1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   if (!hasAggregateLLVMType(E->getType()))
118     return RValue::get(EmitScalarExpr(E, ignoreResult));
119   else if (E->getType()->isAnyComplexType())
120     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
121 
122   if (!ignoreResult && aggSlot.isIgnored())
123     aggSlot = CreateAggTemp(E->getType(), "agg-temp");
124   EmitAggExpr(E, aggSlot);
125   return aggSlot.asRValue();
126 }
127 
128 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
129 /// always be accessible even if no aggregate location is provided.
130 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
131   AggValueSlot AggSlot = AggValueSlot::ignored();
132 
133   if (hasAggregateLLVMType(E->getType()) &&
134       !E->getType()->isAnyComplexType())
135     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
136   return EmitAnyExpr(E, AggSlot);
137 }
138 
139 /// EmitAnyExprToMem - Evaluate an expression into a given memory
140 /// location.
141 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
142                                        llvm::Value *Location,
143                                        Qualifiers Quals,
144                                        bool IsInit) {
145   // FIXME: This function should take an LValue as an argument.
146   if (E->getType()->isAnyComplexType()) {
147     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
148   } else if (hasAggregateLLVMType(E->getType())) {
149     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
150     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
151                                          AggValueSlot::IsDestructed_t(IsInit),
152                                          AggValueSlot::DoesNotNeedGCBarriers,
153                                          AggValueSlot::IsAliased_t(!IsInit)));
154   } else {
155     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
156     LValue LV = MakeAddrLValue(Location, E->getType());
157     EmitStoreThroughLValue(RV, LV);
158   }
159 }
160 
161 static llvm::Value *
162 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
163                          const NamedDecl *InitializedDecl) {
164   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
165     if (VD->hasGlobalStorage()) {
166       SmallString<256> Name;
167       llvm::raw_svector_ostream Out(Name);
168       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
169       Out.flush();
170 
171       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
172 
173       // Create the reference temporary.
174       llvm::GlobalValue *RefTemp =
175         new llvm::GlobalVariable(CGF.CGM.getModule(),
176                                  RefTempTy, /*isConstant=*/false,
177                                  llvm::GlobalValue::InternalLinkage,
178                                  llvm::Constant::getNullValue(RefTempTy),
179                                  Name.str());
180       return RefTemp;
181     }
182   }
183 
184   return CGF.CreateMemTemp(Type, "ref.tmp");
185 }
186 
187 static llvm::Value *
188 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
189                             llvm::Value *&ReferenceTemporary,
190                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
191                             QualType &ObjCARCReferenceLifetimeType,
192                             const NamedDecl *InitializedDecl) {
193   const MaterializeTemporaryExpr *M = NULL;
194   E = E->findMaterializedTemporary(M);
195   // Objective-C++ ARC:
196   //   If we are binding a reference to a temporary that has ownership, we
197   //   need to perform retain/release operations on the temporary.
198   if (M && CGF.getLangOpts().ObjCAutoRefCount &&
199       M->getType()->isObjCLifetimeType() &&
200       (M->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
201        M->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
202        M->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
203     ObjCARCReferenceLifetimeType = M->getType();
204 
205   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
206     CGF.enterFullExpression(EWC);
207     CodeGenFunction::RunCleanupsScope Scope(CGF);
208 
209     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
210                                        ReferenceTemporary,
211                                        ReferenceTemporaryDtor,
212                                        ObjCARCReferenceLifetimeType,
213                                        InitializedDecl);
214   }
215 
216   RValue RV;
217   if (E->isGLValue()) {
218     // Emit the expression as an lvalue.
219     LValue LV = CGF.EmitLValue(E);
220 
221     if (LV.isSimple())
222       return LV.getAddress();
223 
224     // We have to load the lvalue.
225     RV = CGF.EmitLoadOfLValue(LV);
226   } else {
227     if (!ObjCARCReferenceLifetimeType.isNull()) {
228       ReferenceTemporary = CreateReferenceTemporary(CGF,
229                                                   ObjCARCReferenceLifetimeType,
230                                                     InitializedDecl);
231 
232 
233       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
234                                              ObjCARCReferenceLifetimeType);
235 
236       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
237                          RefTempDst, false);
238 
239       bool ExtendsLifeOfTemporary = false;
240       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
241         if (Var->extendsLifetimeOfTemporary())
242           ExtendsLifeOfTemporary = true;
243       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
244         ExtendsLifeOfTemporary = true;
245       }
246 
247       if (!ExtendsLifeOfTemporary) {
248         // Since the lifetime of this temporary isn't going to be extended,
249         // we need to clean it up ourselves at the end of the full expression.
