1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44
45 #include <string>
46
47 using namespace clang;
48 using namespace CodeGen;
49
50 //===--------------------------------------------------------------------===//
51 // Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53
EmitCastToVoidPtr(llvm::Value * value)54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55 unsigned addressSpace =
56 cast<llvm::PointerType>(value->getType())->getAddressSpace();
57
58 llvm::PointerType *destType = Int8PtrTy;
59 if (addressSpace)
60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61
62 if (value->getType() == destType) return value;
63 return Builder.CreateBitCast(value, destType);
64 }
65
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
CreateTempAllocaWithoutCast(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize)68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69 CharUnits Align,
70 const Twine &Name,
71 llvm::Value *ArraySize) {
72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73 Alloca->setAlignment(Align.getAsAlign());
74 return Address(Alloca, Ty, Align);
75 }
76
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
CreateTempAlloca(llvm::Type * Ty,CharUnits Align,const Twine & Name,llvm::Value * ArraySize,Address * AllocaAddr)79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80 const Twine &Name,
81 llvm::Value *ArraySize,
82 Address *AllocaAddr) {
83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84 if (AllocaAddr)
85 *AllocaAddr = Alloca;
86 llvm::Value *V = Alloca.getPointer();
87 // Alloca always returns a pointer in alloca address space, which may
88 // be different from the type defined by the language. For example,
89 // in C++ the auto variables are in the default address space. Therefore
90 // cast alloca to the default address space when necessary.
91 if (getASTAllocaAddressSpace() != LangAS::Default) {
92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95 // otherwise alloca is inserted at the current insertion point of the
96 // builder.
97 if (!ArraySize)
98 Builder.SetInsertPoint(getPostAllocaInsertPoint());
99 V = getTargetHooks().performAddrSpaceCast(
100 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102 }
103
104 return Address(V, Ty, Align);
105 }
106
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name,llvm::Value * ArraySize)110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111 const Twine &Name,
112 llvm::Value *ArraySize) {
113 if (ArraySize)
114 return Builder.CreateAlloca(Ty, ArraySize, Name);
115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116 ArraySize, Name, AllocaInsertPt);
117 }
118
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
CreateDefaultAlignTempAlloca(llvm::Type * Ty,const Twine & Name)123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124 const Twine &Name) {
125 CharUnits Align =
126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127 return CreateTempAlloca(Ty, Align, Name);
128 }
129
CreateIRTemp(QualType Ty,const Twine & Name)130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131 CharUnits Align = getContext().getTypeAlignInChars(Ty);
132 return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134
CreateMemTemp(QualType Ty,const Twine & Name,Address * Alloca)135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136 Address *Alloca) {
137 // FIXME: Should we prefer the preferred type alignment here?
138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140
CreateMemTemp(QualType Ty,CharUnits Align,const Twine & Name,Address * Alloca)141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142 const Twine &Name, Address *Alloca) {
143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144 /*ArraySize=*/nullptr, Alloca);
145
146 if (Ty->isConstantMatrixType()) {
147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149 ArrayTy->getNumElements());
150
151 Result = Address(
152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153 VectorTy, Result.getAlignment());
154 }
155 return Result;
156 }
157
CreateMemTempWithoutCast(QualType Ty,CharUnits Align,const Twine & Name)158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159 const Twine &Name) {
160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162
CreateMemTempWithoutCast(QualType Ty,const Twine & Name)163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164 const Twine &Name) {
165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166 Name);
167 }
168
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172 PGO.setCurrentStmt(E);
173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174 llvm::Value *MemPtr = EmitScalarExpr(E);
175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176 }
177
178 QualType BoolTy = getContext().BoolTy;
179 SourceLocation Loc = E->getExprLoc();
180 CGFPOptionsRAII FPOptsRAII(*this, E);
181 if (!E->getType()->isAnyComplexType())
182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183
184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185 Loc);
186 }
187
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191 if (E->isPRValue())
192 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
193
194 // if this is a bitfield-resulting conditional operator, we can special case
195 // emit this. The normal 'EmitLValue' version of this is particularly
196 // difficult to codegen for, since creating a single "LValue" for two
197 // different sized arguments here is not particularly doable.
198 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
199 E->IgnoreParenNoopCasts(getContext()))) {
200 if (CondOp->getObjectKind() == OK_BitField)
201 return EmitIgnoredConditionalOperator(CondOp);
202 }
203
204 // Just emit it as an l-value and drop the result.
205 EmitLValue(E);
206 }
207
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type. The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213 AggValueSlot aggSlot,
214 bool ignoreResult) {
215 switch (getEvaluationKind(E->getType())) {
216 case TEK_Scalar:
217 return RValue::get(EmitScalarExpr(E, ignoreResult));
218 case TEK_Complex:
219 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220 case TEK_Aggregate:
221 if (!ignoreResult && aggSlot.isIgnored())
222 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223 EmitAggExpr(E, aggSlot);
224 return aggSlot.asRValue();
225 }
226 llvm_unreachable("bad evaluation kind");
227 }
228
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232 AggValueSlot AggSlot = AggValueSlot::ignored();
233
234 if (hasAggregateEvaluationKind(E->getType()))
235 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236 return EmitAnyExpr(E, AggSlot);
237 }
238
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
EmitAnyExprToMem(const Expr * E,Address Location,Qualifiers Quals,bool IsInit)241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242 Address Location,
243 Qualifiers Quals,
244 bool IsInit) {
245 // FIXME: This function should take an LValue as an argument.
246 switch (getEvaluationKind(E->getType())) {
247 case TEK_Complex:
248 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249 /*isInit*/ false);
250 return;
251
252 case TEK_Aggregate: {
253 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254 AggValueSlot::IsDestructed_t(IsInit),
255 AggValueSlot::DoesNotNeedGCBarriers,
256 AggValueSlot::IsAliased_t(!IsInit),
257 AggValueSlot::MayOverlap));
258 return;
259 }
260
261 case TEK_Scalar: {
262 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263 LValue LV = MakeAddrLValue(Location, E->getType());
264 EmitStoreThroughLValue(RV, LV);
265 return;
266 }
267 }
268 llvm_unreachable("bad evaluation kind");
269 }
270
271 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,Address ReferenceTemporary)272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273 const Expr *E, Address ReferenceTemporary) {
274 // Objective-C++ ARC:
275 // If we are binding a reference to a temporary that has ownership, we
276 // need to perform retain/release operations on the temporary.
277 //
278 // FIXME: This should be looking at E, not M.
279 if (auto Lifetime = M->getType().getObjCLifetime()) {
280 switch (Lifetime) {
281 case Qualifiers::OCL_None:
282 case Qualifiers::OCL_ExplicitNone:
283 // Carry on to normal cleanup handling.
284 break;
285
286 case Qualifiers::OCL_Autoreleasing:
287 // Nothing to do; cleaned up by an autorelease pool.
288 return;
289
290 case Qualifiers::OCL_Strong:
291 case Qualifiers::OCL_Weak:
292 switch (StorageDuration Duration = M->getStorageDuration()) {
293 case SD_Static:
294 // Note: we intentionally do not register a cleanup to release
295 // the object on program termination.
296 return;
297
298 case SD_Thread:
299 // FIXME: We should probably register a cleanup in this case.
300 return;
301
302 case SD_Automatic:
303 case SD_FullExpression:
304 CodeGenFunction::Destroyer *Destroy;
305 CleanupKind CleanupKind;
306 if (Lifetime == Qualifiers::OCL_Strong) {
307 const ValueDecl *VD = M->getExtendingDecl();
308 bool Precise =
309 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310 CleanupKind = CGF.getARCCleanupKind();
311 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312 : &CodeGenFunction::destroyARCStrongImprecise;
313 } else {
314 // __weak objects always get EH cleanups; otherwise, exceptions
315 // could cause really nasty crashes instead of mere leaks.
316 CleanupKind = NormalAndEHCleanup;
317 Destroy = &CodeGenFunction::destroyARCWeak;
318 }
319 if (Duration == SD_FullExpression)
320 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321 M->getType(), *Destroy,
322 CleanupKind & EHCleanup);
323 else
324 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325 M->getType(),
326 *Destroy, CleanupKind & EHCleanup);
327 return;
328
329 case SD_Dynamic:
330 llvm_unreachable("temporary cannot have dynamic storage duration");
331 }
332 llvm_unreachable("unknown storage duration");
333 }
334 }
335
336 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337 if (const RecordType *RT =
338 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339 // Get the destructor for the reference temporary.
340 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341 if (!ClassDecl->hasTrivialDestructor())
342 ReferenceTemporaryDtor = ClassDecl->getDestructor();
343 }
344
345 if (!ReferenceTemporaryDtor)
346 return;
347
348 // Call the destructor for the temporary.
349 switch (M->getStorageDuration()) {
350 case SD_Static:
351 case SD_Thread: {
352 llvm::FunctionCallee CleanupFn;
353 llvm::Constant *CleanupArg;
354 if (E->getType()->isArrayType()) {
355 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356 ReferenceTemporary, E->getType(),
357 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360 } else {
361 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
364 }
365 CGF.CGM.getCXXABI().registerGlobalDtor(
366 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367 break;
368 }
369
370 case SD_FullExpression:
371 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372 CodeGenFunction::destroyCXXObject,
373 CGF.getLangOpts().Exceptions);
374 break;
375
376 case SD_Automatic:
377 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378 ReferenceTemporary, E->getType(),
379 CodeGenFunction::destroyCXXObject,
380 CGF.getLangOpts().Exceptions);
381 break;
382
383 case SD_Dynamic:
384 llvm_unreachable("temporary cannot have dynamic storage duration");
385 }
386 }
387
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner,Address * Alloca=nullptr)388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389 const MaterializeTemporaryExpr *M,
390 const Expr *Inner,
391 Address *Alloca = nullptr) {
392 auto &TCG = CGF.getTargetHooks();
393 switch (M->getStorageDuration()) {
394 case SD_FullExpression:
395 case SD_Automatic: {
396 // If we have a constant temporary array or record try to promote it into a
397 // constant global under the same rules a normal constant would've been
398 // promoted. This is easier on the optimizer and generally emits fewer
399 // instructions.
400 QualType Ty = Inner->getType();
401 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402 (Ty->isArrayType() || Ty->isRecordType()) &&
403 CGF.CGM.isTypeConstant(Ty, true))
404 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405 auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
406 auto *GV = new llvm::GlobalVariable(
407 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409 llvm::GlobalValue::NotThreadLocal,
410 CGF.getContext().getTargetAddressSpace(AS));
411 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412 GV->setAlignment(alignment.getAsAlign());
413 llvm::Constant *C = GV;
414 if (AS != LangAS::Default)
415 C = TCG.performAddrSpaceCast(
416 CGF.CGM, GV, AS, LangAS::Default,
417 GV->getValueType()->getPointerTo(
418 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419 // FIXME: Should we put the new global into a COMDAT?
420 return Address(C, GV->getValueType(), alignment);
421 }
422 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
423 }
424 case SD_Thread:
425 case SD_Static:
426 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
427
428 case SD_Dynamic:
429 llvm_unreachable("temporary can't have dynamic storage duration");
430 }
431 llvm_unreachable("unknown storage duration");
432 }
433
434 /// Helper method to check if the underlying ABI is AAPCS
isAAPCS(const TargetInfo & TargetInfo)435 static bool isAAPCS(const TargetInfo &TargetInfo) {
436 return TargetInfo.getABI().startswith("aapcs");
437 }
438
439 LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
441 const Expr *E = M->getSubExpr();
442
443 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
444 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
445 "Reference should never be pseudo-strong!");
446
447 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
448 // as that will cause the lifetime adjustment to be lost for ARC
449 auto ownership = M->getType().getObjCLifetime();
450 if (ownership != Qualifiers::OCL_None &&
451 ownership != Qualifiers::OCL_ExplicitNone) {
452 Address Object = createReferenceTemporary(*this, M, E);
453 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
454 llvm::Type *Ty = ConvertTypeForMem(E->getType());
455 Object = Address(llvm::ConstantExpr::getBitCast(
456 Var, Ty->getPointerTo(Object.getAddressSpace())),
457 Ty, Object.getAlignment());
458
459 // createReferenceTemporary will promote the temporary to a global with a
460 // constant initializer if it can. It can only do this to a value of
461 // ARC-manageable type if the value is global and therefore "immune" to
462 // ref-counting operations. Therefore we have no need to emit either a
463 // dynamic initialization or a cleanup and we can just return the address
464 // of the temporary.
465 if (Var->hasInitializer())
466 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
467
468 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
469 }
470 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
471 AlignmentSource::Decl);
472
473 switch (getEvaluationKind(E->getType())) {
474 default: llvm_unreachable("expected scalar or aggregate expression");
475 case TEK_Scalar:
476 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
477 break;
478 case TEK_Aggregate: {
479 EmitAggExpr(E, AggValueSlot::forAddr(Object,
480 E->getType().getQualifiers(),
481 AggValueSlot::IsDestructed,
482 AggValueSlot::DoesNotNeedGCBarriers,
483 AggValueSlot::IsNotAliased,
484 AggValueSlot::DoesNotOverlap));
485 break;
486 }
487 }
488
489 pushTemporaryCleanup(*this, M, E, Object);
490 return RefTempDst;
491 }
492
493 SmallVector<const Expr *, 2> CommaLHSs;
494 SmallVector<SubobjectAdjustment, 2> Adjustments;
495 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
496
497 for (const auto &Ignored : CommaLHSs)
498 EmitIgnoredExpr(Ignored);
499
500 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
501 if (opaque->getType()->isRecordType()) {
502 assert(Adjustments.empty());
503 return EmitOpaqueValueLValue(opaque);
504 }
505 }
506
507 // Create and initialize the reference temporary.
508 Address Alloca = Address::invalid();
509 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
510 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
511 Object.getPointer()->stripPointerCasts())) {
512 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
513 Object = Address(llvm::ConstantExpr::getBitCast(
514 cast<llvm::Constant>(Object.getPointer()),
515 TemporaryType->getPointerTo()),
516 TemporaryType,
517 Object.getAlignment());
518 // If the temporary is a global and has a constant initializer or is a
519 // constant temporary that we promoted to a global, we may have already
520 // initialized it.
521 if (!Var->hasInitializer()) {
522 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524 }
525 } else {
526 switch (M->getStorageDuration()) {
527 case SD_Automatic:
528 if (auto *Size = EmitLifetimeStart(
529 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530 Alloca.getPointer())) {
531 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532 Alloca, Size);
533 }
534 break;
535
536 case SD_FullExpression: {
537 if (!ShouldEmitLifetimeMarkers)
538 break;
539
540 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541 // marker. Instead, start the lifetime of a conditional temporary earlier
542 // so that it's unconditional. Don't do this with sanitizers which need
543 // more precise lifetime marks.
544 ConditionalEvaluation *OldConditional = nullptr;
545 CGBuilderTy::InsertPoint OldIP;
546 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547 !SanOpts.has(SanitizerKind::HWAddress) &&
548 !SanOpts.has(SanitizerKind::Memory) &&
549 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550 OldConditional = OutermostConditional;
551 OutermostConditional = nullptr;
552
553 OldIP = Builder.saveIP();
554 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555 Builder.restoreIP(CGBuilderTy::InsertPoint(
556 Block, llvm::BasicBlock::iterator(Block->back())));
557 }
558
559 if (auto *Size = EmitLifetimeStart(
560 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561 Alloca.getPointer())) {
562 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563 Size);
564 }
565
566 if (OldConditional) {
567 OutermostConditional = OldConditional;
568 Builder.restoreIP(OldIP);
569 }
570 break;
571 }
572
573 default:
574 break;
575 }
576 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577 }
578 pushTemporaryCleanup(*this, M, E, Object);
579
580 // Perform derived-to-base casts and/or field accesses, to get from the
581 // temporary object we created (and, potentially, for which we extended
582 // the lifetime) to the subobject we're binding the reference to.
583 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
584 switch (Adjustment.Kind) {
585 case SubobjectAdjustment::DerivedToBaseAdjustment:
586 Object =
587 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588 Adjustment.DerivedToBase.BasePath->path_begin(),
589 Adjustment.DerivedToBase.BasePath->path_end(),
590 /*NullCheckValue=*/ false, E->getExprLoc());
591 break;
592
593 case SubobjectAdjustment::FieldAdjustment: {
594 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595 LV = EmitLValueForField(LV, Adjustment.Field);
596 assert(LV.isSimple() &&
597 "materialized temporary field is not a simple lvalue");
598 Object = LV.getAddress(*this);
599 break;
600 }
601
602 case SubobjectAdjustment::MemberPointerAdjustment: {
603 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605 Adjustment.Ptr.MPT);
606 break;
607 }
608 }
609 }
610
611 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
612 }
613
614 RValue
EmitReferenceBindingToExpr(const Expr * E)615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616 // Emit the expression as an lvalue.
617 LValue LV = EmitLValue(E);
618 assert(LV.isSimple());
619 llvm::Value *Value = LV.getPointer(*this);
620
621 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622 // C++11 [dcl.ref]p5 (as amended by core issue 453):
623 // If a glvalue to which a reference is directly bound designates neither
624 // an existing object or function of an appropriate type nor a region of
625 // storage of suitable size and alignment to contain an object of the
626 // reference's type, the behavior is undefined.
627 QualType Ty = E->getType();
628 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
629 }
630
631 return RValue::get(Value);
632 }
633
634
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638 const llvm::Constant *Elts) {
639 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640 ->getZExtValue();
641 }
642
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645 llvm::Value *High) {
646 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647 llvm::Value *K47 = Builder.getInt64(47);
648 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652 return Builder.CreateMul(B1, KMul);
653 }
654
isNullPointerAllowed(TypeCheckKind TCK)655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
658 }
659
isVptrCheckRequired(TypeCheckKind TCK,QualType Ty)660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
666 }
667
sanitizePerformTypeCheck() const668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669 return SanOpts.has(SanitizerKind::Null) ||
670 SanOpts.has(SanitizerKind::Alignment) ||
671 SanOpts.has(SanitizerKind::ObjectSize) ||
672 SanOpts.has(SanitizerKind::Vptr);
673 }
674
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Ptr,QualType Ty,CharUnits Alignment,SanitizerSet SkippedChecks,llvm::Value * ArraySize)675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676 llvm::Value *Ptr, QualType Ty,
677 CharUnits Alignment,
678 SanitizerSet SkippedChecks,
679 llvm::Value *ArraySize) {
680 if (!sanitizePerformTypeCheck())
681 return;
682
683 // Don't check pointers outside the default address space. The null check
684 // isn't correct, the object-size check isn't supported by LLVM, and we can't
685 // communicate the addresses to the runtime handler for the vptr check.
686 if (Ptr->getType()->getPointerAddressSpace())
687 return;
688
689 // Don't check pointers to volatile data. The behavior here is implementation-
690 // defined.
691 if (Ty.isVolatileQualified())
692 return;
693
694 SanitizerScope SanScope(this);
695
696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697 llvm::BasicBlock *Done = nullptr;
698
699 // Quickly determine whether we have a pointer to an alloca. It's possible
700 // to skip null checks, and some alignment checks, for these pointers. This
701 // can reduce compile-time significantly.
702 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
703
704 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705 llvm::Value *IsNonNull = nullptr;
706 bool IsGuaranteedNonNull =
707 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708 bool AllowNullPointers = isNullPointerAllowed(TCK);
709 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710 !IsGuaranteedNonNull) {
711 // The glvalue must not be an empty glvalue.
712 IsNonNull = Builder.CreateIsNotNull(Ptr);
713
714 // The IR builder can constant-fold the null check if the pointer points to
715 // a constant.
716 IsGuaranteedNonNull = IsNonNull == True;
717
718 // Skip the null check if the pointer is known to be non-null.
719 if (!IsGuaranteedNonNull) {
720 if (AllowNullPointers) {
721 // When performing pointer casts, it's OK if the value is null.
722 // Skip the remaining checks in that case.
723 Done = createBasicBlock("null");
724 llvm::BasicBlock *Rest = createBasicBlock("not.null");
725 Builder.CreateCondBr(IsNonNull, Rest, Done);
726 EmitBlock(Rest);
727 } else {
728 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729 }
730 }
731 }
732
733 if (SanOpts.has(SanitizerKind::ObjectSize) &&
734 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735 !Ty->isIncompleteType()) {
736 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738 if (ArraySize)
739 Size = Builder.CreateMul(Size, ArraySize);
740
741 // Degenerate case: new X[0] does not need an objectsize check.
742 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743 if (!ConstantSize || !ConstantSize->isNullValue()) {
744 // The glvalue must refer to a large enough storage region.
745 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746 // to check this.
747 // FIXME: Get object address space
748 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750 llvm::Value *Min = Builder.getFalse();
751 llvm::Value *NullIsUnknown = Builder.getFalse();
752 llvm::Value *Dynamic = Builder.getFalse();
753 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
757 }
758 }
759
760 llvm::MaybeAlign AlignVal;
761 llvm::Value *PtrAsInt = nullptr;
762
763 if (SanOpts.has(SanitizerKind::Alignment) &&
764 !SkippedChecks.has(SanitizerKind::Alignment)) {
765 AlignVal = Alignment.getAsMaybeAlign();
766 if (!Ty->isIncompleteType() && !AlignVal)
767 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768 /*ForPointeeType=*/true)
769 .getAsMaybeAlign();
770
771 // The glvalue must be suitably aligned.
772 if (AlignVal && *AlignVal > llvm::Align(1) &&
773 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
774 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775 llvm::Value *Align = Builder.CreateAnd(
776 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
777 llvm::Value *Aligned =
778 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779 if (Aligned != True)
780 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
781 }
782 }
783
784 if (Checks.size() > 0) {
785 llvm::Constant *StaticData[] = {
786 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
787 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
788 llvm::ConstantInt::get(Int8Ty, TCK)};
789 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
790 PtrAsInt ? PtrAsInt : Ptr);
791 }
792
793 // If possible, check that the vptr indicates that there is a subobject of
794 // type Ty at offset zero within this object.
