvm::Type *ResultType = IntPtrTy; 1745 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1746 llvm::Value *RHS = dst.getPointer(); 1747 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1748 llvm::Value *LHS = 1749 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1750 "sub.ptr.lhs.cast"); 1751 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1752 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1753 BytesBetween); 1754 } else if (Dst.isGlobalObjCRef()) { 1755 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1756 Dst.isThreadLocalRef()); 1757 } 1758 else 1759 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1760 return; 1761 } 1762 1763 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1764 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1765 } 1766 1767 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1768 llvm::Value **Result) { 1769 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1770 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1771 Address Ptr = Dst.getBitFieldAddress(); 1772 1773 // Get the source value, truncated to the width of the bit-field. 1774 llvm::Value *SrcVal = Src.getScalarVal(); 1775 1776 // Cast the source to the storage type and shift it into place. 1777 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1778 /*IsSigned=*/false); 1779 llvm::Value *MaskedVal = SrcVal; 1780 1781 // See if there are other bits in the bitfield's storage we'll need to load 1782 // and mask together with source before storing. 1783 if (Info.StorageSize != Info.Size) { 1784 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1785 llvm::Value *Val = 1786 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1787 1788 // Mask the source value as needed. 1789 if (!hasBooleanRepresentation(Dst.getType())) 1790 SrcVal = Builder.CreateAnd(SrcVal, 1791 llvm::APInt::getLowBitsSet(Info.StorageSize, 1792 Info.Size), 1793 "bf.value"); 1794 MaskedVal = SrcVal; 1795 if (Info.Offset) 1796 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1797 1798 // Mask out the original value. 1799 Val = Builder.CreateAnd(Val, 1800 ~llvm::APInt::getBitsSet(Info.StorageSize, 1801 Info.Offset, 1802 Info.Offset + Info.Size), 1803 "bf.clear"); 1804 1805 // Or together the unchanged values and the source value. 1806 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1807 } else { 1808 assert(Info.Offset == 0); 1809 } 1810 1811 // Write the new value back out. 1812 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1813 1814 // Return the new value of the bit-field, if requested. 1815 if (Result) { 1816 llvm::Value *ResultVal = MaskedVal; 1817 1818 // Sign extend the value if needed. 1819 if (Info.IsSigned) { 1820 assert(Info.Size <= Info.StorageSize); 1821 unsigned HighBits = Info.StorageSize - Info.Size; 1822 if (HighBits) { 1823 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1824 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1825 } 1826 } 1827 1828 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1829 "bf.result.cast"); 1830 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1831 } 1832 } 1833 1834 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1835 LValue Dst) { 1836 // This access turns into a read/modify/write of the vector. Load the input 1837 // value now. 1838 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1839 Dst.isVolatileQualified()); 1840 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1841 1842 llvm::Value *SrcVal = Src.getScalarVal(); 1843 1844 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1845 unsigned NumSrcElts = VTy->getNumElements(); 1846 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1847 if (NumDstElts == NumSrcElts) { 1848 // Use shuffle vector is the src and destination are the same number of 1849 // elements and restore the vector mask since it is on the side it will be 1850 // stored. 1851 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1852 for (unsigned i = 0; i != NumSrcElts; ++i) 1853 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1854 1855 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1856 Vec = Builder.CreateShuffleVector(SrcVal, 1857 llvm::UndefValue::get(Vec->getType()), 1858 MaskV); 1859 } else if (NumDstElts > NumSrcElts) { 1860 // Extended the source vector to the same length and then shuffle it 1861 // into the destination. 1862 // FIXME: since we're shuffling with undef, can we just use the indices 1863 // into that? This could be simpler. 1864 SmallVector<llvm::Constant*, 4> ExtMask; 1865 for (unsigned i = 0; i != NumSrcElts; ++i) 1866 ExtMask.push_back(Builder.getInt32(i)); 1867 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1868 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1869 llvm::Value *ExtSrcVal = 1870 Builder.CreateShuffleVector(SrcVal, 1871 llvm::UndefValue::get(SrcVal->getType()), 1872 ExtMaskV); 1873 // build identity 1874 SmallVector<llvm::Constant*, 4> Mask; 1875 for (unsigned i = 0; i != NumDstElts; ++i) 1876 Mask.push_back(Builder.getInt32(i)); 1877 1878 // When the vector size is odd and .odd or .hi is used, the last element 1879 // of the Elts constant array will be one past the size of the vector. 1880 // Ignore the last element here, if it is greater than the mask size. 1881 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1882 NumSrcElts--; 1883 1884 // modify when what gets shuffled in 1885 for (unsigned i = 0; i != NumSrcElts; ++i) 1886 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1887 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1888 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1889 } else { 1890 // We should never shorten the vector 1891 llvm_unreachable("unexpected shorten vector length"); 1892 } 1893 } else { 1894 // If the Src is a scalar (not a vector) it must be updating one element. 1895 unsigned InIdx = getAccessedFieldNo(0, Elts); 1896 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1897 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1898 } 1899 1900 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1901 Dst.isVolatileQualified()); 1902 } 1903 1904 /// @brief Store of global named registers are always calls to intrinsics. 1905 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1906 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1907 "Bad type for register variable"); 1908 llvm::MDNode *RegName = cast<llvm::MDNode>( 1909 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1910 assert(RegName && "Register LValue is not metadata"); 1911 1912 // We accept integer and pointer types only 1913 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1914 llvm::Type *Ty = OrigTy; 1915 if (OrigTy->isPointerTy()) 1916 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1917 llvm::Type *Types[] = { Ty }; 1918 1919 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1920 llvm::Value *Value = Src.getScalarVal(); 1921 if (OrigTy->isPointerTy()) 1922 Value = Builder.CreatePtrToInt(Value, Ty); 1923 Builder.CreateCall( 1924 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1925 } 1926 1927 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1928 // generating write-barries API. It is currently a global, ivar, 1929 // or neither. 1930 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1931 LValue &LV, 1932 bool IsMemberAccess=false) { 1933 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1934 return; 1935 1936 if (isa<ObjCIvarRefExpr>(E)) { 1937 QualType ExpTy = E->getType(); 1938 if (IsMemberAccess && ExpTy->isPointerType()) { 1939 // If ivar is a structure pointer, assigning to field of 1940 // this struct follows gcc's behavior and makes it a non-ivar 1941 // writer-barrier conservatively. 1942 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1943 if (ExpTy->isRecordType()) { 1944 LV.setObjCIvar(false); 1945 return; 1946 } 1947 } 1948 LV.setObjCIvar(true); 1949 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1950 LV.setBaseIvarExp(Exp->getBase()); 1951 LV.setObjCArray(E->getType()->isArrayType()); 1952 return; 1953 } 1954 1955 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1956 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1957 if (VD->hasGlobalStorage()) { 1958 LV.setGlobalObjCRef(true); 1959 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1960 } 1961 } 1962 LV.setObjCArray(E->getType()->isArrayType()); 1963 return; 1964 } 1965 1966 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1967 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1968 return; 1969 } 1970 1971 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1972 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1973 if (LV.isObjCIvar()) { 1974 // If cast is to a structure pointer, follow gcc's behavior and make it 1975 // a non-ivar write-barrier. 1976 QualType ExpTy = E->getType(); 1977 if (ExpTy->isPointerType()) 1978 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1979 if (ExpTy->isRecordType()) 1980 LV.setObjCIvar(false); 1981 } 1982 return; 1983 } 1984 1985 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1986 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1987 return; 1988 } 1989 1990 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1991 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1992 return; 1993 } 1994 1995 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1996 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1997 return; 1998 } 1999 2000 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2001 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2002 return; 2003 } 2004 2005 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2006 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2007 if (LV.isObjCIvar() && !LV.isObjCArray()) 2008 // Using array syntax to assigning to what an ivar points to is not 2009 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2010 LV.setObjCIvar(false); 2011 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2012 // Using array syntax to assigning to what global points to is not 2013 // same as assigning to the global itself. {id *G;} G[i] = 0; 2014 LV.setGlobalObjCRef(false); 2015 return; 2016 } 2017 2018 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2019 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2020 // We don't know if member is an 'ivar', but this flag is looked at 2021 // only in the context of LV.isObjCIvar(). 2022 LV.setObjCArray(E->getType()->isArrayType()); 2023 return; 2024 } 2025 } 2026 2027 static llvm::Value * 2028 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2029 llvm::Value *V, llvm::Type *IRType, 2030 StringRef Name = StringRef()) { 2031 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2032 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2033 } 2034 2035 static LValue EmitThreadPrivateVarDeclLValue( 2036 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2037 llvm::Type *RealVarTy, SourceLocation Loc) { 2038 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2039 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2040 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2041 } 2042 2043 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2044 const ReferenceType *RefTy, 2045 AlignmentSource *Source) { 2046 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2047 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2048 Source, /*forPointee*/ true)); 2049 2050 } 2051 2052 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2053 const ReferenceType *RefTy) { 2054 AlignmentSource Source; 2055 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 2056 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 2057 } 2058 2059 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2060 const PointerType *PtrTy, 2061 AlignmentSource *Source) { 2062 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2063 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 2064 /*forPointeeType=*/true)); 2065 } 2066 2067 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2068 const PointerType *PtrTy) { 2069 AlignmentSource Source; 2070 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2071 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2072 } 2073 2074 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2075 const Expr *E, const VarDecl *VD) { 2076 QualType T = E->getType(); 2077 2078 // If it's thread_local, emit a call to its wrapper function instead. 