1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51     cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
64                                           const Twine &Name) {
65   auto Alloca = CreateTempAlloca(Ty, Name);
66   Alloca->setAlignment(Align.getQuantity());
67   return Address(Alloca, Align);
68 }
69 
70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
71 /// block.
72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
73                                                     const Twine &Name) {
74   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
75 }
76 
77 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
78 /// default alignment of the corresponding LLVM type, which is *not*
79 /// guaranteed to be related in any way to the expected alignment of
80 /// an AST type that might have been lowered to Ty.
81 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
82                                                       const Twine &Name) {
83   CharUnits Align =
84     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
85   return CreateTempAlloca(Ty, Align, Name);
86 }
87 
88 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
89   assert(isa<llvm::AllocaInst>(Var.getPointer()));
90   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
91   Store->setAlignment(Var.getAlignment().getQuantity());
92   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
93   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
94 }
95 
96 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
97   CharUnits Align = getContext().getTypeAlignInChars(Ty);
98   return CreateTempAlloca(ConvertType(Ty), Align, Name);
99 }
100 
101 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
102   // FIXME: Should we prefer the preferred type alignment here?
103   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
104 }
105 
106 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
107                                        const Twine &Name) {
108   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
109 }
110 
111 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
112 /// expression and compare the result against zero, returning an Int1Ty value.
113 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
114   PGO.setCurrentStmt(E);
115   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
116     llvm::Value *MemPtr = EmitScalarExpr(E);
117     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
118   }
119 
120   QualType BoolTy = getContext().BoolTy;
121   SourceLocation Loc = E->getExprLoc();
122   if (!E->getType()->isAnyComplexType())
123     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
124 
125   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
126                                        Loc);
127 }
128 
129 /// EmitIgnoredExpr - Emit code to compute the specified expression,
130 /// ignoring the result.
131 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
132   if (E->isRValue())
133     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
134 
135   // Just emit it as an l-value and drop the result.
136   EmitLValue(E);
137 }
138 
139 /// EmitAnyExpr - Emit code to compute the specified expression which
140 /// can have any type.  The result is returned as an RValue struct.
141 /// If this is an aggregate expression, AggSlot indicates where the
142 /// result should be returned.
143 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
144                                     AggValueSlot aggSlot,
145                                     bool ignoreResult) {
146   switch (getEvaluationKind(E->getType())) {
147   case TEK_Scalar:
148     return RValue::get(EmitScalarExpr(E, ignoreResult));
149   case TEK_Complex:
150     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
151   case TEK_Aggregate:
152     if (!ignoreResult && aggSlot.isIgnored())
153       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
154     EmitAggExpr(E, aggSlot);
155     return aggSlot.asRValue();
156   }
157   llvm_unreachable("bad evaluation kind");
158 }
159 
160 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
161 /// always be accessible even if no aggregate location is provided.
162 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
163   AggValueSlot AggSlot = AggValueSlot::ignored();
164 
165   if (hasAggregateEvaluationKind(E->getType()))
166     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
167   return EmitAnyExpr(E, AggSlot);
168 }
169 
170 /// EmitAnyExprToMem - Evaluate an expression into a given memory
171 /// location.
172 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
173                                        Address Location,
174                                        Qualifiers Quals,
175                                        bool IsInit) {
176   // FIXME: This function should take an LValue as an argument.
177   switch (getEvaluationKind(E->getType())) {
178   case TEK_Complex:
179     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
180                               /*isInit*/ false);
181     return;
182 
183   case TEK_Aggregate: {
184     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
185                                          AggValueSlot::IsDestructed_t(IsInit),
186                                          AggValueSlot::DoesNotNeedGCBarriers,
187                                          AggValueSlot::IsAliased_t(!IsInit)));
188     return;
189   }
190 
191   case TEK_Scalar: {
192     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
193     LValue LV = MakeAddrLValue(Location, E->getType());
194     EmitStoreThroughLValue(RV, LV);
195     return;
196   }
197   }
198   llvm_unreachable("bad evaluation kind");
199 }
200 
201 static void
202 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
203                      const Expr *E, Address ReferenceTemporary) {
204   // Objective-C++ ARC:
205   //   If we are binding a reference to a temporary that has ownership, we
206   //   need to perform retain/release operations on the temporary.
207   //
208   // FIXME: This should be looking at E, not M.
209   if (auto Lifetime = M->getType().getObjCLifetime()) {
210     switch (Lifetime) {
211     case Qualifiers::OCL_None:
212     case Qualifiers::OCL_ExplicitNone:
213       // Carry on to normal cleanup handling.
214       break;
215 
216     case Qualifiers::OCL_Autoreleasing:
217       // Nothing to do; cleaned up by an autorelease pool.
218       return;
219 
220     case Qualifiers::OCL_Strong:
221     case Qualifiers::OCL_Weak:
222       switch (StorageDuration Duration = M->getStorageDuration()) {
223       case SD_Static:
224         // Note: we intentionally do not register a cleanup to release
225         // the object on program termination.
226         return;
227 
228       case SD_Thread:
229         // FIXME: We should probably register a cleanup in this case.
230         return;
231 
232       case SD_Automatic:
233       case SD_FullExpression:
234         CodeGenFunction::Destroyer *Destroy;
235         CleanupKind CleanupKind;
236         if (Lifetime == Qualifiers::OCL_Strong) {
237           const ValueDecl *VD = M->getExtendingDecl();
238           bool Precise =
239               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
240           CleanupKind = CGF.getARCCleanupKind();
241           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
242                             : &CodeGenFunction::destroyARCStrongImprecise;
243         } else {
244           // __weak objects always get EH cleanups; otherwise, exceptions
245           // could cause really nasty crashes instead of mere leaks.
246           CleanupKind = NormalAndEHCleanup;
247           Destroy = &CodeGenFunction::destroyARCWeak;
248         }
249         if (Duration == SD_FullExpression)
250           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
251                           M->getType(), *Destroy,
252                           CleanupKind & EHCleanup);
253         else
254           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
255                                           M->getType(),
256                                           *Destroy, CleanupKind & EHCleanup);
257         return;
258 
259       case SD_Dynamic:
260         llvm_unreachable("temporary cannot have dynamic storage duration");
261       }
262       llvm_unreachable("unknown storage duration");
263     }
264   }
265 
266   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
267   if (const RecordType *RT =
268           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
269     // Get the destructor for the reference temporary.
270     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
271     if (!ClassDecl->hasTrivialDestructor())
272       ReferenceTemporaryDtor = ClassDecl->getDestructor();
273   }
274 
275   if (!ReferenceTemporaryDtor)
276     return;
277 
278   // Call the destructor for the temporary.
279   switch (M->getStorageDuration()) {
280   case SD_Static:
281   case SD_Thread: {
282     llvm::Constant *CleanupFn;
283     llvm::Constant *CleanupArg;
284     if (E->getType()->isArrayType()) {
285       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
286           ReferenceTemporary, E->getType(),
287           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
288           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
289       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
290     } else {
291       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
292                                                StructorType::Complete);
293       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
294     }
295     CGF.CGM.getCXXABI().registerGlobalDtor(
296         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
297     break;
298   }
299 
300   case SD_FullExpression:
301     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
302                     CodeGenFunction::destroyCXXObject,
303                     CGF.getLangOpts().Exceptions);
304     break;
305 
306   case SD_Automatic:
307     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
308                                     ReferenceTemporary, E->getType(),
309                                     CodeGenFunction::destroyCXXObject,
310                                     CGF.getLangOpts().Exceptions);
311     break;
312 
313   case SD_Dynamic:
314     llvm_unreachable("temporary cannot have dynamic storage duration");
315   }
316 }
317 
318 static Address
319 createReferenceTemporary(CodeGenFunction &CGF,
320                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
321   switch (M->getStorageDuration()) {
322   case SD_FullExpression:
323   case SD_Automatic: {
324     // If we have a constant temporary array or record try to promote it into a
325     // constant global under the same rules a normal constant would've been
326     // promoted. This is easier on the optimizer and generally emits fewer
327     // instructions.
328     QualType Ty = Inner->getType();
329     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
330         (Ty->isArrayType() || Ty->isRecordType()) &&
331         CGF.CGM.isTypeConstant(Ty, true))
332       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
333         auto *GV = new llvm::GlobalVariable(
334             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
335             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
336         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
337         GV->setAlignment(alignment.getQuantity());
338         // FIXME: Should we put the new global into a COMDAT?
339         return Address(GV, alignment);
340       }
341     return CGF.CreateMemTemp(Ty, "ref.tmp");
342   }
343   case SD_Thread:
344   case SD_Static:
345     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
346 
347   case SD_Dynamic:
348     llvm_unreachable("temporary can't have dynamic storage duration");
349   }
350   llvm_unreachable("unknown storage duration");
351 }
352 
353 LValue CodeGenFunction::
354 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
355   const Expr *E = M->GetTemporaryExpr();
356 
357     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
358     // as that will cause the lifetime adjustment to be lost for ARC
359   auto ownership = M->getType().getObjCLifetime();
360   if (ownership != Qualifiers::OCL_None &&
361       ownership != Qualifiers::OCL_ExplicitNone) {
362     Address Object = createReferenceTemporary(*this, M, E);
363     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
364       Object = Address(llvm::ConstantExpr::getBitCast(Var,
365                            ConvertTypeForMem(E->getType())
366                              ->getPointerTo(Object.getAddressSpace())),
367                        Object.getAlignment());
368 
369       // createReferenceTemporary will promote the temporary to a global with a
370       // constant initializer if it can.  It can only do this to a value of
371       // ARC-manageable type if the value is global and therefore "immune" to
372       // ref-counting operations.  Therefore we have no need to emit either a
373       // dynamic initialization or a cleanup and we can just return the address
374       // of the temporary.
375       if (Var->hasInitializer())
376         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
377 
378       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
379     }
380     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
381                                        AlignmentSource::Decl);
382 
383     switch (getEvaluationKind(E->getType())) {
384     default: llvm_unreachable("expected scalar or aggregate expression");
385     case TEK_Scalar:
386       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
387       break;
388     case TEK_Aggregate: {
389       EmitAggExpr(E, AggValueSlot::forAddr(Object,
390                                            E->getType().getQualifiers(),
391                                            AggValueSlot::IsDestructed,
392                                            AggValueSlot::DoesNotNeedGCBarriers,
393                                            AggValueSlot::IsNotAliased));
394       break;
395     }
396     }
397 
398     pushTemporaryCleanup(*this, M, E, Object);
399     return RefTempDst;
400   }
401 
402   SmallVector<const Expr *, 2> CommaLHSs;
403   SmallVector<SubobjectAdjustment, 2> Adjustments;
404   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
405 
406   for (const auto &Ignored : CommaLHSs)
407     EmitIgnoredExpr(Ignored);
408 
409   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
410     if (opaque->getType()->isRecordType()) {
411       assert(Adjustments.empty());
412       return EmitOpaqueValueLValue(opaque);
413     }
414   }
415 
416   // Create and initialize the reference temporary.
417   Address Object = createReferenceTemporary(*this, M, E);
418   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
419     Object = Address(llvm::ConstantExpr::getBitCast(
420         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
421                      Object.getAlignment());
422     // If the temporary is a global and has a constant initializer or is a
423     // constant temporary that we promoted to a global, we may have already
424     // initialized it.
425     if (!Var->hasInitializer()) {
426       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
427       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
428     }
429   } else {
430     switch (M->getStorageDuration()) {
431     case SD_Automatic:
432     case SD_FullExpression:
433       if (auto *Size = EmitLifetimeStart(
434               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
435               Object.getPointer())) {
436         if (M->getStorageDuration() == SD_Automatic)
437           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
438                                                     Object, Size);
439         else
440           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
441                                                Size);
442       }
443       break;
444     default:
445       break;
446     }
447     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
448   }
449   pushTemporaryCleanup(*this, M, E, Object);
450 
451   // Perform derived-to-base casts and/or field accesses, to get from the
452   // temporary object we created (and, potentially, for which we extended
453   // the lifetime) to the subobject we're binding the reference to.
454   for (unsigned I = Adjustments.size(); I != 0; --I) {
455     SubobjectAdjustment &Adjustment = Adjustments[I-1];
456     switch (Adjustment.Kind) {
457     case SubobjectAdjustment::DerivedToBaseAdjustment:
458       Object =
459           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
460                                 Adjustment.DerivedToBase.BasePath->path_begin(),
461                                 Adjustment.DerivedToBase.BasePath->path_end(),
462                                 /*NullCheckValue=*/ false, E->getExprLoc());
463       break;
464 
465     case SubobjectAdjustment::FieldAdjustment: {
466       LValue LV = MakeAddrLValue(Object, E->getType(),
467                                  AlignmentSource::Decl);
468       LV = EmitLValueForField(LV, Adjustment.Field);
469       assert(LV.isSimple() &&
470              "materialized temporary field is not a simple lvalue");
471       Object = LV.getAddress();
472       break;
473     }
474 
475     case SubobjectAdjustment::MemberPointerAdjustment: {
476       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
477       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
478                                                Adjustment.Ptr.MPT);
479       break;
480     }
481     }
482   }
483 
484   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
485 }
486 
487 RValue
488 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
489   // Emit the expression as an lvalue.
490   LValue LV = EmitLValue(E);
491   assert(LV.isSimple());
492   llvm::Value *Value = LV.getPointer();
493 
494   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
495     // C++11 [dcl.ref]p5 (as amended by core issue 453):
496     //   If a glvalue to which a reference is directly bound designates neither
497     //   an existing object or function of an appropriate type nor a region of
498     //   storage of suitable size and alignment to contain an object of the
499     //   reference's type, the behavior is undefined.
500     QualType Ty = E->getType();
501     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
502   }
503 
504   return RValue::get(Value);
505 }
506 
507 
508 /// getAccessedFieldNo - Given an encoded value and a result number, return the
509 /// input field number being accessed.
510 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
511                                              const llvm::Constant *Elts) {
512   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
513       ->getZExtValue();
514 }
515 
516 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
517 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
518                                     llvm::Value *High) {
519   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
520   llvm::Value *K47 = Builder.getInt64(47);
521   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
522   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
523   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
524   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
525   return Builder.CreateMul(B1, KMul);
526 }
527 
528 bool CodeGenFunction::sanitizePerformTypeCheck() const {
529   return SanOpts.has(SanitizerKind::Null) |
530          SanOpts.has(SanitizerKind::Alignment) |
531          SanOpts.has(SanitizerKind::ObjectSize) |
532          SanOpts.has(SanitizerKind::Vptr);
533 }
534 
535 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
536                                     llvm::Value *Ptr, QualType Ty,
537                                     CharUnits Alignment,
538                                     SanitizerSet SkippedChecks) {
539   if (!sanitizePerformTypeCheck())
540     return;
541 
542   // Don't check pointers outside the default address space. The null check
543   // isn't correct, the object-size check isn't supported by LLVM, and we can't
544   // communicate the addresses to the runtime handler for the vptr check.
545   if (Ptr->getType()->getPointerAddressSpace())
546     return;
547 
548   SanitizerScope SanScope(this);
549 
550   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
551   llvm::BasicBlock *Done = nullptr;
552 
553   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
554                            TCK == TCK_UpcastToVirtualBase;
555   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
556       !SkippedChecks.has(SanitizerKind::Null)) {
557     // The glvalue must not be an empty glvalue.
558     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
559 
560     if (AllowNullPointers) {
561       // When performing pointer casts, it's OK if the value is null.
562       // Skip the remaining checks in that case.
563       Done = createBasicBlock("null");
564       llvm::BasicBlock *Rest = createBasicBlock("not.null");
565       Builder.CreateCondBr(IsNonNull, Rest, Done);
566       EmitBlock(Rest);
567     } else {
568       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
569     }
570   }
571 
572   if (SanOpts.has(SanitizerKind::ObjectSize) &&
573       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
574       !Ty->isIncompleteType()) {
575     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
576 
577     // The glvalue must refer to a large enough storage region.
578     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
579     //        to check this.
580     // FIXME: Get object address space
581     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
582     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
583     llvm::Value *Min = Builder.getFalse();
584     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
585     llvm::Value *LargeEnough =
586         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
587                               llvm::ConstantInt::get(IntPtrTy, Size));
588     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
589   }
590 
591   uint64_t AlignVal = 0;
592 
593   if (SanOpts.has(SanitizerKind::Alignment) &&
594       !SkippedChecks.has(SanitizerKind::Alignment)) {
595     AlignVal = Alignment.getQuantity();
596     if (!Ty->isIncompleteType() && !AlignVal)
597       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
598 
599     // The glvalue must be suitably aligned.