795 //
796 // C++11 [basic.life]p5,6:
797 // [For storage which does not refer to an object within its lifetime]
798 // The program has undefined behavior if:
799 // -- the [pointer or glvalue] is used to access a non-static data member
800 // or call a non-static member function
801 if (SanOpts.has(SanitizerKind::Vptr) &&
802 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
803 // Ensure that the pointer is non-null before loading it. If there is no
804 // compile-time guarantee, reuse the run-time null check or emit a new one.
805 if (!IsGuaranteedNonNull) {
806 if (!IsNonNull)
807 IsNonNull = Builder.CreateIsNotNull(Ptr);
808 if (!Done)
809 Done = createBasicBlock("vptr.null");
810 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
811 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
812 EmitBlock(VptrNotNull);
813 }
814
815 // Compute a hash of the mangled name of the type.
816 //
817 // FIXME: This is not guaranteed to be deterministic! Move to a
818 // fingerprinting mechanism once LLVM provides one. For the time
819 // being the implementation happens to be deterministic.
820 SmallString<64> MangledName;
821 llvm::raw_svector_ostream Out(MangledName);
822 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
823 Out);
824
825 // Contained in NoSanitizeList based on the mangled type.
826 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
827 Out.str())) {
828 llvm::hash_code TypeHash = hash_value(Out.str());
829
830 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
831 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
832 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
833 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy,
834 getPointerAlign());
835 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
836 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
837
838 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
839 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
840
841 // Look the hash up in our cache.
842 const int CacheSize = 128;
843 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
844 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
845 "__ubsan_vptr_type_cache");
846 llvm::Value *Slot = Builder.CreateAnd(Hash,
847 llvm::ConstantInt::get(IntPtrTy,
848 CacheSize-1));
849 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
850 llvm::Value *CacheVal = Builder.CreateAlignedLoad(
851 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
852 getPointerAlign());
853
854 // If the hash isn't in the cache, call a runtime handler to perform the
855 // hard work of checking whether the vptr is for an object of the right
856 // type. This will either fill in the cache and return, or produce a
857 // diagnostic.
858 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
859 llvm::Constant *StaticData[] = {
860 EmitCheckSourceLocation(Loc),
861 EmitCheckTypeDescriptor(Ty),
862 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
863 llvm::ConstantInt::get(Int8Ty, TCK)
864 };
865 llvm::Value *DynamicData[] = { Ptr, Hash };
866 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
867 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
868 DynamicData);
869 }
870 }
871
872 if (Done) {
873 Builder.CreateBr(Done);
874 EmitBlock(Done);
875 }
876 }
877
878 /// Determine whether this expression refers to a flexible array member in a
879 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E,unsigned StrictFlexArraysLevel)880 static bool isFlexibleArrayMemberExpr(const Expr *E,
881 unsigned StrictFlexArraysLevel) {
882 // For compatibility with existing code, we treat arrays of length 0 or
883 // 1 as flexible array members.
884 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
885 // the two mechanisms.
886 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
887 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
888 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
889 // was produced by macro expansion.
890 if (StrictFlexArraysLevel >= 2 && CAT->getSize().ugt(0))
891 return false;
892 // FIXME: While the default -fstrict-flex-arrays=0 permits Size>1 trailing
893 // arrays to be treated as flexible-array-members, we still emit ubsan
894 // checks as if they are not.
895 if (CAT->getSize().ugt(1))
896 return false;
897 } else if (!isa<IncompleteArrayType>(AT))
898 return false;
899
900 E = E->IgnoreParens();
901
902 // A flexible array member must be the last member in the class.
903 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
904 // FIXME: If the base type of the member expr is not FD->getParent(),
905 // this should not be treated as a flexible array member access.
906 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
907 // FIXME: Sema doesn't treat a T[1] union member as a flexible array
908 // member, only a T[0] or T[] member gets that treatment.
909 // Under StrictFlexArraysLevel, obey c99+ that disallows FAM in union, see
910 // C11 6.7.2.1 §18
911 if (FD->getParent()->isUnion())
912 return StrictFlexArraysLevel < 2;
913 RecordDecl::field_iterator FI(
914 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
915 return ++FI == FD->getParent()->field_end();
916 }
917 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
918 return IRE->getDecl()->getNextIvar() == nullptr;
919 }
920
921 return false;
922 }
923
LoadPassedObjectSize(const Expr * E,QualType EltTy)924 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
925 QualType EltTy) {
926 ASTContext &C = getContext();
927 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
928 if (!EltSize)
929 return nullptr;
930
931 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
932 if (!ArrayDeclRef)
933 return nullptr;
934
935 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
936 if (!ParamDecl)
937 return nullptr;
938
939 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
940 if (!POSAttr)
941 return nullptr;
942
943 // Don't load the size if it's a lower bound.
944 int POSType = POSAttr->getType();
945 if (POSType != 0 && POSType != 1)
946 return nullptr;
947
948 // Find the implicit size parameter.
949 auto PassedSizeIt = SizeArguments.find(ParamDecl);
950 if (PassedSizeIt == SizeArguments.end())
951 return nullptr;
952
953 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
954 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
955 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
956 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
957 C.getSizeType(), E->getExprLoc());
958 llvm::Value *SizeOfElement =
959 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
960 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
961 }
962
963 /// If Base is known to point to the start of an array, return the length of
964 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType,unsigned StrictFlexArraysLevel)965 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
966 const Expr *Base,
967 QualType &IndexedType,
968 unsigned StrictFlexArraysLevel) {
969 // For the vector indexing extension, the bound is the number of elements.
970 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
971 IndexedType = Base->getType();
972 return CGF.Builder.getInt32(VT->getNumElements());
973 }
974
975 Base = Base->IgnoreParens();
976
977 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
978 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
979 !isFlexibleArrayMemberExpr(CE->getSubExpr(), StrictFlexArraysLevel)) {
980 IndexedType = CE->getSubExpr()->getType();
981 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
982 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
983 return CGF.Builder.getInt(CAT->getSize());
984 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
985 return CGF.getVLASize(VAT).NumElts;
986 // Ignore pass_object_size here. It's not applicable on decayed pointers.
987 }
988 }
989
990 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
991 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
992 IndexedType = Base->getType();
993 return POS;
994 }
995
996 return nullptr;
997 }
998
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)999 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
1000 llvm::Value *Index, QualType IndexType,
1001 bool Accessed) {
1002 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1003 "should not be called unless adding bounds checks");
1004 SanitizerScope SanScope(this);
1005
1006 const unsigned StrictFlexArraysLevel = getLangOpts().StrictFlexArrays;
1007
1008 QualType IndexedType;
1009 llvm::Value *Bound =
1010 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1011 if (!Bound)
1012 return;
1013
1014 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1015 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1016 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1017
1018 llvm::Constant *StaticData[] = {
1019 EmitCheckSourceLocation(E->getExprLoc()),
1020 EmitCheckTypeDescriptor(IndexedType),
1021 EmitCheckTypeDescriptor(IndexType)
1022 };
1023 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1024 : Builder.CreateICmpULE(IndexVal, BoundVal);
1025 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1026 SanitizerHandler::OutOfBounds, StaticData, Index);
1027 }
1028
1029
1030 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1031 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1032 bool isInc, bool isPre) {
1033 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1034
1035 llvm::Value *NextVal;
1036 if (isa<llvm::IntegerType>(InVal.first->getType())) {
1037 uint64_t AmountVal = isInc ? 1 : -1;
1038 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1039
1040 // Add the inc/dec to the real part.
1041 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1042 } else {
1043 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1044 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1045 if (!isInc)
1046 FVal.changeSign();
1047 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1048
1049 // Add the inc/dec to the real part.
1050 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1051 }
1052
1053 ComplexPairTy IncVal(NextVal, InVal.second);
1054
1055 // Store the updated result through the lvalue.
1056 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1057 if (getLangOpts().OpenMP)
1058 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1059 E->getSubExpr());
1060
1061 // If this is a postinc, return the value read from memory, otherwise use the
1062 // updated value.
1063 return isPre ? IncVal : InVal;
1064 }
1065
EmitExplicitCastExprType(const ExplicitCastExpr * E,CodeGenFunction * CGF)1066 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1067 CodeGenFunction *CGF) {
1068 // Bind VLAs in the cast type.
1069 if (CGF && E->getType()->isVariablyModifiedType())
1070 CGF->EmitVariablyModifiedType(E->getType());
1071
1072 if (CGDebugInfo *DI = getModuleDebugInfo())
1073 DI->EmitExplicitCastType(E->getType());
1074 }
1075
1076 //===----------------------------------------------------------------------===//
1077 // LValue Expression Emission
1078 //===----------------------------------------------------------------------===//
1079
1080 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1081 /// derive a more accurate bound on the alignment of the pointer.
EmitPointerWithAlignment(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)1082 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1083 LValueBaseInfo *BaseInfo,
1084 TBAAAccessInfo *TBAAInfo) {
1085 // We allow this with ObjC object pointers because of fragile ABIs.
1086 assert(E->getType()->isPointerType() ||
1087 E->getType()->isObjCObjectPointerType());
1088 E = E->IgnoreParens();
1089
1090 // Casts:
1091 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1092 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1093 CGM.EmitExplicitCastExprType(ECE, this);
1094
1095 switch (CE->getCastKind()) {
1096 // Non-converting casts (but not C's implicit conversion from void*).
1097 case CK_BitCast:
1098 case CK_NoOp:
1099 case CK_AddressSpaceConversion:
1100 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1101 if (PtrTy->getPointeeType()->isVoidType())
1102 break;
1103
1104 LValueBaseInfo InnerBaseInfo;
1105 TBAAAccessInfo InnerTBAAInfo;
1106 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1107 &InnerBaseInfo,
1108 &InnerTBAAInfo);
1109 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1110 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1111
1112 if (isa<ExplicitCastExpr>(CE)) {
1113 LValueBaseInfo TargetTypeBaseInfo;
1114 TBAAAccessInfo TargetTypeTBAAInfo;
1115 CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1116 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1117 if (TBAAInfo)
1118 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1119 TargetTypeTBAAInfo);
1120 // If the source l-value is opaque, honor the alignment of the
1121 // casted-to type.
1122 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1123 if (BaseInfo)
1124 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1125 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1126 }
1127 }
1128
1129 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1130 CE->getCastKind() == CK_BitCast) {
1131 if (auto PT = E->getType()->getAs<PointerType>())
1132 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1133 /*MayBeNull=*/true,
1134 CodeGenFunction::CFITCK_UnrelatedCast,
1135 CE->getBeginLoc());
1136 }
1137
1138 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1139 Addr = Builder.CreateElementBitCast(Addr, ElemTy);
1140 if (CE->getCastKind() == CK_AddressSpaceConversion)
1141 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1142 return Addr;
1143 }
1144 break;
1145
1146 // Array-to-pointer decay.
1147 case CK_ArrayToPointerDecay:
1148 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1149
1150 // Derived-to-base conversions.
1151 case CK_UncheckedDerivedToBase:
1152 case CK_DerivedToBase: {
1153 // TODO: Support accesses to members of base classes in TBAA. For now, we
1154 // conservatively pretend that the complete object is of the base class
1155 // type.
1156 if (TBAAInfo)
1157 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1158 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1159 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1160 return GetAddressOfBaseClass(Addr, Derived,
1161 CE->path_begin(), CE->path_end(),
1162 ShouldNullCheckClassCastValue(CE),
1163 CE->getExprLoc());
1164 }
1165
1166 // TODO: Is there any reason to treat base-to-derived conversions
1167 // specially?
1168 default:
1169 break;
1170 }
1171 }
1172
1173 // Unary &.
1174 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1175 if (UO->getOpcode() == UO_AddrOf) {
1176 LValue LV = EmitLValue(UO->getSubExpr());
1177 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1178 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1179 return LV.getAddress(*this);
1180 }
1181 }
1182
1183 // std::addressof and variants.
1184 if (auto *Call = dyn_cast<CallExpr>(E)) {
1185 switch (Call->getBuiltinCallee()) {
1186 default:
1187 break;
1188 case Builtin::BIaddressof:
1189 case Builtin::BI__addressof:
1190 case Builtin::BI__builtin_addressof: {
1191 LValue LV = EmitLValue(Call->getArg(0));
1192 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1193 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1194 return LV.getAddress(*this);
1195 }
1196 }
1197 }
1198
1199 // TODO: conditional operators, comma.
1200
1201 // Otherwise, use the alignment of the type.
1202 CharUnits Align =
1203 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1204 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1205 return Address(EmitScalarExpr(E), ElemTy, Align);
1206 }
1207
EmitNonNullRValueCheck(RValue RV,QualType T)1208 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1209 llvm::Value *V = RV.getScalarVal();
1210 if (auto MPT = T->getAs<MemberPointerType>())
1211 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1212 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1213 }
1214
GetUndefRValue(QualType Ty)1215 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1216 if (Ty->isVoidType())
1217 return RValue::get(nullptr);
1218
1219 switch (getEvaluationKind(Ty)) {
1220 case TEK_Complex: {
1221 llvm::Type *EltTy =
1222 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1223 llvm::Value *U = llvm::UndefValue::get(EltTy);
1224 return RValue::getComplex(std::make_pair(U, U));
1225 }
1226
1227 // If this is a use of an undefined aggregate type, the aggregate must have an
1228 // identifiable address. Just because the contents of the value are undefined
1229 // doesn't mean that the address can't be taken and compared.
1230 case TEK_Aggregate: {
1231 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1232 return RValue::getAggregate(DestPtr);
1233 }
1234
1235 case TEK_Scalar:
1236 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1237 }
1238 llvm_unreachable("bad evaluation kind");
1239 }
1240
EmitUnsupportedRValue(const Expr * E,const char * Name)1241 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1242 const char *Name) {
1243 ErrorUnsupported(E, Name);
1244 return GetUndefRValue(E->getType());
1245 }
1246
EmitUnsupportedLValue(const Expr * E,const char * Name)1247 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1248 const char *Name) {
1249 ErrorUnsupported(E, Name);
1250 llvm::Type *ElTy = ConvertType(E->getType());
1251 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1252 return MakeAddrLValue(
1253 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1254 }
1255
IsWrappedCXXThis(const Expr * Obj)1256 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1257 const Expr *Base = Obj;
1258 while (!isa<CXXThisExpr>(Base)) {
1259 // The result of a dynamic_cast can be null.
1260 if (isa<CXXDynamicCastExpr>(Base))
1261 return false;
1262
1263 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1264 Base = CE->getSubExpr();
1265 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1266 Base = PE->getSubExpr();
1267 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1268 if (UO->getOpcode() == UO_Extension)
1269 Base = UO->getSubExpr();
1270 else
1271 return false;
1272 } else {
1273 return false;
1274 }
1275 }
1276 return true;
1277 }
1278
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)1279 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1280 LValue LV;
1281 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1282 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1283 else
1284 LV = EmitLValue(E);
1285 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1286 SanitizerSet SkippedChecks;
1287 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1288 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1289 if (IsBaseCXXThis)
1290 SkippedChecks.set(SanitizerKind::Alignment, true);
1291 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1292 SkippedChecks.set(SanitizerKind::Null, true);
1293 }
1294 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1295 LV.getAlignment(), SkippedChecks);
1296 }
1297 return LV;
1298 }
1299
1300 /// EmitLValue - Emit code to compute a designator that specifies the location
1301 /// of the expression.
1302 ///
1303 /// This can return one of two things: a simple address or a bitfield reference.
1304 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1305 /// an LLVM pointer type.
1306 ///
1307 /// If this returns a bitfield reference, nothing about the pointee type of the
1308 /// LLVM value is known: For example, it may not be a pointer to an integer.
1309 ///
1310 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1311 /// this method guarantees that the returned pointer type will point to an LLVM
1312 /// type of the same size of the lvalue's type. If the lvalue has a variable
1313 /// length type, this is not possible.
1314 ///
EmitLValue(const Expr * E)1315 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1316 ApplyDebugLocation DL(*this, E);
1317 switch (E->getStmtClass()) {
1318 default: return EmitUnsupportedLValue(E, "l-value expression");
1319
1320 case Expr::ObjCPropertyRefExprClass:
1321 llvm_unreachable("cannot emit a property reference directly");
1322
1323 case Expr::ObjCSelectorExprClass:
1324 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1325 case Expr::ObjCIsaExprClass:
1326 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1327 case Expr::BinaryOperatorClass:
1328 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1329 case Expr::CompoundAssignOperatorClass: {
1330 QualType Ty = E->getType();
1331 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1332 Ty = AT->getValueType();
1333 if (!Ty->isAnyComplexType())
1334 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1335 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1336 }
1337 case Expr::CallExprClass:
1338 case Expr::CXXMemberCallExprClass:
1339 case Expr::CXXOperatorCallExprClass:
1340 case Expr::UserDefinedLiteralClass:
1341 return EmitCallExprLValue(cast<CallExpr>(E));
1342 case Expr::CXXRewrittenBinaryOperatorClass:
1343 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1344 case Expr::VAArgExprClass:
1345 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1346 case Expr::DeclRefExprClass:
1347 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1348 case Expr::ConstantExprClass: {
1349 const ConstantExpr *CE = cast<ConstantExpr>(E);
1350 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1351 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1352 ->getCallReturnType(getContext())
1353 ->getPointeeType();
1354 return MakeNaturalAlignAddrLValue(Result, RetType);
1355 }
1356 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1357 }
1358 case Expr::ParenExprClass:
1359 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1360 case Expr::GenericSelectionExprClass:
1361 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1362 case Expr::PredefinedExprClass:
1363 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1364 case Expr::StringLiteralClass:
1365 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1366 case Expr::ObjCEncodeExprClass:
1367 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1368 case Expr::PseudoObjectExprClass:
1369 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1370 case Expr::InitListExprClass:
1371 return EmitInitListLValue(cast<InitListExpr>(E));
1372 case Expr::CXXTemporaryObjectExprClass:
1373 case Expr::CXXConstructExprClass:
1374 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1375 case Expr::CXXBindTemporaryExprClass:
1376 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1377 case Expr::CXXUuidofExprClass:
1378 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1379 case Expr::LambdaExprClass:
1380 return EmitAggExprToLValue(E);
1381
1382 case Expr::ExprWithCleanupsClass: {
1383 const auto *cleanups = cast<ExprWithCleanups>(E);
1384 RunCleanupsScope Scope(*this);
1385 LValue LV = EmitLValue(cleanups->getSubExpr());
1386 if (LV.isSimple()) {
1387 // Defend against branches out of gnu statement expressions surrounded by
1388 // cleanups.
1389 Address Addr = LV.getAddress(*this);
1390 llvm::Value *V = Addr.getPointer();
1391 Scope.ForceCleanup({&V});
1392 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1393 LV.getBaseInfo(), LV.getTBAAInfo());
1394 }
1395 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1396 // bitfield lvalue or some other non-simple lvalue?
1397 return LV;
1398 }
1399
1400 case Expr::CXXDefaultArgExprClass: {
1401 auto *DAE = cast<CXXDefaultArgExpr>(E);
1402 CXXDefaultArgExprScope Scope(*this, DAE);
1403 return EmitLValue(DAE->getExpr());
1404 }
1405 case Expr::CXXDefaultInitExprClass: {
1406 auto *DIE = cast<CXXDefaultInitExpr>(E);
1407 CXXDefaultInitExprScope Scope(*this, DIE);
1408 return EmitLValue(DIE->getExpr());
1409 }
1410 case Expr::CXXTypeidExprClass:
1411 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1412
1413 case Expr::ObjCMessageExprClass:
1414 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1415 case Expr::ObjCIvarRefExprClass:
1416 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1417 case Expr::StmtExprClass:
1418 return EmitStmtExprLValue(cast<StmtExpr>(E));
1419 case Expr::UnaryOperatorClass:
1420 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1421 case Expr::ArraySubscriptExprClass:
1422 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1423 case Expr::MatrixSubscriptExprClass:
1424 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1425 case Expr::OMPArraySectionExprClass:
1426 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1427 case Expr::ExtVectorElementExprClass:
1428 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1429 case Expr::MemberExprClass:
1430 return EmitMemberExpr(cast<MemberExpr>(E));
1431 case Expr::CompoundLiteralExprClass:
1432 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1433 case Expr::ConditionalOperatorClass:
1434 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1435 case Expr::BinaryConditionalOperatorClass:
1436 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1437 case Expr::ChooseExprClass:
1438 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1439 case Expr::OpaqueValueExprClass:
1440 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1441 case Expr::SubstNonTypeTemplateParmExprClass:
1442 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1443 case Expr::ImplicitCastExprClass:
1444 case Expr::CStyleCastExprClass:
1445 case Expr::CXXFunctionalCastExprClass:
1446 case Expr::CXXStaticCastExprClass:
1447 case Expr::CXXDynamicCastExprClass:
1448 case Expr::CXXReinterpretCastExprClass:
1449 case Expr::CXXConstCastExprClass:
1450 case Expr::CXXAddrspaceCastExprClass:
1451 case Expr::ObjCBridgedCastExprClass:
1452 return EmitCastLValue(cast<CastExpr>(E));
1453
1454 case Expr::MaterializeTemporaryExprClass:
1455 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1456
1457 case Expr::CoawaitExprClass:
1458 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1459 case Expr::CoyieldExprClass:
1460 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1461 }
1462 }
1463
1464 /// Given an object of the given canonical type, can we safely copy a
1465 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)1466 static bool isConstantEmittableObjectType(QualType type) {
1467 assert(type.isCanonical());
1468 assert(!type->isReferenceType());
1469
1470 // Must be const-qualified but non-volatile.
1471 Qualifiers qs = type.getLocalQualifiers();
1472 if (!qs.hasConst() || qs.hasVolatile()) return false;
1473
1474 // Otherwise, all object types satisfy this except C++ classes with
1475 // mutable subobjects or non-trivial copy/destroy behavior.
1476 if (const auto *RT = dyn_cast<RecordType>(type))
1477 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1478 if (RD->hasMutableFields() || !RD->isTrivial())
1479 return false;
1480
1481 return true;
1482 }
1483
1484 /// Can we constant-emit a load of a reference to a variable of the
1485 /// given type? This is different from predicates like
1486 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1487 /// in situations that don't necessarily satisfy the language's rules
1488 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1489 /// to do this with const float variables even if those variables
1490 /// aren't marked 'constexpr'.