2079 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2080 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2081 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2082 2083 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2084 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2085 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2086 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2087 Address Addr(V, Alignment); 2088 LValue LV; 2089 // Emit reference to the private copy of the variable if it is an OpenMP 2090 // threadprivate variable. 2091 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2092 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2093 E->getExprLoc()); 2094 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2095 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2096 } else { 2097 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2098 } 2099 setObjCGCLValueClass(CGF.getContext(), E, LV); 2100 return LV; 2101 } 2102 2103 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2104 const FunctionDecl *FD) { 2105 if (FD->hasAttr<WeakRefAttr>()) { 2106 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2107 return aliasee.getPointer(); 2108 } 2109 2110 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2111 if (!FD->hasPrototype()) { 2112 if (const FunctionProtoType *Proto = 2113 FD->getType()->getAs<FunctionProtoType>()) { 2114 // Ugly case: for a K&R-style definition, the type of the definition 2115 // isn't the same as the type of a use. Correct for this with a 2116 // bitcast. 2117 QualType NoProtoType = 2118 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2119 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2120 V = llvm::ConstantExpr::getBitCast(V, 2121 CGM.getTypes().ConvertType(NoProtoType)); 2122 } 2123 } 2124 return V; 2125 } 2126 2127 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2128 const Expr *E, const FunctionDecl *FD) { 2129 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2130 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2131 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2132 } 2133 2134 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2135 llvm::Value *ThisValue) { 2136 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2137 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2138 return CGF.EmitLValueForField(LV, FD); 2139 } 2140 2141 /// Named Registers are named metadata pointing to the register name 2142 /// which will be read from/written to as an argument to the intrinsic 2143 /// @llvm.read/write_register. 2144 /// So far, only the name is being passed down, but other options such as 2145 /// register type, allocation type or even optimization options could be 2146 /// passed down via the metadata node. 2147 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2148 SmallString<64> Name("llvm.named.register."); 2149 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2150 assert(Asm->getLabel().size() < 64-Name.size() && 2151 "Register name too big"); 2152 Name.append(Asm->getLabel()); 2153 llvm::NamedMDNode *M = 2154 CGM.getModule().getOrInsertNamedMetadata(Name); 2155 if (M->getNumOperands() == 0) { 2156 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2157 Asm->getLabel()); 2158 llvm::Metadata *Ops[] = {Str}; 2159 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2160 } 2161 2162 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2163 2164 llvm::Value *Ptr = 2165 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2166 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2167 } 2168 2169 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2170 const NamedDecl *ND = E->getDecl(); 2171 QualType T = E->getType(); 2172 2173 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2174 // Global Named registers access via intrinsics only 2175 if (VD->getStorageClass() == SC_Register && 2176 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2177 return EmitGlobalNamedRegister(VD, CGM); 2178 2179 // A DeclRefExpr for a reference initialized by a constant expression can 2180 // appear without being odr-used. Directly emit the constant initializer. 2181 const Expr *Init = VD->getAnyInitializer(VD); 2182 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2183 VD->isUsableInConstantExpressions(getContext()) && 2184 VD->checkInitIsICE() && 2185 // Do not emit if it is private OpenMP variable. 2186 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2187 LocalDeclMap.count(VD))) { 2188 llvm::Constant *Val = 2189 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2190 assert(Val && "failed to emit reference constant expression"); 2191 // FIXME: Eventually we will want to emit vector element references. 2192 2193 // Should we be using the alignment of the constant pointer we emitted? 2194 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2195 /*pointee*/ true); 2196 2197 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2198 } 2199 2200 // Check for captured variables. 2201 if (E->refersToEnclosingVariableOrCapture()) { 2202 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2203 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2204 else if (CapturedStmtInfo) { 2205 auto I = LocalDeclMap.find(VD); 2206 if (I != LocalDeclMap.end()) { 2207 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2208 return EmitLoadOfReferenceLValue(I->second, RefTy); 2209 return MakeAddrLValue(I->second, T); 2210 } 2211 LValue CapLVal = 2212 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2213 CapturedStmtInfo->getContextValue()); 2214 return MakeAddrLValue( 2215 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2216 CapLVal.getType(), AlignmentSource::Decl); 2217 } 2218 2219 assert(isa<BlockDecl>(CurCodeDecl)); 2220 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2221 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2222 } 2223 } 2224 2225 // FIXME: We should be able to assert this for FunctionDecls as well! 2226 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2227 // those with a valid source location. 2228 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2229 !E->getLocation().isValid()) && 2230 "Should not use decl without marking it used!"); 2231 2232 if (ND->hasAttr<WeakRefAttr>()) { 2233 const auto *VD = cast<ValueDecl>(ND); 2234 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2235 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2236 } 2237 2238 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2239 // Check if this is a global variable. 2240 if (VD->hasLinkage() || VD->isStaticDataMember()) 2241 return EmitGlobalVarDeclLValue(*this, E, VD); 2242 2243 Address addr = Address::invalid(); 2244 2245 // The variable should generally be present in the local decl map. 2246 auto iter = LocalDeclMap.find(VD); 2247 if (iter != LocalDeclMap.end()) { 2248 addr = iter->second; 2249 2250 // Otherwise, it might be static local we haven't emitted yet for 2251 // some reason; most likely, because it's in an outer function. 2252 } else if (VD->isStaticLocal()) { 2253 addr = Address(CGM.getOrCreateStaticVarDecl( 2254 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2255 getContext().getDeclAlign(VD)); 2256 2257 // No other cases for now. 2258 } else { 2259 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2260 } 2261 2262 2263 // Check for OpenMP threadprivate variables. 2264 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2265 return EmitThreadPrivateVarDeclLValue( 2266 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2267 E->getExprLoc()); 2268 } 2269 2270 // Drill into block byref variables. 2271 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2272 if (isBlockByref) { 2273 addr = emitBlockByrefAddress(addr, VD); 2274 } 2275 2276 // Drill into reference types. 2277 LValue LV; 2278 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2279 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2280 } else { 2281 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2282 } 2283 2284 bool isLocalStorage = VD->hasLocalStorage(); 2285 2286 bool NonGCable = isLocalStorage && 2287 !VD->getType()->isReferenceType() && 2288 !isBlockByref; 2289 if (NonGCable) { 2290 LV.getQuals().removeObjCGCAttr(); 2291 LV.setNonGC(true); 2292 } 2293 2294 bool isImpreciseLifetime = 2295 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2296 if (isImpreciseLifetime) 2297 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2298 setObjCGCLValueClass(getContext(), E, LV); 2299 return LV; 2300 } 2301 2302 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2303 return EmitFunctionDeclLValue(*this, E, FD); 2304 2305 // FIXME: While we're emitting a binding from an enclosing scope, all other 2306 // DeclRefExprs we see should be implicitly treated as if they also refer to 2307 // an enclosing scope. 2308 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2309 return EmitLValue(BD->getBinding()); 2310 2311 llvm_unreachable("Unhandled DeclRefExpr"); 2312 } 2313 2314 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2315 // __extension__ doesn't affect lvalue-ness. 2316 if (E->getOpcode() == UO_Extension) 2317 return EmitLValue(E->getSubExpr()); 2318 2319 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2320 switch (E->getOpcode()) { 2321 default: llvm_unreachable("Unknown unary operator lvalue!"); 2322 case UO_Deref: { 2323 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2324 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2325 2326 AlignmentSource AlignSource; 2327 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2328 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2329 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2330 2331 // We should not generate __weak write barrier on indirect reference 2332 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2333 // But, we continue to generate __strong write barrier on indirect write 2334 // into a pointer to object. 2335 if (getLangOpts().ObjC1 && 2336 getLangOpts().getGC() != LangOptions::NonGC && 2337 LV.isObjCWeak()) 2338 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2339 return LV; 2340 } 2341 case UO_Real: 2342 case UO_Imag: { 2343 LValue LV = EmitLValue(E->getSubExpr()); 2344 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2345 2346 // __real is valid on scalars. This is a faster way of testing that. 2347 // __imag can only produce an rvalue on scalars. 2348 if (E->getOpcode() == UO_Real && 2349 !LV.getAddress().getElementType()->isStructTy()) { 2350 assert(E->getSubExpr()->getType()->isArithmeticType()); 2351 return LV; 2352 } 2353 2354 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2355 2356 Address Component = 2357 (E->getOpcode() == UO_Real 2358 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2359 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2360 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2361 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2362 return ElemLV; 2363 } 2364 case UO_PreInc: 2365 case UO_PreDec: { 2366 LValue LV = EmitLValue(E->getSubExpr()); 2367 bool isInc = E->getOpcode() == UO_PreInc; 2368 2369 if (E->getType()->isAnyComplexType()) 2370 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2371 else 2372 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2373 return LV; 2374 } 2375 } 2376 } 2377 2378 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2379 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2380 E->getType(), AlignmentSource::Decl); 2381 } 2382 2383 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2384 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2385 E->getType(), AlignmentSource::Decl); 2386 } 2387 2388 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2389 auto SL = E->getFunctionName(); 2390 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2391 StringRef FnName = CurFn->getName(); 2392 if (FnName.startswith("\01")) 2393 FnName = FnName.substr(1); 2394 StringRef NameItems[] = { 2395 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2396 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2397 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2398 std::string Name = SL->getString(); 2399 if (!Name.empty()) { 2400 unsigned Discriminator = 2401 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2402 if (Discriminator) 2403 Name += "_" + Twine(Discriminator + 1).str(); 2404 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2405 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2406 } else { 2407 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2408 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2409 } 2410 } 2411 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2412 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2413 } 2414 2415 /// Emit a type description suitable for use by a runtime sanitizer library. The 2416 /// format of a type descriptor is 2417 /// 2418 /// \code 2419 /// { i16 TypeKind, i16 TypeInfo } 2420 /// \endcode 2421 /// 2422 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2423 /// integer, 1 for a floating point value, and -1 for anything else. 2424 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2425 // Only emit each type's descriptor once. 2426 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2427 return C; 2428 2429 uint16_t TypeKind = -1; 2430 uint16_t TypeInfo = 0; 2431 2432 if (T->isIntegerType()) { 2433 TypeKind = 0; 2434 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2435 (T->isSignedIntegerType() ? 