600     if (AlignVal) {
601       llvm::Value *Align =
602           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
603                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
604       llvm::Value *Aligned =
605         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
606       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
607     }
608   }
609 
610   if (Checks.size() > 0) {
611     // Make sure we're not losing information. Alignment needs to be a power of
612     // 2
613     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
614     llvm::Constant *StaticData[] = {
615         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
616         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
617         llvm::ConstantInt::get(Int8Ty, TCK)};
618     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
619   }
620 
621   // If possible, check that the vptr indicates that there is a subobject of
622   // type Ty at offset zero within this object.
623   //
624   // C++11 [basic.life]p5,6:
625   //   [For storage which does not refer to an object within its lifetime]
626   //   The program has undefined behavior if:
627   //    -- the [pointer or glvalue] is used to access a non-static data member
628   //       or call a non-static member function
629   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
630   if (SanOpts.has(SanitizerKind::Vptr) &&
631       !SkippedChecks.has(SanitizerKind::Vptr) &&
632       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
633        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
634        TCK == TCK_UpcastToVirtualBase) &&
635       RD && RD->hasDefinition() && RD->isDynamicClass()) {
636     // Compute a hash of the mangled name of the type.
637     //
638     // FIXME: This is not guaranteed to be deterministic! Move to a
639     //        fingerprinting mechanism once LLVM provides one. For the time
640     //        being the implementation happens to be deterministic.
641     SmallString<64> MangledName;
642     llvm::raw_svector_ostream Out(MangledName);
643     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
644                                                      Out);
645 
646     // Blacklist based on the mangled type.
647     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
648             Out.str())) {
649       llvm::hash_code TypeHash = hash_value(Out.str());
650 
651       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
652       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
653       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
654       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
655       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
656       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
657 
658       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
659       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
660 
661       // Look the hash up in our cache.
662       const int CacheSize = 128;
663       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
664       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
665                                                      "__ubsan_vptr_type_cache");
666       llvm::Value *Slot = Builder.CreateAnd(Hash,
667                                             llvm::ConstantInt::get(IntPtrTy,
668                                                                    CacheSize-1));
669       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
670       llvm::Value *CacheVal =
671         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
672                                   getPointerAlign());
673 
674       // If the hash isn't in the cache, call a runtime handler to perform the
675       // hard work of checking whether the vptr is for an object of the right
676       // type. This will either fill in the cache and return, or produce a
677       // diagnostic.
678       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
679       llvm::Constant *StaticData[] = {
680         EmitCheckSourceLocation(Loc),
681         EmitCheckTypeDescriptor(Ty),
682         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
683         llvm::ConstantInt::get(Int8Ty, TCK)
684       };
685       llvm::Value *DynamicData[] = { Ptr, Hash };
686       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
687                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
688                 DynamicData);
689     }
690   }
691 
692   if (Done) {
693     Builder.CreateBr(Done);
694     EmitBlock(Done);
695   }
696 }
697 
698 /// Determine whether this expression refers to a flexible array member in a
699 /// struct. We disable array bounds checks for such members.
700 static bool isFlexibleArrayMemberExpr(const Expr *E) {
701   // For compatibility with existing code, we treat arrays of length 0 or
702   // 1 as flexible array members.
703   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
704   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
705     if (CAT->getSize().ugt(1))
706       return false;
707   } else if (!isa<IncompleteArrayType>(AT))
708     return false;
709 
710   E = E->IgnoreParens();
711 
712   // A flexible array member must be the last member in the class.
713   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
714     // FIXME: If the base type of the member expr is not FD->getParent(),
715     // this should not be treated as a flexible array member access.
716     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
717       RecordDecl::field_iterator FI(
718           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
719       return ++FI == FD->getParent()->field_end();
720     }
721   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
722     return IRE->getDecl()->getNextIvar() == nullptr;
723   }
724 
725   return false;
726 }
727 
728 /// If Base is known to point to the start of an array, return the length of
729 /// that array. Return 0 if the length cannot be determined.
730 static llvm::Value *getArrayIndexingBound(
731     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
732   // For the vector indexing extension, the bound is the number of elements.
733   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
734     IndexedType = Base->getType();
735     return CGF.Builder.getInt32(VT->getNumElements());
736   }
737 
738   Base = Base->IgnoreParens();
739 
740   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
741     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
742         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
743       IndexedType = CE->getSubExpr()->getType();
744       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
745       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
746         return CGF.Builder.getInt(CAT->getSize());
747       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
748         return CGF.getVLASize(VAT).first;
749     }
750   }
751 
752   return nullptr;
753 }
754 
755 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
756                                       llvm::Value *Index, QualType IndexType,
757                                       bool Accessed) {
758   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
759          "should not be called unless adding bounds checks");
760   SanitizerScope SanScope(this);
761 
762   QualType IndexedType;
763   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
764   if (!Bound)
765     return;
766 
767   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
768   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
769   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
770 
771   llvm::Constant *StaticData[] = {
772     EmitCheckSourceLocation(E->getExprLoc()),
773     EmitCheckTypeDescriptor(IndexedType),
774     EmitCheckTypeDescriptor(IndexType)
775   };
776   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
777                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
778   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
779             SanitizerHandler::OutOfBounds, StaticData, Index);
780 }
781 
782 
783 CodeGenFunction::ComplexPairTy CodeGenFunction::
784 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
785                          bool isInc, bool isPre) {
786   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
787 
788   llvm::Value *NextVal;
789   if (isa<llvm::IntegerType>(InVal.first->getType())) {
790     uint64_t AmountVal = isInc ? 1 : -1;
791     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
792 
793     // Add the inc/dec to the real part.
794     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
795   } else {
796     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
797     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
798     if (!isInc)
799       FVal.changeSign();
800     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
801 
802     // Add the inc/dec to the real part.
803     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
804   }
805 
806   ComplexPairTy IncVal(NextVal, InVal.second);
807 
808   // Store the updated result through the lvalue.
809   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
810 
811   // If this is a postinc, return the value read from memory, otherwise use the
812   // updated value.
813   return isPre ? IncVal : InVal;
814 }
815 
816 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
817                                              CodeGenFunction *CGF) {
818   // Bind VLAs in the cast type.
819   if (CGF && E->getType()->isVariablyModifiedType())
820     CGF->EmitVariablyModifiedType(E->getType());
821 
822   if (CGDebugInfo *DI = getModuleDebugInfo())
823     DI->EmitExplicitCastType(E->getType());
824 }
825 
826 //===----------------------------------------------------------------------===//
827 //                         LValue Expression Emission
828 //===----------------------------------------------------------------------===//
829 
830 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
831 /// derive a more accurate bound on the alignment of the pointer.
832 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
833                                                   AlignmentSource  *Source) {
834   // We allow this with ObjC object pointers because of fragile ABIs.
835   assert(E->getType()->isPointerType() ||
836          E->getType()->isObjCObjectPointerType());
837   E = E->IgnoreParens();
838 
839   // Casts:
840   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
841     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
842       CGM.EmitExplicitCastExprType(ECE, this);
843 
844     switch (CE->getCastKind()) {
845     // Non-converting casts (but not C's implicit conversion from void*).
846     case CK_BitCast:
847     case CK_NoOp:
848       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
849         if (PtrTy->getPointeeType()->isVoidType())
850           break;
851 
852         AlignmentSource InnerSource;
853         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
854         if (Source) *Source = InnerSource;
855 
856         // If this is an explicit bitcast, and the source l-value is
857         // opaque, honor the alignment of the casted-to type.
858         if (isa<ExplicitCastExpr>(CE) &&
859             InnerSource != AlignmentSource::Decl) {
860           Addr = Address(Addr.getPointer(),
861                          getNaturalPointeeTypeAlignment(E->getType(), Source));
862         }
863 
864         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
865             CE->getCastKind() == CK_BitCast) {
866           if (auto PT = E->getType()->getAs<PointerType>())
867             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
868                                       /*MayBeNull=*/true,
869                                       CodeGenFunction::CFITCK_UnrelatedCast,
870                                       CE->getLocStart());
871         }
872 
873         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
874       }
875       break;
876 
877     // Array-to-pointer decay.
878     case CK_ArrayToPointerDecay:
879       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
880 
881     // Derived-to-base conversions.
882     case CK_UncheckedDerivedToBase:
883     case CK_DerivedToBase: {
884       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
885       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
886       return GetAddressOfBaseClass(Addr, Derived,
887                                    CE->path_begin(), CE->path_end(),
888                                    ShouldNullCheckClassCastValue(CE),
889                                    CE->getExprLoc());
890     }
891 
892     // TODO: Is there any reason to treat base-to-derived conversions
893     // specially?
894     default:
895       break;
896     }
897   }
898 
899   // Unary &.
900   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
901     if (UO->getOpcode() == UO_AddrOf) {
902       LValue LV = EmitLValue(UO->getSubExpr());
903       if (Source) *Source = LV.getAlignmentSource();
904       return LV.getAddress();
905     }
906   }
907 
908   // TODO: conditional operators, comma.
909 
910   // Otherwise, use the alignment of the type.
911   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
912   return Address(EmitScalarExpr(E), Align);
913 }
914 
915 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
916   if (Ty->isVoidType())
917     return RValue::get(nullptr);
918 
919   switch (getEvaluationKind(Ty)) {
920   case TEK_Complex: {
921     llvm::Type *EltTy =
922       ConvertType(Ty->castAs<ComplexType>()->getElementType());
923     llvm::Value *U = llvm::UndefValue::get(EltTy);
924     return RValue::getComplex(std::make_pair(U, U));
925   }
926 
927   // If this is a use of an undefined aggregate type, the aggregate must have an
928   // identifiable address.  Just because the contents of the value are undefined
929   // doesn't mean that the address can't be taken and compared.
930   case TEK_Aggregate: {
931     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
932     return RValue::getAggregate(DestPtr);
933   }
934 
935   case TEK_Scalar:
936     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
937   }
938   llvm_unreachable("bad evaluation kind");
939 }
940 
941 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
942                                               const char *Name) {
943   ErrorUnsupported(E, Name);
944   return GetUndefRValue(E->getType());
945 }
946 
947 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
948                                               const char *Name) {
949   ErrorUnsupported(E, Name);
950   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
951   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
952                         E->getType());
953 }
954 
955 bool CodeGenFunction::IsDeclRefOrWrappedCXXThis(const Expr *Obj) {
956   if (isa<DeclRefExpr>(Obj))
957     return true;
958 
959   const Expr *Base = Obj;
960   while (!isa<CXXThisExpr>(Base)) {
961     // The result of a dynamic_cast can be null.
962     if (isa<CXXDynamicCastExpr>(Base))
963       return false;
964 
965     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
966       Base = CE->getSubExpr();
967     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
968       Base = PE->getSubExpr();
969     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
970       if (UO->getOpcode() == UO_Extension)
971         Base = UO->getSubExpr();
972       else
973         return false;
974     } else {
975       return false;
976     }
977   }
978   return true;
979 }
980 
981 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
982   LValue LV;
983   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
984     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
985   else
986     LV = EmitLValue(E);
987   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
988     SanitizerSet SkippedChecks;
989     if (const auto *ME = dyn_cast<MemberExpr>(E))
990       if (IsDeclRefOrWrappedCXXThis(ME->getBase()))
991         SkippedChecks.set(SanitizerKind::Null, true);
992     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
993                   E->getType(), LV.getAlignment(), SkippedChecks);
994   }
995   return LV;
996 }
997 
998 /// EmitLValue - Emit code to compute a designator that specifies the location
999 /// of the expression.
1000 ///
1001 /// This can return one of two things: a simple address or a bitfield reference.
1002 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1003 /// an LLVM pointer type.
1004 ///
1005 /// If this returns a bitfield reference, nothing about the pointee type of the
1006 /// LLVM value is known: For example, it may not be a pointer to an integer.
1007 ///
1008 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1009 /// this method guarantees that the returned pointer type will point to an LLVM
1010 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1011 /// length type, this is not possible.
1012 ///
1013 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1014   ApplyDebugLocation DL(*this, E);
1015   switch (E->getStmtClass()) {
1016   default: return EmitUnsupportedLValue(E, "l-value expression");
1017 
1018   case Expr::ObjCPropertyRefExprClass:
1019     llvm_unreachable("cannot emit a property reference directly");
1020 
1021   case Expr::ObjCSelectorExprClass:
1022     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1023   case Expr::ObjCIsaExprClass:
1024     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1025   case Expr::BinaryOperatorClass:
1026     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1027   case Expr::CompoundAssignOperatorClass: {
1028     QualType Ty = E->getType();
1029     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1030       Ty = AT->getValueType();
1031     if (!Ty->isAnyComplexType())
1032       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1033     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1034   }
1035   case Expr::CallExprClass:
1036   case Expr::CXXMemberCallExprClass:
1037   case Expr::CXXOperatorCallExprClass:
1038   case Expr::UserDefinedLiteralClass:
1039     return EmitCallExprLValue(cast<CallExpr>(E));
1040   case Expr::VAArgExprClass:
1041     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1042   case Expr::DeclRefExprClass:
1043     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1044   case Expr::ParenExprClass:
1045     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1046   case Expr::GenericSelectionExprClass:
1047     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1048   case Expr::PredefinedExprClass:
1049     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1050   case Expr::StringLiteralClass:
1051     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1052   case Expr::ObjCEncodeExprClass:
1053     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1054   case Expr::PseudoObjectExprClass:
1055     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1056   case Expr::InitListExprClass:
1057     return EmitInitListLValue(cast<InitListExpr>(E));
1058   case Expr::CXXTemporaryObjectExprClass:
1059   case Expr::CXXConstructExprClass:
1060     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1061   case Expr::CXXBindTemporaryExprClass:
1062     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1063   case Expr::CXXUuidofExprClass:
1064     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1065   case Expr::LambdaExprClass:
1066     return EmitLambdaLValue(cast<LambdaExpr>(E));
1067 
1068   case Expr::ExprWithCleanupsClass: {
1069     const auto *cleanups = cast<ExprWithCleanups>(E);
1070     enterFullExpression(cleanups);
1071     RunCleanupsScope Scope(*this);
1072     LValue LV = EmitLValue(cleanups->getSubExpr());
1073     if (LV.isSimple()) {
1074       // Defend against branches out of gnu statement expressions surrounded by
1075       // cleanups.
1076       llvm::Value *V = LV.getPointer();
1077       Scope.ForceCleanup({&V});
1078       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1079                               getContext(), LV.getAlignmentSource(),
1080                               LV.getTBAAInfo());
1081     }
1082     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1083     // bitfield lvalue or some other non-simple lvalue?
1084     return LV;
1085   }
1086 
1087   case Expr::CXXDefaultArgExprClass:
1088     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1089   case Expr::CXXDefaultInitExprClass: {
1090     CXXDefaultInitExprScope Scope(*this);
1091     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1092   }
1093   case Expr::CXXTypeidExprClass:
1094     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1095 
1096   case Expr::ObjCMessageExprClass:
1097     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1098   case Expr::ObjCIvarRefExprClass:
1099     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1100   case Expr::StmtExprClass:
1101     return EmitStmtExprLValue(cast<StmtExpr>(E));
1102   case Expr::UnaryOperatorClass:
1103     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1104   case Expr::ArraySubscriptExprClass:
1105     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1106   case Expr::OMPArraySectionExprClass:
1107     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1108   case Expr::ExtVectorElementExprClass:
1109     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1110   case Expr::MemberExprClass:
1111     return EmitMemberExpr(cast<MemberExpr>(E));
1112   case Expr::CompoundLiteralExprClass:
1113     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1114   case Expr::ConditionalOperatorClass:
1115     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1116   case Expr::BinaryConditionalOperatorClass:
1117     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1118   case Expr::ChooseExprClass:
1119     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1120   case Expr::OpaqueValueExprClass:
1121     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1122   case Expr::SubstNonTypeTemplateParmExprClass:
1123     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1124   case Expr::ImplicitCastExprClass:
1125   case Expr::CStyleCastExprClass:
1126   case Expr::CXXFunctionalCastExprClass:
1127   case Expr::CXXStaticCastExprClass:
1128   case Expr::CXXDynamicCastExprClass:
1129   case Expr::CXXReinterpretCastExprClass:
1130   case Expr::CXXConstCastExprClass:
1131   case Expr::ObjCBridgedCastExprClass:
1132     return EmitCastLValue(cast<CastExpr>(E));
1133 
1134   case Expr::MaterializeTemporaryExprClass:
1135     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1136   }
1137 }
1138 
1139 /// Given an object of the given canonical type, can we safely copy a
1140 /// value out of it based on its initializer?
1141 static bool isConstantEmittableObjectType(QualType type) {
1142   assert(type.isCanonical());
1143   assert(!type->isReferenceType());
1144 
1145   // Must be const-qualified but non-volatile.
1146   Qualifiers qs = type.getLocalQualifiers();
1147   if (!qs.hasConst() || qs.hasVolatile()) return false;
1148 
1149   // Otherwise, all object types satisfy this except C++ classes with
1150   // mutable subobjects or non-trivial copy/destroy behavior.