250         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
251         case Qualifiers::OCL_None:
252         case Qualifiers::OCL_ExplicitNone:
253         case Qualifiers::OCL_Autoreleasing:
254           break;
255 
256         case Qualifiers::OCL_Strong: {
257           assert(!ObjCARCReferenceLifetimeType->isArrayType());
258           CleanupKind cleanupKind = CGF.getARCCleanupKind();
259           CGF.pushDestroy(cleanupKind,
260                           ReferenceTemporary,
261                           ObjCARCReferenceLifetimeType,
262                           CodeGenFunction::destroyARCStrongImprecise,
263                           cleanupKind & EHCleanup);
264           break;
265         }
266 
267         case Qualifiers::OCL_Weak:
268           assert(!ObjCARCReferenceLifetimeType->isArrayType());
269           CGF.pushDestroy(NormalAndEHCleanup,
270                           ReferenceTemporary,
271                           ObjCARCReferenceLifetimeType,
272                           CodeGenFunction::destroyARCWeak,
273                           /*useEHCleanupForArray*/ true);
274           break;
275         }
276 
277         ObjCARCReferenceLifetimeType = QualType();
278       }
279 
280       return ReferenceTemporary;
281     }
282 
283     SmallVector<SubobjectAdjustment, 2> Adjustments;
284     E = E->skipRValueSubobjectAdjustments(Adjustments);
285     if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
286       if (opaque->getType()->isRecordType())
287         return CGF.EmitOpaqueValueLValue(opaque).getAddress();
288 
289     // Create a reference temporary if necessary.
290     AggValueSlot AggSlot = AggValueSlot::ignored();
291     if (CGF.hasAggregateLLVMType(E->getType()) &&
292         !E->getType()->isAnyComplexType()) {
293       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
294                                                     InitializedDecl);
295       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
296       AggValueSlot::IsDestructed_t isDestructed
297         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
298       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
299                                       Qualifiers(), isDestructed,
300                                       AggValueSlot::DoesNotNeedGCBarriers,
301                                       AggValueSlot::IsNotAliased);
302     }
303 
304     if (InitializedDecl) {
305       // Get the destructor for the reference temporary.
306       if (const RecordType *RT =
307             E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
308         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
309         if (!ClassDecl->hasTrivialDestructor())
310           ReferenceTemporaryDtor = ClassDecl->getDestructor();
311       }
312     }
313 
314     RV = CGF.EmitAnyExpr(E, AggSlot);
315 
316     // Check if need to perform derived-to-base casts and/or field accesses, to
317     // get from the temporary object we created (and, potentially, for which we
318     // extended the lifetime) to the subobject we're binding the reference to.
319     if (!Adjustments.empty()) {
320       llvm::Value *Object = RV.getAggregateAddr();
321       for (unsigned I = Adjustments.size(); I != 0; --I) {
322         SubobjectAdjustment &Adjustment = Adjustments[I-1];
323         switch (Adjustment.Kind) {
324         case SubobjectAdjustment::DerivedToBaseAdjustment:
325           Object =
326               CGF.GetAddressOfBaseClass(Object,
327                                         Adjustment.DerivedToBase.DerivedClass,
328                               Adjustment.DerivedToBase.BasePath->path_begin(),
329                               Adjustment.DerivedToBase.BasePath->path_end(),
330                                         /*NullCheckValue=*/false);
331           break;
332 
333         case SubobjectAdjustment::FieldAdjustment: {
334           LValue LV = CGF.MakeAddrLValue(Object, E->getType());
335           LV = CGF.EmitLValueForField(LV, Adjustment.Field);
336           if (LV.isSimple()) {
337             Object = LV.getAddress();
338             break;
339           }
340 
341           // For non-simple lvalues, we actually have to create a copy of
342           // the object we're binding to.
343           QualType T = Adjustment.Field->getType().getNonReferenceType()
344                                                   .getUnqualifiedType();
345           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
346           LValue TempLV = CGF.MakeAddrLValue(Object,
347                                              Adjustment.Field->getType());
348           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
349           break;
350         }
351 
352         case SubobjectAdjustment::MemberPointerAdjustment: {
353           llvm::Value *Ptr = CGF.EmitScalarExpr(Adjustment.Ptr.RHS);
354           Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress(
355                         CGF, Object, Ptr, Adjustment.Ptr.MPT);
356           break;
357         }
358         }
359       }
360 
361       return Object;
362     }
363   }
364 
365   if (RV.isAggregate())
366     return RV.getAggregateAddr();
367 
368   // Create a temporary variable that we can bind the reference to.