1 : 0); 2436 } else if (T->isFloatingType()) { 2437 TypeKind = 1; 2438 TypeInfo = getContext().getTypeSize(T); 2439 } 2440 2441 // Format the type name as if for a diagnostic, including quotes and 2442 // optionally an 'aka'. 2443 SmallString<32> Buffer; 2444 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2445 (intptr_t)T.getAsOpaquePtr(), 2446 StringRef(), StringRef(), None, Buffer, 2447 None); 2448 2449 llvm::Constant *Components[] = { 2450 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2451 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2452 }; 2453 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2454 2455 auto *GV = new llvm::GlobalVariable( 2456 CGM.getModule(), Descriptor->getType(), 2457 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2458 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2459 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2460 2461 // Remember the descriptor for this type. 2462 CGM.setTypeDescriptorInMap(T, GV); 2463 2464 return GV; 2465 } 2466 2467 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2468 llvm::Type *TargetTy = IntPtrTy; 2469 2470 // Floating-point types which fit into intptr_t are bitcast to integers 2471 // and then passed directly (after zero-extension, if necessary). 2472 if (V->getType()->isFloatingPointTy()) { 2473 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2474 if (Bits <= TargetTy->getIntegerBitWidth()) 2475 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2476 Bits)); 2477 } 2478 2479 // Integers which fit in intptr_t are zero-extended and passed directly. 2480 if (V->getType()->isIntegerTy() && 2481 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2482 return Builder.CreateZExt(V, TargetTy); 2483 2484 // Pointers are passed directly, everything else is passed by address. 2485 if (!V->getType()->isPointerTy()) { 2486 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2487 Builder.CreateStore(V, Ptr); 2488 V = Ptr.getPointer(); 2489 } 2490 return Builder.CreatePtrToInt(V, TargetTy); 2491 } 2492 2493 /// \brief Emit a representation of a SourceLocation for passing to a handler 2494 /// in a sanitizer runtime library. The format for this data is: 2495 /// \code 2496 /// struct SourceLocation { 2497 /// const char *Filename; 2498 /// int32_t Line, Column; 2499 /// }; 2500 /// \endcode 2501 /// For an invalid SourceLocation, the Filename pointer is null. 2502 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2503 llvm::Constant *Filename; 2504 int Line, Column; 2505 2506 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2507 if (PLoc.isValid()) { 2508 StringRef FilenameString = PLoc.getFilename(); 2509 2510 int PathComponentsToStrip = 2511 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2512 if (PathComponentsToStrip < 0) { 2513 assert(PathComponentsToStrip != INT_MIN); 2514 int PathComponentsToKeep = -PathComponentsToStrip; 2515 auto I = llvm::sys::path::rbegin(FilenameString); 2516 auto E = llvm::sys::path::rend(FilenameString); 2517 while (I != E && --PathComponentsToKeep) 2518 ++I; 2519 2520 FilenameString = FilenameString.substr(I - E); 2521 } else if (PathComponentsToStrip > 0) { 2522 auto I = llvm::sys::path::begin(FilenameString); 2523 auto E = llvm::sys::path::end(FilenameString); 2524 while (I != E && PathComponentsToStrip--) 2525 ++I; 2526 2527 if (I != E) 2528 FilenameString = 2529 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2530 else 2531 FilenameString = llvm::sys::path::filename(FilenameString); 2532 } 2533 2534 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2535 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2536 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2537 Filename = FilenameGV.getPointer(); 2538 Line = PLoc.getLine(); 2539 Column = PLoc.getColumn(); 2540 } else { 2541 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2542 Line = Column = 0; 2543 } 2544 2545 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2546 Builder.getInt32(Column)}; 2547 2548 return llvm::ConstantStruct::getAnon(Data); 2549 } 2550 2551 namespace { 2552 /// \brief Specify under what conditions this check can be recovered 2553 enum class CheckRecoverableKind { 2554 /// Always terminate program execution if this check fails. 2555 Unrecoverable, 2556 /// Check supports recovering, runtime has both fatal (noreturn) and 2557 /// non-fatal handlers for this check. 2558 Recoverable, 2559 /// Runtime conditionally aborts, always need to support recovery. 2560 AlwaysRecoverable 2561 }; 2562 } 2563 2564 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2565 assert(llvm::countPopulation(Kind) == 1); 2566 switch (Kind) { 2567 case SanitizerKind::Vptr: 2568 return CheckRecoverableKind::AlwaysRecoverable; 2569 case SanitizerKind::Return: 2570 case SanitizerKind::Unreachable: 2571 return CheckRecoverableKind::Unrecoverable; 2572 default: 2573 return CheckRecoverableKind::Recoverable; 2574 } 2575 } 2576 2577 namespace { 2578 struct SanitizerHandlerInfo { 2579 char const *const Name; 2580 unsigned Version; 2581 }; 2582 } 2583 2584 const SanitizerHandlerInfo SanitizerHandlers[] = { 2585 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2586 LIST_SANITIZER_CHECKS 2587 #undef SANITIZER_CHECK 2588 }; 2589 2590 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2591 llvm::FunctionType *FnType, 2592 ArrayRef<llvm::Value *> FnArgs, 2593 SanitizerHandler CheckHandler, 2594 CheckRecoverableKind RecoverKind, bool IsFatal, 2595 llvm::BasicBlock *ContBB) { 2596 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2597 bool NeedsAbortSuffix = 2598 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2599 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2600 const StringRef CheckName = CheckInfo.Name; 2601 std::string FnName = 2602 ("__ubsan_handle_" + CheckName + 2603 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2604 (NeedsAbortSuffix ? "_abort" : "")) 2605 .str(); 2606 bool MayReturn = 2607 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2608 2609 llvm::AttrBuilder B; 2610 if (!MayReturn) { 2611 B.addAttribute(llvm::Attribute::NoReturn) 2612 .addAttribute(llvm::Attribute::NoUnwind); 2613 } 2614 B.addAttribute(llvm::Attribute::UWTable); 2615 2616 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2617 FnType, FnName, 2618 llvm::AttributeSet::get(CGF.getLLVMContext(), 2619 llvm::AttributeSet::FunctionIndex, B), 2620 /*Local=*/true); 2621 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2622 if (!MayReturn) { 2623 HandlerCall->setDoesNotReturn(); 2624 CGF.Builder.CreateUnreachable(); 2625 } else { 2626 CGF.Builder.CreateBr(ContBB); 2627 } 2628 } 2629 2630 void CodeGenFunction::EmitCheck( 2631 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2632 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2633 ArrayRef<llvm::Value *> DynamicArgs) { 2634 assert(IsSanitizerScope); 2635 assert(Checked.size() > 0); 2636 assert(CheckHandler >= 0 && 2637 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2638 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2639 2640 llvm::Value *FatalCond = nullptr; 2641 llvm::Value *RecoverableCond = nullptr; 2642 llvm::Value *TrapCond = nullptr; 2643 for (int i = 0, n = Checked.size(); i < n; ++i) { 2644 llvm::Value *Check = Checked[i].first; 2645 // -fsanitize-trap= overrides -fsanitize-recover=. 2646 llvm::Value *&Cond = 2647 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2648 ? TrapCond 2649 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2650 ? RecoverableCond 2651 : FatalCond; 2652 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2653 } 2654 2655 if (TrapCond) 2656 EmitTrapCheck(TrapCond); 2657 if (!FatalCond && !RecoverableCond) 2658 return; 2659 2660 llvm::Value *JointCond; 2661 if (FatalCond && RecoverableCond) 2662 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2663 else 2664 JointCond = FatalCond ? FatalCond : RecoverableCond; 2665 assert(JointCond); 2666 2667 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2668 assert(SanOpts.has(Checked[0].second)); 2669 #ifndef NDEBUG 2670 for (int i = 1, n = Checked.size(); i < n; ++i) { 2671 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2672 "All recoverable kinds in a single check must be same!"); 2673 assert(SanOpts.has(Checked[i].second)); 2674 } 2675 #endif 2676 2677 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2678 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2679 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2680 // Give hint that we very much don't expect to execute the handler 2681 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2682 llvm::MDBuilder MDHelper(getLLVMContext()); 2683 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2684 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2685 EmitBlock(Handlers); 2686 2687 // Handler functions take an i8* pointing to the (handler-specific) static 2688 // information block, followed by a sequence of intptr_t arguments 2689 // representing operand values. 2690 SmallVector<llvm::Value *, 4> Args; 2691 SmallVector<llvm::Type *, 4> ArgTypes; 2692 Args.reserve(DynamicArgs.size() + 1); 2693 ArgTypes.reserve(DynamicArgs.size() + 1); 2694 2695 // Emit handler arguments and create handler function type. 2696 if (!StaticArgs.empty()) { 2697 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2698 auto *InfoPtr = 2699 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2700 llvm::GlobalVariable::PrivateLinkage, Info); 2701 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2702 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2703 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2704 ArgTypes.push_back(Int8PtrTy); 2705 } 2706 2707 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2708 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2709 ArgTypes.push_back(IntPtrTy); 2710 } 2711 2712 llvm::FunctionType *FnType = 2713 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2714 2715 if (!FatalCond || !RecoverableCond) { 2716 // Simple case: we need to generate a single handler call, either 2717 // fatal, or non-fatal. 2718 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2719 (FatalCond != nullptr), Cont); 2720 } else { 2721 // Emit two handler calls: first one for set of unrecoverable checks, 2722 // another one for recoverable. 