1491 enum ConstantEmissionKind {
1492 CEK_None,
1493 CEK_AsReferenceOnly,
1494 CEK_AsValueOrReference,
1495 CEK_AsValueOnly
1496 };
checkVarTypeForConstantEmission(QualType type)1497 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1498 type = type.getCanonicalType();
1499 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1500 if (isConstantEmittableObjectType(ref->getPointeeType()))
1501 return CEK_AsValueOrReference;
1502 return CEK_AsReferenceOnly;
1503 }
1504 if (isConstantEmittableObjectType(type))
1505 return CEK_AsValueOnly;
1506 return CEK_None;
1507 }
1508
1509 /// Try to emit a reference to the given value without producing it as
1510 /// an l-value. This is just an optimization, but it avoids us needing
1511 /// to emit global copies of variables if they're named without triggering
1512 /// a formal use in a context where we can't emit a direct reference to them,
1513 /// for instance if a block or lambda or a member of a local class uses a
1514 /// const int variable or constexpr variable from an enclosing function.
1515 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)1516 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1517 ValueDecl *value = refExpr->getDecl();
1518
1519 // The value needs to be an enum constant or a constant variable.
1520 ConstantEmissionKind CEK;
1521 if (isa<ParmVarDecl>(value)) {
1522 CEK = CEK_None;
1523 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1524 CEK = checkVarTypeForConstantEmission(var->getType());
1525 } else if (isa<EnumConstantDecl>(value)) {
1526 CEK = CEK_AsValueOnly;
1527 } else {
1528 CEK = CEK_None;
1529 }
1530 if (CEK == CEK_None) return ConstantEmission();
1531
1532 Expr::EvalResult result;
1533 bool resultIsReference;
1534 QualType resultType;
1535
1536 // It's best to evaluate all the way as an r-value if that's permitted.
1537 if (CEK != CEK_AsReferenceOnly &&
1538 refExpr->EvaluateAsRValue(result, getContext())) {
1539 resultIsReference = false;
1540 resultType = refExpr->getType();
1541
1542 // Otherwise, try to evaluate as an l-value.
1543 } else if (CEK != CEK_AsValueOnly &&
1544 refExpr->EvaluateAsLValue(result, getContext())) {
1545 resultIsReference = true;
1546 resultType = value->getType();
1547
1548 // Failure.
1549 } else {
1550 return ConstantEmission();
1551 }
1552
1553 // In any case, if the initializer has side-effects, abandon ship.
1554 if (result.HasSideEffects)
1555 return ConstantEmission();
1556
1557 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1558 // referencing a global host variable by copy. In this case the lambda should
1559 // make a copy of the value of the global host variable. The DRE of the
1560 // captured reference variable cannot be emitted as load from the host
1561 // global variable as compile time constant, since the host variable is not
1562 // accessible on device. The DRE of the captured reference variable has to be
1563 // loaded from captures.
1564 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1565 refExpr->refersToEnclosingVariableOrCapture()) {
1566 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1567 if (MD && MD->getParent()->isLambda() &&
1568 MD->getOverloadedOperator() == OO_Call) {
1569 const APValue::LValueBase &base = result.Val.getLValueBase();
1570 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1571 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1572 if (!VD->hasAttr<CUDADeviceAttr>()) {
1573 return ConstantEmission();
1574 }
1575 }
1576 }
1577 }
1578 }
1579
1580 // Emit as a constant.
1581 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1582 result.Val, resultType);
1583
1584 // Make sure we emit a debug reference to the global variable.
1585 // This should probably fire even for
1586 if (isa<VarDecl>(value)) {
1587 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1588 EmitDeclRefExprDbgValue(refExpr, result.Val);
1589 } else {
1590 assert(isa<EnumConstantDecl>(value));
1591 EmitDeclRefExprDbgValue(refExpr, result.Val);
1592 }
1593
1594 // If we emitted a reference constant, we need to dereference that.
1595 if (resultIsReference)
1596 return ConstantEmission::forReference(C);
1597
1598 return ConstantEmission::forValue(C);
1599 }
1600
tryToConvertMemberExprToDeclRefExpr(CodeGenFunction & CGF,const MemberExpr * ME)1601 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1602 const MemberExpr *ME) {
1603 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1604 // Try to emit static variable member expressions as DREs.
1605 return DeclRefExpr::Create(
1606 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1607 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1608 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1609 }
1610 return nullptr;
1611 }
1612
1613 CodeGenFunction::ConstantEmission
tryEmitAsConstant(const MemberExpr * ME)1614 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1615 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1616 return tryEmitAsConstant(DRE);
1617 return ConstantEmission();
1618 }
1619
emitScalarConstant(const CodeGenFunction::ConstantEmission & Constant,Expr * E)1620 llvm::Value *CodeGenFunction::emitScalarConstant(
1621 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1622 assert(Constant && "not a constant");
1623 if (Constant.isReference())
1624 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1625 E->getExprLoc())
1626 .getScalarVal();
1627 return Constant.getValue();
1628 }
1629
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)1630 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1631 SourceLocation Loc) {
1632 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1633 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1634 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1635 }
1636
hasBooleanRepresentation(QualType Ty)1637 static bool hasBooleanRepresentation(QualType Ty) {
1638 if (Ty->isBooleanType())
1639 return true;
1640
1641 if (const EnumType *ET = Ty->getAs<EnumType>())
1642 return ET->getDecl()->getIntegerType()->isBooleanType();
1643
1644 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1645 return hasBooleanRepresentation(AT->getValueType());
1646
1647 return false;
1648 }
1649
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums,bool IsBool)1650 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1651 llvm::APInt &Min, llvm::APInt &End,
1652 bool StrictEnums, bool IsBool) {
1653 const EnumType *ET = Ty->getAs<EnumType>();
1654 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1655 ET && !ET->getDecl()->isFixed();
1656 if (!IsBool && !IsRegularCPlusPlusEnum)
1657 return false;
1658
1659 if (IsBool) {
1660 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1661 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1662 } else {
1663 const EnumDecl *ED = ET->getDecl();
1664 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1665 unsigned Bitwidth = LTy->getScalarSizeInBits();
1666 unsigned NumNegativeBits = ED->getNumNegativeBits();
1667 unsigned NumPositiveBits = ED->getNumPositiveBits();
1668
1669 if (NumNegativeBits) {
1670 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1671 assert(NumBits <= Bitwidth);
1672 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1673 Min = -End;
1674 } else {
1675 assert(NumPositiveBits <= Bitwidth);
1676 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1677 Min = llvm::APInt::getZero(Bitwidth);
1678 }
1679 }
1680 return true;
1681 }
1682
getRangeForLoadFromType(QualType Ty)1683 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1684 llvm::APInt Min, End;
1685 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1686 hasBooleanRepresentation(Ty)))
1687 return nullptr;
1688
1689 llvm::MDBuilder MDHelper(getLLVMContext());
1690 return MDHelper.createRange(Min, End);
1691 }
1692
EmitScalarRangeCheck(llvm::Value * Value,QualType Ty,SourceLocation Loc)1693 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1694 SourceLocation Loc) {
1695 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1696 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1697 if (!HasBoolCheck && !HasEnumCheck)
1698 return false;
1699
1700 bool IsBool = hasBooleanRepresentation(Ty) ||
1701 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1702 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1703 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1704 if (!NeedsBoolCheck && !NeedsEnumCheck)
1705 return false;
1706
1707 // Single-bit booleans don't need to be checked. Special-case this to avoid
1708 // a bit width mismatch when handling bitfield values. This is handled by
1709 // EmitFromMemory for the non-bitfield case.
1710 if (IsBool &&
1711 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1712 return false;
1713
1714 llvm::APInt Min, End;
1715 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1716 return true;
1717
1718 auto &Ctx = getLLVMContext();
1719 SanitizerScope SanScope(this);
1720 llvm::Value *Check;
1721 --End;
1722 if (!Min) {
1723 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1724 } else {
1725 llvm::Value *Upper =
1726 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1727 llvm::Value *Lower =
1728 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1729 Check = Builder.CreateAnd(Upper, Lower);
1730 }
1731 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1732 EmitCheckTypeDescriptor(Ty)};
1733 SanitizerMask Kind =
1734 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1735 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1736 StaticArgs, EmitCheckValue(Value));
1737 return true;
1738 }
1739
EmitLoadOfScalar(Address Addr,bool Volatile,QualType Ty,SourceLocation Loc,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isNontemporal)1740 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1741 QualType Ty,
1742 SourceLocation Loc,
1743 LValueBaseInfo BaseInfo,
1744 TBAAAccessInfo TBAAInfo,
1745 bool isNontemporal) {
1746 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1747 // Boolean vectors use `iN` as storage type.
1748 if (ClangVecTy->isExtVectorBoolType()) {
1749 llvm::Type *ValTy = ConvertType(Ty);
1750 unsigned ValNumElems =
1751 cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1752 // Load the `iP` storage object (P is the padded vector size).
1753 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1754 const auto *RawIntTy = RawIntV->getType();
1755 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1756 // Bitcast iP --> <P x i1>.
1757 auto *PaddedVecTy = llvm::FixedVectorType::get(
1758 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1759 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1760 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1761 V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1762
1763 return EmitFromMemory(V, Ty);
1764 }
1765
1766 // Handle vectors of size 3 like size 4 for better performance.
1767 const llvm::Type *EltTy = Addr.getElementType();
1768 const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1769
1770 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1771
1772 // Bitcast to vec4 type.
1773 llvm::VectorType *vec4Ty =
1774 llvm::FixedVectorType::get(VTy->getElementType(), 4);
1775 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1776 // Now load value.
1777 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1778
1779 // Shuffle vector to get vec3.
1780 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1781 return EmitFromMemory(V, Ty);
1782 }
1783 }
1784
1785 // Atomic operations have to be done on integral types.
1786 LValue AtomicLValue =
1787 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1788 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1789 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1790 }
1791
1792 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1793 if (isNontemporal) {
1794 llvm::MDNode *Node = llvm::MDNode::get(
1795 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1796 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1797 }
1798
1799 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1800
1801 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1802 // In order to prevent the optimizer from throwing away the check, don't
1803 // attach range metadata to the load.
1804 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1805 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1806 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1807
1808 return EmitFromMemory(Load, Ty);
1809 }
1810
EmitToMemory(llvm::Value * Value,QualType Ty)1811 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1812 // Bool has a different representation in memory than in registers.
1813 if (hasBooleanRepresentation(Ty)) {
1814 // This should really always be an i1, but sometimes it's already
1815 // an i8, and it's awkward to track those cases down.
1816 if (Value->getType()->isIntegerTy(1))
1817 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1818 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1819 "wrong value rep of bool");
1820 }
1821
1822 return Value;
1823 }
1824
EmitFromMemory(llvm::Value * Value,QualType Ty)1825 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1826 // Bool has a different representation in memory than in registers.
1827 if (hasBooleanRepresentation(Ty)) {
1828 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1829 "wrong value rep of bool");
1830 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1831 }
1832 if (Ty->isExtVectorBoolType()) {
1833 const auto *RawIntTy = Value->getType();
1834 // Bitcast iP --> <P x i1>.
1835 auto *PaddedVecTy = llvm::FixedVectorType::get(
1836 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1837 auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1838 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1839 llvm::Type *ValTy = ConvertType(Ty);
1840 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1841 return emitBoolVecConversion(V, ValNumElems, "extractvec");
1842 }
1843
1844 return Value;
1845 }
1846
1847 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1848 // MatrixType), if it points to a array (the memory type of MatrixType).
MaybeConvertMatrixAddress(Address Addr,CodeGenFunction & CGF,bool IsVector=true)1849 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1850 bool IsVector = true) {
1851 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1852 if (ArrayTy && IsVector) {
1853 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1854 ArrayTy->getNumElements());
1855
1856 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1857 }
1858 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1859 if (VectorTy && !IsVector) {
1860 auto *ArrayTy = llvm::ArrayType::get(
1861 VectorTy->getElementType(),
1862 cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1863
1864 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1865 }
1866
1867 return Addr;
1868 }
1869
1870 // Emit a store of a matrix LValue. This may require casting the original
1871 // pointer to memory address (ArrayType) to a pointer to the value type
1872 // (VectorType).
EmitStoreOfMatrixScalar(llvm::Value * value,LValue lvalue,bool isInit,CodeGenFunction & CGF)1873 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1874 bool isInit, CodeGenFunction &CGF) {
1875 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1876 value->getType()->isVectorTy());
1877 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1878 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1879 lvalue.isNontemporal());
1880 }
1881
EmitStoreOfScalar(llvm::Value * Value,Address Addr,bool Volatile,QualType Ty,LValueBaseInfo BaseInfo,TBAAAccessInfo TBAAInfo,bool isInit,bool isNontemporal)1882 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1883 bool Volatile, QualType Ty,
1884 LValueBaseInfo BaseInfo,
1885 TBAAAccessInfo TBAAInfo,
1886 bool isInit, bool isNontemporal) {
1887 llvm::Type *SrcTy = Value->getType();
1888 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1889 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1890 if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1891 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1892 // Expand to the memory bit width.
1893 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1894 // <N x i1> --> <P x i1>.
1895 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1896 // <P x i1> --> iP.
1897 Value = Builder.CreateBitCast(Value, MemIntTy);
1898 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1899 // Handle vec3 special.
1900 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1901 // Our source is a vec3, do a shuffle vector to make it a vec4.
1902 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1903 "extractVec");
1904 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1905 }
1906 if (Addr.getElementType() != SrcTy) {
1907 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1908 }
1909 }
1910 }
1911
1912 Value = EmitToMemory(Value, Ty);
1913
1914 LValue AtomicLValue =
1915 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1916 if (Ty->isAtomicType() ||
1917 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1918 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1919 return;
1920 }
1921
1922 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1923 if (isNontemporal) {
1924 llvm::MDNode *Node =
1925 llvm::MDNode::get(Store->getContext(),
1926 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1927 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1928 }
1929
1930 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1931 }
1932
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1933 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1934 bool isInit) {
1935 if (lvalue.getType()->isConstantMatrixType()) {
1936 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1937 return;
1938 }
1939
1940 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1941 lvalue.getType(), lvalue.getBaseInfo(),
1942 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1943 }
1944
1945 // Emit a load of a LValue of matrix type. This may require casting the pointer
1946 // to memory address (ArrayType) to a pointer to the value type (VectorType).
EmitLoadOfMatrixLValue(LValue LV,SourceLocation Loc,CodeGenFunction & CGF)1947 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1948 CodeGenFunction &CGF) {
1949 assert(LV.getType()->isConstantMatrixType());
1950 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1951 LV.setAddress(Addr);
1952 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1953 }
1954
1955 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1956 /// method emits the address of the lvalue, then loads the result as an rvalue,
1957 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1958 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1959 if (LV.isObjCWeak()) {
1960 // load of a __weak object.
1961 Address AddrWeakObj = LV.getAddress(*this);
1962 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1963 AddrWeakObj));
1964 }
1965 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1966 // In MRC mode, we do a load+autorelease.
1967 if (!getLangOpts().ObjCAutoRefCount) {
1968 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1969 }
1970
1971 // In ARC mode, we load retained and then consume the value.
1972 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1973 Object = EmitObjCConsumeObject(LV.getType(), Object);
1974 return RValue::get(Object);
1975 }
1976
1977 if (LV.isSimple()) {
1978 assert(!LV.getType()->isFunctionType());
1979
1980 if (LV.getType()->isConstantMatrixType())
1981 return EmitLoadOfMatrixLValue(LV, Loc, *this);
1982
1983 // Everything needs a load.
1984 return RValue::get(EmitLoadOfScalar(LV, Loc));
1985 }
1986
1987 if (LV.isVectorElt()) {
1988 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1989 LV.isVolatileQualified());
1990 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1991 "vecext"));
1992 }
1993
1994 // If this is a reference to a subset of the elements of a vector, either
1995 // shuffle the input or extract/insert them as appropriate.
1996 if (LV.isExtVectorElt()) {
1997 return EmitLoadOfExtVectorElementLValue(LV);
1998 }
1999
2000 // Global Register variables always invoke intrinsics
2001 if (LV.isGlobalReg())
2002 return EmitLoadOfGlobalRegLValue(LV);
2003
2004 if (LV.isMatrixElt()) {
2005 llvm::Value *Idx = LV.getMatrixIdx();
2006 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2007 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2008 llvm::MatrixBuilder MB(Builder);
2009 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2010 }
2011 llvm::LoadInst *Load =
2012 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2013 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2014 }
2015
2016 assert(LV.isBitField() && "Unknown LValue type!");
2017 return EmitLoadOfBitfieldLValue(LV, Loc);
2018 }
2019
EmitLoadOfBitfieldLValue(LValue LV,SourceLocation Loc)2020 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2021 SourceLocation Loc) {
2022 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2023
2024 // Get the output type.
2025 llvm::Type *ResLTy = ConvertType(LV.getType());
2026
2027 Address Ptr = LV.getBitFieldAddress();
2028 llvm::Value *Val =
2029 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2030
2031 bool UseVolatile = LV.isVolatileQualified() &&
2032 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2033 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2034 const unsigned StorageSize =
2035 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2036 if (Info.IsSigned) {
2037 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2038 unsigned HighBits = StorageSize - Offset - Info.Size;
2039 if (HighBits)
2040 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2041 if (Offset + HighBits)
2042 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2043 } else {
2044 if (Offset)
2045 Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2046 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2047 Val = Builder.CreateAnd(
2048 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2049 }
2050 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2051 EmitScalarRangeCheck(Val, LV.getType(), Loc);
2052 return RValue::get(Val);
2053 }
2054
2055 // If this is a reference to a subset of the elements of a vector, create an
2056 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)2057 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2058 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2059 LV.isVolatileQualified());
2060
2061 const llvm::Constant *Elts = LV.getExtVectorElts();
2062
2063 // If the result of the expression is a non-vector type, we must be extracting
2064 // a single element. Just codegen as an extractelement.
2065 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2066 if (!ExprVT) {
2067 unsigned InIdx = getAccessedFieldNo(0, Elts);
2068 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2069 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2070 }
2071
2072 // Always use shuffle vector to try to retain the original program structure
2073 unsigned NumResultElts = ExprVT->getNumElements();
2074
2075 SmallVector<int, 4> Mask;
2076 for (unsigned i = 0; i != NumResultElts; ++i)
2077 Mask.push_back(getAccessedFieldNo(i, Elts));
2078
2079 Vec = Builder.CreateShuffleVector(Vec, Mask);
2080 return RValue::get(Vec);
2081 }
2082
2083 /// Generates lvalue for partial ext_vector access.
EmitExtVectorElementLValue(LValue LV)2084 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2085 Address VectorAddress = LV.getExtVectorAddress();
2086 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2087 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2088
2089 Address CastToPointerElement =
2090 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2091 "conv.ptr.element");
2092
2093 const llvm::Constant *Elts = LV.getExtVectorElts();
2094 unsigned ix = getAccessedFieldNo(0, Elts);
2095
2096 Address VectorBasePtrPlusIx =
2097 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2098 "vector.elt");
2099
2100 return VectorBasePtrPlusIx;
2101 }
2102
2103 /// Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)2104 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2105 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2106 "Bad type for register variable");
2107 llvm::MDNode *RegName = cast<llvm::MDNode>(
2108 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2109
2110 // We accept integer and pointer types only
2111 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2112 llvm::Type *Ty = OrigTy;
2113 if (OrigTy->isPointerTy())
2114 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2115 llvm::Type *Types[] = { Ty };
2116
2117 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2118 llvm::Value *Call = Builder.CreateCall(
2119 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2120 if (OrigTy->isPointerTy())
2121 Call = Builder.CreateIntToPtr(Call, OrigTy);
2122 return RValue::get(Call);
2123 }
2124
2125 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2126 /// lvalue, where both are guaranteed to the have the same type, and that type
2127 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)2128 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2129 bool isInit) {
2130 if (!Dst.isSimple()) {
2131 if (Dst.isVectorElt()) {
2132 // Read/modify/write the vector, inserting the new element.
2133 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2134 Dst.isVolatileQualified());
2135 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2136 if (IRStoreTy) {
2137 auto *IRVecTy = llvm::FixedVectorType::get(
2138 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2139 Vec = Builder.CreateBitCast(Vec, IRVecTy);
2140 // iN --> <N x i1>.
2141 }
2142 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2143 Dst.getVectorIdx(), "vecins");
2144 if (IRStoreTy) {
2145 // <N x i1> --> <iN>.
2146 Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2147 }
2148 Builder.CreateStore(Vec, Dst.getVectorAddress(),
2149 Dst.isVolatileQualified());
2150 return;
2151 }
2152
2153 // If this is an update of extended vector elements, insert them as
2154 // appropriate.
2155 if (Dst.isExtVectorElt())
2156 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2157
2158 if (Dst.isGlobalReg())
2159 return EmitStoreThroughGlobalRegLValue(Src, Dst);
2160
2161 if (Dst.isMatrixElt()) {
2162 llvm::Value *Idx = Dst.getMatrixIdx();
2163 if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2164 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2165 llvm::MatrixBuilder MB(Builder);
2166 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2167 }
2168 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2169 llvm::Value *Vec =
2170 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2171 Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2172 Dst.isVolatileQualified());
2173 return;
2174 }
2175
2176 assert(Dst.isBitField() && "Unknown LValue type");
2177 return EmitStoreThroughBitfieldLValue(Src, Dst);
2178 }
2179
2180 // There's special magic for assigning into an ARC-qualified l-value.
2181 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2182 switch (Lifetime) {
2183 case Qualifiers::OCL_None:
2184 llvm_unreachable("present but none");
2185
2186 case Qualifiers::OCL_ExplicitNone:
2187 // nothing special
2188 break;
2189
2190 case Qualifiers::OCL_Strong:
2191 if (isInit) {
2192 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2193 break;
2194 }
2195 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2196 return;
2197
2198 case Qualifiers::OCL_Weak:
2199 if (isInit)
2200 // Initialize and then skip the primitive store.
2201 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2202 else
2203 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2204 /*ignore*/ true);
2205 return;
2206
2207 case Qualifiers::OCL_Autoreleasing:
2208 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2209 Src.getScalarVal()));
2210 // fall into the normal path
2211 break;
2212 }
2213 }
2214
2215 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2216 // load of a __weak object.