1151   if (const auto *RT = dyn_cast<RecordType>(type))
1152     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1153       if (RD->hasMutableFields() || !RD->isTrivial())
1154         return false;
1155 
1156   return true;
1157 }
1158 
1159 /// Can we constant-emit a load of a reference to a variable of the
1160 /// given type?  This is different from predicates like
1161 /// Decl::isUsableInConstantExpressions because we do want it to apply
1162 /// in situations that don't necessarily satisfy the language's rules
1163 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1164 /// to do this with const float variables even if those variables
1165 /// aren't marked 'constexpr'.
1166 enum ConstantEmissionKind {
1167   CEK_None,
1168   CEK_AsReferenceOnly,
1169   CEK_AsValueOrReference,
1170   CEK_AsValueOnly
1171 };
1172 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1173   type = type.getCanonicalType();
1174   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1175     if (isConstantEmittableObjectType(ref->getPointeeType()))
1176       return CEK_AsValueOrReference;
1177     return CEK_AsReferenceOnly;
1178   }
1179   if (isConstantEmittableObjectType(type))
1180     return CEK_AsValueOnly;
1181   return CEK_None;
1182 }
1183 
1184 /// Try to emit a reference to the given value without producing it as
1185 /// an l-value.  This is actually more than an optimization: we can't
1186 /// produce an l-value for variables that we never actually captured
1187 /// in a block or lambda, which means const int variables or constexpr
1188 /// literals or similar.
1189 CodeGenFunction::ConstantEmission
1190 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1191   ValueDecl *value = refExpr->getDecl();
1192 
1193   // The value needs to be an enum constant or a constant variable.
1194   ConstantEmissionKind CEK;
1195   if (isa<ParmVarDecl>(value)) {
1196     CEK = CEK_None;
1197   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1198     CEK = checkVarTypeForConstantEmission(var->getType());
1199   } else if (isa<EnumConstantDecl>(value)) {
1200     CEK = CEK_AsValueOnly;
1201   } else {
1202     CEK = CEK_None;
1203   }
1204   if (CEK == CEK_None) return ConstantEmission();
1205 
1206   Expr::EvalResult result;
1207   bool resultIsReference;
1208   QualType resultType;
1209 
1210   // It's best to evaluate all the way as an r-value if that's permitted.
1211   if (CEK != CEK_AsReferenceOnly &&
1212       refExpr->EvaluateAsRValue(result, getContext())) {
1213     resultIsReference = false;
1214     resultType = refExpr->getType();
1215 
1216   // Otherwise, try to evaluate as an l-value.
1217   } else if (CEK != CEK_AsValueOnly &&
1218              refExpr->EvaluateAsLValue(result, getContext())) {
1219     resultIsReference = true;
1220     resultType = value->getType();
1221 
1222   // Failure.
1223   } else {
1224     return ConstantEmission();
1225   }
1226 
1227   // In any case, if the initializer has side-effects, abandon ship.
1228   if (result.HasSideEffects)
1229     return ConstantEmission();
1230 
1231   // Emit as a constant.
1232   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1233 
1234   // Make sure we emit a debug reference to the global variable.
1235   // This should probably fire even for
1236   if (isa<VarDecl>(value)) {
1237     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1238       EmitDeclRefExprDbgValue(refExpr, result.Val);
1239   } else {
1240     assert(isa<EnumConstantDecl>(value));
1241     EmitDeclRefExprDbgValue(refExpr, result.Val);
1242   }
1243 
1244   // If we emitted a reference constant, we need to dereference that.
1245   if (resultIsReference)
1246     return ConstantEmission::forReference(C);
1247 
1248   return ConstantEmission::forValue(C);
1249 }
1250 
1251 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1252                                                SourceLocation Loc) {
1253   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1254                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1255                           lvalue.getTBAAInfo(),
1256                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1257                           lvalue.isNontemporal());
1258 }
1259 
1260 static bool hasBooleanRepresentation(QualType Ty) {
1261   if (Ty->isBooleanType())
1262     return true;
1263 
1264   if (const EnumType *ET = Ty->getAs<EnumType>())
1265     return ET->getDecl()->getIntegerType()->isBooleanType();
1266 
1267   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1268     return hasBooleanRepresentation(AT->getValueType());
1269 
1270   return false;
1271 }
1272 
1273 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1274                             llvm::APInt &Min, llvm::APInt &End,
1275                             bool StrictEnums, bool IsBool) {
1276   const EnumType *ET = Ty->getAs<EnumType>();
1277   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1278                                 ET && !ET->getDecl()->isFixed();
1279   if (!IsBool && !IsRegularCPlusPlusEnum)
1280     return false;
1281 
1282   if (IsBool) {
1283     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1284     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1285   } else {
1286     const EnumDecl *ED = ET->getDecl();
1287     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1288     unsigned Bitwidth = LTy->getScalarSizeInBits();
1289     unsigned NumNegativeBits = ED->getNumNegativeBits();
1290     unsigned NumPositiveBits = ED->getNumPositiveBits();
1291 
1292     if (NumNegativeBits) {
1293       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1294       assert(NumBits <= Bitwidth);
1295       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1296       Min = -End;
1297     } else {
1298       assert(NumPositiveBits <= Bitwidth);
1299       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1300       Min = llvm::APInt(Bitwidth, 0);
1301     }
1302   }
1303   return true;
1304 }
1305 
1306 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1307   llvm::APInt Min, End;
1308   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1309                        hasBooleanRepresentation(Ty)))
1310     return nullptr;
1311 
1312   llvm::MDBuilder MDHelper(getLLVMContext());
1313   return MDHelper.createRange(Min, End);
1314 }
1315 
1316 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1317                                            SourceLocation Loc) {
1318   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1319   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1320   if (!HasBoolCheck && !HasEnumCheck)
1321     return false;
1322 
1323   bool IsBool = hasBooleanRepresentation(Ty) ||
1324                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1325   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1326   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1327   if (!NeedsBoolCheck && !NeedsEnumCheck)
1328     return false;
1329 
1330   // Single-bit booleans don't need to be checked. Special-case this to avoid
1331   // a bit width mismatch when handling bitfield values. This is handled by
1332   // EmitFromMemory for the non-bitfield case.
1333   if (IsBool &&
1334       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1335     return false;
1336 
1337   llvm::APInt Min, End;
1338   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1339     return true;
1340 
1341   SanitizerScope SanScope(this);
1342   llvm::Value *Check;
1343   --End;
1344   if (!Min) {
1345     Check = Builder.CreateICmpULE(
1346         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1347   } else {
1348     llvm::Value *Upper = Builder.CreateICmpSLE(
1349         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1350     llvm::Value *Lower = Builder.CreateICmpSGE(
1351         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1352     Check = Builder.CreateAnd(Upper, Lower);
1353   }
1354   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1355                                   EmitCheckTypeDescriptor(Ty)};
1356   SanitizerMask Kind =
1357       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1358   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1359             StaticArgs, EmitCheckValue(Value));
1360   return true;
1361 }
1362 
1363 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1364                                                QualType Ty,
1365                                                SourceLocation Loc,
1366                                                AlignmentSource AlignSource,
1367                                                llvm::MDNode *TBAAInfo,
1368                                                QualType TBAABaseType,
1369                                                uint64_t TBAAOffset,
1370                                                bool isNontemporal) {
1371   // For better performance, handle vector loads differently.
1372   if (Ty->isVectorType()) {
1373     const llvm::Type *EltTy = Addr.getElementType();
1374 
1375     const auto *VTy = cast<llvm::VectorType>(EltTy);
1376 
1377     // Handle vectors of size 3 like size 4 for better performance.
1378     if (VTy->getNumElements() == 3) {
1379 
1380       // Bitcast to vec4 type.
1381       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1382                                                          4);
1383       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1384       // Now load value.
1385       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1386 
1387       // Shuffle vector to get vec3.
1388       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1389                                       {0, 1, 2}, "extractVec");
1390       return EmitFromMemory(V, Ty);
1391     }
1392   }
1393 
1394   // Atomic operations have to be done on integral types.
1395   LValue AtomicLValue =
1396       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1397   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1398     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1399   }
1400 
1401   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1402   if (isNontemporal) {
1403     llvm::MDNode *Node = llvm::MDNode::get(
1404         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1405     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1406   }
1407   if (TBAAInfo) {
1408     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1409                                                       TBAAOffset);
1410     if (TBAAPath)
1411       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1412                                       false /*ConvertTypeToTag*/);
1413   }
1414 
1415   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1416     // In order to prevent the optimizer from throwing away the check, don't
1417     // attach range metadata to the load.
1418   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1419     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1420       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1421 
1422   return EmitFromMemory(Load, Ty);
1423 }
1424 
1425 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1426   // Bool has a different representation in memory than in registers.
1427   if (hasBooleanRepresentation(Ty)) {
1428     // This should really always be an i1, but sometimes it's already
1429     // an i8, and it's awkward to track those cases down.
1430     if (Value->getType()->isIntegerTy(1))
1431       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1432     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1433            "wrong value rep of bool");
1434   }
1435 
1436   return Value;
1437 }
1438 
1439 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1440   // Bool has a different representation in memory than in registers.
1441   if (hasBooleanRepresentation(Ty)) {
1442     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1443            "wrong value rep of bool");
1444     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1445   }
1446 
1447   return Value;
1448 }
1449 
1450 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1451                                         bool Volatile, QualType Ty,
1452                                         AlignmentSource AlignSource,
1453                                         llvm::MDNode *TBAAInfo,
1454                                         bool isInit, QualType TBAABaseType,
1455                                         uint64_t TBAAOffset,
1456                                         bool isNontemporal) {
1457 
1458   // Handle vectors differently to get better performance.
1459   if (Ty->isVectorType()) {
1460     llvm::Type *SrcTy = Value->getType();
1461     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1462     // Handle vec3 special.
1463     if (VecTy->getNumElements() == 3) {
1464       // Our source is a vec3, do a shuffle vector to make it a vec4.
1465       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1466                                 Builder.getInt32(2),
1467                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1468       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1469       Value = Builder.CreateShuffleVector(Value,
1470                                           llvm::UndefValue::get(VecTy),
1471                                           MaskV, "extractVec");
1472       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1473     }
1474     if (Addr.getElementType() != SrcTy) {
1475       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1476     }
1477   }
1478 
1479   Value = EmitToMemory(Value, Ty);
1480 
1481   LValue AtomicLValue =
1482       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1483   if (Ty->isAtomicType() ||
1484       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1485     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1486     return;
1487   }
1488 
1489   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1490   if (isNontemporal) {
1491     llvm::MDNode *Node =
1492         llvm::MDNode::get(Store->getContext(),
1493                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1494     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1495   }
1496   if (TBAAInfo) {
1497     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1498                                                       TBAAOffset);
1499     if (TBAAPath)
1500       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1501                                       false /*ConvertTypeToTag*/);
1502   }
1503 }
1504 
1505 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1506                                         bool isInit) {
1507   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1508                     lvalue.getType(), lvalue.getAlignmentSource(),
1509                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1510                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1511 }
1512 
1513 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1514 /// method emits the address of the lvalue, then loads the result as an rvalue,
1515 /// returning the rvalue.
1516 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1517   if (LV.isObjCWeak()) {
1518     // load of a __weak object.
1519     Address AddrWeakObj = LV.getAddress();
1520     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1521                                                              AddrWeakObj));
1522   }
1523   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1524     // In MRC mode, we do a load+autorelease.
1525     if (!getLangOpts().ObjCAutoRefCount) {
1526       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1527     }
1528 
1529     // In ARC mode, we load retained and then consume the value.
1530     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1531     Object = EmitObjCConsumeObject(LV.getType(), Object);
1532     return RValue::get(Object);
1533   }
1534 
1535   if (LV.isSimple()) {
1536     assert(!LV.getType()->isFunctionType());
1537 
1538     // Everything needs a load.
1539     return RValue::get(EmitLoadOfScalar(LV, Loc));
1540   }
1541 
1542   if (LV.isVectorElt()) {
1543     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1544                                               LV.isVolatileQualified());
1545     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1546                                                     "vecext"));
1547   }
1548 
1549   // If this is a reference to a subset of the elements of a vector, either
1550   // shuffle the input or extract/insert them as appropriate.
1551   if (LV.isExtVectorElt())
1552     return EmitLoadOfExtVectorElementLValue(LV);
1553 
1554   // Global Register variables always invoke intrinsics
1555   if (LV.isGlobalReg())
1556     return EmitLoadOfGlobalRegLValue(LV);
1557 
1558   assert(LV.isBitField() && "Unknown LValue type!");
1559   return EmitLoadOfBitfieldLValue(LV, Loc);
1560 }
1561 
1562 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1563                                                  SourceLocation Loc) {
1564   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1565 
1566   // Get the output type.
1567   llvm::Type *ResLTy = ConvertType(LV.getType());
1568 
1569   Address Ptr = LV.getBitFieldAddress();
1570   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1571 
1572   if (Info.IsSigned) {
1573     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1574     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1575     if (HighBits)
1576       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1577     if (Info.Offset + HighBits)
1578       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1579   } else {
1580     if (Info.Offset)
1581       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1582     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1583       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1584                                                               Info.Size),
1585                               "bf.clear");
1586   }
1587   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1588   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1589   return RValue::get(Val);
1590 }
1591 
1592 // If this is a reference to a subset of the elements of a vector, create an
1593 // appropriate shufflevector.
1594 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1595   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1596                                         LV.isVolatileQualified());
1597 
1598   const llvm::Constant *Elts = LV.getExtVectorElts();
1599 
1600   // If the result of the expression is a non-vector type, we must be extracting
1601   // a single element.  Just codegen as an extractelement.
1602   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1603   if (!ExprVT) {
1604     unsigned InIdx = getAccessedFieldNo(0, Elts);
1605     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1606     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1607   }
1608 
1609   // Always use shuffle vector to try to retain the original program structure
1610   unsigned NumResultElts = ExprVT->getNumElements();
1611 
1612   SmallVector<llvm::Constant*, 4> Mask;
1613   for (unsigned i = 0; i != NumResultElts; ++i)
1614     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1615 
1616   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1617   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1618                                     MaskV);
1619   return RValue::get(Vec);
1620 }
1621 
1622 /// @brief Generates lvalue for partial ext_vector access.
1623 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1624   Address VectorAddress = LV.getExtVectorAddress();
1625   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1626   QualType EQT = ExprVT->getElementType();
1627   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1628 
1629   Address CastToPointerElement =
1630     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1631                                  "conv.ptr.element");
1632 
1633   const llvm::Constant *Elts = LV.getExtVectorElts();
1634   unsigned ix = getAccessedFieldNo(0, Elts);
1635 
1636   Address VectorBasePtrPlusIx =
1637     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1638                                    getContext().getTypeSizeInChars(EQT),
1639                                    "vector.elt");
1640 
1641   return VectorBasePtrPlusIx;
1642 }
1643 
1644 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1645 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1646   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1647          "Bad type for register variable");
1648   llvm::MDNode *RegName = cast<llvm::MDNode>(
1649       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1650 
1651   // We accept integer and pointer types only
1652   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1653   llvm::Type *Ty = OrigTy;
1654   if (OrigTy->isPointerTy())
1655     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1656   llvm::Type *Types[] = { Ty };
1657 
1658   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1659   llvm::Value *Call = Builder.CreateCall(
1660       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1661   if (OrigTy->isPointerTy())
1662     Call = Builder.CreateIntToPtr(Call, OrigTy);
1663   return RValue::get(Call);
1664 }
1665 
1666 
1667 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1668 /// lvalue, where both are guaranteed to the have the same type, and that type
1669 /// is 'Ty'.
1670 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1671                                              bool isInit) {
1672   if (!Dst.isSimple()) {
1673     if (Dst.isVectorElt()) {
1674       // Read/modify/write the vector, inserting the new element.
1675       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1676                                             Dst.isVolatileQualified());
1677       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1678                                         Dst.getVectorIdx(), "vecins");
1679       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1680                           Dst.isVolatileQualified());
1681       return;
1682     }
1683 
1684     // If this is an update of extended vector elements, insert them as
1685     // appropriate.
1686     if (Dst.isExtVectorElt())
1687       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1688 
1689     if (Dst.isGlobalReg())
1690       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1691 
1692     assert(Dst.isBitField() && "Unknown LValue type");
1693     return EmitStoreThroughBitfieldLValue(Src, Dst);
1694   }
1695 
1696   // There's special magic for assigning into an ARC-qualified l-value.
1697   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1698     switch (Lifetime) {
1699     case Qualifiers::OCL_None:
1700       llvm_unreachable("present but none");
1701 
1702     case Qualifiers::OCL_ExplicitNone:
1703       // nothing special
1704       break;
1705 
1706     case Qualifiers::OCL_Strong:
1707       if (isInit) {
1708         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1709         break;
1710       }
1711       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1712       return;
1713 
1714     case Qualifiers::OCL_Weak:
1715       if (isInit)
1716         // Initialize and then skip the primitive store.