2723 llvm::BasicBlock *NonFatalHandlerBB = 2724 createBasicBlock("non_fatal." + CheckName); 2725 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2726 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2727 EmitBlock(FatalHandlerBB); 2728 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2729 NonFatalHandlerBB); 2730 EmitBlock(NonFatalHandlerBB); 2731 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2732 Cont); 2733 } 2734 2735 EmitBlock(Cont); 2736 } 2737 2738 void CodeGenFunction::EmitCfiSlowPathCheck( 2739 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2740 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2741 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2742 2743 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2744 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2745 2746 llvm::MDBuilder MDHelper(getLLVMContext()); 2747 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2748 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2749 2750 EmitBlock(CheckBB); 2751 2752 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2753 2754 llvm::CallInst *CheckCall; 2755 if (WithDiag) { 2756 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2757 auto *InfoPtr = 2758 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2759 llvm::GlobalVariable::PrivateLinkage, Info); 2760 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2761 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2762 2763 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2764 "__cfi_slowpath_diag", 2765 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2766 false)); 2767 CheckCall = Builder.CreateCall( 2768 SlowPathDiagFn, 2769 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2770 } else { 2771 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2772 "__cfi_slowpath", 2773 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2774 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2775 } 2776 2777 CheckCall->setDoesNotThrow(); 2778 2779 EmitBlock(Cont); 2780 } 2781 2782 // This function is basically a switch over the CFI failure kind, which is 2783 // extracted from CFICheckFailData (1st function argument). Each case is either 2784 // llvm.trap or a call to one of the two runtime handlers, based on 2785 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2786 // failure kind) traps, but this should really never happen. CFICheckFailData 2787 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2788 // check kind; in this case __cfi_check_fail traps as well. 2789 void CodeGenFunction::EmitCfiCheckFail() { 2790 SanitizerScope SanScope(this); 2791 FunctionArgList Args; 2792 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2793 getContext().VoidPtrTy); 2794 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2795 getContext().VoidPtrTy); 2796 Args.push_back(&ArgData); 2797 Args.push_back(&ArgAddr); 2798 2799 const CGFunctionInfo &FI = 2800 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2801 2802 llvm::Function *F = llvm::Function::Create( 2803 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2804 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2805 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2806 2807 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2808 SourceLocation()); 2809 2810 llvm::Value *Data = 2811 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2812 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2813 llvm::Value *Addr = 2814 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2815 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2816 2817 // Data == nullptr means the calling module has trap behaviour for this check. 2818 llvm::Value *DataIsNotNullPtr = 2819 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2820 EmitTrapCheck(DataIsNotNullPtr); 2821 2822 llvm::StructType *SourceLocationTy = 2823 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2824 llvm::StructType *CfiCheckFailDataTy = 2825 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2826 2827 llvm::Value *V = Builder.CreateConstGEP2_32( 2828 CfiCheckFailDataTy, 2829 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2830 0); 2831 Address CheckKindAddr(V, getIntAlign()); 2832 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2833 2834 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2835 CGM.getLLVMContext(), 2836 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2837 llvm::Value *ValidVtable = Builder.CreateZExt( 2838 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2839 {Addr, AllVtables}), 2840 IntPtrTy); 2841 2842 const std::pair<int, SanitizerMask> CheckKinds[] = { 2843 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2844 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2845 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2846 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2847 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2848 2849 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2850 for (auto CheckKindMaskPair : CheckKinds) { 2851 int Kind = CheckKindMaskPair.first; 2852 SanitizerMask Mask = CheckKindMaskPair.second; 2853 llvm::Value *Cond = 2854 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2855 if (CGM.getLangOpts().Sanitize.has(Mask)) 2856 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2857 {Data, Addr, ValidVtable}); 2858 else 2859 EmitTrapCheck(Cond); 2860 } 2861 2862 FinishFunction(); 2863 // The only reference to this function will be created during LTO link. 2864 // Make sure it survives until then. 2865 CGM.addUsedGlobal(F); 2866 } 2867 2868 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2869 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2870 2871 // If we're optimizing, collapse all calls to trap down to just one per 2872 // function to save on code size. 2873 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2874 TrapBB = createBasicBlock("trap"); 2875 Builder.CreateCondBr(Checked, Cont, TrapBB); 2876 EmitBlock(TrapBB); 2877 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2878 TrapCall->setDoesNotReturn(); 2879 TrapCall->setDoesNotThrow(); 2880 Builder.CreateUnreachable(); 2881 } else { 2882 Builder.CreateCondBr(Checked, Cont, TrapBB); 2883 } 2884 2885 EmitBlock(Cont); 2886 } 2887 2888 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2889 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2890 2891 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2892 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2893 CGM.getCodeGenOpts().TrapFuncName); 2894 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A); 2895 } 2896 2897 return TrapCall; 2898 } 2899 2900 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2901 AlignmentSource *AlignSource) { 2902 assert(E->getType()->isArrayType() && 2903 "Array to pointer decay must have array source type!"); 2904 2905 // Expressions of array type can't be bitfields or vector elements. 2906 LValue LV = EmitLValue(E); 2907 Address Addr = LV.getAddress(); 2908 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2909 2910 // If the array type was an incomplete type, we need to make sure 2911 // the decay ends up being the right type. 2912 llvm::Type *NewTy = ConvertType(E->getType()); 2913 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2914 2915 // Note that VLA pointers are always decayed, so we don't need to do 2916 // anything here. 2917 if (!E->getType()->isVariableArrayType()) { 2918 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2919 "Expected pointer to array"); 2920 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2921 } 2922 2923 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2924 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2925 } 2926 2927 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2928 /// array to pointer, return the array subexpression. 2929 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2930 // If this isn't just an array->pointer decay, bail out. 2931 const auto *CE = dyn_cast<CastExpr>(E); 2932 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2933 return nullptr; 2934 2935 // If this is a decay from variable width array, bail out. 2936 const Expr *SubExpr = CE->getSubExpr(); 2937 if (SubExpr->getType()->isVariableArrayType()) 2938 return nullptr; 2939 2940 return SubExpr; 2941 } 2942 2943 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2944 llvm::Value *ptr, 2945 ArrayRef<llvm::Value*> indices, 2946 bool inbounds, 2947 const llvm::Twine &name = "arrayidx") { 2948 if (inbounds) { 2949 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2950 } else { 2951 return CGF.Builder.CreateGEP(ptr, indices, name); 2952 } 2953 } 2954 2955 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2956 llvm::Value *idx, 2957 CharUnits eltSize) { 2958 // If we have a constant index, we can use the exact offset of the 2959 // element we're accessing. 2960 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2961 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2962 return arrayAlign.alignmentAtOffset(offset); 2963 2964 // Otherwise, use the worst-case alignment for any element. 2965 } else { 2966 return arrayAlign.alignmentOfArrayElement(eltSize); 2967 } 2968 } 2969 2970 static QualType getFixedSizeElementType(const ASTContext &ctx, 2971 const VariableArrayType *vla) { 2972 QualType eltType; 2973 do { 2974 eltType = vla->getElementType(); 2975 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2976 return eltType; 2977 } 2978 2979 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2980 ArrayRef<llvm::Value*> indices, 2981 QualType eltType, bool inbounds, 2982 const llvm::Twine &name = "arrayidx") { 2983 // All the indices except that last must be zero. 2984 #ifndef NDEBUG 2985 for (auto idx : indices.drop_back()) 2986 assert(isa<llvm::ConstantInt>(idx) && 2987 cast<llvm::ConstantInt>(idx)->isZero()); 2988 #endif 2989 2990 // Determine the element size of the statically-sized base. This is 2991 // the thing that the indices are expressed in terms of. 2992 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2993 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2994 } 2995 2996 // We can use that to compute the best alignment of the element. 2997 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2998 CharUnits eltAlign = 2999 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3000 3001 llvm::Value *eltPtr = 3002 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3003 return Address(eltPtr, eltAlign); 3004 } 3005 3006 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3007 bool Accessed) { 3008 // The index must always be an integer, which is not an aggregate. Emit it 3009 // in lexical order (this complexity is, sadly, required by C++17). 3010 llvm::Value *IdxPre = 3011 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3012 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3013 auto *Idx = IdxPre; 3014 if (E->getLHS() != E->getIdx()) { 3015 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3016 Idx = EmitScalarExpr(E->getIdx()); 3017 } 3018 3019 QualType IdxTy = E->getIdx()->getType(); 3020 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3021 3022 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3023 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3024 3025 // Extend or truncate the index type to 32 or 64-bits. 3026 if (Promote && Idx->getType() != IntPtrTy) 3027 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3028 3029 return Idx; 3030 }; 3031 IdxPre = nullptr; 3032 3033 // If the base is a vector type, then we are forming a vector element lvalue 3034 // with this subscript. 3035 if (E->getBase()->getType()->isVectorType() && 3036 !isa<ExtVectorElementExpr>(E->getBase())) { 3037 // Emit the vector as an lvalue to get its address. 3038 LValue LHS = EmitLValue(E->getBase()); 3039 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3040 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3041 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3042 E->getBase()->getType(), 3043 LHS.getAlignmentSource()); 3044 } 3045 3046 // All the other cases basically behave like simple offsetting. 3047 3048 // Handle the extvector case we ignored above. 3049 if (isa<ExtVectorElementExpr>(E->getBase())) { 3050 LValue LV = EmitLValue(E->getBase()); 3051 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3052 Address Addr = EmitExtVectorElementLValue(LV); 3053 3054 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3055 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3056 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 3057 } 3058 3059 AlignmentSource AlignSource; 3060 Address Addr = Address::invalid(); 3061 if (const VariableArrayType *vla = 3062 getContext().getAsVariableArrayType(E->getType())) { 3063 // The base must be a pointer, which is not an aggregate. Emit 3064 // it. It needs to be emitted first in case it's what captures 3065 // the VLA bounds. 3066 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3067 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3068 3069 // The element count here is the total number of non-VLA elements. 3070 llvm::Value *numElements = getVLASize(vla).first; 3071 3072 // Effectively, the multiply by the VLA size is part of the GEP. 3073 // GEP indexes are signed, and scaling an index isn't permitted to 3074 // signed-overflow, so we use the same semantics for our explicit 3075 // multiply. We suppress this if overflow is not undefined behavior. 3076 if (getLangOpts().isSignedOverflowDefined()) { 3077 Idx = Builder.CreateMul(Idx, numElements); 3078 } else { 3079 Idx = Builder.CreateNSWMul(Idx, numElements); 3080 } 3081 3082 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3083 !getLangOpts().isSignedOverflowDefined()); 3084 3085 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3086 // Indexing over an interface, as in "NSString *P; P[4];" 3087 3088 // Emit the base pointer. 3089 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3090 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3091 3092 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3093 llvm::Value *InterfaceSizeVal = 3094 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3095 3096 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3097 3098 // We don't necessarily build correct LLVM struct types for ObjC 3099 // interfaces, so we can't rely on GEP to do this scaling 3100 // correctly, so we need to cast to i8*. FIXME: is this actually 3101 // true? A lot of other things in the fragile ABI would break... 