369   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
370                                                 InitializedDecl);
371 
372 
373   unsigned Alignment =
374     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
375   if (RV.isScalar())
376     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
377                           /*Volatile=*/false, Alignment, E->getType());
378   else
379     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
380                            /*Volatile=*/false);
381   return ReferenceTemporary;
382 }
383 
384 RValue
385 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
386                                             const NamedDecl *InitializedDecl) {
387   llvm::Value *ReferenceTemporary = 0;
388   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
389   QualType ObjCARCReferenceLifetimeType;
390   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
391                                                    ReferenceTemporaryDtor,
392                                                    ObjCARCReferenceLifetimeType,
393                                                    InitializedDecl);
394   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
395     // C++11 [dcl.ref]p5 (as amended by core issue 453):
396     //   If a glvalue to which a reference is directly bound designates neither
397     //   an existing object or function of an appropriate type nor a region of
398     //   storage of suitable size and alignment to contain an object of the
399     //   reference's type, the behavior is undefined.
400     QualType Ty = E->getType();
401     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
402   }
403   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
404     return RValue::get(Value);
405 
406   // Make sure to call the destructor for the reference temporary.
407   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
408   if (VD && VD->hasGlobalStorage()) {
409     if (ReferenceTemporaryDtor) {
410       llvm::Constant *CleanupFn;
411       llvm::Constant *CleanupArg;
412       if (E->getType()->isArrayType()) {
413         CleanupFn = CodeGenFunction(CGM).generateDestroyHelper(
414             cast<llvm::Constant>(ReferenceTemporary), E->getType(),
415             destroyCXXObject, getLangOpts().Exceptions);
416         CleanupArg = llvm::Constant::getNullValue(Int8PtrTy);
417       } else {
418         CleanupFn =
419           CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
420         CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
421       }
422       CGM.getCXXABI().registerGlobalDtor(*this, CleanupFn, CleanupArg);
423     } else {
424       assert(!ObjCARCReferenceLifetimeType.isNull());
425       // Note: We intentionally do not register a global "destructor" to
426       // release the object.
427     }
428 
429     return RValue::get(Value);
430   }
431 
432   if (ReferenceTemporaryDtor) {
433     if (E->getType()->isArrayType())
434       pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
435                   destroyCXXObject, getLangOpts().Exceptions);
436     else
437       PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
438   } else {
439     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
440     case Qualifiers::OCL_None:
441       llvm_unreachable(
442                       "Not a reference temporary that needs to be deallocated");
443     case Qualifiers::OCL_ExplicitNone:
444     case Qualifiers::OCL_Autoreleasing:
445       // Nothing to do.
446       break;
447 
448     case Qualifiers::OCL_Strong: {
449       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
450       CleanupKind cleanupKind = getARCCleanupKind();
451       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
452                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
453                   cleanupKind & EHCleanup);
454       break;
455     }
456 
457     case Qualifiers::OCL_Weak: {
458       // __weak objects always get EH cleanups; otherwise, exceptions
459       // could cause really nasty crashes instead of mere leaks.
460       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
461                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
462       break;
463     }
464     }
465   }
466 
467   return RValue::get(Value);
468 }
469 
470 
471 /// getAccessedFieldNo - Given an encoded value and a result number, return the
472 /// input field number being accessed.
473 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
474                                              const llvm::Constant *Elts) {
475   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
476       ->getZExtValue();
477 }
478 
479 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
480 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
481                                     llvm::Value *High) {
482   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
483   llvm::Value *K47 = Builder.getInt64(47);
484   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
485   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
486   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
487   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
488   return Builder.CreateMul(B1, KMul);
489 }
490 
491 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
492                                     llvm::Value *Address,
493                                     QualType Ty, CharUnits Alignment) {
494   if (!SanitizePerformTypeCheck)
495     return;
496 
497   // Don't check pointers outside the default address space. The null check
498   // isn't correct, the object-size check isn't supported by LLVM, and we can't
499   // communicate the addresses to the runtime handler for the vptr check.
500   if (Address->getType()->getPointerAddressSpace())
501     return;
502 
503   llvm::Value *Cond = 0;
504 
505   if (SanOpts->Null) {
506     // The glvalue must not be an empty glvalue.