2217 Address LvalueDst = Dst.getAddress(*this);
2218 llvm::Value *src = Src.getScalarVal();
2219 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2220 return;
2221 }
2222
2223 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2224 // load of a __strong object.
2225 Address LvalueDst = Dst.getAddress(*this);
2226 llvm::Value *src = Src.getScalarVal();
2227 if (Dst.isObjCIvar()) {
2228 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2229 llvm::Type *ResultType = IntPtrTy;
2230 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2231 llvm::Value *RHS = dst.getPointer();
2232 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2233 llvm::Value *LHS =
2234 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2235 "sub.ptr.lhs.cast");
2236 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2237 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2238 BytesBetween);
2239 } else if (Dst.isGlobalObjCRef()) {
2240 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2241 Dst.isThreadLocalRef());
2242 }
2243 else
2244 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2245 return;
2246 }
2247
2248 assert(Src.isScalar() && "Can't emit an agg store with this method");
2249 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2250 }
2251
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)2252 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2253 llvm::Value **Result) {
2254 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2255 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2256 Address Ptr = Dst.getBitFieldAddress();
2257
2258 // Get the source value, truncated to the width of the bit-field.
2259 llvm::Value *SrcVal = Src.getScalarVal();
2260
2261 // Cast the source to the storage type and shift it into place.
2262 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2263 /*isSigned=*/false);
2264 llvm::Value *MaskedVal = SrcVal;
2265
2266 const bool UseVolatile =
2267 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2268 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2269 const unsigned StorageSize =
2270 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2271 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2272 // See if there are other bits in the bitfield's storage we'll need to load
2273 // and mask together with source before storing.
2274 if (StorageSize != Info.Size) {
2275 assert(StorageSize > Info.Size && "Invalid bitfield size.");
2276 llvm::Value *Val =
2277 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2278
2279 // Mask the source value as needed.
2280 if (!hasBooleanRepresentation(Dst.getType()))
2281 SrcVal = Builder.CreateAnd(
2282 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2283 "bf.value");
2284 MaskedVal = SrcVal;
2285 if (Offset)
2286 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2287
2288 // Mask out the original value.
2289 Val = Builder.CreateAnd(
2290 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2291 "bf.clear");
2292
2293 // Or together the unchanged values and the source value.
2294 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2295 } else {
2296 assert(Offset == 0);
2297 // According to the AACPS:
2298 // When a volatile bit-field is written, and its container does not overlap
2299 // with any non-bit-field member, its container must be read exactly once
2300 // and written exactly once using the access width appropriate to the type
2301 // of the container. The two accesses are not atomic.
2302 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2303 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2304 Builder.CreateLoad(Ptr, true, "bf.load");
2305 }
2306
2307 // Write the new value back out.
2308 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2309
2310 // Return the new value of the bit-field, if requested.
2311 if (Result) {
2312 llvm::Value *ResultVal = MaskedVal;
2313
2314 // Sign extend the value if needed.
2315 if (Info.IsSigned) {
2316 assert(Info.Size <= StorageSize);
2317 unsigned HighBits = StorageSize - Info.Size;
2318 if (HighBits) {
2319 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2320 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2321 }
2322 }
2323
2324 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2325 "bf.result.cast");
2326 *Result = EmitFromMemory(ResultVal, Dst.getType());
2327 }
2328 }
2329
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)2330 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2331 LValue Dst) {
2332 // This access turns into a read/modify/write of the vector. Load the input
2333 // value now.
2334 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2335 Dst.isVolatileQualified());
2336 const llvm::Constant *Elts = Dst.getExtVectorElts();
2337
2338 llvm::Value *SrcVal = Src.getScalarVal();
2339
2340 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2341 unsigned NumSrcElts = VTy->getNumElements();
2342 unsigned NumDstElts =
2343 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2344 if (NumDstElts == NumSrcElts) {
2345 // Use shuffle vector is the src and destination are the same number of
2346 // elements and restore the vector mask since it is on the side it will be
2347 // stored.
2348 SmallVector<int, 4> Mask(NumDstElts);
2349 for (unsigned i = 0; i != NumSrcElts; ++i)
2350 Mask[getAccessedFieldNo(i, Elts)] = i;
2351
2352 Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2353 } else if (NumDstElts > NumSrcElts) {
2354 // Extended the source vector to the same length and then shuffle it
2355 // into the destination.
2356 // FIXME: since we're shuffling with undef, can we just use the indices
2357 // into that? This could be simpler.
2358 SmallVector<int, 4> ExtMask;
2359 for (unsigned i = 0; i != NumSrcElts; ++i)
2360 ExtMask.push_back(i);
2361 ExtMask.resize(NumDstElts, -1);
2362 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2363 // build identity
2364 SmallVector<int, 4> Mask;
2365 for (unsigned i = 0; i != NumDstElts; ++i)
2366 Mask.push_back(i);
2367
2368 // When the vector size is odd and .odd or .hi is used, the last element
2369 // of the Elts constant array will be one past the size of the vector.
2370 // Ignore the last element here, if it is greater than the mask size.
2371 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2372 NumSrcElts--;
2373
2374 // modify when what gets shuffled in
2375 for (unsigned i = 0; i != NumSrcElts; ++i)
2376 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2377 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2378 } else {
2379 // We should never shorten the vector
2380 llvm_unreachable("unexpected shorten vector length");
2381 }
2382 } else {
2383 // If the Src is a scalar (not a vector) it must be updating one element.
2384 unsigned InIdx = getAccessedFieldNo(0, Elts);
2385 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2386 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2387 }
2388
2389 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2390 Dst.isVolatileQualified());
2391 }
2392
2393 /// Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)2394 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2395 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2396 "Bad type for register variable");
2397 llvm::MDNode *RegName = cast<llvm::MDNode>(
2398 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2399 assert(RegName && "Register LValue is not metadata");
2400
2401 // We accept integer and pointer types only
2402 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2403 llvm::Type *Ty = OrigTy;
2404 if (OrigTy->isPointerTy())
2405 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2406 llvm::Type *Types[] = { Ty };
2407
2408 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2409 llvm::Value *Value = Src.getScalarVal();
2410 if (OrigTy->isPointerTy())
2411 Value = Builder.CreatePtrToInt(Value, Ty);
2412 Builder.CreateCall(
2413 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2414 }
2415
2416 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2417 // generating write-barries API. It is currently a global, ivar,
2418 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)2419 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2420 LValue &LV,
2421 bool IsMemberAccess=false) {
2422 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2423 return;
2424
2425 if (isa<ObjCIvarRefExpr>(E)) {
2426 QualType ExpTy = E->getType();
2427 if (IsMemberAccess && ExpTy->isPointerType()) {
2428 // If ivar is a structure pointer, assigning to field of
2429 // this struct follows gcc's behavior and makes it a non-ivar
2430 // writer-barrier conservatively.
2431 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2432 if (ExpTy->isRecordType()) {
2433 LV.setObjCIvar(false);
2434 return;
2435 }
2436 }
2437 LV.setObjCIvar(true);
2438 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2439 LV.setBaseIvarExp(Exp->getBase());
2440 LV.setObjCArray(E->getType()->isArrayType());
2441 return;
2442 }
2443
2444 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2445 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2446 if (VD->hasGlobalStorage()) {
2447 LV.setGlobalObjCRef(true);
2448 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2449 }
2450 }
2451 LV.setObjCArray(E->getType()->isArrayType());
2452 return;
2453 }
2454
2455 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2456 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2457 return;
2458 }
2459
2460 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2461 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2462 if (LV.isObjCIvar()) {
2463 // If cast is to a structure pointer, follow gcc's behavior and make it
2464 // a non-ivar write-barrier.
2465 QualType ExpTy = E->getType();
2466 if (ExpTy->isPointerType())
2467 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2468 if (ExpTy->isRecordType())
2469 LV.setObjCIvar(false);
2470 }
2471 return;
2472 }
2473
2474 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2475 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2476 return;
2477 }
2478
2479 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2480 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2481 return;
2482 }
2483
2484 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2485 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2486 return;
2487 }
2488
2489 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2490 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2491 return;
2492 }
2493
2494 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2495 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2496 if (LV.isObjCIvar() && !LV.isObjCArray())
2497 // Using array syntax to assigning to what an ivar points to is not
2498 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2499 LV.setObjCIvar(false);
2500 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2501 // Using array syntax to assigning to what global points to is not
2502 // same as assigning to the global itself. {id *G;} G[i] = 0;
2503 LV.setGlobalObjCRef(false);
2504 return;
2505 }
2506
2507 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2508 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2509 // We don't know if member is an 'ivar', but this flag is looked at
2510 // only in the context of LV.isObjCIvar().
2511 LV.setObjCArray(E->getType()->isArrayType());
2512 return;
2513 }
2514 }
2515
2516 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())2517 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2518 llvm::Value *V, llvm::Type *IRType,
2519 StringRef Name = StringRef()) {
2520 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2521 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2522 }
2523
EmitThreadPrivateVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T,Address Addr,llvm::Type * RealVarTy,SourceLocation Loc)2524 static LValue EmitThreadPrivateVarDeclLValue(
2525 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2526 llvm::Type *RealVarTy, SourceLocation Loc) {
2527 if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2528 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2529 CGF, VD, Addr, Loc);
2530 else
2531 Addr =
2532 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2533
2534 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2535 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2536 }
2537
emitDeclTargetVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T)2538 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2539 const VarDecl *VD, QualType T) {
2540 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2541 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2542 // Return an invalid address if variable is MT_To and unified
2543 // memory is not enabled. For all other cases: MT_Link and
2544 // MT_To with unified memory, return a valid address.
2545 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2546 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2547 return Address::invalid();
2548 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2549 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2550 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2551 "Expected link clause OR to clause with unified memory enabled.");
2552 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2553 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2554 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2555 }
2556
2557 Address
EmitLoadOfReference(LValue RefLVal,LValueBaseInfo * PointeeBaseInfo,TBAAAccessInfo * PointeeTBAAInfo)2558 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2559 LValueBaseInfo *PointeeBaseInfo,
2560 TBAAAccessInfo *PointeeTBAAInfo) {
2561 llvm::LoadInst *Load =
2562 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2563 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2564
2565 QualType PointeeType = RefLVal.getType()->getPointeeType();
2566 CharUnits Align = CGM.getNaturalTypeAlignment(
2567 PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2568 /* forPointeeType= */ true);
2569 return Address(Load, ConvertTypeForMem(PointeeType), Align);
2570 }
2571
EmitLoadOfReferenceLValue(LValue RefLVal)2572 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2573 LValueBaseInfo PointeeBaseInfo;
2574 TBAAAccessInfo PointeeTBAAInfo;
2575 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2576 &PointeeTBAAInfo);
2577 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2578 PointeeBaseInfo, PointeeTBAAInfo);
2579 }
2580
EmitLoadOfPointer(Address Ptr,const PointerType * PtrTy,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)2581 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2582 const PointerType *PtrTy,
2583 LValueBaseInfo *BaseInfo,
2584 TBAAAccessInfo *TBAAInfo) {
2585 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2586 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2587 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2588 TBAAInfo,
2589 /*forPointeeType=*/true));
2590 }
2591
EmitLoadOfPointerLValue(Address PtrAddr,const PointerType * PtrTy)2592 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2593 const PointerType *PtrTy) {
2594 LValueBaseInfo BaseInfo;
2595 TBAAAccessInfo TBAAInfo;
2596 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2597 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2598 }
2599
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)2600 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2601 const Expr *E, const VarDecl *VD) {
2602 QualType T = E->getType();
2603
2604 // If it's thread_local, emit a call to its wrapper function instead.
2605 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2606 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2607 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2608 // Check if the variable is marked as declare target with link clause in
2609 // device codegen.
2610 if (CGF.getLangOpts().OpenMPIsDevice) {
2611 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2612 if (Addr.isValid())
2613 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2614 }
2615
2616 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2617 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2618 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2619 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2620 Address Addr(V, RealVarTy, Alignment);
2621 // Emit reference to the private copy of the variable if it is an OpenMP
2622 // threadprivate variable.
2623 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2624 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2625 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2626 E->getExprLoc());
2627 }
2628 LValue LV = VD->getType()->isReferenceType() ?
2629 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2630 AlignmentSource::Decl) :
2631 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2632 setObjCGCLValueClass(CGF.getContext(), E, LV);
2633 return LV;
2634 }
2635
EmitFunctionDeclPointer(CodeGenModule & CGM,GlobalDecl GD)2636 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2637 GlobalDecl GD) {
2638 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2639 if (FD->hasAttr<WeakRefAttr>()) {
2640 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2641 return aliasee.getPointer();
2642 }
2643
2644 llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2645 if (!FD->hasPrototype()) {
2646 if (const FunctionProtoType *Proto =
2647 FD->getType()->getAs<FunctionProtoType>()) {
2648 // Ugly case: for a K&R-style definition, the type of the definition
2649 // isn't the same as the type of a use. Correct for this with a
2650 // bitcast.
2651 QualType NoProtoType =
2652 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2653 NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2654 V = llvm::ConstantExpr::getBitCast(V,
2655 CGM.getTypes().ConvertType(NoProtoType));
2656 }
2657 }
2658 return V;
2659 }
2660
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,GlobalDecl GD)2661 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2662 GlobalDecl GD) {
2663 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2664 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2665 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2666 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2667 AlignmentSource::Decl);
2668 }
2669
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)2670 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2671 llvm::Value *ThisValue) {
2672 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2673 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2674 return CGF.EmitLValueForField(LV, FD);
2675 }
2676
2677 /// Named Registers are named metadata pointing to the register name
2678 /// which will be read from/written to as an argument to the intrinsic
2679 /// @llvm.read/write_register.
2680 /// So far, only the name is being passed down, but other options such as
2681 /// register type, allocation type or even optimization options could be
2682 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM)2683 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2684 SmallString<64> Name("llvm.named.register.");
2685 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2686 assert(Asm->getLabel().size() < 64-Name.size() &&
2687 "Register name too big");
2688 Name.append(Asm->getLabel());
2689 llvm::NamedMDNode *M =
2690 CGM.getModule().getOrInsertNamedMetadata(Name);
2691 if (M->getNumOperands() == 0) {
2692 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2693 Asm->getLabel());
2694 llvm::Metadata *Ops[] = {Str};
2695 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2696 }
2697
2698 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2699
2700 llvm::Value *Ptr =
2701 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2702 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2703 }
2704
2705 /// Determine whether we can emit a reference to \p VD from the current
2706 /// context, despite not necessarily having seen an odr-use of the variable in
2707 /// this context.
canEmitSpuriousReferenceToVariable(CodeGenFunction & CGF,const DeclRefExpr * E,const VarDecl * VD,bool IsConstant)2708 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2709 const DeclRefExpr *E,
2710 const VarDecl *VD,
2711 bool IsConstant) {
2712 // For a variable declared in an enclosing scope, do not emit a spurious
2713 // reference even if we have a capture, as that will emit an unwarranted
2714 // reference to our capture state, and will likely generate worse code than
2715 // emitting a local copy.
2716 if (E->refersToEnclosingVariableOrCapture())
2717 return false;
2718
2719 // For a local declaration declared in this function, we can always reference
2720 // it even if we don't have an odr-use.
2721 if (VD->hasLocalStorage()) {
2722 return VD->getDeclContext() ==
2723 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2724 }
2725
2726 // For a global declaration, we can emit a reference to it if we know
2727 // for sure that we are able to emit a definition of it.
2728 VD = VD->getDefinition(CGF.getContext());
2729 if (!VD)
2730 return false;
2731
2732 // Don't emit a spurious reference if it might be to a variable that only
2733 // exists on a different device / target.
2734 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2735 // cross-target reference.
2736 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2737 CGF.getLangOpts().OpenCL) {
2738 return false;
2739 }
2740
2741 // We can emit a spurious reference only if the linkage implies that we'll
2742 // be emitting a non-interposable symbol that will be retained until link
2743 // time.
2744 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2745 case llvm::GlobalValue::ExternalLinkage:
2746 case llvm::GlobalValue::LinkOnceODRLinkage:
2747 case llvm::GlobalValue::WeakODRLinkage:
2748 case llvm::GlobalValue::InternalLinkage:
2749 case llvm::GlobalValue::PrivateLinkage:
2750 return true;
2751 default:
2752 return false;
2753 }
2754 }
2755
EmitDeclRefLValue(const DeclRefExpr * E)2756 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2757 const NamedDecl *ND = E->getDecl();
2758 QualType T = E->getType();
2759
2760 assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2761 "should not emit an unevaluated operand");
2762
2763 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2764 // Global Named registers access via intrinsics only
2765 if (VD->getStorageClass() == SC_Register &&
2766 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2767 return EmitGlobalNamedRegister(VD, CGM);
2768
2769 // If this DeclRefExpr does not constitute an odr-use of the variable,
2770 // we're not permitted to emit a reference to it in general, and it might
2771 // not be captured if capture would be necessary for a use. Emit the
2772 // constant value directly instead.
2773 if (E->isNonOdrUse() == NOUR_Constant &&
2774 (VD->getType()->isReferenceType() ||
2775 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2776 VD->getAnyInitializer(VD);
2777 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2778 E->getLocation(), *VD->evaluateValue(), VD->getType());
2779 assert(Val && "failed to emit constant expression");
2780
2781 Address Addr = Address::invalid();
2782 if (!VD->getType()->isReferenceType()) {
2783 // Spill the constant value to a global.
2784 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2785 getContext().getDeclAlign(VD));
2786 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2787 auto *PTy = llvm::PointerType::get(
2788 VarTy, getContext().getTargetAddressSpace(VD->getType()));
2789 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2790 } else {
2791 // Should we be using the alignment of the constant pointer we emitted?
2792 CharUnits Alignment =
2793 CGM.getNaturalTypeAlignment(E->getType(),
2794 /* BaseInfo= */ nullptr,
2795 /* TBAAInfo= */ nullptr,
2796 /* forPointeeType= */ true);
2797 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2798 }
2799 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2800 }
2801
2802 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2803
2804 // Check for captured variables.
2805 if (E->refersToEnclosingVariableOrCapture()) {
2806 VD = VD->getCanonicalDecl();
2807 if (auto *FD = LambdaCaptureFields.lookup(VD))
2808 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2809 if (CapturedStmtInfo) {
2810 auto I = LocalDeclMap.find(VD);
2811 if (I != LocalDeclMap.end()) {
2812 LValue CapLVal;
2813 if (VD->getType()->isReferenceType())
2814 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2815 AlignmentSource::Decl);
2816 else
2817 CapLVal = MakeAddrLValue(I->second, T);
2818 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2819 // in simd context.
2820 if (getLangOpts().OpenMP &&
2821 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2822 CapLVal.setNontemporal(/*Value=*/true);
2823 return CapLVal;
2824 }
2825 LValue CapLVal =
2826 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2827 CapturedStmtInfo->getContextValue());
2828 Address LValueAddress = CapLVal.getAddress(*this);
2829 CapLVal = MakeAddrLValue(
2830 Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2831 getContext().getDeclAlign(VD)),
2832 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2833 CapLVal.getTBAAInfo());
2834 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2835 // in simd context.
2836 if (getLangOpts().OpenMP &&
2837 CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2838 CapLVal.setNontemporal(/*Value=*/true);
2839 return CapLVal;
2840 }
2841
2842 assert(isa<BlockDecl>(CurCodeDecl));
2843 Address addr = GetAddrOfBlockDecl(VD);
2844 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2845 }
2846 }
2847
2848 // FIXME: We should be able to assert this for FunctionDecls as well!
2849 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2850 // those with a valid source location.
2851 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2852 !E->getLocation().isValid()) &&
2853 "Should not use decl without marking it used!");
2854
2855 if (ND->hasAttr<WeakRefAttr>()) {
2856 const auto *VD = cast<ValueDecl>(ND);
2857 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2858 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2859 }
2860
2861 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2862 // Check if this is a global variable.
2863 if (VD->hasLinkage() || VD->isStaticDataMember())
2864 return EmitGlobalVarDeclLValue(*this, E, VD);
2865
2866 Address addr = Address::invalid();
2867
2868 // The variable should generally be present in the local decl map.
2869 auto iter = LocalDeclMap.find(VD);
2870 if (iter != LocalDeclMap.end()) {
2871 addr = iter->second;
2872
2873 // Otherwise, it might be static local we haven't emitted yet for
2874 // some reason; most likely, because it's in an outer function.
2875 } else if (VD->isStaticLocal()) {
2876 llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2877 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2878 addr = Address(
2879 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2880
2881 // No other cases for now.
2882 } else {
2883 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2884 }
2885
2886
2887 // Check for OpenMP threadprivate variables.
2888 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2889 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2890 return EmitThreadPrivateVarDeclLValue(
2891 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2892 E->getExprLoc());
2893 }
2894
2895 // Drill into block byref variables.
2896 bool isBlockByref = VD->isEscapingByref();
2897 if (isBlockByref) {
2898 addr = emitBlockByrefAddress(addr, VD);
2899 }
2900
2901 // Drill into reference types.
2902 LValue LV = VD->getType()->isReferenceType() ?
2903 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2904 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2905
2906 bool isLocalStorage = VD->hasLocalStorage();
2907
2908 bool NonGCable = isLocalStorage &&
2909 !VD->getType()->isReferenceType() &&
2910 !isBlockByref;
2911 if (NonGCable) {
2912 LV.getQuals().removeObjCGCAttr();
2913 LV.setNonGC(true);
2914 }
2915
2916 bool isImpreciseLifetime =
2917 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2918 if (isImpreciseLifetime)
2919 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2920 setObjCGCLValueClass(getContext(), E, LV);
2921 return LV;
2922 }
2923
2924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2925 LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2926
2927 // Emit debuginfo for the function declaration if the target wants to.
2928 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2929 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2930 auto *Fn =
2931 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2932 if (!Fn->getSubprogram())
2933 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2934 }
2935 }
2936
2937 return LV;
2938 }
2939
2940 // FIXME: While we're emitting a binding from an enclosing scope, all other
2941 // DeclRefExprs we see should be implicitly treated as if they also refer to
2942 // an enclosing scope.