3102 llvm::Type *OrigBaseTy = Addr.getType(); 3103 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3104 3105 // Do the GEP. 3106 CharUnits EltAlign = 3107 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3108 llvm::Value *EltPtr = 3109 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3110 Addr = Address(EltPtr, EltAlign); 3111 3112 // Cast back. 3113 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3114 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3115 // If this is A[i] where A is an array, the frontend will have decayed the 3116 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3117 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3118 // "gep x, i" here. Emit one "gep A, 0, i". 3119 assert(Array->getType()->isArrayType() && 3120 "Array to pointer decay must have array source type!"); 3121 LValue ArrayLV; 3122 // For simple multidimensional array indexing, set the 'accessed' flag for 3123 // better bounds-checking of the base expression. 3124 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3125 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3126 else 3127 ArrayLV = EmitLValue(Array); 3128 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3129 3130 // Propagate the alignment from the array itself to the result. 3131 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3132 {CGM.getSize(CharUnits::Zero()), Idx}, 3133 E->getType(), 3134 !getLangOpts().isSignedOverflowDefined()); 3135 AlignSource = ArrayLV.getAlignmentSource(); 3136 } else { 3137 // The base must be a pointer; emit it with an estimate of its alignment. 3138 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3139 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3140 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3141 !getLangOpts().isSignedOverflowDefined()); 3142 } 3143 3144 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3145 3146 // TODO: Preserve/extend path TBAA metadata? 3147 3148 if (getLangOpts().ObjC1 && 3149 getLangOpts().getGC() != LangOptions::NonGC) { 3150 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3151 setObjCGCLValueClass(getContext(), E, LV); 3152 } 3153 return LV; 3154 } 3155 3156 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3157 AlignmentSource &AlignSource, 3158 QualType BaseTy, QualType ElTy, 3159 bool IsLowerBound) { 3160 LValue BaseLVal; 3161 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3162 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3163 if (BaseTy->isArrayType()) { 3164 Address Addr = BaseLVal.getAddress(); 3165 AlignSource = BaseLVal.getAlignmentSource(); 3166 3167 // If the array type was an incomplete type, we need to make sure 3168 // the decay ends up being the right type. 3169 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3170 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3171 3172 // Note that VLA pointers are always decayed, so we don't need to do 3173 // anything here. 3174 if (!BaseTy->isVariableArrayType()) { 3175 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3176 "Expected pointer to array"); 3177 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3178 "arraydecay"); 3179 } 3180 3181 return CGF.Builder.CreateElementBitCast(Addr, 3182 CGF.ConvertTypeForMem(ElTy)); 3183 } 3184 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3185 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3186 } 3187 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3188 } 3189 3190 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3191 bool IsLowerBound) { 3192 QualType BaseTy; 3193 if (auto *ASE = 3194 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3195 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3196 else 3197 BaseTy = E->getBase()->getType(); 3198 QualType ResultExprTy; 3199 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3200 ResultExprTy = AT->getElementType(); 3201 else 3202 ResultExprTy = BaseTy->getPointeeType(); 3203 llvm::Value *Idx = nullptr; 3204 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3205 // Requesting lower bound or upper bound, but without provided length and 3206 // without ':' symbol for the default length -> length = 1. 3207 // Idx = LowerBound ?: 0; 3208 if (auto *LowerBound = E->getLowerBound()) { 3209 Idx = Builder.CreateIntCast( 3210 EmitScalarExpr(LowerBound), IntPtrTy, 3211 LowerBound->getType()->hasSignedIntegerRepresentation()); 3212 } else 3213 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3214 } else { 3215 // Try to emit length or lower bound as constant. If this is possible, 1 3216 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3217 // IR (LB + Len) - 1. 3218 auto &C = CGM.getContext(); 3219 auto *Length = E->getLength(); 3220 llvm::APSInt ConstLength; 3221 if (Length) { 3222 // Idx = LowerBound + Length - 1; 3223 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3224 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3225 Length = nullptr; 3226 } 3227 auto *LowerBound = E->getLowerBound(); 3228 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3229 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3230 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3231 LowerBound = nullptr; 3232 } 3233 if (!Length) 3234 --ConstLength; 3235 else if (!LowerBound) 3236 --ConstLowerBound; 3237 3238 if (Length || LowerBound) { 3239 auto *LowerBoundVal = 3240 LowerBound 3241 ? Builder.CreateIntCast( 3242 EmitScalarExpr(LowerBound), IntPtrTy, 3243 LowerBound->getType()->hasSignedIntegerRepresentation()) 3244 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3245 auto *LengthVal = 3246 Length 3247 ? Builder.CreateIntCast( 3248 EmitScalarExpr(Length), IntPtrTy, 3249 Length->getType()->hasSignedIntegerRepresentation()) 3250 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3251 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3252 /*HasNUW=*/false, 3253 !getLangOpts().isSignedOverflowDefined()); 3254 if (Length && LowerBound) { 3255 Idx = Builder.CreateSub( 3256 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3257 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3258 } 3259 } else 3260 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3261 } else { 3262 // Idx = ArraySize - 1; 3263 QualType ArrayTy = BaseTy->isPointerType() 3264 ? E->getBase()->IgnoreParenImpCasts()->getType() 3265 : BaseTy; 3266 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3267 Length = VAT->getSizeExpr(); 3268 if (Length->isIntegerConstantExpr(ConstLength, C)) 3269 Length = nullptr; 3270 } else { 3271 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3272 ConstLength = CAT->getSize(); 3273 } 3274 if (Length) { 3275 auto *LengthVal = Builder.CreateIntCast( 3276 EmitScalarExpr(Length), IntPtrTy, 3277 Length->getType()->hasSignedIntegerRepresentation()); 3278 Idx = Builder.CreateSub( 3279 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3280 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3281 } else { 3282 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3283 --ConstLength; 3284 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3285 } 3286 } 3287 } 3288 assert(Idx); 3289 3290 Address EltPtr = Address::invalid(); 3291 AlignmentSource AlignSource; 3292 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3293 // The base must be a pointer, which is not an aggregate. Emit 3294 // it. It needs to be emitted first in case it's what captures 3295 // the VLA bounds. 3296 Address Base = 3297 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3298 VLA->getElementType(), IsLowerBound); 3299 // The element count here is the total number of non-VLA elements. 3300 llvm::Value *NumElements = getVLASize(VLA).first; 3301 3302 // Effectively, the multiply by the VLA size is part of the GEP. 3303 // GEP indexes are signed, and scaling an index isn't permitted to 3304 // signed-overflow, so we use the same semantics for our explicit 3305 // multiply. We suppress this if overflow is not undefined behavior. 3306 if (getLangOpts().isSignedOverflowDefined()) 3307 Idx = Builder.CreateMul(Idx, NumElements); 3308 else 3309 Idx = Builder.CreateNSWMul(Idx, NumElements); 3310 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3311 !getLangOpts().isSignedOverflowDefined()); 3312 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3313 // If this is A[i] where A is an array, the frontend will have decayed the 3314 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3315 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3316 // "gep x, i" here. Emit one "gep A, 0, i". 3317 assert(Array->getType()->isArrayType() && 3318 "Array to pointer decay must have array source type!"); 3319 LValue ArrayLV; 3320 // For simple multidimensional array indexing, set the 'accessed' flag for 3321 // better bounds-checking of the base expression. 3322 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3323 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3324 else 3325 ArrayLV = EmitLValue(Array); 3326 3327 // Propagate the alignment from the array itself to the result. 3328 EltPtr = emitArraySubscriptGEP( 3329 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3330 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3331 AlignSource = ArrayLV.getAlignmentSource(); 3332 } else { 3333 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3334 BaseTy, ResultExprTy, IsLowerBound); 3335 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3336 !getLangOpts().isSignedOverflowDefined()); 3337 } 3338 3339 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3340 } 3341 3342 LValue CodeGenFunction:: 3343 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3344 // Emit the base vector as an l-value. 3345 LValue Base; 3346 3347 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3348 if (E->isArrow()) { 3349 // If it is a pointer to a vector, emit the address and form an lvalue with 3350 // it. 3351 AlignmentSource AlignSource; 3352 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3353 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3354 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3355 Base.getQuals().removeObjCGCAttr(); 3356 } else if (E->getBase()->isGLValue()) { 3357 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3358 // emit the base as an lvalue. 3359 assert(E->getBase()->getType()->isVectorType()); 3360 Base = EmitLValue(E->getBase()); 3361 } else { 3362 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3363 assert(E->getBase()->getType()->isVectorType() && 3364 "Result must be a vector"); 3365 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3366 3367 // Store the vector to memory (because LValue wants an address). 3368 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3369 Builder.CreateStore(Vec, VecMem); 3370 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3371 AlignmentSource::Decl); 3372 } 3373 3374 QualType type = 3375 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3376 3377 // Encode the element access list into a vector of unsigned indices. 3378 SmallVector<uint32_t, 4> Indices; 3379 E->getEncodedElementAccess(Indices); 3380 3381 if (Base.isSimple()) { 3382 llvm::Constant *CV = 3383 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3384 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3385 Base.getAlignmentSource()); 3386 } 3387 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3388 3389 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3390 SmallVector<llvm::Constant *, 4> CElts; 3391 3392 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3393 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3394 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3395 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3396 Base.getAlignmentSource()); 3397 } 3398 3399 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3400 Expr *BaseExpr = E->getBase(); 3401 3402 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3403 LValue BaseLV; 3404 if (E->isArrow()) { 3405 AlignmentSource AlignSource; 3406 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3407 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3408 SanitizerSet SkippedChecks; 3409 if (IsDeclRefOrWrappedCXXThis(BaseExpr)) 3410 SkippedChecks.set(SanitizerKind::Null, true); 3411 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3412 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3413 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3414 } else 3415 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3416 3417 NamedDecl *ND = E->getMemberDecl(); 3418 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3419 LValue LV = EmitLValueForField(BaseLV, Field); 3420 setObjCGCLValueClass(getContext(), E, LV); 3421 return LV; 3422 } 3423 3424 if (auto *VD = dyn_cast<VarDecl>(ND)) 3425 return EmitGlobalVarDeclLValue(*this, E, VD); 3426 3427 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3428 return EmitFunctionDeclLValue(*this, E, FD); 3429 3430 llvm_unreachable("Unhandled member declaration!"); 3431 } 3432 3433 /// Given that we are currently emitting a lambda, emit an l-value for 3434 /// one of its members. 