1717         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1718       else
1719         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1720       return;
1721 
1722     case Qualifiers::OCL_Autoreleasing:
1723       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1724                                                      Src.getScalarVal()));
1725       // fall into the normal path
1726       break;
1727     }
1728   }
1729 
1730   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1731     // load of a __weak object.
1732     Address LvalueDst = Dst.getAddress();
1733     llvm::Value *src = Src.getScalarVal();
1734      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1735     return;
1736   }
1737 
1738   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1739     // load of a __strong object.
1740     Address LvalueDst = Dst.getAddress();
1741     llvm::Value *src = Src.getScalarVal();
1742     if (Dst.isObjCIvar()) {
1743       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1744       llvm::Type *ResultType = IntPtrTy;
1745       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1746       llvm::Value *RHS = dst.getPointer();
1747       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1748       llvm::Value *LHS =
1749         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1750                                "sub.ptr.lhs.cast");
1751       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1752       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1753                                               BytesBetween);
1754     } else if (Dst.isGlobalObjCRef()) {
1755       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1756                                                 Dst.isThreadLocalRef());
1757     }
1758     else
1759       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1760     return;
1761   }
1762 
1763   assert(Src.isScalar() && "Can't emit an agg store with this method");
1764   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1765 }
1766 
1767 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1768                                                      llvm::Value **Result) {
1769   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1770   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1771   Address Ptr = Dst.getBitFieldAddress();
1772 
1773   // Get the source value, truncated to the width of the bit-field.
1774   llvm::Value *SrcVal = Src.getScalarVal();
1775 
1776   // Cast the source to the storage type and shift it into place.
1777   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1778                                  /*IsSigned=*/false);
1779   llvm::Value *MaskedVal = SrcVal;
1780 
1781   // See if there are other bits in the bitfield's storage we'll need to load
1782   // and mask together with source before storing.
1783   if (Info.StorageSize != Info.Size) {
1784     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1785     llvm::Value *Val =
1786       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1787 
1788     // Mask the source value as needed.
1789     if (!hasBooleanRepresentation(Dst.getType()))
1790       SrcVal = Builder.CreateAnd(SrcVal,
1791                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1792                                                             Info.Size),
1793                                  "bf.value");
1794     MaskedVal = SrcVal;
1795     if (Info.Offset)
1796       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1797 
1798     // Mask out the original value.
1799     Val = Builder.CreateAnd(Val,
1800                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1801                                                      Info.Offset,
1802                                                      Info.Offset + Info.Size),
1803                             "bf.clear");
1804 
1805     // Or together the unchanged values and the source value.
1806     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1807   } else {
1808     assert(Info.Offset == 0);
1809   }
1810 
1811   // Write the new value back out.
1812   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1813 
1814   // Return the new value of the bit-field, if requested.
1815   if (Result) {
1816     llvm::Value *ResultVal = MaskedVal;
1817 
1818     // Sign extend the value if needed.
1819     if (Info.IsSigned) {
1820       assert(Info.Size <= Info.StorageSize);
1821       unsigned HighBits = Info.StorageSize - Info.Size;
1822       if (HighBits) {
1823         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1824         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1825       }
1826     }
1827 
1828     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1829                                       "bf.result.cast");
1830     *Result = EmitFromMemory(ResultVal, Dst.getType());
1831   }
1832 }
1833 
1834 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1835                                                                LValue Dst) {
1836   // This access turns into a read/modify/write of the vector.  Load the input
1837   // value now.
1838   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1839                                         Dst.isVolatileQualified());
1840   const llvm::Constant *Elts = Dst.getExtVectorElts();
1841 
1842   llvm::Value *SrcVal = Src.getScalarVal();
1843 
1844   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1845     unsigned NumSrcElts = VTy->getNumElements();
1846     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1847     if (NumDstElts == NumSrcElts) {
1848       // Use shuffle vector is the src and destination are the same number of
1849       // elements and restore the vector mask since it is on the side it will be
1850       // stored.
1851       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1852       for (unsigned i = 0; i != NumSrcElts; ++i)
1853         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1854 
1855       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1856       Vec = Builder.CreateShuffleVector(SrcVal,
1857                                         llvm::UndefValue::get(Vec->getType()),
1858                                         MaskV);
1859     } else if (NumDstElts > NumSrcElts) {
1860       // Extended the source vector to the same length and then shuffle it
1861       // into the destination.
1862       // FIXME: since we're shuffling with undef, can we just use the indices
1863       //        into that?  This could be simpler.
1864       SmallVector<llvm::Constant*, 4> ExtMask;
1865       for (unsigned i = 0; i != NumSrcElts; ++i)
1866         ExtMask.push_back(Builder.getInt32(i));
1867       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1868       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1869       llvm::Value *ExtSrcVal =
1870         Builder.CreateShuffleVector(SrcVal,
1871                                     llvm::UndefValue::get(SrcVal->getType()),
1872                                     ExtMaskV);
1873       // build identity
1874       SmallVector<llvm::Constant*, 4> Mask;
1875       for (unsigned i = 0; i != NumDstElts; ++i)
1876         Mask.push_back(Builder.getInt32(i));
1877 
1878       // When the vector size is odd and .odd or .hi is used, the last element
1879       // of the Elts constant array will be one past the size of the vector.
1880       // Ignore the last element here, if it is greater than the mask size.
1881       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1882         NumSrcElts--;
1883 
1884       // modify when what gets shuffled in
1885       for (unsigned i = 0; i != NumSrcElts; ++i)
1886         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1887       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1888       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1889     } else {
1890       // We should never shorten the vector
1891       llvm_unreachable("unexpected shorten vector length");
1892     }
1893   } else {
1894     // If the Src is a scalar (not a vector) it must be updating one element.
1895     unsigned InIdx = getAccessedFieldNo(0, Elts);
1896     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1897     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1898   }
1899 
1900   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1901                       Dst.isVolatileQualified());
1902 }
1903 
1904 /// @brief Store of global named registers are always calls to intrinsics.
1905 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1906   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1907          "Bad type for register variable");
1908   llvm::MDNode *RegName = cast<llvm::MDNode>(
1909       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1910   assert(RegName && "Register LValue is not metadata");
1911 
1912   // We accept integer and pointer types only
1913   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1914   llvm::Type *Ty = OrigTy;
1915   if (OrigTy->isPointerTy())
1916     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1917   llvm::Type *Types[] = { Ty };
1918 
1919   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1920   llvm::Value *Value = Src.getScalarVal();
1921   if (OrigTy->isPointerTy())
1922     Value = Builder.CreatePtrToInt(Value, Ty);
1923   Builder.CreateCall(
1924       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1925 }
1926 
1927 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1928 // generating write-barries API. It is currently a global, ivar,
1929 // or neither.
1930 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1931                                  LValue &LV,
1932                                  bool IsMemberAccess=false) {
1933   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1934     return;
1935 
1936   if (isa<ObjCIvarRefExpr>(E)) {
1937     QualType ExpTy = E->getType();
1938     if (IsMemberAccess && ExpTy->isPointerType()) {
1939       // If ivar is a structure pointer, assigning to field of
1940       // this struct follows gcc's behavior and makes it a non-ivar
1941       // writer-barrier conservatively.
1942       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1943       if (ExpTy->isRecordType()) {
1944         LV.setObjCIvar(false);
1945         return;
1946       }
1947     }
1948     LV.setObjCIvar(true);
1949     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1950     LV.setBaseIvarExp(Exp->getBase());
1951     LV.setObjCArray(E->getType()->isArrayType());
1952     return;
1953   }
1954 
1955   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1956     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1957       if (VD->hasGlobalStorage()) {
1958         LV.setGlobalObjCRef(true);
1959         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1960       }
1961     }
1962     LV.setObjCArray(E->getType()->isArrayType());
1963     return;
1964   }
1965 
1966   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1967     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1968     return;
1969   }
1970 
1971   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1972     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1973     if (LV.isObjCIvar()) {
1974       // If cast is to a structure pointer, follow gcc's behavior and make it
1975       // a non-ivar write-barrier.
1976       QualType ExpTy = E->getType();
1977       if (ExpTy->isPointerType())
1978         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1979       if (ExpTy->isRecordType())
1980         LV.setObjCIvar(false);
1981     }
1982     return;
1983   }
1984 
1985   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1986     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1987     return;
1988   }
1989 
1990   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1991     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1992     return;
1993   }
1994 
1995   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1996     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1997     return;
1998   }
1999 
2000   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2001     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2002     return;
2003   }
2004 
2005   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2006     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2007     if (LV.isObjCIvar() && !LV.isObjCArray())
2008       // Using array syntax to assigning to what an ivar points to is not
2009       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2010       LV.setObjCIvar(false);
2011     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2012       // Using array syntax to assigning to what global points to is not
2013       // same as assigning to the global itself. {id *G;} G[i] = 0;
2014       LV.setGlobalObjCRef(false);
2015     return;
2016   }
2017 
2018   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2019     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2020     // We don't know if member is an 'ivar', but this flag is looked at
2021     // only in the context of LV.isObjCIvar().
2022     LV.setObjCArray(E->getType()->isArrayType());
2023     return;
2024   }
2025 }
2026 
2027 static llvm::Value *
2028 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2029                                 llvm::Value *V, llvm::Type *IRType,
2030                                 StringRef Name = StringRef()) {
2031   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2032   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2033 }
2034 
2035 static LValue EmitThreadPrivateVarDeclLValue(
2036     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2037     llvm::Type *RealVarTy, SourceLocation Loc) {
2038   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2039   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2040   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2041 }
2042 
2043 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2044                                              const ReferenceType *RefTy,
2045                                              AlignmentSource *Source) {
2046   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2047   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2048                                               Source, /*forPointee*/ true));
2049 
2050 }
2051 
2052 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2053                                                   const ReferenceType *RefTy) {
2054   AlignmentSource Source;
2055   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
2056   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
2057 }
2058 
2059 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2060                                            const PointerType *PtrTy,
2061                                            AlignmentSource *Source) {
2062   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2063   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
2064                                                /*forPointeeType=*/true));
2065 }
2066 
2067 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2068                                                 const PointerType *PtrTy) {
2069   AlignmentSource Source;
2070   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
2071   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
2072 }
2073 
2074 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2075                                       const Expr *E, const VarDecl *VD) {
2076   QualType T = E->getType();
2077 
2078   // If it's thread_local, emit a call to its wrapper function instead.
2079   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2080       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2081     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2082 
2083   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2084   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2085   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2086   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2087   Address Addr(V, Alignment);
2088   LValue LV;
2089   // Emit reference to the private copy of the variable if it is an OpenMP
2090   // threadprivate variable.
2091   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2092     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2093                                           E->getExprLoc());
2094   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2095     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2096   } else {
2097     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2098   }
2099   setObjCGCLValueClass(CGF.getContext(), E, LV);
2100   return LV;
2101 }
2102 
2103 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2104                                                const FunctionDecl *FD) {
2105   if (FD->hasAttr<WeakRefAttr>()) {
2106     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2107     return aliasee.getPointer();
2108   }
2109 
2110   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2111   if (!FD->hasPrototype()) {
2112     if (const FunctionProtoType *Proto =
2113             FD->getType()->getAs<FunctionProtoType>()) {
2114       // Ugly case: for a K&R-style definition, the type of the definition
2115       // isn't the same as the type of a use.  Correct for this with a
2116       // bitcast.
2117       QualType NoProtoType =
2118           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2119       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2120       V = llvm::ConstantExpr::getBitCast(V,
2121                                       CGM.getTypes().ConvertType(NoProtoType));
2122     }
2123   }
2124   return V;
2125 }
2126 
2127 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2128                                      const Expr *E, const FunctionDecl *FD) {
2129   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2130   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2131   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
2132 }
2133 
2134 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2135                                       llvm::Value *ThisValue) {
2136   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2137   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2138   return CGF.EmitLValueForField(LV, FD);
2139 }
2140 
2141 /// Named Registers are named metadata pointing to the register name
2142 /// which will be read from/written to as an argument to the intrinsic
2143 /// @llvm.read/write_register.
2144 /// So far, only the name is being passed down, but other options such as
2145 /// register type, allocation type or even optimization options could be
2146 /// passed down via the metadata node.
2147 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2148   SmallString<64> Name("llvm.named.register.");
2149   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2150   assert(Asm->getLabel().size() < 64-Name.size() &&
2151       "Register name too big");
2152   Name.append(Asm->getLabel());
2153   llvm::NamedMDNode *M =
2154     CGM.getModule().getOrInsertNamedMetadata(Name);
2155   if (M->getNumOperands() == 0) {
2156     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2157                                               Asm->getLabel());
2158     llvm::Metadata *Ops[] = {Str};
2159     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2160   }
2161 
2162   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2163 
2164   llvm::Value *Ptr =
2165     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2166   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2167 }
2168 
2169 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2170   const NamedDecl *ND = E->getDecl();
2171   QualType T = E->getType();
2172 
2173   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2174     // Global Named registers access via intrinsics only
2175     if (VD->getStorageClass() == SC_Register &&
2176         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2177       return EmitGlobalNamedRegister(VD, CGM);
2178 
2179     // A DeclRefExpr for a reference initialized by a constant expression can
2180     // appear without being odr-used. Directly emit the constant initializer.
2181     const Expr *Init = VD->getAnyInitializer(VD);
2182     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2183         VD->isUsableInConstantExpressions(getContext()) &&
2184         VD->checkInitIsICE() &&
2185         // Do not emit if it is private OpenMP variable.
2186         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2187           LocalDeclMap.count(VD))) {
2188       llvm::Constant *Val =
2189         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2190       assert(Val && "failed to emit reference constant expression");
2191       // FIXME: Eventually we will want to emit vector element references.
2192 
2193       // Should we be using the alignment of the constant pointer we emitted?
2194       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2195                                                     /*pointee*/ true);
2196 
2197       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2198     }
2199 
2200     // Check for captured variables.
2201     if (E->refersToEnclosingVariableOrCapture()) {
2202       if (auto *FD = LambdaCaptureFields.lookup(VD))
2203         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2204       else if (CapturedStmtInfo) {
2205         auto I = LocalDeclMap.find(VD);
2206         if (I != LocalDeclMap.end()) {
2207           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2208             return EmitLoadOfReferenceLValue(I->second, RefTy);
2209           return MakeAddrLValue(I->second, T);
2210         }
2211         LValue CapLVal =
2212             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2213                                     CapturedStmtInfo->getContextValue());
2214         return MakeAddrLValue(
2215             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2216             CapLVal.getType(), AlignmentSource::Decl);
2217       }
2218 
2219       assert(isa<BlockDecl>(CurCodeDecl));
2220       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2221       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2222     }
2223   }
2224 
2225   // FIXME: We should be able to assert this for FunctionDecls as well!
2226   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2227   // those with a valid source location.
2228   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2229           !E->getLocation().isValid()) &&
2230          "Should not use decl without marking it used!");
2231 
2232   if (ND->hasAttr<WeakRefAttr>()) {
2233     const auto *VD = cast<ValueDecl>(ND);
2234     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2235     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2236   }
2237 
2238   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2239     // Check if this is a global variable.
2240     if (VD->hasLinkage() || VD->isStaticDataMember())
2241       return EmitGlobalVarDeclLValue(*this, E, VD);
2242 
2243     Address addr = Address::invalid();
2244 
2245     // The variable should generally be present in the local decl map.
2246     auto iter = LocalDeclMap.find(VD);
2247     if (iter != LocalDeclMap.end()) {
2248       addr = iter->second;
2249 
2250     // Otherwise, it might be static local we haven't emitted yet for
2251     // some reason; most likely, because it's in an outer function.
2252     } else if (VD->isStaticLocal()) {
2253       addr = Address(CGM.getOrCreateStaticVarDecl(
2254           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2255                      getContext().getDeclAlign(VD));
2256 
2257     // No other cases for now.
2258     } else {
2259       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2260     }
2261 
2262 
2263     // Check for OpenMP threadprivate variables.
2264     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2265       return EmitThreadPrivateVarDeclLValue(
2266           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2267           E->getExprLoc());
2268     }
2269 
2270     // Drill into block byref variables.
2271     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2272     if (isBlockByref) {
2273       addr = emitBlockByrefAddress(addr, VD);
2274     }
2275 
2276     // Drill into reference types.