2943 if (const auto *BD = dyn_cast<BindingDecl>(ND))
2944 return EmitLValue(BD->getBinding());
2945
2946 // We can form DeclRefExprs naming GUID declarations when reconstituting
2947 // non-type template parameters into expressions.
2948 if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2949 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2950 AlignmentSource::Decl);
2951
2952 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2953 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2954 AlignmentSource::Decl);
2955
2956 llvm_unreachable("Unhandled DeclRefExpr");
2957 }
2958
EmitUnaryOpLValue(const UnaryOperator * E)2959 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2960 // __extension__ doesn't affect lvalue-ness.
2961 if (E->getOpcode() == UO_Extension)
2962 return EmitLValue(E->getSubExpr());
2963
2964 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2965 switch (E->getOpcode()) {
2966 default: llvm_unreachable("Unknown unary operator lvalue!");
2967 case UO_Deref: {
2968 QualType T = E->getSubExpr()->getType()->getPointeeType();
2969 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2970
2971 LValueBaseInfo BaseInfo;
2972 TBAAAccessInfo TBAAInfo;
2973 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2974 &TBAAInfo);
2975 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2976 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2977
2978 // We should not generate __weak write barrier on indirect reference
2979 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2980 // But, we continue to generate __strong write barrier on indirect write
2981 // into a pointer to object.
2982 if (getLangOpts().ObjC &&
2983 getLangOpts().getGC() != LangOptions::NonGC &&
2984 LV.isObjCWeak())
2985 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2986 return LV;
2987 }
2988 case UO_Real:
2989 case UO_Imag: {
2990 LValue LV = EmitLValue(E->getSubExpr());
2991 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2992
2993 // __real is valid on scalars. This is a faster way of testing that.
2994 // __imag can only produce an rvalue on scalars.
2995 if (E->getOpcode() == UO_Real &&
2996 !LV.getAddress(*this).getElementType()->isStructTy()) {
2997 assert(E->getSubExpr()->getType()->isArithmeticType());
2998 return LV;
2999 }
3000
3001 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3002
3003 Address Component =
3004 (E->getOpcode() == UO_Real
3005 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
3006 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
3007 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3008 CGM.getTBAAInfoForSubobject(LV, T));
3009 ElemLV.getQuals().addQualifiers(LV.getQuals());
3010 return ElemLV;
3011 }
3012 case UO_PreInc:
3013 case UO_PreDec: {
3014 LValue LV = EmitLValue(E->getSubExpr());
3015 bool isInc = E->getOpcode() == UO_PreInc;
3016
3017 if (E->getType()->isAnyComplexType())
3018 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3019 else
3020 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3021 return LV;
3022 }
3023 }
3024 }
3025
EmitStringLiteralLValue(const StringLiteral * E)3026 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3027 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3028 E->getType(), AlignmentSource::Decl);
3029 }
3030
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)3031 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3032 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3033 E->getType(), AlignmentSource::Decl);
3034 }
3035
EmitPredefinedLValue(const PredefinedExpr * E)3036 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3037 auto SL = E->getFunctionName();
3038 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3039 StringRef FnName = CurFn->getName();
3040 if (FnName.startswith("\01"))
3041 FnName = FnName.substr(1);
3042 StringRef NameItems[] = {
3043 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3044 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3045 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3046 std::string Name = std::string(SL->getString());
3047 if (!Name.empty()) {
3048 unsigned Discriminator =
3049 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3050 if (Discriminator)
3051 Name += "_" + Twine(Discriminator + 1).str();
3052 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3053 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3054 } else {
3055 auto C =
3056 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3057 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3058 }
3059 }
3060 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3061 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3062 }
3063
3064 /// Emit a type description suitable for use by a runtime sanitizer library. The
3065 /// format of a type descriptor is
3066 ///
3067 /// \code
3068 /// { i16 TypeKind, i16 TypeInfo }
3069 /// \endcode
3070 ///
3071 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3072 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)3073 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3074 // Only emit each type's descriptor once.
3075 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3076 return C;
3077
3078 uint16_t TypeKind = -1;
3079 uint16_t TypeInfo = 0;
3080
3081 if (T->isIntegerType()) {
3082 TypeKind = 0;
3083 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3084 (T->isSignedIntegerType() ? 1 : 0);
3085 } else if (T->isFloatingType()) {
3086 TypeKind = 1;
3087 TypeInfo = getContext().getTypeSize(T);
3088 }
3089
3090 // Format the type name as if for a diagnostic, including quotes and
3091 // optionally an 'aka'.
3092 SmallString<32> Buffer;
3093 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3094 (intptr_t)T.getAsOpaquePtr(),
3095 StringRef(), StringRef(), None, Buffer,
3096 None);
3097
3098 llvm::Constant *Components[] = {
3099 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3100 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3101 };
3102 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3103
3104 auto *GV = new llvm::GlobalVariable(
3105 CGM.getModule(), Descriptor->getType(),
3106 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3107 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3108 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3109
3110 // Remember the descriptor for this type.
3111 CGM.setTypeDescriptorInMap(T, GV);
3112
3113 return GV;
3114 }
3115
EmitCheckValue(llvm::Value * V)3116 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3117 llvm::Type *TargetTy = IntPtrTy;
3118
3119 if (V->getType() == TargetTy)
3120 return V;
3121
3122 // Floating-point types which fit into intptr_t are bitcast to integers
3123 // and then passed directly (after zero-extension, if necessary).
3124 if (V->getType()->isFloatingPointTy()) {
3125 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3126 if (Bits <= TargetTy->getIntegerBitWidth())
3127 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3128 Bits));
3129 }
3130
3131 // Integers which fit in intptr_t are zero-extended and passed directly.
3132 if (V->getType()->isIntegerTy() &&
3133 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3134 return Builder.CreateZExt(V, TargetTy);
3135
3136 // Pointers are passed directly, everything else is passed by address.
3137 if (!V->getType()->isPointerTy()) {
3138 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3139 Builder.CreateStore(V, Ptr);
3140 V = Ptr.getPointer();
3141 }
3142 return Builder.CreatePtrToInt(V, TargetTy);
3143 }
3144
3145 /// Emit a representation of a SourceLocation for passing to a handler
3146 /// in a sanitizer runtime library. The format for this data is:
3147 /// \code
3148 /// struct SourceLocation {
3149 /// const char *Filename;
3150 /// int32_t Line, Column;
3151 /// };
3152 /// \endcode
3153 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)3154 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3155 llvm::Constant *Filename;
3156 int Line, Column;
3157
3158 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3159 if (PLoc.isValid()) {
3160 StringRef FilenameString = PLoc.getFilename();
3161
3162 int PathComponentsToStrip =
3163 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3164 if (PathComponentsToStrip < 0) {
3165 assert(PathComponentsToStrip != INT_MIN);
3166 int PathComponentsToKeep = -PathComponentsToStrip;
3167 auto I = llvm::sys::path::rbegin(FilenameString);
3168 auto E = llvm::sys::path::rend(FilenameString);
3169 while (I != E && --PathComponentsToKeep)
3170 ++I;
3171
3172 FilenameString = FilenameString.substr(I - E);
3173 } else if (PathComponentsToStrip > 0) {
3174 auto I = llvm::sys::path::begin(FilenameString);
3175 auto E = llvm::sys::path::end(FilenameString);
3176 while (I != E && PathComponentsToStrip--)
3177 ++I;
3178
3179 if (I != E)
3180 FilenameString =
3181 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3182 else
3183 FilenameString = llvm::sys::path::filename(FilenameString);
3184 }
3185
3186 auto FilenameGV =
3187 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3188 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3189 cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3190 Filename = FilenameGV.getPointer();
3191 Line = PLoc.getLine();
3192 Column = PLoc.getColumn();
3193 } else {
3194 Filename = llvm::Constant::getNullValue(Int8PtrTy);
3195 Line = Column = 0;
3196 }
3197
3198 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3199 Builder.getInt32(Column)};
3200
3201 return llvm::ConstantStruct::getAnon(Data);
3202 }
3203
3204 namespace {
3205 /// Specify under what conditions this check can be recovered
3206 enum class CheckRecoverableKind {
3207 /// Always terminate program execution if this check fails.
3208 Unrecoverable,
3209 /// Check supports recovering, runtime has both fatal (noreturn) and
3210 /// non-fatal handlers for this check.
3211 Recoverable,
3212 /// Runtime conditionally aborts, always need to support recovery.
3213 AlwaysRecoverable
3214 };
3215 }
3216
getRecoverableKind(SanitizerMask Kind)3217 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3218 assert(Kind.countPopulation() == 1);
3219 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3220 return CheckRecoverableKind::AlwaysRecoverable;
3221 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3222 return CheckRecoverableKind::Unrecoverable;
3223 else
3224 return CheckRecoverableKind::Recoverable;
3225 }
3226
3227 namespace {
3228 struct SanitizerHandlerInfo {
3229 char const *const Name;
3230 unsigned Version;
3231 };
3232 }
3233
3234 const SanitizerHandlerInfo SanitizerHandlers[] = {
3235 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3236 LIST_SANITIZER_CHECKS
3237 #undef SANITIZER_CHECK
3238 };
3239
emitCheckHandlerCall(CodeGenFunction & CGF,llvm::FunctionType * FnType,ArrayRef<llvm::Value * > FnArgs,SanitizerHandler CheckHandler,CheckRecoverableKind RecoverKind,bool IsFatal,llvm::BasicBlock * ContBB)3240 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3241 llvm::FunctionType *FnType,
3242 ArrayRef<llvm::Value *> FnArgs,
3243 SanitizerHandler CheckHandler,
3244 CheckRecoverableKind RecoverKind, bool IsFatal,
3245 llvm::BasicBlock *ContBB) {
3246 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3247 Optional<ApplyDebugLocation> DL;
3248 if (!CGF.Builder.getCurrentDebugLocation()) {
3249 // Ensure that the call has at least an artificial debug location.
3250 DL.emplace(CGF, SourceLocation());
3251 }
3252 bool NeedsAbortSuffix =
3253 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3254 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3255 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3256 const StringRef CheckName = CheckInfo.Name;
3257 std::string FnName = "__ubsan_handle_" + CheckName.str();
3258 if (CheckInfo.Version && !MinimalRuntime)
3259 FnName += "_v" + llvm::utostr(CheckInfo.Version);
3260 if (MinimalRuntime)
3261 FnName += "_minimal";
3262 if (NeedsAbortSuffix)
3263 FnName += "_abort";
3264 bool MayReturn =
3265 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3266
3267 llvm::AttrBuilder B(CGF.getLLVMContext());
3268 if (!MayReturn) {
3269 B.addAttribute(llvm::Attribute::NoReturn)
3270 .addAttribute(llvm::Attribute::NoUnwind);
3271 }
3272 B.addUWTableAttr(llvm::UWTableKind::Default);
3273
3274 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3275 FnType, FnName,
3276 llvm::AttributeList::get(CGF.getLLVMContext(),
3277 llvm::AttributeList::FunctionIndex, B),
3278 /*Local=*/true);
3279 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3280 if (!MayReturn) {
3281 HandlerCall->setDoesNotReturn();
3282 CGF.Builder.CreateUnreachable();
3283 } else {
3284 CGF.Builder.CreateBr(ContBB);
3285 }
3286 }
3287
EmitCheck(ArrayRef<std::pair<llvm::Value *,SanitizerMask>> Checked,SanitizerHandler CheckHandler,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs)3288 void CodeGenFunction::EmitCheck(
3289 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3290 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3291 ArrayRef<llvm::Value *> DynamicArgs) {
3292 assert(IsSanitizerScope);
3293 assert(Checked.size() > 0);
3294 assert(CheckHandler >= 0 &&
3295 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3296 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3297
3298 llvm::Value *FatalCond = nullptr;
3299 llvm::Value *RecoverableCond = nullptr;
3300 llvm::Value *TrapCond = nullptr;
3301 for (int i = 0, n = Checked.size(); i < n; ++i) {
3302 llvm::Value *Check = Checked[i].first;
3303 // -fsanitize-trap= overrides -fsanitize-recover=.
3304 llvm::Value *&Cond =
3305 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3306 ? TrapCond
3307 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3308 ? RecoverableCond
3309 : FatalCond;
3310 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3311 }
3312
3313 if (TrapCond)
3314 EmitTrapCheck(TrapCond, CheckHandler);
3315 if (!FatalCond && !RecoverableCond)
3316 return;
3317
3318 llvm::Value *JointCond;
3319 if (FatalCond && RecoverableCond)
3320 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3321 else
3322 JointCond = FatalCond ? FatalCond : RecoverableCond;
3323 assert(JointCond);
3324
3325 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3326 assert(SanOpts.has(Checked[0].second));
3327 #ifndef NDEBUG
3328 for (int i = 1, n = Checked.size(); i < n; ++i) {
3329 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3330 "All recoverable kinds in a single check must be same!");
3331 assert(SanOpts.has(Checked[i].second));
3332 }
3333 #endif
3334
3335 llvm::BasicBlock *Cont = createBasicBlock("cont");
3336 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3337 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3338 // Give hint that we very much don't expect to execute the handler
3339 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3340 llvm::MDBuilder MDHelper(getLLVMContext());
3341 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3342 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3343 EmitBlock(Handlers);
3344
3345 // Handler functions take an i8* pointing to the (handler-specific) static
3346 // information block, followed by a sequence of intptr_t arguments
3347 // representing operand values.
3348 SmallVector<llvm::Value *, 4> Args;
3349 SmallVector<llvm::Type *, 4> ArgTypes;
3350 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3351 Args.reserve(DynamicArgs.size() + 1);
3352 ArgTypes.reserve(DynamicArgs.size() + 1);
3353
3354 // Emit handler arguments and create handler function type.
3355 if (!StaticArgs.empty()) {
3356 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3357 auto *InfoPtr =
3358 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3359 llvm::GlobalVariable::PrivateLinkage, Info);
3360 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3361 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3362 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3363 ArgTypes.push_back(Int8PtrTy);
3364 }
3365
3366 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3367 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3368 ArgTypes.push_back(IntPtrTy);
3369 }
3370 }
3371
3372 llvm::FunctionType *FnType =
3373 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3374
3375 if (!FatalCond || !RecoverableCond) {
3376 // Simple case: we need to generate a single handler call, either
3377 // fatal, or non-fatal.
3378 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3379 (FatalCond != nullptr), Cont);
3380 } else {
3381 // Emit two handler calls: first one for set of unrecoverable checks,
3382 // another one for recoverable.
3383 llvm::BasicBlock *NonFatalHandlerBB =
3384 createBasicBlock("non_fatal." + CheckName);
3385 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3386 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3387 EmitBlock(FatalHandlerBB);
3388 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3389 NonFatalHandlerBB);
3390 EmitBlock(NonFatalHandlerBB);
3391 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3392 Cont);
3393 }
3394
3395 EmitBlock(Cont);
3396 }
3397
EmitCfiSlowPathCheck(SanitizerMask Kind,llvm::Value * Cond,llvm::ConstantInt * TypeId,llvm::Value * Ptr,ArrayRef<llvm::Constant * > StaticArgs)3398 void CodeGenFunction::EmitCfiSlowPathCheck(
3399 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3400 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3401 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3402
3403 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3404 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3405
3406 llvm::MDBuilder MDHelper(getLLVMContext());
3407 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3408 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3409
3410 EmitBlock(CheckBB);
3411
3412 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3413
3414 llvm::CallInst *CheckCall;
3415 llvm::FunctionCallee SlowPathFn;
3416 if (WithDiag) {
3417 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3418 auto *InfoPtr =
3419 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3420 llvm::GlobalVariable::PrivateLinkage, Info);
3421 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3422 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3423
3424 SlowPathFn = CGM.getModule().getOrInsertFunction(
3425 "__cfi_slowpath_diag",
3426 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3427 false));
3428 CheckCall = Builder.CreateCall(
3429 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3430 } else {
3431 SlowPathFn = CGM.getModule().getOrInsertFunction(
3432 "__cfi_slowpath",
3433 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3434 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3435 }
3436
3437 CGM.setDSOLocal(
3438 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3439 CheckCall->setDoesNotThrow();
3440
3441 EmitBlock(Cont);
3442 }
3443
3444 // Emit a stub for __cfi_check function so that the linker knows about this
3445 // symbol in LTO mode.
EmitCfiCheckStub()3446 void CodeGenFunction::EmitCfiCheckStub() {
3447 llvm::Module *M = &CGM.getModule();
3448 auto &Ctx = M->getContext();
3449 llvm::Function *F = llvm::Function::Create(
3450 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3451 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3452 CGM.setDSOLocal(F);
3453 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3454 // FIXME: consider emitting an intrinsic call like
3455 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3456 // which can be lowered in CrossDSOCFI pass to the actual contents of
3457 // __cfi_check. This would allow inlining of __cfi_check calls.
3458 llvm::CallInst::Create(
3459 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3460 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3461 }
3462
3463 // This function is basically a switch over the CFI failure kind, which is
3464 // extracted from CFICheckFailData (1st function argument). Each case is either
3465 // llvm.trap or a call to one of the two runtime handlers, based on
3466 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3467 // failure kind) traps, but this should really never happen. CFICheckFailData
3468 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3469 // check kind; in this case __cfi_check_fail traps as well.
EmitCfiCheckFail()3470 void CodeGenFunction::EmitCfiCheckFail() {
3471 SanitizerScope SanScope(this);
3472 FunctionArgList Args;
3473 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3474 ImplicitParamDecl::Other);
3475 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3476 ImplicitParamDecl::Other);
3477 Args.push_back(&ArgData);
3478 Args.push_back(&ArgAddr);
3479
3480 const CGFunctionInfo &FI =
3481 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3482
3483 llvm::Function *F = llvm::Function::Create(
3484 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3485 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3486
3487 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3488 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3489 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3490
3491 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3492 SourceLocation());
3493
3494 // This function is not affected by NoSanitizeList. This function does
3495 // not have a source location, but "src:*" would still apply. Revert any
3496 // changes to SanOpts made in StartFunction.
3497 SanOpts = CGM.getLangOpts().Sanitize;
3498
3499 llvm::Value *Data =
3500 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3501 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3502 llvm::Value *Addr =
3503 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3504 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3505
3506 // Data == nullptr means the calling module has trap behaviour for this check.
3507 llvm::Value *DataIsNotNullPtr =
3508 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3509 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3510
3511 llvm::StructType *SourceLocationTy =
3512 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3513 llvm::StructType *CfiCheckFailDataTy =
3514 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3515
3516 llvm::Value *V = Builder.CreateConstGEP2_32(
3517 CfiCheckFailDataTy,
3518 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3519 0);
3520
3521 Address CheckKindAddr(V, Int8Ty, getIntAlign());
3522 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3523
3524 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3525 CGM.getLLVMContext(),
3526 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3527 llvm::Value *ValidVtable = Builder.CreateZExt(
3528 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3529 {Addr, AllVtables}),
3530 IntPtrTy);
3531
3532 const std::pair<int, SanitizerMask> CheckKinds[] = {
3533 {CFITCK_VCall, SanitizerKind::CFIVCall},
3534 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3535 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3536 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3537 {CFITCK_ICall, SanitizerKind::CFIICall}};
3538
3539 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3540 for (auto CheckKindMaskPair : CheckKinds) {
3541 int Kind = CheckKindMaskPair.first;
3542 SanitizerMask Mask = CheckKindMaskPair.second;
3543 llvm::Value *Cond =
3544 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3545 if (CGM.getLangOpts().Sanitize.has(Mask))
3546 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3547 {Data, Addr, ValidVtable});
3548 else
3549 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3550 }
3551
3552 FinishFunction();
3553 // The only reference to this function will be created during LTO link.
3554 // Make sure it survives until then.
3555 CGM.addUsedGlobal(F);
3556 }
3557
EmitUnreachable(SourceLocation Loc)3558 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3559 if (SanOpts.has(SanitizerKind::Unreachable)) {
3560 SanitizerScope SanScope(this);
3561 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3562 SanitizerKind::Unreachable),
3563 SanitizerHandler::BuiltinUnreachable,
3564 EmitCheckSourceLocation(Loc), None);
3565 }
3566 Builder.CreateUnreachable();
3567 }
3568
EmitTrapCheck(llvm::Value * Checked,SanitizerHandler CheckHandlerID)3569 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3570 SanitizerHandler CheckHandlerID) {
3571 llvm::BasicBlock *Cont = createBasicBlock("cont");
3572
3573 // If we're optimizing, collapse all calls to trap down to just one per
3574 // check-type per function to save on code size.
3575 if (TrapBBs.size() <= CheckHandlerID)
3576 TrapBBs.resize(CheckHandlerID + 1);
3577 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3578
3579 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3580 TrapBB = createBasicBlock("trap");
3581 Builder.CreateCondBr(Checked, Cont, TrapBB);
3582 EmitBlock(TrapBB);
3583
3584 llvm::CallInst *TrapCall =
3585 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3586 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3587
3588 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3589 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3590 CGM.getCodeGenOpts().TrapFuncName);
3591 TrapCall->addFnAttr(A);
3592 }
3593 TrapCall->setDoesNotReturn();
3594 TrapCall->setDoesNotThrow();
3595 Builder.CreateUnreachable();
3596 } else {
3597 auto Call = TrapBB->begin();
3598 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3599
3600 Call->applyMergedLocation(Call->getDebugLoc(),
3601 Builder.getCurrentDebugLocation());
3602 Builder.CreateCondBr(Checked, Cont, TrapBB);
3603 }
3604
3605 EmitBlock(Cont);
3606 }
3607
EmitTrapCall(llvm::Intrinsic::ID IntrID)3608 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3609 llvm::CallInst *TrapCall =
3610 Builder.CreateCall(CGM.getIntrinsic(IntrID));
3611
3612 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3613 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3614 CGM.getCodeGenOpts().TrapFuncName);
3615 TrapCall->addFnAttr(A);
3616 }
3617
3618 return TrapCall;
3619 }
3620
EmitArrayToPointerDecay(const Expr * E,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)3621 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3622 LValueBaseInfo *BaseInfo,
3623 TBAAAccessInfo *TBAAInfo) {
3624 assert(E->getType()->isArrayType() &&
3625 "Array to pointer decay must have array source type!");
3626
3627 // Expressions of array type can't be bitfields or vector elements.