3435 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3436 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3437 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3438 QualType LambdaTagType = 3439 getContext().getTagDeclType(Field->getParent()); 3440 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3441 return EmitLValueForField(LambdaLV, Field); 3442 } 3443 3444 /// Drill down to the storage of a field without walking into 3445 /// reference types. 3446 /// 3447 /// The resulting address doesn't necessarily have the right type. 3448 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3449 const FieldDecl *field) { 3450 const RecordDecl *rec = field->getParent(); 3451 3452 unsigned idx = 3453 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3454 3455 CharUnits offset; 3456 // Adjust the alignment down to the given offset. 3457 // As a special case, if the LLVM field index is 0, we know that this 3458 // is zero. 3459 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3460 .getFieldOffset(field->getFieldIndex()) == 0) && 3461 "LLVM field at index zero had non-zero offset?"); 3462 if (idx != 0) { 3463 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3464 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3465 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3466 } 3467 3468 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3469 } 3470 3471 LValue CodeGenFunction::EmitLValueForField(LValue base, 3472 const FieldDecl *field) { 3473 AlignmentSource fieldAlignSource = 3474 getFieldAlignmentSource(base.getAlignmentSource()); 3475 3476 if (field->isBitField()) { 3477 const CGRecordLayout &RL = 3478 CGM.getTypes().getCGRecordLayout(field->getParent()); 3479 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3480 Address Addr = base.getAddress(); 3481 unsigned Idx = RL.getLLVMFieldNo(field); 3482 if (Idx != 0) 3483 // For structs, we GEP to the field that the record layout suggests. 3484 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3485 field->getName()); 3486 // Get the access type. 3487 llvm::Type *FieldIntTy = 3488 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3489 if (Addr.getElementType() != FieldIntTy) 3490 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3491 3492 QualType fieldType = 3493 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3494 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3495 } 3496 3497 const RecordDecl *rec = field->getParent(); 3498 QualType type = field->getType(); 3499 3500 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3501 3502 Address addr = base.getAddress(); 3503 unsigned cvr = base.getVRQualifiers(); 3504 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3505 if (rec->isUnion()) { 3506 // For unions, there is no pointer adjustment. 3507 assert(!type->isReferenceType() && "union has reference member"); 3508 // TODO: handle path-aware TBAA for union. 3509 TBAAPath = false; 3510 } else { 3511 // For structs, we GEP to the field that the record layout suggests. 3512 addr = emitAddrOfFieldStorage(*this, addr, field); 3513 3514 // If this is a reference field, load the reference right now. 3515 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3516 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3517 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3518 3519 // Loading the reference will disable path-aware TBAA. 3520 TBAAPath = false; 3521 if (CGM.shouldUseTBAA()) { 3522 llvm::MDNode *tbaa; 3523 if (mayAlias) 3524 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3525 else 3526 tbaa = CGM.getTBAAInfo(type); 3527 if (tbaa) 3528 CGM.DecorateInstructionWithTBAA(load, tbaa); 3529 } 3530 3531 mayAlias = false; 3532 type = refType->getPointeeType(); 3533 3534 CharUnits alignment = 3535 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3536 addr = Address(load, alignment); 3537 3538 // Qualifiers on the struct don't apply to the referencee, and 3539 // we'll pick up CVR from the actual type later, so reset these 3540 // additional qualifiers now. 3541 cvr = 0; 3542 } 3543 } 3544 3545 // Make sure that the address is pointing to the right type. This is critical 3546 // for both unions and structs. A union needs a bitcast, a struct element 3547 // will need a bitcast if the LLVM type laid out doesn't match the desired 3548 // type. 3549 addr = Builder.CreateElementBitCast(addr, 3550 CGM.getTypes().ConvertTypeForMem(type), 3551 field->getName()); 3552 3553 if (field->hasAttr<AnnotateAttr>()) 3554 addr = EmitFieldAnnotations(field, addr); 3555 3556 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3557 LV.getQuals().addCVRQualifiers(cvr); 3558 if (TBAAPath) { 3559 const ASTRecordLayout &Layout = 3560 getContext().getASTRecordLayout(field->getParent()); 3561 // Set the base type to be the base type of the base LValue and 3562 // update offset to be relative to the base type. 3563 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3564 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3565 Layout.getFieldOffset(field->getFieldIndex()) / 3566 getContext().getCharWidth()); 3567 } 3568 3569 // __weak attribute on a field is ignored. 3570 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3571 LV.getQuals().removeObjCGCAttr(); 3572 3573 // Fields of may_alias structs act like 'char' for TBAA purposes. 3574 // FIXME: this should get propagated down through anonymous structs 3575 // and unions. 3576 if (mayAlias && LV.getTBAAInfo()) 3577 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3578 3579 return LV; 3580 } 3581 3582 LValue 3583 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3584 const FieldDecl *Field) { 3585 QualType FieldType = Field->getType(); 3586 3587 if (!FieldType->isReferenceType()) 3588 return EmitLValueForField(Base, Field); 3589 3590 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3591 3592 // Make sure that the address is pointing to the right type. 3593 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3594 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3595 3596 // TODO: access-path TBAA? 3597 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3598 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3599 } 3600 3601 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3602 if (E->isFileScope()) { 3603 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3604 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3605 } 3606 if (E->getType()->isVariablyModifiedType()) 3607 // make sure to emit the VLA size. 3608 EmitVariablyModifiedType(E->getType()); 3609 3610 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3611 const Expr *InitExpr = E->getInitializer(); 3612 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3613 3614 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3615 /*Init*/ true); 3616 3617 return Result; 3618 } 3619 3620 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3621 if (!E->isGLValue()) 3622 // Initializing an aggregate temporary in C++11: T{...}. 3623 return EmitAggExprToLValue(E); 3624 3625 // An lvalue initializer list must be initializing a reference. 3626 assert(E->isTransparent() && "non-transparent glvalue init list"); 3627 return EmitLValue(E->getInit(0)); 3628 } 3629 3630 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3631 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3632 /// LValue is returned and the current block has been terminated. 3633 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3634 const Expr *Operand) { 3635 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3636 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3637 return None; 3638 } 3639 3640 return CGF.EmitLValue(Operand); 3641 } 3642 3643 LValue CodeGenFunction:: 3644 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3645 if (!expr->isGLValue()) { 3646 // ?: here should be an aggregate. 3647 assert(hasAggregateEvaluationKind(expr->getType()) && 3648 "Unexpected conditional operator!"); 3649 return EmitAggExprToLValue(expr); 3650 } 3651 3652 OpaqueValueMapping binding(*this, expr); 3653 3654 const Expr *condExpr = expr->getCond(); 3655 bool CondExprBool; 3656 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3657 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3658 if (!CondExprBool) std::swap(live, dead); 3659 3660 if (!ContainsLabel(dead)) { 3661 // If the true case is live, we need to track its region. 3662 if (CondExprBool) 3663 incrementProfileCounter(expr); 3664 return EmitLValue(live); 3665 } 3666 } 3667 3668 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3669 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3670 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3671 3672 ConditionalEvaluation eval(*this); 3673 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3674 3675 // Any temporaries created here are conditional. 3676 EmitBlock(lhsBlock); 3677 incrementProfileCounter(expr); 3678 eval.begin(*this); 3679 Optional<LValue> lhs = 3680 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3681 eval.end(*this); 3682 3683 if (lhs && !lhs->isSimple()) 3684 return EmitUnsupportedLValue(expr, "conditional operator"); 3685 3686 lhsBlock = Builder.GetInsertBlock(); 3687 if (lhs) 3688 Builder.CreateBr(contBlock); 3689 3690 // Any temporaries created here are conditional. 3691 EmitBlock(rhsBlock); 3692 eval.begin(*this); 3693 Optional<LValue> rhs = 3694 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3695 eval.end(*this); 3696 if (rhs && !rhs->isSimple()) 3697 return EmitUnsupportedLValue(expr, "conditional operator"); 3698 rhsBlock = Builder.GetInsertBlock(); 3699 3700 EmitBlock(contBlock); 3701 3702 if (lhs && rhs) { 3703 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3704 2, "cond-lvalue"); 3705 phi->addIncoming(lhs->getPointer(), lhsBlock); 3706 phi->addIncoming(rhs->getPointer(), rhsBlock); 3707 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3708 AlignmentSource alignSource = 3709 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3710 return MakeAddrLValue(result, expr->getType(), alignSource); 3711 } else { 3712 assert((lhs || rhs) && 3713 "both operands of glvalue conditional are throw-expressions?"); 3714 return lhs ? *lhs : *rhs; 3715 } 3716 } 3717 3718 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3719 /// type. If the cast is to a reference, we can have the usual lvalue result, 3720 /// otherwise if a cast is needed by the code generator in an lvalue context, 3721 /// then it must mean that we need the address of an aggregate in order to 3722 /// access one of its members. This can happen for all the reasons that casts 3723 /// are permitted with aggregate result, including noop aggregate casts, and 3724 /// cast from scalar to union. 