2277     LValue LV;
2278     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2279       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2280     } else {
2281       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2282     }
2283 
2284     bool isLocalStorage = VD->hasLocalStorage();
2285 
2286     bool NonGCable = isLocalStorage &&
2287                      !VD->getType()->isReferenceType() &&
2288                      !isBlockByref;
2289     if (NonGCable) {
2290       LV.getQuals().removeObjCGCAttr();
2291       LV.setNonGC(true);
2292     }
2293 
2294     bool isImpreciseLifetime =
2295       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2296     if (isImpreciseLifetime)
2297       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2298     setObjCGCLValueClass(getContext(), E, LV);
2299     return LV;
2300   }
2301 
2302   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2303     return EmitFunctionDeclLValue(*this, E, FD);
2304 
2305   // FIXME: While we're emitting a binding from an enclosing scope, all other
2306   // DeclRefExprs we see should be implicitly treated as if they also refer to
2307   // an enclosing scope.
2308   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2309     return EmitLValue(BD->getBinding());
2310 
2311   llvm_unreachable("Unhandled DeclRefExpr");
2312 }
2313 
2314 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2315   // __extension__ doesn't affect lvalue-ness.
2316   if (E->getOpcode() == UO_Extension)
2317     return EmitLValue(E->getSubExpr());
2318 
2319   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2320   switch (E->getOpcode()) {
2321   default: llvm_unreachable("Unknown unary operator lvalue!");
2322   case UO_Deref: {
2323     QualType T = E->getSubExpr()->getType()->getPointeeType();
2324     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2325 
2326     AlignmentSource AlignSource;
2327     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2328     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2329     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2330 
2331     // We should not generate __weak write barrier on indirect reference
2332     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2333     // But, we continue to generate __strong write barrier on indirect write
2334     // into a pointer to object.
2335     if (getLangOpts().ObjC1 &&
2336         getLangOpts().getGC() != LangOptions::NonGC &&
2337         LV.isObjCWeak())
2338       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2339     return LV;
2340   }
2341   case UO_Real:
2342   case UO_Imag: {
2343     LValue LV = EmitLValue(E->getSubExpr());
2344     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2345 
2346     // __real is valid on scalars.  This is a faster way of testing that.
2347     // __imag can only produce an rvalue on scalars.
2348     if (E->getOpcode() == UO_Real &&
2349         !LV.getAddress().getElementType()->isStructTy()) {
2350       assert(E->getSubExpr()->getType()->isArithmeticType());
2351       return LV;
2352     }
2353 
2354     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2355 
2356     Address Component =
2357       (E->getOpcode() == UO_Real
2358          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2359          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2360     LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource());
2361     ElemLV.getQuals().addQualifiers(LV.getQuals());
2362     return ElemLV;
2363   }
2364   case UO_PreInc:
2365   case UO_PreDec: {
2366     LValue LV = EmitLValue(E->getSubExpr());
2367     bool isInc = E->getOpcode() == UO_PreInc;
2368 
2369     if (E->getType()->isAnyComplexType())
2370       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2371     else
2372       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2373     return LV;
2374   }
2375   }
2376 }
2377 
2378 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2379   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2380                         E->getType(), AlignmentSource::Decl);
2381 }
2382 
2383 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2384   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2385                         E->getType(), AlignmentSource::Decl);
2386 }
2387 
2388 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2389   auto SL = E->getFunctionName();
2390   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2391   StringRef FnName = CurFn->getName();
2392   if (FnName.startswith("\01"))
2393     FnName = FnName.substr(1);
2394   StringRef NameItems[] = {
2395       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2396   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2397   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2398     std::string Name = SL->getString();
2399     if (!Name.empty()) {
2400       unsigned Discriminator =
2401           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2402       if (Discriminator)
2403         Name += "_" + Twine(Discriminator + 1).str();
2404       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2405       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2406     } else {
2407       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2408       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2409     }
2410   }
2411   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2412   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2413 }
2414 
2415 /// Emit a type description suitable for use by a runtime sanitizer library. The
2416 /// format of a type descriptor is
2417 ///
2418 /// \code
2419 ///   { i16 TypeKind, i16 TypeInfo }
2420 /// \endcode
2421 ///
2422 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2423 /// integer, 1 for a floating point value, and -1 for anything else.
2424 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2425   // Only emit each type's descriptor once.
2426   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2427     return C;
2428 
2429   uint16_t TypeKind = -1;
2430   uint16_t TypeInfo = 0;
2431 
2432   if (T->isIntegerType()) {
2433     TypeKind = 0;
2434     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2435                (T->isSignedIntegerType() ? 1 : 0);
2436   } else if (T->isFloatingType()) {
2437     TypeKind = 1;
2438     TypeInfo = getContext().getTypeSize(T);
2439   }
2440 
2441   // Format the type name as if for a diagnostic, including quotes and
2442   // optionally an 'aka'.
2443   SmallString<32> Buffer;
2444   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2445                                     (intptr_t)T.getAsOpaquePtr(),
2446                                     StringRef(), StringRef(), None, Buffer,
2447                                     None);
2448 
2449   llvm::Constant *Components[] = {
2450     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2451     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2452   };
2453   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2454 
2455   auto *GV = new llvm::GlobalVariable(
2456       CGM.getModule(), Descriptor->getType(),
2457       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2458   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2459   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2460 
2461   // Remember the descriptor for this type.
2462   CGM.setTypeDescriptorInMap(T, GV);
2463 
2464   return GV;
2465 }
2466 
2467 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2468   llvm::Type *TargetTy = IntPtrTy;
2469 
2470   // Floating-point types which fit into intptr_t are bitcast to integers
2471   // and then passed directly (after zero-extension, if necessary).
2472   if (V->getType()->isFloatingPointTy()) {
2473     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2474     if (Bits <= TargetTy->getIntegerBitWidth())
2475       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2476                                                          Bits));
2477   }
2478 
2479   // Integers which fit in intptr_t are zero-extended and passed directly.
2480   if (V->getType()->isIntegerTy() &&
2481       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2482     return Builder.CreateZExt(V, TargetTy);
2483 
2484   // Pointers are passed directly, everything else is passed by address.
2485   if (!V->getType()->isPointerTy()) {
2486     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2487     Builder.CreateStore(V, Ptr);
2488     V = Ptr.getPointer();
2489   }
2490   return Builder.CreatePtrToInt(V, TargetTy);
2491 }
2492 
2493 /// \brief Emit a representation of a SourceLocation for passing to a handler
2494 /// in a sanitizer runtime library. The format for this data is:
2495 /// \code
2496 ///   struct SourceLocation {
2497 ///     const char *Filename;
2498 ///     int32_t Line, Column;
2499 ///   };
2500 /// \endcode
2501 /// For an invalid SourceLocation, the Filename pointer is null.
2502 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2503   llvm::Constant *Filename;
2504   int Line, Column;
2505 
2506   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2507   if (PLoc.isValid()) {
2508     StringRef FilenameString = PLoc.getFilename();
2509 
2510     int PathComponentsToStrip =
2511         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2512     if (PathComponentsToStrip < 0) {
2513       assert(PathComponentsToStrip != INT_MIN);
2514       int PathComponentsToKeep = -PathComponentsToStrip;
2515       auto I = llvm::sys::path::rbegin(FilenameString);
2516       auto E = llvm::sys::path::rend(FilenameString);
2517       while (I != E && --PathComponentsToKeep)
2518         ++I;
2519 
2520       FilenameString = FilenameString.substr(I - E);
2521     } else if (PathComponentsToStrip > 0) {
2522       auto I = llvm::sys::path::begin(FilenameString);
2523       auto E = llvm::sys::path::end(FilenameString);
2524       while (I != E && PathComponentsToStrip--)
2525         ++I;
2526 
2527       if (I != E)
2528         FilenameString =
2529             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2530       else
2531         FilenameString = llvm::sys::path::filename(FilenameString);
2532     }
2533 
2534     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2535     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2536                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2537     Filename = FilenameGV.getPointer();
2538     Line = PLoc.getLine();
2539     Column = PLoc.getColumn();
2540   } else {
2541     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2542     Line = Column = 0;
2543   }
2544 
2545   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2546                             Builder.getInt32(Column)};
2547 
2548   return llvm::ConstantStruct::getAnon(Data);
2549 }
2550 
2551 namespace {
2552 /// \brief Specify under what conditions this check can be recovered
2553 enum class CheckRecoverableKind {
2554   /// Always terminate program execution if this check fails.
2555   Unrecoverable,
2556   /// Check supports recovering, runtime has both fatal (noreturn) and
2557   /// non-fatal handlers for this check.
2558   Recoverable,
2559   /// Runtime conditionally aborts, always need to support recovery.
2560   AlwaysRecoverable
2561 };
2562 }
2563 
2564 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2565   assert(llvm::countPopulation(Kind) == 1);
2566   switch (Kind) {
2567   case SanitizerKind::Vptr:
2568     return CheckRecoverableKind::AlwaysRecoverable;
2569   case SanitizerKind::Return:
2570   case SanitizerKind::Unreachable:
2571     return CheckRecoverableKind::Unrecoverable;
2572   default:
2573     return CheckRecoverableKind::Recoverable;
2574   }
2575 }
2576 
2577 namespace {
2578 struct SanitizerHandlerInfo {
2579   char const *const Name;
2580   unsigned Version;
2581 };
2582 }
2583 
2584 const SanitizerHandlerInfo SanitizerHandlers[] = {
2585 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2586     LIST_SANITIZER_CHECKS
2587 #undef SANITIZER_CHECK
2588 };
2589 
2590 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2591                                  llvm::FunctionType *FnType,
2592                                  ArrayRef<llvm::Value *> FnArgs,
2593                                  SanitizerHandler CheckHandler,
2594                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2595                                  llvm::BasicBlock *ContBB) {
2596   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2597   bool NeedsAbortSuffix =
2598       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2599   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2600   const StringRef CheckName = CheckInfo.Name;
2601   std::string FnName =
2602       ("__ubsan_handle_" + CheckName +
2603        (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") +
2604        (NeedsAbortSuffix ? "_abort" : ""))
2605           .str();
2606   bool MayReturn =
2607       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2608 
2609   llvm::AttrBuilder B;
2610   if (!MayReturn) {
2611     B.addAttribute(llvm::Attribute::NoReturn)
2612         .addAttribute(llvm::Attribute::NoUnwind);
2613   }
2614   B.addAttribute(llvm::Attribute::UWTable);
2615 
2616   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2617       FnType, FnName,
2618       llvm::AttributeSet::get(CGF.getLLVMContext(),
2619                               llvm::AttributeSet::FunctionIndex, B),
2620       /*Local=*/true);
2621   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2622   if (!MayReturn) {
2623     HandlerCall->setDoesNotReturn();
2624     CGF.Builder.CreateUnreachable();
2625   } else {
2626     CGF.Builder.CreateBr(ContBB);
2627   }
2628 }
2629 
2630 void CodeGenFunction::EmitCheck(
2631     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2632     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2633     ArrayRef<llvm::Value *> DynamicArgs) {
2634   assert(IsSanitizerScope);
2635   assert(Checked.size() > 0);
2636   assert(CheckHandler >= 0 &&
2637          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2638   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2639 
2640   llvm::Value *FatalCond = nullptr;
2641   llvm::Value *RecoverableCond = nullptr;
2642   llvm::Value *TrapCond = nullptr;
2643   for (int i = 0, n = Checked.size(); i < n; ++i) {
2644     llvm::Value *Check = Checked[i].first;
2645     // -fsanitize-trap= overrides -fsanitize-recover=.
2646     llvm::Value *&Cond =
2647         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2648             ? TrapCond
2649             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2650                   ? RecoverableCond
2651                   : FatalCond;
2652     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2653   }
2654 
2655   if (TrapCond)
2656     EmitTrapCheck(TrapCond);
2657   if (!FatalCond && !RecoverableCond)
2658     return;
2659 
2660   llvm::Value *JointCond;
2661   if (FatalCond && RecoverableCond)
2662     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2663   else
2664     JointCond = FatalCond ? FatalCond : RecoverableCond;
2665   assert(JointCond);
2666 
2667   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2668   assert(SanOpts.has(Checked[0].second));
2669 #ifndef NDEBUG
2670   for (int i = 1, n = Checked.size(); i < n; ++i) {
2671     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2672            "All recoverable kinds in a single check must be same!");
2673     assert(SanOpts.has(Checked[i].second));
2674   }
2675 #endif
2676 
2677   llvm::BasicBlock *Cont = createBasicBlock("cont");
2678   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2679   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2680   // Give hint that we very much don't expect to execute the handler
2681   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2682   llvm::MDBuilder MDHelper(getLLVMContext());
2683   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2684   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2685   EmitBlock(Handlers);
2686 
2687   // Handler functions take an i8* pointing to the (handler-specific) static
2688   // information block, followed by a sequence of intptr_t arguments
2689   // representing operand values.
2690   SmallVector<llvm::Value *, 4> Args;
2691   SmallVector<llvm::Type *, 4> ArgTypes;
2692   Args.reserve(DynamicArgs.size() + 1);
2693   ArgTypes.reserve(DynamicArgs.size() + 1);
2694 
2695   // Emit handler arguments and create handler function type.
2696   if (!StaticArgs.empty()) {
2697     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2698     auto *InfoPtr =
2699         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2700                                  llvm::GlobalVariable::PrivateLinkage, Info);
2701     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2702     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2703     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2704     ArgTypes.push_back(Int8PtrTy);
2705   }
2706 
2707   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2708     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2709     ArgTypes.push_back(IntPtrTy);
2710   }
2711 
2712   llvm::FunctionType *FnType =
2713     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2714 
2715   if (!FatalCond || !RecoverableCond) {
2716     // Simple case: we need to generate a single handler call, either
2717     // fatal, or non-fatal.
2718     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2719                          (FatalCond != nullptr), Cont);
2720   } else {
2721     // Emit two handler calls: first one for set of unrecoverable checks,
2722     // another one for recoverable.
2723     llvm::BasicBlock *NonFatalHandlerBB =
2724         createBasicBlock("non_fatal." + CheckName);
2725     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2726     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2727     EmitBlock(FatalHandlerBB);
2728     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2729                          NonFatalHandlerBB);
2730     EmitBlock(NonFatalHandlerBB);
2731     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2732                          Cont);
2733   }
2734 
2735   EmitBlock(Cont);
2736 }
2737 
2738 void CodeGenFunction::EmitCfiSlowPathCheck(
2739     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2740     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2741   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2742 
2743   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2744   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2745 
2746   llvm::MDBuilder MDHelper(getLLVMContext());
2747   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2748   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2749 
2750   EmitBlock(CheckBB);
2751 
2752   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2753 
2754   llvm::CallInst *CheckCall;
2755   if (WithDiag) {
2756     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2757     auto *InfoPtr =
2758         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2759                                  llvm::GlobalVariable::PrivateLinkage, Info);
2760     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2761     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2762 
2763     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2764         "__cfi_slowpath_diag",
2765         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2766                                 false));
2767     CheckCall = Builder.CreateCall(
2768         SlowPathDiagFn,
2769         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2770   } else {
2771     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2772         "__cfi_slowpath",
2773         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2774     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2775   }
2776 
2777   CheckCall->setDoesNotThrow();
2778 
2779   EmitBlock(Cont);
2780 }
2781 
2782 // This function is basically a switch over the CFI failure kind, which is
2783 // extracted from CFICheckFailData (1st function argument). Each case is either
2784 // llvm.trap or a call to one of the two runtime handlers, based on
2785 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2786 // failure kind) traps, but this should really never happen.  CFICheckFailData
2787 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2788 // check kind; in this case __cfi_check_fail traps as well.
2789 void CodeGenFunction::EmitCfiCheckFail() {
2790   SanitizerScope SanScope(this);
2791   FunctionArgList Args;
2792   ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
2793                             getContext().VoidPtrTy);
2794   ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
2795                             getContext().VoidPtrTy);
2796   Args.push_back(&ArgData);
2797   Args.push_back(&ArgAddr);
2798 
2799   const CGFunctionInfo &FI =
2800     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2801 
2802   llvm::Function *F = llvm::Function::Create(
2803       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2804       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2805   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2806 
2807   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2808                 SourceLocation());
2809 
2810   llvm::Value *Data =
2811       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2812                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2813   llvm::Value *Addr =
2814       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2815                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2816 
2817   // Data == nullptr means the calling module has trap behaviour for this check.