3628 LValue LV = EmitLValue(E);
3629 Address Addr = LV.getAddress(*this);
3630
3631 // If the array type was an incomplete type, we need to make sure
3632 // the decay ends up being the right type.
3633 llvm::Type *NewTy = ConvertType(E->getType());
3634 Addr = Builder.CreateElementBitCast(Addr, NewTy);
3635
3636 // Note that VLA pointers are always decayed, so we don't need to do
3637 // anything here.
3638 if (!E->getType()->isVariableArrayType()) {
3639 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3640 "Expected pointer to array");
3641 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3642 }
3643
3644 // The result of this decay conversion points to an array element within the
3645 // base lvalue. However, since TBAA currently does not support representing
3646 // accesses to elements of member arrays, we conservatively represent accesses
3647 // to the pointee object as if it had no any base lvalue specified.
3648 // TODO: Support TBAA for member arrays.
3649 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3650 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3651 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3652
3653 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3654 }
3655
3656 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3657 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)3658 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3659 // If this isn't just an array->pointer decay, bail out.
3660 const auto *CE = dyn_cast<CastExpr>(E);
3661 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3662 return nullptr;
3663
3664 // If this is a decay from variable width array, bail out.
3665 const Expr *SubExpr = CE->getSubExpr();
3666 if (SubExpr->getType()->isVariableArrayType())
3667 return nullptr;
3668
3669 return SubExpr;
3670 }
3671
emitArraySubscriptGEP(CodeGenFunction & CGF,llvm::Type * elemType,llvm::Value * ptr,ArrayRef<llvm::Value * > indices,bool inbounds,bool signedIndices,SourceLocation loc,const llvm::Twine & name="arrayidx")3672 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3673 llvm::Type *elemType,
3674 llvm::Value *ptr,
3675 ArrayRef<llvm::Value*> indices,
3676 bool inbounds,
3677 bool signedIndices,
3678 SourceLocation loc,
3679 const llvm::Twine &name = "arrayidx") {
3680 if (inbounds) {
3681 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3682 CodeGenFunction::NotSubtraction, loc,
3683 name);
3684 } else {
3685 return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3686 }
3687 }
3688
getArrayElementAlign(CharUnits arrayAlign,llvm::Value * idx,CharUnits eltSize)3689 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3690 llvm::Value *idx,
3691 CharUnits eltSize) {
3692 // If we have a constant index, we can use the exact offset of the
3693 // element we're accessing.
3694 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3695 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3696 return arrayAlign.alignmentAtOffset(offset);
3697
3698 // Otherwise, use the worst-case alignment for any element.
3699 } else {
3700 return arrayAlign.alignmentOfArrayElement(eltSize);
3701 }
3702 }
3703
getFixedSizeElementType(const ASTContext & ctx,const VariableArrayType * vla)3704 static QualType getFixedSizeElementType(const ASTContext &ctx,
3705 const VariableArrayType *vla) {
3706 QualType eltType;
3707 do {
3708 eltType = vla->getElementType();
3709 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3710 return eltType;
3711 }
3712
3713 /// Given an array base, check whether its member access belongs to a record
3714 /// with preserve_access_index attribute or not.
IsPreserveAIArrayBase(CodeGenFunction & CGF,const Expr * ArrayBase)3715 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3716 if (!ArrayBase || !CGF.getDebugInfo())
3717 return false;
3718
3719 // Only support base as either a MemberExpr or DeclRefExpr.
3720 // DeclRefExpr to cover cases like:
3721 // struct s { int a; int b[10]; };
3722 // struct s *p;
3723 // p[1].a
3724 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3725 // p->b[5] is a MemberExpr example.
3726 const Expr *E = ArrayBase->IgnoreImpCasts();
3727 if (const auto *ME = dyn_cast<MemberExpr>(E))
3728 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3729
3730 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3731 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3732 if (!VarDef)
3733 return false;
3734
3735 const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3736 if (!PtrT)
3737 return false;
3738
3739 const auto *PointeeT = PtrT->getPointeeType()
3740 ->getUnqualifiedDesugaredType();
3741 if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3742 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3743 return false;
3744 }
3745
3746 return false;
3747 }
3748
emitArraySubscriptGEP(CodeGenFunction & CGF,Address addr,ArrayRef<llvm::Value * > indices,QualType eltType,bool inbounds,bool signedIndices,SourceLocation loc,QualType * arrayType=nullptr,const Expr * Base=nullptr,const llvm::Twine & name="arrayidx")3749 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3750 ArrayRef<llvm::Value *> indices,
3751 QualType eltType, bool inbounds,
3752 bool signedIndices, SourceLocation loc,
3753 QualType *arrayType = nullptr,
3754 const Expr *Base = nullptr,
3755 const llvm::Twine &name = "arrayidx") {
3756 // All the indices except that last must be zero.
3757 #ifndef NDEBUG
3758 for (auto idx : indices.drop_back())
3759 assert(isa<llvm::ConstantInt>(idx) &&
3760 cast<llvm::ConstantInt>(idx)->isZero());
3761 #endif
3762
3763 // Determine the element size of the statically-sized base. This is
3764 // the thing that the indices are expressed in terms of.
3765 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3766 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3767 }
3768
3769 // We can use that to compute the best alignment of the element.
3770 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3771 CharUnits eltAlign =
3772 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3773
3774 llvm::Value *eltPtr;
3775 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3776 if (!LastIndex ||
3777 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3778 eltPtr = emitArraySubscriptGEP(
3779 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3780 signedIndices, loc, name);
3781 } else {
3782 // Remember the original array subscript for bpf target
3783 unsigned idx = LastIndex->getZExtValue();
3784 llvm::DIType *DbgInfo = nullptr;
3785 if (arrayType)
3786 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3787 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3788 addr.getPointer(),
3789 indices.size() - 1,
3790 idx, DbgInfo);
3791 }
3792
3793 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3794 }
3795
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)3796 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3797 bool Accessed) {
3798 // The index must always be an integer, which is not an aggregate. Emit it
3799 // in lexical order (this complexity is, sadly, required by C++17).
3800 llvm::Value *IdxPre =
3801 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3802 bool SignedIndices = false;
3803 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3804 auto *Idx = IdxPre;
3805 if (E->getLHS() != E->getIdx()) {
3806 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3807 Idx = EmitScalarExpr(E->getIdx());
3808 }
3809
3810 QualType IdxTy = E->getIdx()->getType();
3811 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3812 SignedIndices |= IdxSigned;
3813
3814 if (SanOpts.has(SanitizerKind::ArrayBounds))
3815 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3816
3817 // Extend or truncate the index type to 32 or 64-bits.
3818 if (Promote && Idx->getType() != IntPtrTy)
3819 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3820
3821 return Idx;
3822 };
3823 IdxPre = nullptr;
3824
3825 // If the base is a vector type, then we are forming a vector element lvalue
3826 // with this subscript.
3827 if (E->getBase()->getType()->isVectorType() &&
3828 !isa<ExtVectorElementExpr>(E->getBase())) {
3829 // Emit the vector as an lvalue to get its address.
3830 LValue LHS = EmitLValue(E->getBase());
3831 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3832 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3833 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3834 E->getBase()->getType(), LHS.getBaseInfo(),
3835 TBAAAccessInfo());
3836 }
3837
3838 // All the other cases basically behave like simple offsetting.
3839
3840 // Handle the extvector case we ignored above.
3841 if (isa<ExtVectorElementExpr>(E->getBase())) {
3842 LValue LV = EmitLValue(E->getBase());
3843 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3844 Address Addr = EmitExtVectorElementLValue(LV);
3845
3846 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3847 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3848 SignedIndices, E->getExprLoc());
3849 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3850 CGM.getTBAAInfoForSubobject(LV, EltType));
3851 }
3852
3853 LValueBaseInfo EltBaseInfo;
3854 TBAAAccessInfo EltTBAAInfo;
3855 Address Addr = Address::invalid();
3856 if (const VariableArrayType *vla =
3857 getContext().getAsVariableArrayType(E->getType())) {
3858 // The base must be a pointer, which is not an aggregate. Emit
3859 // it. It needs to be emitted first in case it's what captures
3860 // the VLA bounds.
3861 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3862 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3863
3864 // The element count here is the total number of non-VLA elements.
3865 llvm::Value *numElements = getVLASize(vla).NumElts;
3866
3867 // Effectively, the multiply by the VLA size is part of the GEP.
3868 // GEP indexes are signed, and scaling an index isn't permitted to
3869 // signed-overflow, so we use the same semantics for our explicit
3870 // multiply. We suppress this if overflow is not undefined behavior.
3871 if (getLangOpts().isSignedOverflowDefined()) {
3872 Idx = Builder.CreateMul(Idx, numElements);
3873 } else {
3874 Idx = Builder.CreateNSWMul(Idx, numElements);
3875 }
3876
3877 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3878 !getLangOpts().isSignedOverflowDefined(),
3879 SignedIndices, E->getExprLoc());
3880
3881 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3882 // Indexing over an interface, as in "NSString *P; P[4];"
3883
3884 // Emit the base pointer.
3885 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3886 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3887
3888 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3889 llvm::Value *InterfaceSizeVal =
3890 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3891
3892 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3893
3894 // We don't necessarily build correct LLVM struct types for ObjC
3895 // interfaces, so we can't rely on GEP to do this scaling
3896 // correctly, so we need to cast to i8*. FIXME: is this actually
3897 // true? A lot of other things in the fragile ABI would break...
3898 llvm::Type *OrigBaseElemTy = Addr.getElementType();
3899 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3900
3901 // Do the GEP.
3902 CharUnits EltAlign =
3903 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3904 llvm::Value *EltPtr =
3905 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3906 ScaledIdx, false, SignedIndices, E->getExprLoc());
3907 Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3908
3909 // Cast back.
3910 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy);
3911 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3912 // If this is A[i] where A is an array, the frontend will have decayed the
3913 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3914 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3915 // "gep x, i" here. Emit one "gep A, 0, i".
3916 assert(Array->getType()->isArrayType() &&
3917 "Array to pointer decay must have array source type!");
3918 LValue ArrayLV;
3919 // For simple multidimensional array indexing, set the 'accessed' flag for
3920 // better bounds-checking of the base expression.
3921 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3922 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3923 else
3924 ArrayLV = EmitLValue(Array);
3925 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3926
3927 // Propagate the alignment from the array itself to the result.
3928 QualType arrayType = Array->getType();
3929 Addr = emitArraySubscriptGEP(
3930 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3931 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3932 E->getExprLoc(), &arrayType, E->getBase());
3933 EltBaseInfo = ArrayLV.getBaseInfo();
3934 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3935 } else {
3936 // The base must be a pointer; emit it with an estimate of its alignment.
3937 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3938 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3939 QualType ptrType = E->getBase()->getType();
3940 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3941 !getLangOpts().isSignedOverflowDefined(),
3942 SignedIndices, E->getExprLoc(), &ptrType,
3943 E->getBase());
3944 }
3945
3946 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3947
3948 if (getLangOpts().ObjC &&
3949 getLangOpts().getGC() != LangOptions::NonGC) {
3950 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3951 setObjCGCLValueClass(getContext(), E, LV);
3952 }
3953 return LV;
3954 }
3955
EmitMatrixSubscriptExpr(const MatrixSubscriptExpr * E)3956 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3957 assert(
3958 !E->isIncomplete() &&
3959 "incomplete matrix subscript expressions should be rejected during Sema");
3960 LValue Base = EmitLValue(E->getBase());
3961 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3962 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3963 llvm::Value *NumRows = Builder.getIntN(
3964 RowIdx->getType()->getScalarSizeInBits(),
3965 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3966 llvm::Value *FinalIdx =
3967 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3968 return LValue::MakeMatrixElt(
3969 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3970 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3971 }
3972
emitOMPArraySectionBase(CodeGenFunction & CGF,const Expr * Base,LValueBaseInfo & BaseInfo,TBAAAccessInfo & TBAAInfo,QualType BaseTy,QualType ElTy,bool IsLowerBound)3973 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3974 LValueBaseInfo &BaseInfo,
3975 TBAAAccessInfo &TBAAInfo,
3976 QualType BaseTy, QualType ElTy,
3977 bool IsLowerBound) {
3978 LValue BaseLVal;
3979 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3980 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3981 if (BaseTy->isArrayType()) {
3982 Address Addr = BaseLVal.getAddress(CGF);
3983 BaseInfo = BaseLVal.getBaseInfo();
3984
3985 // If the array type was an incomplete type, we need to make sure
3986 // the decay ends up being the right type.
3987 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3988 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3989
3990 // Note that VLA pointers are always decayed, so we don't need to do
3991 // anything here.
3992 if (!BaseTy->isVariableArrayType()) {
3993 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3994 "Expected pointer to array");
3995 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3996 }
3997
3998 return CGF.Builder.CreateElementBitCast(Addr,
3999 CGF.ConvertTypeForMem(ElTy));
4000 }
4001 LValueBaseInfo TypeBaseInfo;
4002 TBAAAccessInfo TypeTBAAInfo;
4003 CharUnits Align =
4004 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4005 BaseInfo.mergeForCast(TypeBaseInfo);
4006 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4007 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
4008 CGF.ConvertTypeForMem(ElTy), Align);
4009 }
4010 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4011 }
4012
EmitOMPArraySectionExpr(const OMPArraySectionExpr * E,bool IsLowerBound)4013 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4014 bool IsLowerBound) {
4015 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4016 QualType ResultExprTy;
4017 if (auto *AT = getContext().getAsArrayType(BaseTy))
4018 ResultExprTy = AT->getElementType();
4019 else
4020 ResultExprTy = BaseTy->getPointeeType();
4021 llvm::Value *Idx = nullptr;
4022 if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4023 // Requesting lower bound or upper bound, but without provided length and
4024 // without ':' symbol for the default length -> length = 1.
4025 // Idx = LowerBound ?: 0;
4026 if (auto *LowerBound = E->getLowerBound()) {
4027 Idx = Builder.CreateIntCast(
4028 EmitScalarExpr(LowerBound), IntPtrTy,
4029 LowerBound->getType()->hasSignedIntegerRepresentation());
4030 } else
4031 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4032 } else {
4033 // Try to emit length or lower bound as constant. If this is possible, 1
4034 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4035 // IR (LB + Len) - 1.
4036 auto &C = CGM.getContext();
4037 auto *Length = E->getLength();
4038 llvm::APSInt ConstLength;
4039 if (Length) {
4040 // Idx = LowerBound + Length - 1;
4041 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4042 ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4043 Length = nullptr;
4044 }
4045 auto *LowerBound = E->getLowerBound();
4046 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4047 if (LowerBound) {
4048 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
4049 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4050 LowerBound = nullptr;
4051 }
4052 }
4053 if (!Length)
4054 --ConstLength;
4055 else if (!LowerBound)
4056 --ConstLowerBound;
4057
4058 if (Length || LowerBound) {
4059 auto *LowerBoundVal =
4060 LowerBound
4061 ? Builder.CreateIntCast(
4062 EmitScalarExpr(LowerBound), IntPtrTy,
4063 LowerBound->getType()->hasSignedIntegerRepresentation())
4064 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4065 auto *LengthVal =
4066 Length
4067 ? Builder.CreateIntCast(
4068 EmitScalarExpr(Length), IntPtrTy,
4069 Length->getType()->hasSignedIntegerRepresentation())
4070 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4071 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4072 /*HasNUW=*/false,
4073 !getLangOpts().isSignedOverflowDefined());
4074 if (Length && LowerBound) {
4075 Idx = Builder.CreateSub(
4076 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4077 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4078 }
4079 } else
4080 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4081 } else {
4082 // Idx = ArraySize - 1;
4083 QualType ArrayTy = BaseTy->isPointerType()
4084 ? E->getBase()->IgnoreParenImpCasts()->getType()
4085 : BaseTy;
4086 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4087 Length = VAT->getSizeExpr();
4088 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4089 ConstLength = *L;
4090 Length = nullptr;
4091 }
4092 } else {
4093 auto *CAT = C.getAsConstantArrayType(ArrayTy);
4094 ConstLength = CAT->getSize();
4095 }
4096 if (Length) {
4097 auto *LengthVal = Builder.CreateIntCast(
4098 EmitScalarExpr(Length), IntPtrTy,
4099 Length->getType()->hasSignedIntegerRepresentation());
4100 Idx = Builder.CreateSub(
4101 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4102 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4103 } else {
4104 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4105 --ConstLength;
4106 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4107 }
4108 }
4109 }
4110 assert(Idx);
4111
4112 Address EltPtr = Address::invalid();
4113 LValueBaseInfo BaseInfo;
4114 TBAAAccessInfo TBAAInfo;
4115 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4116 // The base must be a pointer, which is not an aggregate. Emit
4117 // it. It needs to be emitted first in case it's what captures
4118 // the VLA bounds.
4119 Address Base =
4120 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4121 BaseTy, VLA->getElementType(), IsLowerBound);
4122 // The element count here is the total number of non-VLA elements.
4123 llvm::Value *NumElements = getVLASize(VLA).NumElts;
4124
4125 // Effectively, the multiply by the VLA size is part of the GEP.
4126 // GEP indexes are signed, and scaling an index isn't permitted to
4127 // signed-overflow, so we use the same semantics for our explicit
4128 // multiply. We suppress this if overflow is not undefined behavior.
4129 if (getLangOpts().isSignedOverflowDefined())
4130 Idx = Builder.CreateMul(Idx, NumElements);
4131 else
4132 Idx = Builder.CreateNSWMul(Idx, NumElements);
4133 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4134 !getLangOpts().isSignedOverflowDefined(),
4135 /*signedIndices=*/false, E->getExprLoc());
4136 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4137 // If this is A[i] where A is an array, the frontend will have decayed the
4138 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4139 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4140 // "gep x, i" here. Emit one "gep A, 0, i".
4141 assert(Array->getType()->isArrayType() &&
4142 "Array to pointer decay must have array source type!");
4143 LValue ArrayLV;
4144 // For simple multidimensional array indexing, set the 'accessed' flag for
4145 // better bounds-checking of the base expression.
4146 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4147 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4148 else
4149 ArrayLV = EmitLValue(Array);
4150
4151 // Propagate the alignment from the array itself to the result.
4152 EltPtr = emitArraySubscriptGEP(
4153 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4154 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4155 /*signedIndices=*/false, E->getExprLoc());
4156 BaseInfo = ArrayLV.getBaseInfo();
4157 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4158 } else {
4159 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4160 TBAAInfo, BaseTy, ResultExprTy,
4161 IsLowerBound);
4162 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4163 !getLangOpts().isSignedOverflowDefined(),
4164 /*signedIndices=*/false, E->getExprLoc());
4165 }
4166
4167 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4168 }
4169
4170 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)4171 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4172 // Emit the base vector as an l-value.
4173 LValue Base;
4174
4175 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4176 if (E->isArrow()) {
4177 // If it is a pointer to a vector, emit the address and form an lvalue with
4178 // it.
4179 LValueBaseInfo BaseInfo;
4180 TBAAAccessInfo TBAAInfo;
4181 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4182 const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4183 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4184 Base.getQuals().removeObjCGCAttr();
4185 } else if (E->getBase()->isGLValue()) {
4186 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4187 // emit the base as an lvalue.
4188 assert(E->getBase()->getType()->isVectorType());
4189 Base = EmitLValue(E->getBase());
4190 } else {
4191 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4192 assert(E->getBase()->getType()->isVectorType() &&
4193 "Result must be a vector");
4194 llvm::Value *Vec = EmitScalarExpr(E->getBase());
4195
4196 // Store the vector to memory (because LValue wants an address).
4197 Address VecMem = CreateMemTemp(E->getBase()->getType());
4198 Builder.CreateStore(Vec, VecMem);
4199 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4200 AlignmentSource::Decl);
4201 }
4202
4203 QualType type =
4204 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4205
4206 // Encode the element access list into a vector of unsigned indices.
4207 SmallVector<uint32_t, 4> Indices;
4208 E->getEncodedElementAccess(Indices);
4209
4210 if (Base.isSimple()) {
4211 llvm::Constant *CV =
4212 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4213 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4214 Base.getBaseInfo(), TBAAAccessInfo());
4215 }
4216 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4217
4218 llvm::Constant *BaseElts = Base.getExtVectorElts();
4219 SmallVector<llvm::Constant *, 4> CElts;
4220
4221 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4222 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4223 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4224 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4225 Base.getBaseInfo(), TBAAAccessInfo());
4226 }
4227
EmitMemberExpr(const MemberExpr * E)4228 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4229 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4230 EmitIgnoredExpr(E->getBase());
4231 return EmitDeclRefLValue(DRE);
4232 }
4233
4234 Expr *BaseExpr = E->getBase();
4235 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4236 LValue BaseLV;
4237 if (E->isArrow()) {
4238 LValueBaseInfo BaseInfo;
4239 TBAAAccessInfo TBAAInfo;
4240 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4241 QualType PtrTy = BaseExpr->getType()->getPointeeType();
4242 SanitizerSet SkippedChecks;
4243 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4244 if (IsBaseCXXThis)
4245 SkippedChecks.set(SanitizerKind::Alignment, true);
4246 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4247 SkippedChecks.set(SanitizerKind::Null, true);
4248 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4249 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4250 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4251 } else
4252 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4253
4254 NamedDecl *ND = E->getMemberDecl();
4255 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4256 LValue LV = EmitLValueForField(BaseLV, Field);
4257 setObjCGCLValueClass(getContext(), E, LV);
4258 if (getLangOpts().OpenMP) {
4259 // If the member was explicitly marked as nontemporal, mark it as
4260 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4261 // to children as nontemporal too.