3725 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3726 switch (E->getCastKind()) { 3727 case CK_ToVoid: 3728 case CK_BitCast: 3729 case CK_ArrayToPointerDecay: 3730 case CK_FunctionToPointerDecay: 3731 case CK_NullToMemberPointer: 3732 case CK_NullToPointer: 3733 case CK_IntegralToPointer: 3734 case CK_PointerToIntegral: 3735 case CK_PointerToBoolean: 3736 case CK_VectorSplat: 3737 case CK_IntegralCast: 3738 case CK_BooleanToSignedIntegral: 3739 case CK_IntegralToBoolean: 3740 case CK_IntegralToFloating: 3741 case CK_FloatingToIntegral: 3742 case CK_FloatingToBoolean: 3743 case CK_FloatingCast: 3744 case CK_FloatingRealToComplex: 3745 case CK_FloatingComplexToReal: 3746 case CK_FloatingComplexToBoolean: 3747 case CK_FloatingComplexCast: 3748 case CK_FloatingComplexToIntegralComplex: 3749 case CK_IntegralRealToComplex: 3750 case CK_IntegralComplexToReal: 3751 case CK_IntegralComplexToBoolean: 3752 case CK_IntegralComplexCast: 3753 case CK_IntegralComplexToFloatingComplex: 3754 case CK_DerivedToBaseMemberPointer: 3755 case CK_BaseToDerivedMemberPointer: 3756 case CK_MemberPointerToBoolean: 3757 case CK_ReinterpretMemberPointer: 3758 case CK_AnyPointerToBlockPointerCast: 3759 case CK_ARCProduceObject: 3760 case CK_ARCConsumeObject: 3761 case CK_ARCReclaimReturnedObject: 3762 case CK_ARCExtendBlockObject: 3763 case CK_CopyAndAutoreleaseBlockObject: 3764 case CK_AddressSpaceConversion: 3765 case CK_IntToOCLSampler: 3766 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3767 3768 case CK_Dependent: 3769 llvm_unreachable("dependent cast kind in IR gen!"); 3770 3771 case CK_BuiltinFnToFnPtr: 3772 llvm_unreachable("builtin functions are handled elsewhere"); 3773 3774 // These are never l-values; just use the aggregate emission code. 3775 case CK_NonAtomicToAtomic: 3776 case CK_AtomicToNonAtomic: 3777 return EmitAggExprToLValue(E); 3778 3779 case CK_Dynamic: { 3780 LValue LV = EmitLValue(E->getSubExpr()); 3781 Address V = LV.getAddress(); 3782 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3783 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3784 } 3785 3786 case CK_ConstructorConversion: 3787 case CK_UserDefinedConversion: 3788 case CK_CPointerToObjCPointerCast: 3789 case CK_BlockPointerToObjCPointerCast: 3790 case CK_NoOp: 3791 case CK_LValueToRValue: 3792 return EmitLValue(E->getSubExpr()); 3793 3794 case CK_UncheckedDerivedToBase: 3795 case CK_DerivedToBase: { 3796 const RecordType *DerivedClassTy = 3797 E->getSubExpr()->getType()->getAs<RecordType>(); 3798 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3799 3800 LValue LV = EmitLValue(E->getSubExpr()); 3801 Address This = LV.getAddress(); 3802 3803 // Perform the derived-to-base conversion 3804 Address Base = GetAddressOfBaseClass( 3805 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3806 /*NullCheckValue=*/false, E->getExprLoc()); 3807 3808 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3809 } 3810 case CK_ToUnion: 3811 return EmitAggExprToLValue(E); 3812 case CK_BaseToDerived: { 3813 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3814 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3815 3816 LValue LV = EmitLValue(E->getSubExpr()); 3817 3818 // Perform the base-to-derived conversion 3819 Address Derived = 3820 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3821 E->path_begin(), E->path_end(), 3822 /*NullCheckValue=*/false); 3823 3824 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3825 // performed and the object is not of the derived type. 3826 if (sanitizePerformTypeCheck()) 3827 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3828 Derived.getPointer(), E->getType()); 3829 3830 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3831 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3832 /*MayBeNull=*/false, 3833 CFITCK_DerivedCast, E->getLocStart()); 3834 3835 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3836 } 3837 case CK_LValueBitCast: { 3838 // This must be a reinterpret_cast (or c-style equivalent). 3839 const auto *CE = cast<ExplicitCastExpr>(E); 3840 3841 CGM.EmitExplicitCastExprType(CE, this); 3842 LValue LV = EmitLValue(E->getSubExpr()); 3843 Address V = Builder.CreateBitCast(LV.getAddress(), 3844 ConvertType(CE->getTypeAsWritten())); 3845 3846 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3847 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3848 /*MayBeNull=*/false, 3849 CFITCK_UnrelatedCast, E->getLocStart()); 3850 3851 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3852 } 3853 case CK_ObjCObjectLValueCast: { 3854 LValue LV = EmitLValue(E->getSubExpr()); 3855 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3856 ConvertType(E->getType())); 3857 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3858 } 3859 case CK_ZeroToOCLQueue: 3860 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3861 case CK_ZeroToOCLEvent: 3862 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3863 } 3864 3865 llvm_unreachable("Unhandled lvalue cast kind?"); 3866 } 3867 3868 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3869 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3870 return getOpaqueLValueMapping(e); 3871 } 3872 3873 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3874 const FieldDecl *FD, 3875 SourceLocation Loc) { 3876 QualType FT = FD->getType(); 3877 LValue FieldLV = EmitLValueForField(LV, FD); 3878 switch (getEvaluationKind(FT)) { 3879 case TEK_Complex: 3880 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3881 case TEK_Aggregate: 3882 return FieldLV.asAggregateRValue(); 3883 case TEK_Scalar: 3884 // This routine is used to load fields one-by-one to perform a copy, so 3885 // don't load reference fields. 3886 if (FD->getType()->isReferenceType()) 3887 return RValue::get(FieldLV.getPointer()); 3888 return EmitLoadOfLValue(FieldLV, Loc); 3889 } 3890 llvm_unreachable("bad evaluation kind"); 3891 } 3892 3893 //===--------------------------------------------------------------------===// 3894 // Expression Emission 3895 //===--------------------------------------------------------------------===// 3896 3897 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3898 ReturnValueSlot ReturnValue) { 3899 // Builtins never have block type. 3900 if (E->getCallee()->getType()->isBlockPointerType()) 3901 return EmitBlockCallExpr(E, ReturnValue); 3902 3903 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3904 return EmitCXXMemberCallExpr(CE, ReturnValue); 3905 3906 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3907 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3908 3909 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3910 if (const CXXMethodDecl *MD = 3911 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3912 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3913 3914 CGCallee callee = EmitCallee(E->getCallee()); 3915 3916 if (callee.isBuiltin()) { 3917 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3918 E, ReturnValue); 3919 } 3920 3921 if (callee.isPseudoDestructor()) { 3922 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3923 } 3924 3925 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3926 } 3927 3928 /// Emit a CallExpr without considering whether it might be a subclass. 3929 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3930 ReturnValueSlot ReturnValue) { 3931 CGCallee Callee = EmitCallee(E->getCallee()); 3932 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3933 } 3934 3935 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3936 if (auto builtinID = FD->getBuiltinID()) { 3937 return CGCallee::forBuiltin(builtinID, FD); 3938 } 3939 3940 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3941 return CGCallee::forDirect(calleePtr, FD); 3942 } 3943 3944 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3945 E = E->IgnoreParens(); 3946 3947 // Look through function-to-pointer decay. 3948 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3949 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3950 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3951 return EmitCallee(ICE->getSubExpr()); 3952 } 3953 3954 // Resolve direct calls. 3955 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3956 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3957 return EmitDirectCallee(*this, FD); 3958 } 3959 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 3960 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 3961 EmitIgnoredExpr(ME->getBase()); 3962 return EmitDirectCallee(*this, FD); 3963 } 3964 3965 // Look through template substitutions. 3966 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 3967 return EmitCallee(NTTP->getReplacement()); 3968 3969 // Treat pseudo-destructor calls differently. 3970 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 3971 return CGCallee::forPseudoDestructor(PDE); 3972 } 3973 3974 // Otherwise, we have an indirect reference. 3975 llvm::Value *calleePtr; 3976 QualType functionType; 3977 if (auto ptrType = E->getType()->getAs<PointerType>()) { 3978 calleePtr = EmitScalarExpr(E); 3979 functionType = ptrType->getPointeeType(); 3980 } else { 3981 functionType = E->getType(); 3982 calleePtr = EmitLValue(E).getPointer(); 3983 } 3984 assert(functionType->isFunctionType()); 3985 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 3986 E->getReferencedDeclOfCallee()); 3987 CGCallee callee(calleeInfo, calleePtr); 3988 return callee; 3989 } 3990 3991 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3992 // Comma expressions just emit their LHS then their RHS as an l-value. 3993 if (E->getOpcode() == BO_Comma) { 3994 EmitIgnoredExpr(E->getLHS()); 3995 EnsureInsertPoint(); 3996 return EmitLValue(E->getRHS()); 3997 } 3998 3999 if (E->getOpcode() == BO_PtrMemD || 4000 E->getOpcode() == BO_PtrMemI) 4001 return EmitPointerToDataMemberBinaryExpr(E); 4002 4003 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4004 4005 // Note that in all of these cases, __block variables need the RHS 4006 // evaluated first just in case the variable gets moved by the RHS. 4007 4008 switch (getEvaluationKind(E->getType())) { 4009 case TEK_Scalar: { 4010 switch (E->getLHS()->getType().getObjCLifetime()) { 4011 case Qualifiers::OCL_Strong: 4012 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4013 4014 case Qualifiers::OCL_Autoreleasing: 4015 return EmitARCStoreAutoreleasing(E).first; 4016 4017 // No reason to do any of these differently. 4018 case Qualifiers::OCL_None: 4019 case Qualifiers::OCL_ExplicitNone: 4020 case Qualifiers::OCL_Weak: 4021 break; 4022 } 4023 4024 RValue RV = EmitAnyExpr(E->getRHS()); 4025 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4026 EmitStoreThroughLValue(RV, LV); 4027 return LV; 4028 } 4029 4030 case TEK_Complex: 4031 return EmitComplexAssignmentLValue(E); 4032 4033 case TEK_Aggregate: 4034 return EmitAggExprToLValue(E); 4035 } 4036 llvm_unreachable("bad evaluation kind"); 4037 } 4038 4039 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4040 RValue RV = EmitCallExpr(E); 4041 4042 if (!RV.isScalar()) 4043 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4044 AlignmentSource::Decl); 4045 4046 assert(E->getCallReturnType(getContext())->isReferenceType() && 4047 "Can't have a scalar return unless the return type is a " 4048 "reference type!"); 4049 4050 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4051 } 4052 4053 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4054 // FIXME: This shouldn't require another copy. 4055 return EmitAggExprToLValue(E); 4056 } 4057 4058 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4059 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4060 && "binding l-value to type which needs a temporary"); 4061 AggValueSlot Slot = CreateAggTemp(E->getType()); 4062 EmitCXXConstructExpr(E, Slot); 4063 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4064 AlignmentSource::Decl); 4065 } 4066 4067 LValue 4068 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4069 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4070 } 4071 4072 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4073 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4074 ConvertType(E->getType())); 4075 } 4076 4077 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4078 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4079 AlignmentSource::Decl); 4080 } 4081 4082 LValue 4083 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4084 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4085 Slot.setExternallyDestructed(); 4086 EmitAggExpr(E->getSubExpr(), Slot); 4087 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4088 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4089 AlignmentSource::Decl); 4090 } 4091 4092 LValue 4093 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4094 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4095 EmitLambdaExpr(E, Slot); 4096 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4097 AlignmentSource::Decl); 4098 } 4099 4100 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4101 RValue RV = EmitObjCMessageExpr(E); 4102 4103 if (!RV.isScalar()) 4104 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4105 AlignmentSource::Decl); 4106 4107 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4108 "Can't have a scalar return unless the return type is a " 4109 "reference type!"); 4110 4111 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4112 } 4113 4114 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4115 Address V = 4116 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4117 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4118 } 4119 4120 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4121 const ObjCIvarDecl *Ivar) { 4122 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4123 } 4124 4125 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4126 llvm::Value *BaseValue, 4127 const ObjCIvarDecl *Ivar, 4128 unsigned CVRQualifiers) { 4129 