2818   llvm::Value *DataIsNotNullPtr =
2819       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2820   EmitTrapCheck(DataIsNotNullPtr);
2821 
2822   llvm::StructType *SourceLocationTy =
2823       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
2824   llvm::StructType *CfiCheckFailDataTy =
2825       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
2826 
2827   llvm::Value *V = Builder.CreateConstGEP2_32(
2828       CfiCheckFailDataTy,
2829       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2830       0);
2831   Address CheckKindAddr(V, getIntAlign());
2832   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2833 
2834   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2835       CGM.getLLVMContext(),
2836       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2837   llvm::Value *ValidVtable = Builder.CreateZExt(
2838       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2839                          {Addr, AllVtables}),
2840       IntPtrTy);
2841 
2842   const std::pair<int, SanitizerMask> CheckKinds[] = {
2843       {CFITCK_VCall, SanitizerKind::CFIVCall},
2844       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2845       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2846       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2847       {CFITCK_ICall, SanitizerKind::CFIICall}};
2848 
2849   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2850   for (auto CheckKindMaskPair : CheckKinds) {
2851     int Kind = CheckKindMaskPair.first;
2852     SanitizerMask Mask = CheckKindMaskPair.second;
2853     llvm::Value *Cond =
2854         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2855     if (CGM.getLangOpts().Sanitize.has(Mask))
2856       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
2857                 {Data, Addr, ValidVtable});
2858     else
2859       EmitTrapCheck(Cond);
2860   }
2861 
2862   FinishFunction();
2863   // The only reference to this function will be created during LTO link.
2864   // Make sure it survives until then.
2865   CGM.addUsedGlobal(F);
2866 }
2867 
2868 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2869   llvm::BasicBlock *Cont = createBasicBlock("cont");
2870 
2871   // If we're optimizing, collapse all calls to trap down to just one per
2872   // function to save on code size.
2873   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2874     TrapBB = createBasicBlock("trap");
2875     Builder.CreateCondBr(Checked, Cont, TrapBB);
2876     EmitBlock(TrapBB);
2877     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2878     TrapCall->setDoesNotReturn();
2879     TrapCall->setDoesNotThrow();
2880     Builder.CreateUnreachable();
2881   } else {
2882     Builder.CreateCondBr(Checked, Cont, TrapBB);
2883   }
2884 
2885   EmitBlock(Cont);
2886 }
2887 
2888 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2889   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2890 
2891   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
2892     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
2893                                   CGM.getCodeGenOpts().TrapFuncName);
2894     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A);
2895   }
2896 
2897   return TrapCall;
2898 }
2899 
2900 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2901                                                  AlignmentSource *AlignSource) {
2902   assert(E->getType()->isArrayType() &&
2903          "Array to pointer decay must have array source type!");
2904 
2905   // Expressions of array type can't be bitfields or vector elements.
2906   LValue LV = EmitLValue(E);
2907   Address Addr = LV.getAddress();
2908   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2909 
2910   // If the array type was an incomplete type, we need to make sure
2911   // the decay ends up being the right type.
2912   llvm::Type *NewTy = ConvertType(E->getType());
2913   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2914 
2915   // Note that VLA pointers are always decayed, so we don't need to do
2916   // anything here.
2917   if (!E->getType()->isVariableArrayType()) {
2918     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2919            "Expected pointer to array");
2920     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2921   }
2922 
2923   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2924   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2925 }
2926 
2927 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2928 /// array to pointer, return the array subexpression.
2929 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2930   // If this isn't just an array->pointer decay, bail out.
2931   const auto *CE = dyn_cast<CastExpr>(E);
2932   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2933     return nullptr;
2934 
2935   // If this is a decay from variable width array, bail out.
2936   const Expr *SubExpr = CE->getSubExpr();
2937   if (SubExpr->getType()->isVariableArrayType())
2938     return nullptr;
2939 
2940   return SubExpr;
2941 }
2942 
2943 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2944                                           llvm::Value *ptr,
2945                                           ArrayRef<llvm::Value*> indices,
2946                                           bool inbounds,
2947                                     const llvm::Twine &name = "arrayidx") {
2948   if (inbounds) {
2949     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2950   } else {
2951     return CGF.Builder.CreateGEP(ptr, indices, name);
2952   }
2953 }
2954 
2955 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2956                                       llvm::Value *idx,
2957                                       CharUnits eltSize) {
2958   // If we have a constant index, we can use the exact offset of the
2959   // element we're accessing.
2960   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2961     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2962     return arrayAlign.alignmentAtOffset(offset);
2963 
2964   // Otherwise, use the worst-case alignment for any element.
2965   } else {
2966     return arrayAlign.alignmentOfArrayElement(eltSize);
2967   }
2968 }
2969 
2970 static QualType getFixedSizeElementType(const ASTContext &ctx,
2971                                         const VariableArrayType *vla) {
2972   QualType eltType;
2973   do {
2974     eltType = vla->getElementType();
2975   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2976   return eltType;
2977 }
2978 
2979 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2980                                      ArrayRef<llvm::Value*> indices,
2981                                      QualType eltType, bool inbounds,
2982                                      const llvm::Twine &name = "arrayidx") {
2983   // All the indices except that last must be zero.
2984 #ifndef NDEBUG
2985   for (auto idx : indices.drop_back())
2986     assert(isa<llvm::ConstantInt>(idx) &&
2987            cast<llvm::ConstantInt>(idx)->isZero());
2988 #endif
2989 
2990   // Determine the element size of the statically-sized base.  This is
2991   // the thing that the indices are expressed in terms of.
2992   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2993     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2994   }
2995 
2996   // We can use that to compute the best alignment of the element.
2997   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2998   CharUnits eltAlign =
2999     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3000 
3001   llvm::Value *eltPtr =
3002     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
3003   return Address(eltPtr, eltAlign);
3004 }
3005 
3006 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3007                                                bool Accessed) {
3008   // The index must always be an integer, which is not an aggregate.  Emit it
3009   // in lexical order (this complexity is, sadly, required by C++17).
3010   llvm::Value *IdxPre =
3011       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3012   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3013     auto *Idx = IdxPre;
3014     if (E->getLHS() != E->getIdx()) {
3015       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3016       Idx = EmitScalarExpr(E->getIdx());
3017     }
3018 
3019     QualType IdxTy = E->getIdx()->getType();
3020     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3021 
3022     if (SanOpts.has(SanitizerKind::ArrayBounds))
3023       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3024 
3025     // Extend or truncate the index type to 32 or 64-bits.
3026     if (Promote && Idx->getType() != IntPtrTy)
3027       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3028 
3029     return Idx;
3030   };
3031   IdxPre = nullptr;
3032 
3033   // If the base is a vector type, then we are forming a vector element lvalue
3034   // with this subscript.
3035   if (E->getBase()->getType()->isVectorType() &&
3036       !isa<ExtVectorElementExpr>(E->getBase())) {
3037     // Emit the vector as an lvalue to get its address.
3038     LValue LHS = EmitLValue(E->getBase());
3039     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3040     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3041     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3042                                  E->getBase()->getType(),
3043                                  LHS.getAlignmentSource());
3044   }
3045 
3046   // All the other cases basically behave like simple offsetting.
3047 
3048   // Handle the extvector case we ignored above.
3049   if (isa<ExtVectorElementExpr>(E->getBase())) {
3050     LValue LV = EmitLValue(E->getBase());
3051     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3052     Address Addr = EmitExtVectorElementLValue(LV);
3053 
3054     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3055     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
3056     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
3057   }
3058 
3059   AlignmentSource AlignSource;
3060   Address Addr = Address::invalid();
3061   if (const VariableArrayType *vla =
3062            getContext().getAsVariableArrayType(E->getType())) {
3063     // The base must be a pointer, which is not an aggregate.  Emit
3064     // it.  It needs to be emitted first in case it's what captures
3065     // the VLA bounds.
3066     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3067     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3068 
3069     // The element count here is the total number of non-VLA elements.
3070     llvm::Value *numElements = getVLASize(vla).first;
3071 
3072     // Effectively, the multiply by the VLA size is part of the GEP.
3073     // GEP indexes are signed, and scaling an index isn't permitted to
3074     // signed-overflow, so we use the same semantics for our explicit
3075     // multiply.  We suppress this if overflow is not undefined behavior.
3076     if (getLangOpts().isSignedOverflowDefined()) {
3077       Idx = Builder.CreateMul(Idx, numElements);
3078     } else {
3079       Idx = Builder.CreateNSWMul(Idx, numElements);
3080     }
3081 
3082     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3083                                  !getLangOpts().isSignedOverflowDefined());
3084 
3085   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3086     // Indexing over an interface, as in "NSString *P; P[4];"
3087 
3088     // Emit the base pointer.
3089     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3090     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3091 
3092     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3093     llvm::Value *InterfaceSizeVal =
3094         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3095 
3096     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3097 
3098     // We don't necessarily build correct LLVM struct types for ObjC
3099     // interfaces, so we can't rely on GEP to do this scaling
3100     // correctly, so we need to cast to i8*.  FIXME: is this actually
3101     // true?  A lot of other things in the fragile ABI would break...
3102     llvm::Type *OrigBaseTy = Addr.getType();
3103     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3104 
3105     // Do the GEP.
3106     CharUnits EltAlign =
3107       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3108     llvm::Value *EltPtr =
3109       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
3110     Addr = Address(EltPtr, EltAlign);
3111 
3112     // Cast back.
3113     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3114   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3115     // If this is A[i] where A is an array, the frontend will have decayed the
3116     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3117     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3118     // "gep x, i" here.  Emit one "gep A, 0, i".
3119     assert(Array->getType()->isArrayType() &&
3120            "Array to pointer decay must have array source type!");
3121     LValue ArrayLV;
3122     // For simple multidimensional array indexing, set the 'accessed' flag for
3123     // better bounds-checking of the base expression.
3124     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3125       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3126     else
3127       ArrayLV = EmitLValue(Array);
3128     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3129 
3130     // Propagate the alignment from the array itself to the result.
3131     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
3132                                  {CGM.getSize(CharUnits::Zero()), Idx},
3133                                  E->getType(),
3134                                  !getLangOpts().isSignedOverflowDefined());
3135     AlignSource = ArrayLV.getAlignmentSource();
3136   } else {
3137     // The base must be a pointer; emit it with an estimate of its alignment.
3138     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3139     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3140     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3141                                  !getLangOpts().isSignedOverflowDefined());
3142   }
3143 
3144   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
3145 
3146   // TODO: Preserve/extend path TBAA metadata?
3147 
3148   if (getLangOpts().ObjC1 &&
3149       getLangOpts().getGC() != LangOptions::NonGC) {
3150     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3151     setObjCGCLValueClass(getContext(), E, LV);
3152   }
3153   return LV;
3154 }
3155 
3156 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3157                                        AlignmentSource &AlignSource,
3158                                        QualType BaseTy, QualType ElTy,
3159                                        bool IsLowerBound) {
3160   LValue BaseLVal;
3161   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3162     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3163     if (BaseTy->isArrayType()) {
3164       Address Addr = BaseLVal.getAddress();
3165       AlignSource = BaseLVal.getAlignmentSource();
3166 
3167       // If the array type was an incomplete type, we need to make sure
3168       // the decay ends up being the right type.
3169       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3170       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3171 
3172       // Note that VLA pointers are always decayed, so we don't need to do
3173       // anything here.
3174       if (!BaseTy->isVariableArrayType()) {
3175         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3176                "Expected pointer to array");
3177         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3178                                            "arraydecay");
3179       }
3180 
3181       return CGF.Builder.CreateElementBitCast(Addr,
3182                                               CGF.ConvertTypeForMem(ElTy));
3183     }
3184     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
3185     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3186   }
3187   return CGF.EmitPointerWithAlignment(Base, &AlignSource);
3188 }
3189 
3190 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3191                                                 bool IsLowerBound) {
3192   QualType BaseTy;
3193   if (auto *ASE =
3194           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3195     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3196   else
3197     BaseTy = E->getBase()->getType();
3198   QualType ResultExprTy;
3199   if (auto *AT = getContext().getAsArrayType(BaseTy))
3200     ResultExprTy = AT->getElementType();
3201   else
3202     ResultExprTy = BaseTy->getPointeeType();
3203   llvm::Value *Idx = nullptr;
3204   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3205     // Requesting lower bound or upper bound, but without provided length and
3206     // without ':' symbol for the default length -> length = 1.
3207     // Idx = LowerBound ?: 0;
3208     if (auto *LowerBound = E->getLowerBound()) {
3209       Idx = Builder.CreateIntCast(
3210           EmitScalarExpr(LowerBound), IntPtrTy,
3211           LowerBound->getType()->hasSignedIntegerRepresentation());
3212     } else
3213       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3214   } else {
3215     // Try to emit length or lower bound as constant. If this is possible, 1
3216     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3217     // IR (LB + Len) - 1.
3218     auto &C = CGM.getContext();
3219     auto *Length = E->getLength();
3220     llvm::APSInt ConstLength;
3221     if (Length) {
3222       // Idx = LowerBound + Length - 1;
3223       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3224         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3225         Length = nullptr;
3226       }
3227       auto *LowerBound = E->getLowerBound();
3228       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3229       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3230         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3231         LowerBound = nullptr;
3232       }
3233       if (!Length)
3234         --ConstLength;
3235       else if (!LowerBound)
3236         --ConstLowerBound;
3237 
3238       if (Length || LowerBound) {
3239         auto *LowerBoundVal =
3240             LowerBound
3241                 ? Builder.CreateIntCast(
3242                       EmitScalarExpr(LowerBound), IntPtrTy,
3243                       LowerBound->getType()->hasSignedIntegerRepresentation())
3244                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3245         auto *LengthVal =
3246             Length
3247                 ? Builder.CreateIntCast(
3248                       EmitScalarExpr(Length), IntPtrTy,
3249                       Length->getType()->hasSignedIntegerRepresentation())
3250                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3251         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3252                                 /*HasNUW=*/false,
3253                                 !getLangOpts().isSignedOverflowDefined());
3254         if (Length && LowerBound) {
3255           Idx = Builder.CreateSub(
3256               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3257               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3258         }
3259       } else
3260         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3261     } else {
3262       // Idx = ArraySize - 1;
3263       QualType ArrayTy = BaseTy->isPointerType()
3264                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3265                              : BaseTy;
3266       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3267         Length = VAT->getSizeExpr();
3268         if (Length->isIntegerConstantExpr(ConstLength, C))
3269           Length = nullptr;
3270       } else {
3271         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3272         ConstLength = CAT->getSize();
3273       }
3274       if (Length) {
3275         auto *LengthVal = Builder.CreateIntCast(
3276             EmitScalarExpr(Length), IntPtrTy,
3277             Length->getType()->hasSignedIntegerRepresentation());
3278         Idx = Builder.CreateSub(
3279             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3280             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3281       } else {
3282         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3283         --ConstLength;
3284         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3285       }
3286     }
3287   }
3288   assert(Idx);
3289 
3290   Address EltPtr = Address::invalid();
3291   AlignmentSource AlignSource;
3292   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3293     // The base must be a pointer, which is not an aggregate.  Emit
3294     // it.  It needs to be emitted first in case it's what captures
3295     // the VLA bounds.
3296     Address Base =
3297         emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
3298                                 VLA->getElementType(), IsLowerBound);
3299     // The element count here is the total number of non-VLA elements.
3300     llvm::Value *NumElements = getVLASize(VLA).first;
3301 
3302     // Effectively, the multiply by the VLA size is part of the GEP.
3303     // GEP indexes are signed, and scaling an index isn't permitted to
3304     // signed-overflow, so we use the same semantics for our explicit
3305     // multiply.  We suppress this if overflow is not undefined behavior.
3306     if (getLangOpts().isSignedOverflowDefined())
3307       Idx = Builder.CreateMul(Idx, NumElements);
3308     else
3309       Idx = Builder.CreateNSWMul(Idx, NumElements);
3310     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3311                                    !getLangOpts().isSignedOverflowDefined());
3312   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3313     // If this is A[i] where A is an array, the frontend will have decayed the
3314     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3315     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3316     // "gep x, i" here.  Emit one "gep A, 0, i".
3317     assert(Array->getType()->isArrayType() &&
3318            "Array to pointer decay must have array source type!");
3319     LValue ArrayLV;
3320     // For simple multidimensional array indexing, set the 'accessed' flag for
3321     // better bounds-checking of the base expression.
3322     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3323       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3324     else
3325       ArrayLV = EmitLValue(Array);
3326 
3327     // Propagate the alignment from the array itself to the result.
3328     EltPtr = emitArraySubscriptGEP(
3329         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3330         ResultExprTy, !getLangOpts().isSignedOverflowDefined());
3331     AlignSource = ArrayLV.getAlignmentSource();
3332   } else {
3333     Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
3334                                            BaseTy, ResultExprTy, IsLowerBound);
3335     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3336                                    !getLangOpts().isSignedOverflowDefined());
3337   }
3338 
3339   return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
3340 }
3341 
3342 LValue CodeGenFunction::
3343 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3344   // Emit the base vector as an l-value.
3345   LValue Base;
3346 
3347   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3348   if (E->isArrow()) {
3349     // If it is a pointer to a vector, emit the address and form an lvalue with
3350     // it.
3351     AlignmentSource AlignSource;
3352     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3353     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3354     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
3355     Base.getQuals().removeObjCGCAttr();
3356   } else if (E->getBase()->isGLValue()) {
3357     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3358     // emit the base as an lvalue.