4262 if ((IsWrappedCXXThis(BaseExpr) &&
4263 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4264 BaseLV.isNontemporal())
4265 LV.setNontemporal(/*Value=*/true);
4266 }
4267 return LV;
4268 }
4269
4270 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4271 return EmitFunctionDeclLValue(*this, E, FD);
4272
4273 llvm_unreachable("Unhandled member declaration!");
4274 }
4275
4276 /// Given that we are currently emitting a lambda, emit an l-value for
4277 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)4278 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4279 if (CurCodeDecl) {
4280 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4281 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4282 }
4283 QualType LambdaTagType =
4284 getContext().getTagDeclType(Field->getParent());
4285 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4286 return EmitLValueForField(LambdaLV, Field);
4287 }
4288
4289 /// Get the field index in the debug info. The debug info structure/union
4290 /// will ignore the unnamed bitfields.
getDebugInfoFIndex(const RecordDecl * Rec,unsigned FieldIndex)4291 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4292 unsigned FieldIndex) {
4293 unsigned I = 0, Skipped = 0;
4294
4295 for (auto F : Rec->getDefinition()->fields()) {
4296 if (I == FieldIndex)
4297 break;
4298 if (F->isUnnamedBitfield())
4299 Skipped++;
4300 I++;
4301 }
4302
4303 return FieldIndex - Skipped;
4304 }
4305
4306 /// Get the address of a zero-sized field within a record. The resulting
4307 /// address doesn't necessarily have the right type.
emitAddrOfZeroSizeField(CodeGenFunction & CGF,Address Base,const FieldDecl * Field)4308 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4309 const FieldDecl *Field) {
4310 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4311 CGF.getContext().getFieldOffset(Field));
4312 if (Offset.isZero())
4313 return Base;
4314 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4315 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4316 }
4317
4318 /// Drill down to the storage of a field without walking into
4319 /// reference types.
4320 ///
4321 /// The resulting address doesn't necessarily have the right type.
emitAddrOfFieldStorage(CodeGenFunction & CGF,Address base,const FieldDecl * field)4322 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4323 const FieldDecl *field) {
4324 if (field->isZeroSize(CGF.getContext()))
4325 return emitAddrOfZeroSizeField(CGF, base, field);
4326
4327 const RecordDecl *rec = field->getParent();
4328
4329 unsigned idx =
4330 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4331
4332 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4333 }
4334
emitPreserveStructAccess(CodeGenFunction & CGF,LValue base,Address addr,const FieldDecl * field)4335 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4336 Address addr, const FieldDecl *field) {
4337 const RecordDecl *rec = field->getParent();
4338 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4339 base.getType(), rec->getLocation());
4340
4341 unsigned idx =
4342 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4343
4344 return CGF.Builder.CreatePreserveStructAccessIndex(
4345 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4346 }
4347
hasAnyVptr(const QualType Type,const ASTContext & Context)4348 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4349 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4350 if (!RD)
4351 return false;
4352
4353 if (RD->isDynamicClass())
4354 return true;
4355
4356 for (const auto &Base : RD->bases())
4357 if (hasAnyVptr(Base.getType(), Context))
4358 return true;
4359
4360 for (const FieldDecl *Field : RD->fields())
4361 if (hasAnyVptr(Field->getType(), Context))
4362 return true;
4363
4364 return false;
4365 }
4366
EmitLValueForField(LValue base,const FieldDecl * field)4367 LValue CodeGenFunction::EmitLValueForField(LValue base,
4368 const FieldDecl *field) {
4369 LValueBaseInfo BaseInfo = base.getBaseInfo();
4370
4371 if (field->isBitField()) {
4372 const CGRecordLayout &RL =
4373 CGM.getTypes().getCGRecordLayout(field->getParent());
4374 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4375 const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4376 CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4377 Info.VolatileStorageSize != 0 &&
4378 field->getType()
4379 .withCVRQualifiers(base.getVRQualifiers())
4380 .isVolatileQualified();
4381 Address Addr = base.getAddress(*this);
4382 unsigned Idx = RL.getLLVMFieldNo(field);
4383 const RecordDecl *rec = field->getParent();
4384 if (!UseVolatile) {
4385 if (!IsInPreservedAIRegion &&
4386 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4387 if (Idx != 0)
4388 // For structs, we GEP to the field that the record layout suggests.
4389 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4390 } else {
4391 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4392 getContext().getRecordType(rec), rec->getLocation());
4393 Addr = Builder.CreatePreserveStructAccessIndex(
4394 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4395 DbgInfo);
4396 }
4397 }
4398 const unsigned SS =
4399 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4400 // Get the access type.
4401 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4402 if (Addr.getElementType() != FieldIntTy)
4403 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4404 if (UseVolatile) {
4405 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4406 if (VolatileOffset)
4407 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4408 }
4409
4410 QualType fieldType =
4411 field->getType().withCVRQualifiers(base.getVRQualifiers());
4412 // TODO: Support TBAA for bit fields.
4413 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4414 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4415 TBAAAccessInfo());
4416 }
4417
4418 // Fields of may-alias structures are may-alias themselves.
4419 // FIXME: this should get propagated down through anonymous structs
4420 // and unions.
4421 QualType FieldType = field->getType();
4422 const RecordDecl *rec = field->getParent();
4423 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4424 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4425 TBAAAccessInfo FieldTBAAInfo;
4426 if (base.getTBAAInfo().isMayAlias() ||
4427 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4428 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4429 } else if (rec->isUnion()) {
4430 // TODO: Support TBAA for unions.
4431 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4432 } else {
4433 // If no base type been assigned for the base access, then try to generate
4434 // one for this base lvalue.
4435 FieldTBAAInfo = base.getTBAAInfo();
4436 if (!FieldTBAAInfo.BaseType) {
4437 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4438 assert(!FieldTBAAInfo.Offset &&
4439 "Nonzero offset for an access with no base type!");
4440 }
4441
4442 // Adjust offset to be relative to the base type.
4443 const ASTRecordLayout &Layout =
4444 getContext().getASTRecordLayout(field->getParent());
4445 unsigned CharWidth = getContext().getCharWidth();
4446 if (FieldTBAAInfo.BaseType)
4447 FieldTBAAInfo.Offset +=
4448 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4449
4450 // Update the final access type and size.
4451 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4452 FieldTBAAInfo.Size =
4453 getContext().getTypeSizeInChars(FieldType).getQuantity();
4454 }
4455
4456 Address addr = base.getAddress(*this);
4457 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4458 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4459 ClassDef->isDynamicClass()) {
4460 // Getting to any field of dynamic object requires stripping dynamic
4461 // information provided by invariant.group. This is because accessing
4462 // fields may leak the real address of dynamic object, which could result
4463 // in miscompilation when leaked pointer would be compared.
4464 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4465 addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4466 }
4467 }
4468
4469 unsigned RecordCVR = base.getVRQualifiers();
4470 if (rec->isUnion()) {
4471 // For unions, there is no pointer adjustment.
4472 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4473 hasAnyVptr(FieldType, getContext()))
4474 // Because unions can easily skip invariant.barriers, we need to add
4475 // a barrier every time CXXRecord field with vptr is referenced.
4476 addr = Builder.CreateLaunderInvariantGroup(addr);
4477
4478 if (IsInPreservedAIRegion ||
4479 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4480 // Remember the original union field index
4481 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4482 rec->getLocation());
4483 addr = Address(
4484 Builder.CreatePreserveUnionAccessIndex(
4485 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4486 addr.getElementType(), addr.getAlignment());
4487 }
4488
4489 if (FieldType->isReferenceType())
4490 addr = Builder.CreateElementBitCast(
4491 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4492 } else {
4493 if (!IsInPreservedAIRegion &&
4494 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4495 // For structs, we GEP to the field that the record layout suggests.
4496 addr = emitAddrOfFieldStorage(*this, addr, field);
4497 else
4498 // Remember the original struct field index
4499 addr = emitPreserveStructAccess(*this, base, addr, field);
4500 }
4501
4502 // If this is a reference field, load the reference right now.
4503 if (FieldType->isReferenceType()) {
4504 LValue RefLVal =
4505 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4506 if (RecordCVR & Qualifiers::Volatile)
4507 RefLVal.getQuals().addVolatile();
4508 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4509
4510 // Qualifiers on the struct don't apply to the referencee.
4511 RecordCVR = 0;
4512 FieldType = FieldType->getPointeeType();
4513 }
4514
4515 // Make sure that the address is pointing to the right type. This is critical
4516 // for both unions and structs. A union needs a bitcast, a struct element
4517 // will need a bitcast if the LLVM type laid out doesn't match the desired
4518 // type.
4519 addr = Builder.CreateElementBitCast(
4520 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4521
4522 if (field->hasAttr<AnnotateAttr>())
4523 addr = EmitFieldAnnotations(field, addr);
4524
4525 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4526 LV.getQuals().addCVRQualifiers(RecordCVR);
4527
4528 // __weak attribute on a field is ignored.
4529 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4530 LV.getQuals().removeObjCGCAttr();
4531
4532 return LV;
4533 }
4534
4535 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)4536 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4537 const FieldDecl *Field) {
4538 QualType FieldType = Field->getType();
4539
4540 if (!FieldType->isReferenceType())
4541 return EmitLValueForField(Base, Field);
4542
4543 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4544
4545 // Make sure that the address is pointing to the right type.
4546 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4547 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4548
4549 // TODO: Generate TBAA information that describes this access as a structure
4550 // member access and not just an access to an object of the field's type. This
4551 // should be similar to what we do in EmitLValueForField().
4552 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4553 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4554 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4555 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4556 CGM.getTBAAInfoForSubobject(Base, FieldType));
4557 }
4558
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)4559 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4560 if (E->isFileScope()) {
4561 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4562 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4563 }
4564 if (E->getType()->isVariablyModifiedType())
4565 // make sure to emit the VLA size.
4566 EmitVariablyModifiedType(E->getType());
4567
4568 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4569 const Expr *InitExpr = E->getInitializer();
4570 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4571
4572 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4573 /*Init*/ true);
4574
4575 // Block-scope compound literals are destroyed at the end of the enclosing
4576 // scope in C.
4577 if (!getLangOpts().CPlusPlus)
4578 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4579 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4580 E->getType(), getDestroyer(DtorKind),
4581 DtorKind & EHCleanup);
4582
4583 return Result;
4584 }
4585
EmitInitListLValue(const InitListExpr * E)4586 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4587 if (!E->isGLValue())
4588 // Initializing an aggregate temporary in C++11: T{...}.
4589 return EmitAggExprToLValue(E);
4590
4591 // An lvalue initializer list must be initializing a reference.
4592 assert(E->isTransparent() && "non-transparent glvalue init list");
4593 return EmitLValue(E->getInit(0));
4594 }
4595
4596 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4597 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4598 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)4599 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4600 const Expr *Operand) {
4601 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4602 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4603 return None;
4604 }
4605
4606 return CGF.EmitLValue(Operand);
4607 }
4608
4609 namespace {
4610 // Handle the case where the condition is a constant evaluatable simple integer,
4611 // which means we don't have to separately handle the true/false blocks.
HandleConditionalOperatorLValueSimpleCase(CodeGenFunction & CGF,const AbstractConditionalOperator * E)4612 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4613 CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4614 const Expr *condExpr = E->getCond();
4615 bool CondExprBool;
4616 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4617 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4618 if (!CondExprBool)
4619 std::swap(Live, Dead);
4620
4621 if (!CGF.ContainsLabel(Dead)) {
4622 // If the true case is live, we need to track its region.
4623 if (CondExprBool)
4624 CGF.incrementProfileCounter(E);
4625 // If a throw expression we emit it and return an undefined lvalue
4626 // because it can't be used.
4627 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4628 CGF.EmitCXXThrowExpr(ThrowExpr);
4629 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4630 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4631 return CGF.MakeAddrLValue(
4632 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4633 Dead->getType());
4634 }
4635 return CGF.EmitLValue(Live);
4636 }
4637 }
4638 return llvm::None;
4639 }
4640 struct ConditionalInfo {
4641 llvm::BasicBlock *lhsBlock, *rhsBlock;
4642 Optional<LValue> LHS, RHS;
4643 };
4644
4645 // Create and generate the 3 blocks for a conditional operator.
4646 // Leaves the 'current block' in the continuation basic block.
4647 template<typename FuncTy>
EmitConditionalBlocks(CodeGenFunction & CGF,const AbstractConditionalOperator * E,const FuncTy & BranchGenFunc)4648 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4649 const AbstractConditionalOperator *E,
4650 const FuncTy &BranchGenFunc) {
4651 ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4652 CGF.createBasicBlock("cond.false"), llvm::None,
4653 llvm::None};
4654 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4655
4656 CodeGenFunction::ConditionalEvaluation eval(CGF);
4657 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4658 CGF.getProfileCount(E));
4659
4660 // Any temporaries created here are conditional.
4661 CGF.EmitBlock(Info.lhsBlock);
4662 CGF.incrementProfileCounter(E);
4663 eval.begin(CGF);
4664 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4665 eval.end(CGF);
4666 Info.lhsBlock = CGF.Builder.GetInsertBlock();
4667
4668 if (Info.LHS)
4669 CGF.Builder.CreateBr(endBlock);
4670
4671 // Any temporaries created here are conditional.
4672 CGF.EmitBlock(Info.rhsBlock);
4673 eval.begin(CGF);
4674 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4675 eval.end(CGF);
4676 Info.rhsBlock = CGF.Builder.GetInsertBlock();
4677 CGF.EmitBlock(endBlock);
4678
4679 return Info;
4680 }
4681 } // namespace
4682
EmitIgnoredConditionalOperator(const AbstractConditionalOperator * E)4683 void CodeGenFunction::EmitIgnoredConditionalOperator(
4684 const AbstractConditionalOperator *E) {
4685 if (!E->isGLValue()) {
4686 // ?: here should be an aggregate.
4687 assert(hasAggregateEvaluationKind(E->getType()) &&
4688 "Unexpected conditional operator!");
4689 return (void)EmitAggExprToLValue(E);
4690 }
4691
4692 OpaqueValueMapping binding(*this, E);
4693 if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4694 return;
4695
4696 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4697 CGF.EmitIgnoredExpr(E);
4698 return LValue{};
4699 });
4700 }
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)4701 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4702 const AbstractConditionalOperator *expr) {
4703 if (!expr->isGLValue()) {
4704 // ?: here should be an aggregate.
4705 assert(hasAggregateEvaluationKind(expr->getType()) &&
4706 "Unexpected conditional operator!");
4707 return EmitAggExprToLValue(expr);
4708 }
4709
4710 OpaqueValueMapping binding(*this, expr);
4711 if (llvm::Optional<LValue> Res =
4712 HandleConditionalOperatorLValueSimpleCase(*this, expr))
4713 return *Res;
4714
4715 ConditionalInfo Info = EmitConditionalBlocks(
4716 *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4717 return EmitLValueOrThrowExpression(CGF, E);
4718 });
4719
4720 if ((Info.LHS && !Info.LHS->isSimple()) ||
4721 (Info.RHS && !Info.RHS->isSimple()))
4722 return EmitUnsupportedLValue(expr, "conditional operator");
4723
4724 if (Info.LHS && Info.RHS) {
4725 Address lhsAddr = Info.LHS->getAddress(*this);
4726 Address rhsAddr = Info.RHS->getAddress(*this);
4727 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4728 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4729 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4730 Address result(phi, lhsAddr.getElementType(),
4731 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4732 AlignmentSource alignSource =
4733 std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4734 Info.RHS->getBaseInfo().getAlignmentSource());
4735 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4736 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4737 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4738 TBAAInfo);
4739 } else {
4740 assert((Info.LHS || Info.RHS) &&
4741 "both operands of glvalue conditional are throw-expressions?");
4742 return Info.LHS ? *Info.LHS : *Info.RHS;
4743 }
4744 }
4745
4746 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4747 /// type. If the cast is to a reference, we can have the usual lvalue result,
4748 /// otherwise if a cast is needed by the code generator in an lvalue context,
4749 /// then it must mean that we need the address of an aggregate in order to
4750 /// access one of its members. This can happen for all the reasons that casts
4751 /// are permitted with aggregate result, including noop aggregate casts, and
4752 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)4753 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4754 switch (E->getCastKind()) {
4755 case CK_ToVoid:
4756 case CK_BitCast:
4757 case CK_LValueToRValueBitCast:
4758 case CK_ArrayToPointerDecay:
4759 case CK_FunctionToPointerDecay:
4760 case CK_NullToMemberPointer:
4761 case CK_NullToPointer:
4762 case CK_IntegralToPointer:
4763 case CK_PointerToIntegral:
4764 case CK_PointerToBoolean:
4765 case CK_VectorSplat:
4766 case CK_IntegralCast:
4767 case CK_BooleanToSignedIntegral:
4768 case CK_IntegralToBoolean:
4769 case CK_IntegralToFloating:
4770 case CK_FloatingToIntegral:
4771 case CK_FloatingToBoolean:
4772 case CK_FloatingCast:
4773 case CK_FloatingRealToComplex:
4774 case CK_FloatingComplexToReal:
4775 case CK_FloatingComplexToBoolean:
4776 case CK_FloatingComplexCast:
4777 case CK_FloatingComplexToIntegralComplex:
4778 case CK_IntegralRealToComplex:
4779 case CK_IntegralComplexToReal:
4780 case CK_IntegralComplexToBoolean:
4781 case CK_IntegralComplexCast:
4782 case CK_IntegralComplexToFloatingComplex:
4783 case CK_DerivedToBaseMemberPointer:
4784 case CK_BaseToDerivedMemberPointer:
4785 case CK_MemberPointerToBoolean:
4786 case CK_ReinterpretMemberPointer:
4787 case CK_AnyPointerToBlockPointerCast:
4788 case CK_ARCProduceObject:
4789 case CK_ARCConsumeObject:
4790 case CK_ARCReclaimReturnedObject:
4791 case CK_ARCExtendBlockObject:
4792 case CK_CopyAndAutoreleaseBlockObject:
4793 case CK_IntToOCLSampler:
4794 case CK_FloatingToFixedPoint:
4795 case CK_FixedPointToFloating:
4796 case CK_FixedPointCast:
4797 case CK_FixedPointToBoolean:
4798 case CK_FixedPointToIntegral:
4799 case CK_IntegralToFixedPoint:
4800 case CK_MatrixCast:
4801 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4802
4803 case CK_Dependent:
4804 llvm_unreachable("dependent cast kind in IR gen!");
4805
4806 case CK_BuiltinFnToFnPtr:
4807 llvm_unreachable("builtin functions are handled elsewhere");
4808
4809 // These are never l-values; just use the aggregate emission code.
4810 case CK_NonAtomicToAtomic:
4811 case CK_AtomicToNonAtomic:
4812 return EmitAggExprToLValue(E);
4813
4814 case CK_Dynamic: {
4815 LValue LV = EmitLValue(E->getSubExpr());
4816 Address V = LV.getAddress(*this);
4817 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4818 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4819 }
4820
4821 case CK_ConstructorConversion:
4822 case CK_UserDefinedConversion:
4823 case CK_CPointerToObjCPointerCast:
4824 case CK_BlockPointerToObjCPointerCast:
4825 case CK_LValueToRValue:
4826 return EmitLValue(E->getSubExpr());
4827
4828 case CK_NoOp: {
4829 // CK_NoOp can model a qualification conversion, which can remove an array
4830 // bound and change the IR type.
4831 // FIXME: Once pointee types are removed from IR, remove this.
4832 LValue LV = EmitLValue(E->getSubExpr());
4833 if (LV.isSimple()) {
4834 Address V = LV.getAddress(*this);
4835 if (V.isValid()) {
4836 llvm::Type *T = ConvertTypeForMem(E->getType());
4837 if (V.getElementType() != T)
4838 LV.setAddress(Builder.CreateElementBitCast(V, T));
4839 }
4840 }
4841 return LV;
4842 }
4843
4844 case CK_UncheckedDerivedToBase:
4845 case CK_DerivedToBase: {
4846 const auto *DerivedClassTy =
4847 E->getSubExpr()->getType()->castAs<RecordType>();
4848 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4849
4850 LValue LV = EmitLValue(E->getSubExpr());
4851 Address This = LV.getAddress(*this);
4852
4853 // Perform the derived-to-base conversion
4854 Address Base = GetAddressOfBaseClass(
4855 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4856 /*NullCheckValue=*/false, E->getExprLoc());
4857
4858 // TODO: Support accesses to members of base classes in TBAA. For now, we
4859 // conservatively pretend that the complete object is of the base class
4860 // type.
4861 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4862 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4863 }
4864 case CK_ToUnion:
4865 return EmitAggExprToLValue(E);
4866 case CK_BaseToDerived: {
4867 const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4868 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4869
4870 LValue LV = EmitLValue(E->getSubExpr());
4871
4872 // Perform the base-to-derived conversion
4873 Address Derived = GetAddressOfDerivedClass(
4874 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4875 /*NullCheckValue=*/false);
4876
4877 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4878 // performed and the object is not of the derived type.
4879 if (sanitizePerformTypeCheck())
4880 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4881 Derived.getPointer(), E->getType());
4882
4883 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4884 EmitVTablePtrCheckForCast(E->getType(), Derived,
4885 /*MayBeNull=*/false, CFITCK_DerivedCast,
4886 E->getBeginLoc());
4887
4888 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4889 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4890 }
4891 case CK_LValueBitCast: {
4892 // This must be a reinterpret_cast (or c-style equivalent).