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4130 Ivar, CVRQualifiers); 4131 } 4132 4133 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4134 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4135 llvm::Value *BaseValue = nullptr; 4136 const Expr *BaseExpr = E->getBase(); 4137 Qualifiers BaseQuals; 4138 QualType ObjectTy; 4139 if (E->isArrow()) { 4140 BaseValue = EmitScalarExpr(BaseExpr); 4141 ObjectTy = BaseExpr->getType()->getPointeeType(); 4142 BaseQuals = ObjectTy.getQualifiers(); 4143 } else { 4144 LValue BaseLV = EmitLValue(BaseExpr); 4145 BaseValue = BaseLV.getPointer(); 4146 ObjectTy = BaseExpr->getType(); 4147 BaseQuals = ObjectTy.getQualifiers(); 4148 } 4149 4150 LValue LV = 4151 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4152 BaseQuals.getCVRQualifiers()); 4153 setObjCGCLValueClass(getContext(), E, LV); 4154 return LV; 4155 } 4156 4157 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4158 // Can only get l-value for message expression returning aggregate type 4159 RValue RV = EmitAnyExprToTemp(E); 4160 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4161 AlignmentSource::Decl); 4162 } 4163 4164 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4165 const CallExpr *E, ReturnValueSlot ReturnValue, 4166 llvm::Value *Chain) { 4167 // Get the actual function type. The callee type will always be a pointer to 4168 // function type or a block pointer type. 4169 assert(CalleeType->isFunctionPointerType() && 4170 "Call must have function pointer type!"); 4171 4172 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4173 4174 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4175 // We can only guarantee that a function is called from the correct 4176 // context/function based on the appropriate target attributes, 4177 // so only check in the case where we have both always_inline and target 4178 // since otherwise we could be making a conditional call after a check for 4179 // the proper cpu features (and it won't cause code generation issues due to 4180 // function based code generation). 4181 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4182 TargetDecl->hasAttr<TargetAttr>()) 4183 checkTargetFeatures(E, FD); 4184 4185 CalleeType = getContext().getCanonicalType(CalleeType); 4186 4187 const auto *FnType = 4188 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4189 4190 CGCallee Callee = OrigCallee; 4191 4192 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4193 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4194 if (llvm::Constant *PrefixSig = 4195 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4196 SanitizerScope SanScope(this); 4197 llvm::Constant *FTRTTIConst = 4198 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4199 llvm::Type *PrefixStructTyElems[] = { 4200 PrefixSig->getType(), 4201 FTRTTIConst->getType() 4202 }; 4203 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4204 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4205 4206 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4207 4208 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4209 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4210 llvm::Value *CalleeSigPtr = 4211 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4212 llvm::Value *CalleeSig = 4213 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4214 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4215 4216 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4217 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4218 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4219 4220 EmitBlock(TypeCheck); 4221 llvm::Value *CalleeRTTIPtr = 4222 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4223 llvm::Value *CalleeRTTI = 4224 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4225 llvm::Value *CalleeRTTIMatch = 4226 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4227 llvm::Constant *StaticData[] = { 4228 EmitCheckSourceLocation(E->getLocStart()), 4229 EmitCheckTypeDescriptor(CalleeType) 4230 }; 4231 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4232 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4233 4234 Builder.CreateBr(Cont); 4235 EmitBlock(Cont); 4236 } 4237 } 4238 4239 // If we are checking indirect calls and this call is indirect, check that the 4240 // function pointer is a member of the bit set for the function type. 4241 if (SanOpts.has(SanitizerKind::CFIICall) && 4242 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4243 SanitizerScope SanScope(this); 4244 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4245 4246 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4247 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4248 4249 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4250 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4251 llvm::Value *TypeTest = Builder.CreateCall( 4252 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4253 4254 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4255 llvm::Constant *StaticData[] = { 4256 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4257 EmitCheckSourceLocation(E->getLocStart()), 4258 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4259 }; 4260 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4261 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4262 CastedCallee, StaticData); 4263 } else { 4264 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4265 SanitizerHandler::CFICheckFail, StaticData, 4266 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4267 } 4268 } 4269 4270 CallArgList Args; 4271 if (Chain) 4272 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4273 CGM.getContext().VoidPtrTy); 4274 4275 // C++17 requires that we evaluate arguments to a call using assignment syntax 4276 // right-to-left, and that we evaluate arguments to certain other operators 4277 // left-to-right. Note that we allow this to override the order dictated by 4278 // the calling convention on the MS ABI, which means that parameter 4279 // destruction order is not necessarily reverse construction order. 4280 // FIXME: Revisit this based on C++ committee response to unimplementability. 4281 EvaluationOrder Order = EvaluationOrder::Default; 4282 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4283 if (OCE->isAssignmentOp()) 4284 Order = EvaluationOrder::ForceRightToLeft; 4285 else { 4286 switch (OCE->getOperator()) { 4287 case OO_LessLess: 4288 case OO_GreaterGreater: 4289 case OO_AmpAmp: 4290 case OO_PipePipe: 4291 case OO_Comma: 4292 case OO_ArrowStar: 4293 Order = EvaluationOrder::ForceLeftToRight; 4294 break; 4295 default: 4296 break; 4297 } 4298 } 4299 } 4300 4301 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4302 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4303 4304 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4305 Args, FnType, /*isChainCall=*/Chain); 4306 4307 // C99 6.5.2.2p6: 4308 // If the expression that denotes the called function has a type 4309 // that does not include a prototype, [the default argument 4310 // promotions are performed]. If the number of arguments does not 4311 // equal the number of parameters, the behavior is undefined. If 4312 // the function is defined with a type that includes a prototype, 4313 // and either the prototype ends with an ellipsis (, ...) or the 4314 // types of the arguments after promotion are not compatible with 4315 // the types of the parameters, the behavior is undefined. If the 4316 // function is defined with a type that does not include a 4317 // prototype, and the types of the arguments after promotion are 4318 // not compatible with those of the parameters after promotion, 4319 // the behavior is undefined [except in some trivial cases]. 4320 // That is, in the general case, we should assume that a call 4321 // through an unprototyped function type works like a *non-variadic* 4322 // call. The way we make this work is to cast to the exact type 4323 // of the promoted arguments. 4324 // 4325 // Chain calls use this same code path to add the invisible chain parameter 4326 // to the function type. 4327 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4328 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4329 CalleeTy = CalleeTy->getPointerTo(); 4330 4331 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4332 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4333 Callee.setFunctionPointer(CalleePtr); 4334 } 4335 4336 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4337 } 4338 4339 LValue CodeGenFunction:: 4340 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4341 Address BaseAddr = Address::invalid(); 4342 if (E->getOpcode() == BO_PtrMemI) { 4343 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4344 } else { 4345 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4346 } 4347 4348 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4349 4350 const MemberPointerType *MPT 4351 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4352 4353 AlignmentSource AlignSource; 4354 Address MemberAddr = 4355 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4356 &AlignSource); 4357 4358 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4359 } 4360 4361 /// Given the address of a temporary variable, produce an r-value of 4362 /// its type. 4363 RValue CodeGenFunction::convertTempToRValue(Address addr, 4364 QualType type, 4365 SourceLocation loc) { 4366 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4367 switch (getEvaluationKind(type)) { 4368 case TEK_Complex: 4369 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4370 case TEK_Aggregate: 4371 return lvalue.asAggregateRValue(); 4372 case TEK_Scalar: 4373 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4374 } 4375 llvm_unreachable("bad evaluation kind"); 4376 } 4377 4378 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4379 assert(Val->getType()->isFPOrFPVectorTy()); 4380 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4381 return; 4382 4383 llvm::MDBuilder MDHelper(getLLVMContext()); 4384 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4385 4386 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4387 } 4388 4389 namespace { 4390 struct LValueOrRValue { 4391 LValue LV; 4392 RValue RV; 4393 }; 4394 } 4395 4396 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4397 const PseudoObjectExpr *E, 4398 bool forLValue, 4399 AggValueSlot slot) { 4400 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4401 4402 // Find the result expression, if any. 4403 const Expr *resultExpr = E->getResultExpr(); 4404 LValueOrRValue result; 4405 4406 for (PseudoObjectExpr::const_semantics_iterator 4407 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4408 const Expr *semantic = *i; 4409 4410 // If this semantic expression is an opaque value, bind it 4411 // to the result of its source expression. 4412 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4413 4414 // If this is the result expression, we may need to evaluate 4415 // directly into the slot. 4416 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4417 OVMA opaqueData; 4418 if (ov == resultExpr && ov->isRValue() && !forLValue && 4419 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4420 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4421 4422 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4423 AlignmentSource::Decl); 4424 opaqueData = OVMA::bind(CGF, ov, LV); 4425 result.RV = slot.asRValue(); 4426 4427 // Otherwise, emit as normal. 4428 } else { 4429 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4430 4431 // If this is the result, also evaluate the result now. 4432 if (ov == resultExpr) { 4433 if (forLValue) 4434 result.LV = CGF.EmitLValue(ov); 4435 else 4436 result.RV = CGF.EmitAnyExpr(ov, slot); 4437 } 4438 } 4439 4440 opaques.push_back(opaqueData); 4441 4442 // Otherwise, if the expression is the result, evaluate it 4443 // and remember the result. 4444 } else if (semantic == resultExpr) { 4445 if (forLValue) 4446 result.LV = CGF.EmitLValue(semantic); 4447 else 4448 result.RV = CGF.EmitAnyExpr(semantic, slot); 4449 4450 // Otherwise, evaluate the expression in an ignored context. 4451 } else { 4452 CGF.EmitIgnoredExpr(semantic); 4453 } 4454 } 4455 4456 // Unbind all the opaques now. 4457 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4458 opaques[i].unbind(CGF); 4459 4460 return result; 4461 } 4462 4463 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4464 AggValueSlot slot) { 4465 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4466 } 4467 4468 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4469 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4470 } 4471