3359     assert(E->getBase()->getType()->isVectorType());
3360     Base = EmitLValue(E->getBase());
3361   } else {
3362     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3363     assert(E->getBase()->getType()->isVectorType() &&
3364            "Result must be a vector");
3365     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3366 
3367     // Store the vector to memory (because LValue wants an address).
3368     Address VecMem = CreateMemTemp(E->getBase()->getType());
3369     Builder.CreateStore(Vec, VecMem);
3370     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3371                           AlignmentSource::Decl);
3372   }
3373 
3374   QualType type =
3375     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3376 
3377   // Encode the element access list into a vector of unsigned indices.
3378   SmallVector<uint32_t, 4> Indices;
3379   E->getEncodedElementAccess(Indices);
3380 
3381   if (Base.isSimple()) {
3382     llvm::Constant *CV =
3383         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3384     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3385                                     Base.getAlignmentSource());
3386   }
3387   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3388 
3389   llvm::Constant *BaseElts = Base.getExtVectorElts();
3390   SmallVector<llvm::Constant *, 4> CElts;
3391 
3392   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3393     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3394   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3395   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3396                                   Base.getAlignmentSource());
3397 }
3398 
3399 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3400   Expr *BaseExpr = E->getBase();
3401 
3402   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3403   LValue BaseLV;
3404   if (E->isArrow()) {
3405     AlignmentSource AlignSource;
3406     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3407     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3408     SanitizerSet SkippedChecks;
3409     if (IsDeclRefOrWrappedCXXThis(BaseExpr))
3410       SkippedChecks.set(SanitizerKind::Null, true);
3411     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3412                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3413     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3414   } else
3415     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3416 
3417   NamedDecl *ND = E->getMemberDecl();
3418   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3419     LValue LV = EmitLValueForField(BaseLV, Field);
3420     setObjCGCLValueClass(getContext(), E, LV);
3421     return LV;
3422   }
3423 
3424   if (auto *VD = dyn_cast<VarDecl>(ND))
3425     return EmitGlobalVarDeclLValue(*this, E, VD);
3426 
3427   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3428     return EmitFunctionDeclLValue(*this, E, FD);
3429 
3430   llvm_unreachable("Unhandled member declaration!");
3431 }
3432 
3433 /// Given that we are currently emitting a lambda, emit an l-value for
3434 /// one of its members.
3435 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3436   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3437   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3438   QualType LambdaTagType =
3439     getContext().getTagDeclType(Field->getParent());
3440   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3441   return EmitLValueForField(LambdaLV, Field);
3442 }
3443 
3444 /// Drill down to the storage of a field without walking into
3445 /// reference types.
3446 ///
3447 /// The resulting address doesn't necessarily have the right type.
3448 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3449                                       const FieldDecl *field) {
3450   const RecordDecl *rec = field->getParent();
3451 
3452   unsigned idx =
3453     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3454 
3455   CharUnits offset;
3456   // Adjust the alignment down to the given offset.
3457   // As a special case, if the LLVM field index is 0, we know that this
3458   // is zero.
3459   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3460                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3461          "LLVM field at index zero had non-zero offset?");
3462   if (idx != 0) {
3463     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3464     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3465     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3466   }
3467 
3468   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3469 }
3470 
3471 LValue CodeGenFunction::EmitLValueForField(LValue base,
3472                                            const FieldDecl *field) {
3473   AlignmentSource fieldAlignSource =
3474     getFieldAlignmentSource(base.getAlignmentSource());
3475 
3476   if (field->isBitField()) {
3477     const CGRecordLayout &RL =
3478       CGM.getTypes().getCGRecordLayout(field->getParent());
3479     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3480     Address Addr = base.getAddress();
3481     unsigned Idx = RL.getLLVMFieldNo(field);
3482     if (Idx != 0)
3483       // For structs, we GEP to the field that the record layout suggests.
3484       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3485                                      field->getName());
3486     // Get the access type.
3487     llvm::Type *FieldIntTy =
3488       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3489     if (Addr.getElementType() != FieldIntTy)
3490       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3491 
3492     QualType fieldType =
3493       field->getType().withCVRQualifiers(base.getVRQualifiers());
3494     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3495   }
3496 
3497   const RecordDecl *rec = field->getParent();
3498   QualType type = field->getType();
3499 
3500   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3501 
3502   Address addr = base.getAddress();
3503   unsigned cvr = base.getVRQualifiers();
3504   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3505   if (rec->isUnion()) {
3506     // For unions, there is no pointer adjustment.
3507     assert(!type->isReferenceType() && "union has reference member");
3508     // TODO: handle path-aware TBAA for union.
3509     TBAAPath = false;
3510   } else {
3511     // For structs, we GEP to the field that the record layout suggests.
3512     addr = emitAddrOfFieldStorage(*this, addr, field);
3513 
3514     // If this is a reference field, load the reference right now.
3515     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3516       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3517       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3518 
3519       // Loading the reference will disable path-aware TBAA.
3520       TBAAPath = false;
3521       if (CGM.shouldUseTBAA()) {
3522         llvm::MDNode *tbaa;
3523         if (mayAlias)
3524           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3525         else
3526           tbaa = CGM.getTBAAInfo(type);
3527         if (tbaa)
3528           CGM.DecorateInstructionWithTBAA(load, tbaa);
3529       }
3530 
3531       mayAlias = false;
3532       type = refType->getPointeeType();
3533 
3534       CharUnits alignment =
3535         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3536       addr = Address(load, alignment);
3537 
3538       // Qualifiers on the struct don't apply to the referencee, and
3539       // we'll pick up CVR from the actual type later, so reset these
3540       // additional qualifiers now.
3541       cvr = 0;
3542     }
3543   }
3544 
3545   // Make sure that the address is pointing to the right type.  This is critical
3546   // for both unions and structs.  A union needs a bitcast, a struct element
3547   // will need a bitcast if the LLVM type laid out doesn't match the desired
3548   // type.
3549   addr = Builder.CreateElementBitCast(addr,
3550                                       CGM.getTypes().ConvertTypeForMem(type),
3551                                       field->getName());
3552 
3553   if (field->hasAttr<AnnotateAttr>())
3554     addr = EmitFieldAnnotations(field, addr);
3555 
3556   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3557   LV.getQuals().addCVRQualifiers(cvr);
3558   if (TBAAPath) {
3559     const ASTRecordLayout &Layout =
3560         getContext().getASTRecordLayout(field->getParent());
3561     // Set the base type to be the base type of the base LValue and
3562     // update offset to be relative to the base type.
3563     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3564     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3565                      Layout.getFieldOffset(field->getFieldIndex()) /
3566                                            getContext().getCharWidth());
3567   }
3568 
3569   // __weak attribute on a field is ignored.
3570   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3571     LV.getQuals().removeObjCGCAttr();
3572 
3573   // Fields of may_alias structs act like 'char' for TBAA purposes.
3574   // FIXME: this should get propagated down through anonymous structs
3575   // and unions.
3576   if (mayAlias && LV.getTBAAInfo())
3577     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3578 
3579   return LV;
3580 }
3581 
3582 LValue
3583 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3584                                                   const FieldDecl *Field) {
3585   QualType FieldType = Field->getType();
3586 
3587   if (!FieldType->isReferenceType())
3588     return EmitLValueForField(Base, Field);
3589 
3590   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3591 
3592   // Make sure that the address is pointing to the right type.
3593   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3594   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3595 
3596   // TODO: access-path TBAA?
3597   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3598   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3599 }
3600 
3601 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3602   if (E->isFileScope()) {
3603     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3604     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3605   }
3606   if (E->getType()->isVariablyModifiedType())
3607     // make sure to emit the VLA size.
3608     EmitVariablyModifiedType(E->getType());
3609 
3610   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3611   const Expr *InitExpr = E->getInitializer();
3612   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3613 
3614   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3615                    /*Init*/ true);
3616 
3617   return Result;
3618 }
3619 
3620 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3621   if (!E->isGLValue())
3622     // Initializing an aggregate temporary in C++11: T{...}.
3623     return EmitAggExprToLValue(E);
3624 
3625   // An lvalue initializer list must be initializing a reference.
3626   assert(E->isTransparent() && "non-transparent glvalue init list");
3627   return EmitLValue(E->getInit(0));
3628 }
3629 
3630 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3631 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3632 /// LValue is returned and the current block has been terminated.
3633 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3634                                                     const Expr *Operand) {
3635   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3636     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3637     return None;
3638   }
3639 
3640   return CGF.EmitLValue(Operand);
3641 }
3642 
3643 LValue CodeGenFunction::
3644 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3645   if (!expr->isGLValue()) {
3646     // ?: here should be an aggregate.
3647     assert(hasAggregateEvaluationKind(expr->getType()) &&
3648            "Unexpected conditional operator!");
3649     return EmitAggExprToLValue(expr);
3650   }
3651 
3652   OpaqueValueMapping binding(*this, expr);
3653 
3654   const Expr *condExpr = expr->getCond();
3655   bool CondExprBool;
3656   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3657     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3658     if (!CondExprBool) std::swap(live, dead);
3659 
3660     if (!ContainsLabel(dead)) {
3661       // If the true case is live, we need to track its region.
3662       if (CondExprBool)
3663         incrementProfileCounter(expr);
3664       return EmitLValue(live);
3665     }
3666   }
3667 
3668   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3669   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3670   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3671 
3672   ConditionalEvaluation eval(*this);
3673   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3674 
3675   // Any temporaries created here are conditional.
3676   EmitBlock(lhsBlock);
3677   incrementProfileCounter(expr);
3678   eval.begin(*this);
3679   Optional<LValue> lhs =
3680       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3681   eval.end(*this);
3682 
3683   if (lhs && !lhs->isSimple())
3684     return EmitUnsupportedLValue(expr, "conditional operator");
3685 
3686   lhsBlock = Builder.GetInsertBlock();
3687   if (lhs)
3688     Builder.CreateBr(contBlock);
3689 
3690   // Any temporaries created here are conditional.
3691   EmitBlock(rhsBlock);
3692   eval.begin(*this);
3693   Optional<LValue> rhs =
3694       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3695   eval.end(*this);
3696   if (rhs && !rhs->isSimple())
3697     return EmitUnsupportedLValue(expr, "conditional operator");
3698   rhsBlock = Builder.GetInsertBlock();
3699 
3700   EmitBlock(contBlock);
3701 
3702   if (lhs && rhs) {
3703     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3704                                            2, "cond-lvalue");
3705     phi->addIncoming(lhs->getPointer(), lhsBlock);
3706     phi->addIncoming(rhs->getPointer(), rhsBlock);
3707     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3708     AlignmentSource alignSource =
3709       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3710     return MakeAddrLValue(result, expr->getType(), alignSource);
3711   } else {
3712     assert((lhs || rhs) &&
3713            "both operands of glvalue conditional are throw-expressions?");
3714     return lhs ? *lhs : *rhs;
3715   }
3716 }
3717 
3718 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3719 /// type. If the cast is to a reference, we can have the usual lvalue result,
3720 /// otherwise if a cast is needed by the code generator in an lvalue context,
3721 /// then it must mean that we need the address of an aggregate in order to
3722 /// access one of its members.  This can happen for all the reasons that casts
3723 /// are permitted with aggregate result, including noop aggregate casts, and
3724 /// cast from scalar to union.
3725 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3726   switch (E->getCastKind()) {
3727   case CK_ToVoid:
3728   case CK_BitCast:
3729   case CK_ArrayToPointerDecay:
3730   case CK_FunctionToPointerDecay:
3731   case CK_NullToMemberPointer:
3732   case CK_NullToPointer:
3733   case CK_IntegralToPointer:
3734   case CK_PointerToIntegral:
3735   case CK_PointerToBoolean:
3736   case CK_VectorSplat:
3737   case CK_IntegralCast:
3738   case CK_BooleanToSignedIntegral:
3739   case CK_IntegralToBoolean:
3740   case CK_IntegralToFloating:
3741   case CK_FloatingToIntegral:
3742   case CK_FloatingToBoolean:
3743   case CK_FloatingCast:
3744   case CK_FloatingRealToComplex:
3745   case CK_FloatingComplexToReal:
3746   case CK_FloatingComplexToBoolean:
3747   case CK_FloatingComplexCast:
3748   case CK_FloatingComplexToIntegralComplex:
3749   case CK_IntegralRealToComplex:
3750   case CK_IntegralComplexToReal:
3751   case CK_IntegralComplexToBoolean:
3752   case CK_IntegralComplexCast:
3753   case CK_IntegralComplexToFloatingComplex:
3754   case CK_DerivedToBaseMemberPointer:
3755   case CK_BaseToDerivedMemberPointer:
3756   case CK_MemberPointerToBoolean:
3757   case CK_ReinterpretMemberPointer:
3758   case CK_AnyPointerToBlockPointerCast:
3759   case CK_ARCProduceObject:
3760   case CK_ARCConsumeObject:
3761   case CK_ARCReclaimReturnedObject:
3762   case CK_ARCExtendBlockObject:
3763   case CK_CopyAndAutoreleaseBlockObject:
3764   case CK_AddressSpaceConversion:
3765   case CK_IntToOCLSampler:
3766     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3767 
3768   case CK_Dependent:
3769     llvm_unreachable("dependent cast kind in IR gen!");
3770 
3771   case CK_BuiltinFnToFnPtr:
3772     llvm_unreachable("builtin functions are handled elsewhere");
3773 
3774   // These are never l-values; just use the aggregate emission code.
3775   case CK_NonAtomicToAtomic:
3776   case CK_AtomicToNonAtomic:
3777     return EmitAggExprToLValue(E);
3778 
3779   case CK_Dynamic: {
3780     LValue LV = EmitLValue(E->getSubExpr());
3781     Address V = LV.getAddress();
3782     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3783     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3784   }
3785 
3786   case CK_ConstructorConversion:
3787   case CK_UserDefinedConversion:
3788   case CK_CPointerToObjCPointerCast:
3789   case CK_BlockPointerToObjCPointerCast:
3790   case CK_NoOp:
3791   case CK_LValueToRValue:
3792     return EmitLValue(E->getSubExpr());
3793 
3794   case CK_UncheckedDerivedToBase:
3795   case CK_DerivedToBase: {
3796     const RecordType *DerivedClassTy =
3797       E->getSubExpr()->getType()->getAs<RecordType>();
3798     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3799 
3800     LValue LV = EmitLValue(E->getSubExpr());
3801     Address This = LV.getAddress();
3802 
3803     // Perform the derived-to-base conversion
3804     Address Base = GetAddressOfBaseClass(
3805         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3806         /*NullCheckValue=*/false, E->getExprLoc());
3807 
3808     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3809   }
3810   case CK_ToUnion:
3811     return EmitAggExprToLValue(E);
3812   case CK_BaseToDerived: {
3813     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3814     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3815 
3816     LValue LV = EmitLValue(E->getSubExpr());
3817 
3818     // Perform the base-to-derived conversion
3819     Address Derived =
3820       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3821                                E->path_begin(), E->path_end(),
3822                                /*NullCheckValue=*/false);
3823 
3824     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3825     // performed and the object is not of the derived type.
3826     if (sanitizePerformTypeCheck())
3827       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3828                     Derived.getPointer(), E->getType());
3829 
3830     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3831       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3832                                 /*MayBeNull=*/false,
3833                                 CFITCK_DerivedCast, E->getLocStart());
3834 
3835     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3836   }
3837   case CK_LValueBitCast: {
3838     // This must be a reinterpret_cast (or c-style equivalent).
3839     const auto *CE = cast<ExplicitCastExpr>(E);
3840 
3841     CGM.EmitExplicitCastExprType(CE, this);
3842     LValue LV = EmitLValue(E->getSubExpr());
3843     Address V = Builder.CreateBitCast(LV.getAddress(),
3844                                       ConvertType(CE->getTypeAsWritten()));
3845 
3846     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3847       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3848                                 /*MayBeNull=*/false,
3849                                 CFITCK_UnrelatedCast, E->getLocStart());
3850 
3851     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3852   }
3853   case CK_ObjCObjectLValueCast: {
3854     LValue LV = EmitLValue(E->getSubExpr());
3855     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3856                                              ConvertType(E->getType()));
3857     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3858   }
3859   case CK_ZeroToOCLQueue:
3860     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
3861   case CK_ZeroToOCLEvent:
3862     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3863   }
3864 
3865   llvm_unreachable("Unhandled lvalue cast kind?");
3866 }
3867 
3868 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3869   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3870   return getOpaqueLValueMapping(e);
3871 }
3872 
3873 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3874                                            const FieldDecl *FD,
3875                                            SourceLocation Loc) {
3876   QualType FT = FD->getType();
3877   LValue FieldLV = EmitLValueForField(LV, FD);
3878   switch (getEvaluationKind(FT)) {
3879   case TEK_Complex:
3880     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3881   case TEK_Aggregate:
3882     return FieldLV.asAggregateRValue();
3883   case TEK_Scalar:
3884     // This routine is used to load fields one-by-one to perform a copy, so
3885     // don't load reference fields.