4893 const auto *CE = cast<ExplicitCastExpr>(E);
4894
4895 CGM.EmitExplicitCastExprType(CE, this);
4896 LValue LV = EmitLValue(E->getSubExpr());
4897 Address V = Builder.CreateElementBitCast(
4898 LV.getAddress(*this),
4899 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4900
4901 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4902 EmitVTablePtrCheckForCast(E->getType(), V,
4903 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4904 E->getBeginLoc());
4905
4906 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4907 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4908 }
4909 case CK_AddressSpaceConversion: {
4910 LValue LV = EmitLValue(E->getSubExpr());
4911 QualType DestTy = getContext().getPointerType(E->getType());
4912 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4913 *this, LV.getPointer(*this),
4914 E->getSubExpr()->getType().getAddressSpace(),
4915 E->getType().getAddressSpace(), ConvertType(DestTy));
4916 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4917 LV.getAddress(*this).getAlignment()),
4918 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4919 }
4920 case CK_ObjCObjectLValueCast: {
4921 LValue LV = EmitLValue(E->getSubExpr());
4922 Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4923 ConvertType(E->getType()));
4924 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4925 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4926 }
4927 case CK_ZeroToOCLOpaqueType:
4928 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4929 }
4930
4931 llvm_unreachable("Unhandled lvalue cast kind?");
4932 }
4933
EmitOpaqueValueLValue(const OpaqueValueExpr * e)4934 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4935 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4936 return getOrCreateOpaqueLValueMapping(e);
4937 }
4938
4939 LValue
getOrCreateOpaqueLValueMapping(const OpaqueValueExpr * e)4940 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4941 assert(OpaqueValueMapping::shouldBindAsLValue(e));
4942
4943 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4944 it = OpaqueLValues.find(e);
4945
4946 if (it != OpaqueLValues.end())
4947 return it->second;
4948
4949 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4950 return EmitLValue(e->getSourceExpr());
4951 }
4952
4953 RValue
getOrCreateOpaqueRValueMapping(const OpaqueValueExpr * e)4954 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4955 assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4956
4957 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4958 it = OpaqueRValues.find(e);
4959
4960 if (it != OpaqueRValues.end())
4961 return it->second;
4962
4963 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4964 return EmitAnyExpr(e->getSourceExpr());
4965 }
4966
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)4967 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4968 const FieldDecl *FD,
4969 SourceLocation Loc) {
4970 QualType FT = FD->getType();
4971 LValue FieldLV = EmitLValueForField(LV, FD);
4972 switch (getEvaluationKind(FT)) {
4973 case TEK_Complex:
4974 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4975 case TEK_Aggregate:
4976 return FieldLV.asAggregateRValue(*this);
4977 case TEK_Scalar:
4978 // This routine is used to load fields one-by-one to perform a copy, so
4979 // don't load reference fields.
4980 if (FD->getType()->isReferenceType())
4981 return RValue::get(FieldLV.getPointer(*this));
4982 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4983 // primitive load.
4984 if (FieldLV.isBitField())
4985 return EmitLoadOfLValue(FieldLV, Loc);
4986 return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4987 }
4988 llvm_unreachable("bad evaluation kind");
4989 }
4990
4991 //===--------------------------------------------------------------------===//
4992 // Expression Emission
4993 //===--------------------------------------------------------------------===//
4994
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)4995 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4996 ReturnValueSlot ReturnValue) {
4997 // Builtins never have block type.
4998 if (E->getCallee()->getType()->isBlockPointerType())
4999 return EmitBlockCallExpr(E, ReturnValue);
5000
5001 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5002 return EmitCXXMemberCallExpr(CE, ReturnValue);
5003
5004 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5005 return EmitCUDAKernelCallExpr(CE, ReturnValue);
5006
5007 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5008 if (const CXXMethodDecl *MD =
5009 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
5010 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5011
5012 CGCallee callee = EmitCallee(E->getCallee());
5013
5014 if (callee.isBuiltin()) {
5015 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5016 E, ReturnValue);
5017 }
5018
5019 if (callee.isPseudoDestructor()) {
5020 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5021 }
5022
5023 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5024 }
5025
5026 /// Emit a CallExpr without considering whether it might be a subclass.
EmitSimpleCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)5027 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5028 ReturnValueSlot ReturnValue) {
5029 CGCallee Callee = EmitCallee(E->getCallee());
5030 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5031 }
5032
5033 // Detect the unusual situation where an inline version is shadowed by a
5034 // non-inline version. In that case we should pick the external one
5035 // everywhere. That's GCC behavior too.
OnlyHasInlineBuiltinDeclaration(const FunctionDecl * FD)5036 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5037 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5038 if (!PD->isInlineBuiltinDeclaration())
5039 return false;
5040 return true;
5041 }
5042
EmitDirectCallee(CodeGenFunction & CGF,GlobalDecl GD)5043 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5044 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5045
5046 if (auto builtinID = FD->getBuiltinID()) {
5047 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5048 std::string NoBuiltins = "no-builtins";
5049 std::string FDInlineName = (FD->getName() + ".inline").str();
5050
5051 bool IsPredefinedLibFunction =
5052 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5053 bool HasAttributeNoBuiltin =
5054 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5055 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5056
5057 // When directing calling an inline builtin, call it through it's mangled
5058 // name to make it clear it's not the actual builtin.
5059 if (CGF.CurFn->getName() != FDInlineName &&
5060 OnlyHasInlineBuiltinDeclaration(FD)) {
5061 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5062 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5063 llvm::Module *M = Fn->getParent();
5064 llvm::Function *Clone = M->getFunction(FDInlineName);
5065 if (!Clone) {
5066 Clone = llvm::Function::Create(Fn->getFunctionType(),
5067 llvm::GlobalValue::InternalLinkage,
5068 Fn->getAddressSpace(), FDInlineName, M);
5069 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5070 }
5071 return CGCallee::forDirect(Clone, GD);
5072 }
5073
5074 // Replaceable builtins provide their own implementation of a builtin. If we
5075 // are in an inline builtin implementation, avoid trivial infinite
5076 // recursion. Honor __attribute__((no_builtin("foo"))) or
5077 // __attribute__((no_builtin)) on the current function unless foo is
5078 // not a predefined library function which means we must generate the
5079 // builtin no matter what.
5080 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5081 return CGCallee::forBuiltin(builtinID, FD);
5082 }
5083
5084 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5085 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5086 FD->hasAttr<CUDAGlobalAttr>())
5087 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5088 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5089
5090 return CGCallee::forDirect(CalleePtr, GD);
5091 }
5092
EmitCallee(const Expr * E)5093 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5094 E = E->IgnoreParens();
5095
5096 // Look through function-to-pointer decay.
5097 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5098 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5099 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5100 return EmitCallee(ICE->getSubExpr());
5101 }
5102
5103 // Resolve direct calls.
5104 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5105 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5106 return EmitDirectCallee(*this, FD);
5107 }
5108 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5109 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5110 EmitIgnoredExpr(ME->getBase());
5111 return EmitDirectCallee(*this, FD);
5112 }
5113
5114 // Look through template substitutions.
5115 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5116 return EmitCallee(NTTP->getReplacement());
5117
5118 // Treat pseudo-destructor calls differently.
5119 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5120 return CGCallee::forPseudoDestructor(PDE);
5121 }
5122
5123 // Otherwise, we have an indirect reference.
5124 llvm::Value *calleePtr;
5125 QualType functionType;
5126 if (auto ptrType = E->getType()->getAs<PointerType>()) {
5127 calleePtr = EmitScalarExpr(E);
5128 functionType = ptrType->getPointeeType();
5129 } else {
5130 functionType = E->getType();
5131 calleePtr = EmitLValue(E).getPointer(*this);
5132 }
5133 assert(functionType->isFunctionType());
5134
5135 GlobalDecl GD;
5136 if (const auto *VD =
5137 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5138 GD = GlobalDecl(VD);
5139
5140 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5141 CGCallee callee(calleeInfo, calleePtr);
5142 return callee;
5143 }
5144
EmitBinaryOperatorLValue(const BinaryOperator * E)5145 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5146 // Comma expressions just emit their LHS then their RHS as an l-value.
5147 if (E->getOpcode() == BO_Comma) {
5148 EmitIgnoredExpr(E->getLHS());
5149 EnsureInsertPoint();
5150 return EmitLValue(E->getRHS());
5151 }
5152
5153 if (E->getOpcode() == BO_PtrMemD ||
5154 E->getOpcode() == BO_PtrMemI)
5155 return EmitPointerToDataMemberBinaryExpr(E);
5156
5157 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5158
5159 // Note that in all of these cases, __block variables need the RHS
5160 // evaluated first just in case the variable gets moved by the RHS.
5161
5162 switch (getEvaluationKind(E->getType())) {
5163 case TEK_Scalar: {
5164 switch (E->getLHS()->getType().getObjCLifetime()) {
5165 case Qualifiers::OCL_Strong:
5166 return EmitARCStoreStrong(E, /*ignored*/ false).first;
5167
5168 case Qualifiers::OCL_Autoreleasing:
5169 return EmitARCStoreAutoreleasing(E).first;
5170
5171 // No reason to do any of these differently.
5172 case Qualifiers::OCL_None:
5173 case Qualifiers::OCL_ExplicitNone:
5174 case Qualifiers::OCL_Weak:
5175 break;
5176 }
5177
5178 RValue RV = EmitAnyExpr(E->getRHS());
5179 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5180 if (RV.isScalar())
5181 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5182 EmitStoreThroughLValue(RV, LV);
5183 if (getLangOpts().OpenMP)
5184 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5185 E->getLHS());
5186 return LV;
5187 }
5188
5189 case TEK_Complex:
5190 return EmitComplexAssignmentLValue(E);
5191
5192 case TEK_Aggregate:
5193 return EmitAggExprToLValue(E);
5194 }
5195 llvm_unreachable("bad evaluation kind");
5196 }
5197
EmitCallExprLValue(const CallExpr * E)5198 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5199 RValue RV = EmitCallExpr(E);
5200
5201 if (!RV.isScalar())
5202 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5203 AlignmentSource::Decl);
5204
5205 assert(E->getCallReturnType(getContext())->isReferenceType() &&
5206 "Can't have a scalar return unless the return type is a "
5207 "reference type!");
5208
5209 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5210 }
5211
EmitVAArgExprLValue(const VAArgExpr * E)5212 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5213 // FIXME: This shouldn't require another copy.
5214 return EmitAggExprToLValue(E);
5215 }
5216
EmitCXXConstructLValue(const CXXConstructExpr * E)5217 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5218 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5219 && "binding l-value to type which needs a temporary");
5220 AggValueSlot Slot = CreateAggTemp(E->getType());
5221 EmitCXXConstructExpr(E, Slot);
5222 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5223 }
5224
5225 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)5226 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5227 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5228 }
5229
EmitCXXUuidofExpr(const CXXUuidofExpr * E)5230 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5231 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5232 ConvertType(E->getType()));
5233 }
5234
EmitCXXUuidofLValue(const CXXUuidofExpr * E)5235 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5236 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5237 AlignmentSource::Decl);
5238 }
5239
5240 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)5241 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5242 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5243 Slot.setExternallyDestructed();
5244 EmitAggExpr(E->getSubExpr(), Slot);
5245 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5246 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5247 }
5248
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)5249 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5250 RValue RV = EmitObjCMessageExpr(E);
5251
5252 if (!RV.isScalar())
5253 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5254 AlignmentSource::Decl);
5255
5256 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5257 "Can't have a scalar return unless the return type is a "
5258 "reference type!");
5259
5260 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5261 }
5262
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)5263 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5264 Address V =
5265 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5266 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5267 }
5268
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)5269 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5270 const ObjCIvarDecl *Ivar) {
5271 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5272 }
5273
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)5274 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5275 llvm::Value *BaseValue,
5276 const ObjCIvarDecl *Ivar,
5277 unsigned CVRQualifiers) {
5278 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5279 Ivar, CVRQualifiers);
5280 }
5281
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)5282 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5283 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5284 llvm::Value *BaseValue = nullptr;
5285 const Expr *BaseExpr = E->getBase();
5286 Qualifiers BaseQuals;
5287 QualType ObjectTy;
5288 if (E->isArrow()) {
5289 BaseValue = EmitScalarExpr(BaseExpr);
5290 ObjectTy = BaseExpr->getType()->getPointeeType();
5291 BaseQuals = ObjectTy.getQualifiers();
5292 } else {
5293 LValue BaseLV = EmitLValue(BaseExpr);
5294 BaseValue = BaseLV.getPointer(*this);
5295 ObjectTy = BaseExpr->getType();
5296 BaseQuals = ObjectTy.getQualifiers();
5297 }
5298
5299 LValue LV =
5300 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5301 BaseQuals.getCVRQualifiers());
5302 setObjCGCLValueClass(getContext(), E, LV);
5303 return LV;
5304 }
5305
EmitStmtExprLValue(const StmtExpr * E)5306 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5307 // Can only get l-value for message expression returning aggregate type
5308 RValue RV = EmitAnyExprToTemp(E);
5309 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5310 AlignmentSource::Decl);
5311 }
5312
EmitCall(QualType CalleeType,const CGCallee & OrigCallee,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Value * Chain)5313 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5314 const CallExpr *E, ReturnValueSlot ReturnValue,
5315 llvm::Value *Chain) {
5316 // Get the actual function type. The callee type will always be a pointer to
5317 // function type or a block pointer type.
5318 assert(CalleeType->isFunctionPointerType() &&
5319 "Call must have function pointer type!");
5320
5321 const Decl *TargetDecl =
5322 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5323
5324 CalleeType = getContext().getCanonicalType(CalleeType);
5325
5326 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5327
5328 CGCallee Callee = OrigCallee;
5329
5330 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5331 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5332 if (llvm::Constant *PrefixSig =
5333 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5334 SanitizerScope SanScope(this);
5335 // Remove any (C++17) exception specifications, to allow calling e.g. a
5336 // noexcept function through a non-noexcept pointer.
5337 auto ProtoTy =
5338 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5339 llvm::Constant *FTRTTIConst =
5340 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5341 llvm::Type *PrefixSigType = PrefixSig->getType();
5342 llvm::StructType *PrefixStructTy = llvm::StructType::get(
5343 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5344
5345 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5346
5347 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5348 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5349 llvm::Value *CalleeSigPtr =
5350 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5351 llvm::Value *CalleeSig =
5352 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5353 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5354
5355 llvm::BasicBlock *Cont = createBasicBlock("cont");
5356 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5357 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5358
5359 EmitBlock(TypeCheck);
5360 llvm::Value *CalleeRTTIPtr =
5361 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5362 llvm::Value *CalleeRTTIEncoded =
5363 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5364 llvm::Value *CalleeRTTI =
5365 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5366 llvm::Value *CalleeRTTIMatch =
5367 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5368 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5369 EmitCheckTypeDescriptor(CalleeType)};
5370 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5371 SanitizerHandler::FunctionTypeMismatch, StaticData,
5372 {CalleePtr, CalleeRTTI, FTRTTIConst});
5373
5374 Builder.CreateBr(Cont);
5375 EmitBlock(Cont);
5376 }
5377 }
5378
5379 const auto *FnType = cast<FunctionType>(PointeeType);
5380
5381 // If we are checking indirect calls and this call is indirect, check that the
5382 // function pointer is a member of the bit set for the function type.
5383 if (SanOpts.has(SanitizerKind::CFIICall) &&
5384 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5385 SanitizerScope SanScope(this);
5386 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5387
5388 llvm::Metadata *MD;
5389 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5390 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5391 else
5392 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5393
5394 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5395
5396 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5397 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5398 llvm::Value *TypeTest = Builder.CreateCall(
5399 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5400
5401 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5402 llvm::Constant *StaticData[] = {
5403 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5404 EmitCheckSourceLocation(E->getBeginLoc()),
5405 EmitCheckTypeDescriptor(QualType(FnType, 0)),
5406 };
5407 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5408 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5409 CastedCallee, StaticData);
5410 } else {
5411 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5412 SanitizerHandler::CFICheckFail, StaticData,
5413 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5414 }
5415 }
5416
5417 CallArgList Args;
5418 if (Chain)
5419 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5420 CGM.getContext().VoidPtrTy);
5421
5422 // C++17 requires that we evaluate arguments to a call using assignment syntax
5423 // right-to-left, and that we evaluate arguments to certain other operators
5424 // left-to-right. Note that we allow this to override the order dictated by
5425 // the calling convention on the MS ABI, which means that parameter
5426 // destruction order is not necessarily reverse construction order.
5427 // FIXME: Revisit this based on C++ committee response to unimplementability.
5428 EvaluationOrder Order = EvaluationOrder::Default;
5429 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5430 if (OCE->isAssignmentOp())
5431 Order = EvaluationOrder::ForceRightToLeft;
5432 else {
5433 switch (OCE->getOperator()) {
5434 case OO_LessLess:
5435 case OO_GreaterGreater:
5436 case OO_AmpAmp:
5437 case OO_PipePipe:
5438 case OO_Comma:
5439 case OO_ArrowStar:
5440 Order = EvaluationOrder::ForceLeftToRight;
5441 break;
5442 default:
5443 break;
5444 }
5445 }
5446 }
5447
5448 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5449 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5450
5451 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5452 Args, FnType, /*ChainCall=*/Chain);
5453
5454 // C99 6.5.2.2p6:
5455 // If the expression that denotes the called function has a type
5456 // that does not include a prototype, [the default argument
5457 // promotions are performed]. If the number of arguments does not
5458 // equal the number of parameters, the behavior is undefined. If
5459 // the function is defined with a type that includes a prototype,
5460 // and either the prototype ends with an ellipsis (, ...) or the
5461 // types of the arguments after promotion are not compatible with
5462 // the types of the parameters, the behavior is undefined. If the
5463 // function is defined with a type that does not include a
5464 // prototype, and the types of the arguments after promotion are
5465 // not compatible with those of the parameters after promotion,
5466 // the behavior is undefined [except in some trivial cases].
5467 // That is, in the general case, we should assume that a call
5468 // through an unprototyped function type works like a *non-variadic*
5469 // call. The way we make this work is to cast to the exact type
5470 // of the promoted arguments.
5471 //
5472 // Chain calls use this same code path to add the invisible chain parameter
5473 // to the function type.
5474 if (isa<FunctionNoProtoType>(FnType) || Chain) {
5475 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5476 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5477 CalleeTy = CalleeTy->getPointerTo(AS);
5478
5479 llvm::Value *CalleePtr = Callee.getFunctionPointer();
5480 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5481 Callee.setFunctionPointer(CalleePtr);
5482 }
5483
5484 // HIP function pointer contains kernel handle when it is used in triple
5485 // chevron. The kernel stub needs to be loaded from kernel handle and used
5486 // as callee.
5487 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5488 isa<CUDAKernelCallExpr>(E) &&
5489 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5490 llvm::Value *Handle = Callee.getFunctionPointer();
5491 auto *Cast =
5492 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5493 auto *Stub = Builder.CreateLoad(
5494 Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5495 Callee.setFunctionPointer(Stub);
5496 }
5497 llvm::CallBase *CallOrInvoke = nullptr;
5498 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5499 E == MustTailCall, E->getExprLoc());
5500
5501 // Generate function declaration DISuprogram in order to be used
5502 // in debug info about call sites.
5503 if (CGDebugInfo *DI = getDebugInfo()) {
5504 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5505 FunctionArgList Args;
5506 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5507 DI->EmitFuncDeclForCallSite(CallOrInvoke,
5508 DI->getFunctionType(CalleeDecl, ResTy, Args),
5509 CalleeDecl);
5510 }
5511 }
5512
5513 return Call;
5514 }
5515
5516 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)5517 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5518 Address BaseAddr = Address::invalid();
5519 if (E->getOpcode() == BO_PtrMemI) {
5520 BaseAddr = EmitPointerWithAlignment(E->getLHS());
5521 } else {
5522 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5523 }
5524
5525 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5526 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5527
5528 LValueBaseInfo BaseInfo;
5529 TBAAAccessInfo TBAAInfo;
5530 Address MemberAddr =
5531 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5532 &TBAAInfo);
5533
5534 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5535 }
5536
5537 /// Given the address of a temporary variable, produce an r-value of
5538 /// its type.
convertTempToRValue(Address addr,QualType type,SourceLocation loc)5539 RValue CodeGenFunction::convertTempToRValue(Address addr,
5540 QualType type,
5541 SourceLocation loc) {
5542 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5543 switch (getEvaluationKind(type)) {
5544 case TEK_Complex:
5545 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5546 case TEK_Aggregate:
5547 return lvalue.asAggregateRValue(*this);
5548 case TEK_Scalar:
5549 return RValue::get(EmitLoadOfScalar(lvalue, loc));
5550 }
5551 llvm_unreachable("bad evaluation kind");
5552 }
5553
SetFPAccuracy(llvm::Value * Val,float Accuracy)5554 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5555 assert(Val->getType()->isFPOrFPVectorTy());
5556 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5557 return;
5558
5559 llvm::MDBuilder MDHelper(getLLVMContext());
5560 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5561
5562 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5563 }
5564
5565 namespace {
5566 struct LValueOrRValue {
5567 LValue LV;
5568 RValue RV;
5569 };
5570 }
5571
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)5572 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5573 const PseudoObjectExpr *E,
5574 bool forLValue,
5575 AggValueSlot slot) {
5576 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5577
5578 // Find the result expression, if any.
5579 const Expr *resultExpr = E->getResultExpr();
5580 LValueOrRValue result;
5581
5582 for (PseudoObjectExpr::const_semantics_iterator
5583 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5584 const Expr *semantic = *i;
5585
5586 // If this semantic expression is an opaque value, bind it
5587 // to the result of its source expression.
5588 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5589 // Skip unique OVEs.
5590 if (ov->isUnique()) {
5591 assert(ov != resultExpr &&
5592 "A unique OVE cannot be used as the result expression");
5593 continue;
5594 }
5595
5596 // If this is the result expression, we may need to evaluate
5597 // directly into the slot.
5598 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5599 OVMA opaqueData;
5600 if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5601 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5602 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5603 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5604 AlignmentSource::Decl);
5605 opaqueData = OVMA::bind(CGF, ov, LV);
5606 result.RV = slot.asRValue();
5607
5608 // Otherwise, emit as normal.
5609 } else {
5610 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5611
5612 // If this is the result, also evaluate the result now.
5613 if (ov == resultExpr) {
5614 if (forLValue)
5615 result.LV = CGF.EmitLValue(ov);
5616 else
5617 result.RV = CGF.EmitAnyExpr(ov, slot);
5618 }
5619 }
5620
5621 opaques.push_back(opaqueData);
5622
5623 // Otherwise, if the expression is the result, evaluate it
5624 // and remember the result.
5625 } else if (semantic == resultExpr) {
5626 if (forLValue)
5627 result.LV = CGF.EmitLValue(semantic);
5628 else
5629 result.RV = CGF.EmitAnyExpr(semantic, slot);
5630
5631 // Otherwise, evaluate the expression in an ignored context.
5632 } else {
5633 CGF.EmitIgnoredExpr(semantic);
5634 }
5635 }
5636
5637 // Unbind all the opaques now.
5638 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5639 opaques[i].unbind(CGF);
5640
5641 return result;
5642 }
5643
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)5644 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5645 AggValueSlot slot) {
5646 return emitPseudoObjectExpr(*this, E, false, slot).RV;
5647 }
5648
EmitPseudoObjectLValue(const PseudoObjectExpr * E)5649 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5650 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5651 }
5652