507     Cond = Builder.CreateICmpNE(
508         Address, llvm::Constant::getNullValue(Address->getType()));
509   }
510 
511   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
512     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
513 
514     // The glvalue must refer to a large enough storage region.
515     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
516     //        to check this.
517     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
518     llvm::Value *Min = Builder.getFalse();
519     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
520     llvm::Value *LargeEnough =
521         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
522                               llvm::ConstantInt::get(IntPtrTy, Size));
523     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
524   }
525 
526   uint64_t AlignVal = 0;
527 
528   if (SanOpts->Alignment) {
529     AlignVal = Alignment.getQuantity();
530     if (!Ty->isIncompleteType() && !AlignVal)
531       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
532 
533     // The glvalue must be suitably aligned.
534     if (AlignVal) {
535       llvm::Value *Align =
536           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
537                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
538       llvm::Value *Aligned =
539         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
540       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
541     }
542   }
543 
544   if (Cond) {
545     llvm::Constant *StaticData[] = {
546       EmitCheckSourceLocation(Loc),
547       EmitCheckTypeDescriptor(Ty),
548       llvm::ConstantInt::get(SizeTy, AlignVal),
549       llvm::ConstantInt::get(Int8Ty, TCK)
550     };
551     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
552   }
553 
554   // If possible, check that the vptr indicates that there is a subobject of
555   // type Ty at offset zero within this object.
556   //
557   // C++11 [basic.life]p5,6:
558   //   [For storage which does not refer to an object within its lifetime]
559   //   The program has undefined behavior if:
560   //    -- the [pointer or glvalue] is used to access a non-static data member
561   //       or call a non-static member function
562   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
563   if (SanOpts->Vptr &&
564       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall) &&
565       RD && RD->hasDefinition() && RD->isDynamicClass()) {
566     // Compute a hash of the mangled name of the type.
567     //
568     // FIXME: This is not guaranteed to be deterministic! Move to a
569     //        fingerprinting mechanism once LLVM provides one. For the time
570     //        being the implementation happens to be deterministic.
571     SmallString<64> MangledName;
572     llvm::raw_svector_ostream Out(MangledName);
573     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
574                                                      Out);
575     llvm::hash_code TypeHash = hash_value(Out.str());
576 
577     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
578     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
579     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
580     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
581     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
582     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
583 
584     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
585     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
586 
587     // Look the hash up in our cache.
588     const int CacheSize = 128;
589     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
590     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
591                                                    "__ubsan_vptr_type_cache");
592     llvm::Value *Slot = Builder.CreateAnd(Hash,
593                                           llvm::ConstantInt::get(IntPtrTy,
594                                                                  CacheSize-1));
595     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
596     llvm::Value *CacheVal =
597       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
598 
599     // If the hash isn't in the cache, call a runtime handler to perform the
600     // hard work of checking whether the vptr is for an object of the right
601     // type. This will either fill in the cache and return, or produce a
602     // diagnostic.
603     llvm::Constant *StaticData[] = {
604       EmitCheckSourceLocation(Loc),
605       EmitCheckTypeDescriptor(Ty),
606       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
607       llvm::ConstantInt::get(Int8Ty, TCK)
608     };
609     llvm::Value *DynamicData[] = { Address, Hash };
610     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
611               "dynamic_type_cache_miss", StaticData, DynamicData,
612               CRK_AlwaysRecoverable);
613   }
614 }
615 
616 
617 CodeGenFunction::ComplexPairTy CodeGenFunction::
618 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
619                          bool isInc, bool isPre) {
620   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
621                                             LV.isVolatileQualified());
622 
623   llvm::Value *NextVal;
624   if (isa<llvm::IntegerType>(InVal.first->getType())) {
625     uint64_t AmountVal = isInc ? 1 : -1;
626     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
627 
628     // Add the inc/dec to the real part.
629     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
630   } else {
631     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
632     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
633     if (!isInc)
634       FVal.changeSign();
635     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
636 
637     // Add the inc/dec to the real part.
638     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
639   }
640 
641   ComplexPairTy IncVal(NextVal, InVal.second);
642 
643   // Store the updated result through the lvalue.
644   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
645 
646   // If this is a postinc, return the value read from memory, otherwise use the
647   // updated value.