3886     if (FD->getType()->isReferenceType())
3887       return RValue::get(FieldLV.getPointer());
3888     return EmitLoadOfLValue(FieldLV, Loc);
3889   }
3890   llvm_unreachable("bad evaluation kind");
3891 }
3892 
3893 //===--------------------------------------------------------------------===//
3894 //                             Expression Emission
3895 //===--------------------------------------------------------------------===//
3896 
3897 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3898                                      ReturnValueSlot ReturnValue) {
3899   // Builtins never have block type.
3900   if (E->getCallee()->getType()->isBlockPointerType())
3901     return EmitBlockCallExpr(E, ReturnValue);
3902 
3903   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3904     return EmitCXXMemberCallExpr(CE, ReturnValue);
3905 
3906   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3907     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3908 
3909   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3910     if (const CXXMethodDecl *MD =
3911           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
3912       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3913 
3914   CGCallee callee = EmitCallee(E->getCallee());
3915 
3916   if (callee.isBuiltin()) {
3917     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
3918                            E, ReturnValue);
3919   }
3920 
3921   if (callee.isPseudoDestructor()) {
3922     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
3923   }
3924 
3925   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
3926 }
3927 
3928 /// Emit a CallExpr without considering whether it might be a subclass.
3929 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
3930                                            ReturnValueSlot ReturnValue) {
3931   CGCallee Callee = EmitCallee(E->getCallee());
3932   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
3933 }
3934 
3935 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
3936   if (auto builtinID = FD->getBuiltinID()) {
3937     return CGCallee::forBuiltin(builtinID, FD);
3938   }
3939 
3940   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
3941   return CGCallee::forDirect(calleePtr, FD);
3942 }
3943 
3944 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
3945   E = E->IgnoreParens();
3946 
3947   // Look through function-to-pointer decay.
3948   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
3949     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
3950         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
3951       return EmitCallee(ICE->getSubExpr());
3952     }
3953 
3954   // Resolve direct calls.
3955   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
3956     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3957       return EmitDirectCallee(*this, FD);
3958     }
3959   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
3960     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
3961       EmitIgnoredExpr(ME->getBase());
3962       return EmitDirectCallee(*this, FD);
3963     }
3964 
3965   // Look through template substitutions.
3966   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
3967     return EmitCallee(NTTP->getReplacement());
3968 
3969   // Treat pseudo-destructor calls differently.
3970   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
3971     return CGCallee::forPseudoDestructor(PDE);
3972   }
3973 
3974   // Otherwise, we have an indirect reference.
3975   llvm::Value *calleePtr;
3976   QualType functionType;
3977   if (auto ptrType = E->getType()->getAs<PointerType>()) {
3978     calleePtr = EmitScalarExpr(E);
3979     functionType = ptrType->getPointeeType();
3980   } else {
3981     functionType = E->getType();
3982     calleePtr = EmitLValue(E).getPointer();
3983   }
3984   assert(functionType->isFunctionType());
3985   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
3986                           E->getReferencedDeclOfCallee());
3987   CGCallee callee(calleeInfo, calleePtr);
3988   return callee;
3989 }
3990 
3991 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3992   // Comma expressions just emit their LHS then their RHS as an l-value.
3993   if (E->getOpcode() == BO_Comma) {
3994     EmitIgnoredExpr(E->getLHS());
3995     EnsureInsertPoint();
3996     return EmitLValue(E->getRHS());
3997   }
3998 
3999   if (E->getOpcode() == BO_PtrMemD ||
4000       E->getOpcode() == BO_PtrMemI)
4001     return EmitPointerToDataMemberBinaryExpr(E);
4002 
4003   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4004 
4005   // Note that in all of these cases, __block variables need the RHS
4006   // evaluated first just in case the variable gets moved by the RHS.
4007 
4008   switch (getEvaluationKind(E->getType())) {
4009   case TEK_Scalar: {
4010     switch (E->getLHS()->getType().getObjCLifetime()) {
4011     case Qualifiers::OCL_Strong:
4012       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4013 
4014     case Qualifiers::OCL_Autoreleasing:
4015       return EmitARCStoreAutoreleasing(E).first;
4016 
4017     // No reason to do any of these differently.
4018     case Qualifiers::OCL_None:
4019     case Qualifiers::OCL_ExplicitNone:
4020     case Qualifiers::OCL_Weak:
4021       break;
4022     }
4023 
4024     RValue RV = EmitAnyExpr(E->getRHS());
4025     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4026     EmitStoreThroughLValue(RV, LV);
4027     return LV;
4028   }
4029 
4030   case TEK_Complex:
4031     return EmitComplexAssignmentLValue(E);
4032 
4033   case TEK_Aggregate:
4034     return EmitAggExprToLValue(E);
4035   }
4036   llvm_unreachable("bad evaluation kind");
4037 }
4038 
4039 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4040   RValue RV = EmitCallExpr(E);
4041 
4042   if (!RV.isScalar())
4043     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4044                           AlignmentSource::Decl);
4045 
4046   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4047          "Can't have a scalar return unless the return type is a "
4048          "reference type!");
4049 
4050   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4051 }
4052 
4053 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4054   // FIXME: This shouldn't require another copy.
4055   return EmitAggExprToLValue(E);
4056 }
4057 
4058 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4059   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4060          && "binding l-value to type which needs a temporary");
4061   AggValueSlot Slot = CreateAggTemp(E->getType());
4062   EmitCXXConstructExpr(E, Slot);
4063   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4064                         AlignmentSource::Decl);
4065 }
4066 
4067 LValue
4068 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4069   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4070 }
4071 
4072 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4073   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4074                                       ConvertType(E->getType()));
4075 }
4076 
4077 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4078   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4079                         AlignmentSource::Decl);
4080 }
4081 
4082 LValue
4083 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4084   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4085   Slot.setExternallyDestructed();
4086   EmitAggExpr(E->getSubExpr(), Slot);
4087   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4088   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4089                         AlignmentSource::Decl);
4090 }
4091 
4092 LValue
4093 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4094   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4095   EmitLambdaExpr(E, Slot);
4096   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4097                         AlignmentSource::Decl);
4098 }
4099 
4100 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4101   RValue RV = EmitObjCMessageExpr(E);
4102 
4103   if (!RV.isScalar())
4104     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4105                           AlignmentSource::Decl);
4106 
4107   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4108          "Can't have a scalar return unless the return type is a "
4109          "reference type!");
4110 
4111   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4112 }
4113 
4114 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4115   Address V =
4116     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4117   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4118 }
4119 
4120 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4121                                              const ObjCIvarDecl *Ivar) {
4122   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4123 }
4124 
4125 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4126                                           llvm::Value *BaseValue,
4127                                           const ObjCIvarDecl *Ivar,
4128                                           unsigned CVRQualifiers) {
4129   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4130                                                    Ivar, CVRQualifiers);
4131 }
4132 
4133 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4134   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4135   llvm::Value *BaseValue = nullptr;
4136   const Expr *BaseExpr = E->getBase();
4137   Qualifiers BaseQuals;
4138   QualType ObjectTy;
4139   if (E->isArrow()) {
4140     BaseValue = EmitScalarExpr(BaseExpr);
4141     ObjectTy = BaseExpr->getType()->getPointeeType();
4142     BaseQuals = ObjectTy.getQualifiers();
4143   } else {
4144     LValue BaseLV = EmitLValue(BaseExpr);
4145     BaseValue = BaseLV.getPointer();
4146     ObjectTy = BaseExpr->getType();
4147     BaseQuals = ObjectTy.getQualifiers();
4148   }
4149 
4150   LValue LV =
4151     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4152                       BaseQuals.getCVRQualifiers());
4153   setObjCGCLValueClass(getContext(), E, LV);
4154   return LV;
4155 }
4156 
4157 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4158   // Can only get l-value for message expression returning aggregate type
4159   RValue RV = EmitAnyExprToTemp(E);
4160   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4161                         AlignmentSource::Decl);
4162 }
4163 
4164 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4165                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4166                                  llvm::Value *Chain) {
4167   // Get the actual function type. The callee type will always be a pointer to
4168   // function type or a block pointer type.
4169   assert(CalleeType->isFunctionPointerType() &&
4170          "Call must have function pointer type!");
4171 
4172   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4173 
4174   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4175     // We can only guarantee that a function is called from the correct
4176     // context/function based on the appropriate target attributes,
4177     // so only check in the case where we have both always_inline and target
4178     // since otherwise we could be making a conditional call after a check for
4179     // the proper cpu features (and it won't cause code generation issues due to
4180     // function based code generation).
4181     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4182         TargetDecl->hasAttr<TargetAttr>())
4183       checkTargetFeatures(E, FD);
4184 
4185   CalleeType = getContext().getCanonicalType(CalleeType);
4186 
4187   const auto *FnType =
4188       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4189 
4190   CGCallee Callee = OrigCallee;
4191 
4192   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4193       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4194     if (llvm::Constant *PrefixSig =
4195             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4196       SanitizerScope SanScope(this);
4197       llvm::Constant *FTRTTIConst =
4198           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4199       llvm::Type *PrefixStructTyElems[] = {
4200         PrefixSig->getType(),
4201         FTRTTIConst->getType()
4202       };
4203       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4204           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4205 
4206       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4207 
4208       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4209           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4210       llvm::Value *CalleeSigPtr =
4211           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4212       llvm::Value *CalleeSig =
4213           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4214       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4215 
4216       llvm::BasicBlock *Cont = createBasicBlock("cont");
4217       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4218       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4219 
4220       EmitBlock(TypeCheck);
4221       llvm::Value *CalleeRTTIPtr =
4222           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4223       llvm::Value *CalleeRTTI =
4224           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4225       llvm::Value *CalleeRTTIMatch =
4226           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4227       llvm::Constant *StaticData[] = {
4228         EmitCheckSourceLocation(E->getLocStart()),
4229         EmitCheckTypeDescriptor(CalleeType)
4230       };
4231       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4232                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4233 
4234       Builder.CreateBr(Cont);
4235       EmitBlock(Cont);
4236     }
4237   }
4238 
4239   // If we are checking indirect calls and this call is indirect, check that the
4240   // function pointer is a member of the bit set for the function type.
4241   if (SanOpts.has(SanitizerKind::CFIICall) &&
4242       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4243     SanitizerScope SanScope(this);
4244     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4245 
4246     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4247     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4248 
4249     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4250     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4251     llvm::Value *TypeTest = Builder.CreateCall(
4252         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4253 
4254     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4255     llvm::Constant *StaticData[] = {
4256         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4257         EmitCheckSourceLocation(E->getLocStart()),
4258         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4259     };
4260     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4261       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4262                            CastedCallee, StaticData);
4263     } else {
4264       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4265                 SanitizerHandler::CFICheckFail, StaticData,
4266                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4267     }
4268   }
4269 
4270   CallArgList Args;
4271   if (Chain)
4272     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4273              CGM.getContext().VoidPtrTy);
4274 
4275   // C++17 requires that we evaluate arguments to a call using assignment syntax
4276   // right-to-left, and that we evaluate arguments to certain other operators
4277   // left-to-right. Note that we allow this to override the order dictated by
4278   // the calling convention on the MS ABI, which means that parameter
4279   // destruction order is not necessarily reverse construction order.
4280   // FIXME: Revisit this based on C++ committee response to unimplementability.
4281   EvaluationOrder Order = EvaluationOrder::Default;
4282   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4283     if (OCE->isAssignmentOp())
4284       Order = EvaluationOrder::ForceRightToLeft;
4285     else {
4286       switch (OCE->getOperator()) {
4287       case OO_LessLess:
4288       case OO_GreaterGreater:
4289       case OO_AmpAmp:
4290       case OO_PipePipe:
4291       case OO_Comma:
4292       case OO_ArrowStar:
4293         Order = EvaluationOrder::ForceLeftToRight;
4294         break;
4295       default:
4296         break;
4297       }
4298     }
4299   }
4300 
4301   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4302                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4303 
4304   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4305       Args, FnType, /*isChainCall=*/Chain);
4306 
4307   // C99 6.5.2.2p6:
4308   //   If the expression that denotes the called function has a type
4309   //   that does not include a prototype, [the default argument
4310   //   promotions are performed]. If the number of arguments does not
4311   //   equal the number of parameters, the behavior is undefined. If
4312   //   the function is defined with a type that includes a prototype,
4313   //   and either the prototype ends with an ellipsis (, ...) or the
4314   //   types of the arguments after promotion are not compatible with
4315   //   the types of the parameters, the behavior is undefined. If the
4316   //   function is defined with a type that does not include a
4317   //   prototype, and the types of the arguments after promotion are
4318   //   not compatible with those of the parameters after promotion,
4319   //   the behavior is undefined [except in some trivial cases].
4320   // That is, in the general case, we should assume that a call
4321   // through an unprototyped function type works like a *non-variadic*
4322   // call.  The way we make this work is to cast to the exact type
4323   // of the promoted arguments.
4324   //
4325   // Chain calls use this same code path to add the invisible chain parameter
4326   // to the function type.
4327   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4328     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4329     CalleeTy = CalleeTy->getPointerTo();
4330 
4331     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4332     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4333     Callee.setFunctionPointer(CalleePtr);
4334   }
4335 
4336   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4337 }
4338 
4339 LValue CodeGenFunction::
4340 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4341   Address BaseAddr = Address::invalid();
4342   if (E->getOpcode() == BO_PtrMemI) {
4343     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4344   } else {
4345     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4346   }
4347 
4348   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4349 
4350   const MemberPointerType *MPT
4351     = E->getRHS()->getType()->getAs<MemberPointerType>();
4352 
4353   AlignmentSource AlignSource;
4354   Address MemberAddr =
4355     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
4356                                     &AlignSource);
4357 
4358   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
4359 }
4360 
4361 /// Given the address of a temporary variable, produce an r-value of
4362 /// its type.
4363 RValue CodeGenFunction::convertTempToRValue(Address addr,
4364                                             QualType type,
4365                                             SourceLocation loc) {
4366   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4367   switch (getEvaluationKind(type)) {
4368   case TEK_Complex:
4369     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4370   case TEK_Aggregate:
4371     return lvalue.asAggregateRValue();
4372   case TEK_Scalar:
4373     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4374   }
4375   llvm_unreachable("bad evaluation kind");
4376 }
4377 
4378 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4379   assert(Val->getType()->isFPOrFPVectorTy());
4380   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4381     return;
4382 
4383   llvm::MDBuilder MDHelper(getLLVMContext());
4384   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4385 
4386   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4387 }
4388 
4389 namespace {
4390   struct LValueOrRValue {
4391     LValue LV;
4392     RValue RV;
4393   };
4394 }
4395 
4396 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4397                                            const PseudoObjectExpr *E,
4398                                            bool forLValue,
4399                                            AggValueSlot slot) {
4400   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4401 
4402   // Find the result expression, if any.
4403   const Expr *resultExpr = E->getResultExpr();
4404   LValueOrRValue result;
4405 
4406   for (PseudoObjectExpr::const_semantics_iterator
4407          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4408     const Expr *semantic = *i;
4409 
4410     // If this semantic expression is an opaque value, bind it
4411     // to the result of its source expression.
4412     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4413 
4414       // If this is the result expression, we may need to evaluate
4415       // directly into the slot.
4416       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4417       OVMA opaqueData;
4418       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4419           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4420         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4421 
4422         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4423                                        AlignmentSource::Decl);
4424         opaqueData = OVMA::bind(CGF, ov, LV);
4425         result.RV = slot.asRValue();
4426 
4427       // Otherwise, emit as normal.
4428       } else {
4429         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4430 
4431         // If this is the result, also evaluate the result now.
4432         if (ov == resultExpr) {
4433           if (forLValue)
4434             result.LV = CGF.EmitLValue(ov);
4435           else
4436             result.RV = CGF.EmitAnyExpr(ov, slot);
4437         }
4438       }
4439 
4440       opaques.push_back(opaqueData);
4441 
4442     // Otherwise, if the expression is the result, evaluate it
4443     // and remember the result.
4444     } else if (semantic == resultExpr) {
4445       if (forLValue)
4446         result.LV = CGF.EmitLValue(semantic);
4447       else
4448         result.RV = CGF.EmitAnyExpr(semantic, slot);
4449 
4450     // Otherwise, evaluate the expression in an ignored context.
4451     } else {
4452       CGF.EmitIgnoredExpr(semantic);
4453     }
4454   }
4455 
4456   // Unbind all the opaques now.
4457   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4458     opaques[i].unbind(CGF);
4459 
4460   return result;
4461 }
4462 
4463 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4464                                                AggValueSlot slot) {
4465   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4466 }
4467 
4468 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4469   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4470 }
4471