648   return isPre ? IncVal : InVal;
649 }
650 
651 
652 //===----------------------------------------------------------------------===//
653 //                         LValue Expression Emission
654 //===----------------------------------------------------------------------===//
655 
656 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
657   if (Ty->isVoidType())
658     return RValue::get(0);
659 
660   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
661     llvm::Type *EltTy = ConvertType(CTy->getElementType());
662     llvm::Value *U = llvm::UndefValue::get(EltTy);
663     return RValue::getComplex(std::make_pair(U, U));
664   }
665 
666   // If this is a use of an undefined aggregate type, the aggregate must have an
667   // identifiable address.  Just because the contents of the value are undefined
668   // doesn't mean that the address can't be taken and compared.
669   if (hasAggregateLLVMType(Ty)) {
670     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
671     return RValue::getAggregate(DestPtr);
672   }
673 
674   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
675 }
676 
677 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
678                                               const char *Name) {
679   ErrorUnsupported(E, Name);
680   return GetUndefRValue(E->getType());
681 }
682 
683 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
684                                               const char *Name) {
685   ErrorUnsupported(E, Name);
686   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
687   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
688 }
689 
690 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
691   LValue LV = EmitLValue(E);
692   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
693     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
694                   E->getType(), LV.getAlignment());
695   return LV;
696 }
697 
698 /// EmitLValue - Emit code to compute a designator that specifies the location
699 /// of the expression.
700 ///
701 /// This can return one of two things: a simple address or a bitfield reference.
702 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
703 /// an LLVM pointer type.
704 ///
705 /// If this returns a bitfield reference, nothing about the pointee type of the
706 /// LLVM value is known: For example, it may not be a pointer to an integer.
707 ///
708 /// If this returns a normal address, and if the lvalue's C type is fixed size,
709 /// this method guarantees that the returned pointer type will point to an LLVM
710 /// type of the same size of the lvalue's type.  If the lvalue has a variable
711 /// length type, this is not possible.
712 ///
713 LValue CodeGenFunction::EmitLValue(const Expr *E) {
714   switch (E->getStmtClass()) {
715   default: return EmitUnsupportedLValue(E, "l-value expression");
716 
717   case Expr::ObjCPropertyRefExprClass:
718     llvm_unreachable("cannot emit a property reference directly");
719 
720   case Expr::ObjCSelectorExprClass:
721     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
722   case Expr::ObjCIsaExprClass:
723     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
724   case Expr::BinaryOperatorClass:
725     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
726   case Expr::CompoundAssignOperatorClass:
727     if (!E->getType()->isAnyComplexType())
728       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
729     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
730   case Expr::CallExprClass:
731   case Expr::CXXMemberCallExprClass:
732   case Expr::CXXOperatorCallExprClass:
733   case Expr::UserDefinedLiteralClass:
734     return EmitCallExprLValue(cast<CallExpr>(E));
735   case Expr::VAArgExprClass:
736     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
737   case Expr::DeclRefExprClass:
738     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
739   case Expr::ParenExprClass:
740     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
741   case Expr::GenericSelectionExprClass:
742     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
743   case Expr::PredefinedExprClass:
744     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
745   case Expr::StringLiteralClass:
746     return EmitStringLiteralLValue(cast<StringLiteral>(E));
747   case Expr::ObjCEncodeExprClass:
748     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
749   case Expr::PseudoObjectExprClass:
750     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
751   case Expr::InitListExprClass:
752     return EmitInitListLValue(cast<InitListExpr>(E));
753   case Expr::CXXTemporaryObjectExprClass:
754   case Expr::CXXConstructExprClass:
755     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
756   case Expr::CXXBindTemporaryExprClass:
757     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
758   case Expr::CXXUuidofExprClass:
759     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
760   case Expr::LambdaExprClass:
761     return EmitLambdaLValue(cast<LambdaExpr>(E));
762 
763   case Expr::ExprWithCleanupsClass: {
764     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
765     enterFullExpression(cleanups);
766     RunCleanupsScope Scope(*this);
767     return EmitLValue(cleanups->getSubExpr());
768   }
769 
770   case Expr::CXXScalarValueInitExprClass:
771     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
772   case Expr::CXXDefaultArgExprClass:
773     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
774   case Expr::CXXTypeidExprClass:
775     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
776 
777   case Expr::ObjCMessageExprClass:
778     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
779   case Expr::ObjCIvarRefExprClass:
780     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
781   case Expr::StmtExprClass:
782     return EmitStmtExprLValue(cast<StmtExpr>(E));
783   case Expr::UnaryOperatorClass:
784     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
785   case Expr::ArraySubscriptExprClass:
786     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
787   case Expr::ExtVectorElementExprClass:
788     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
789   case Expr::MemberExprClass:
790     return EmitMemberExpr(cast<MemberExpr>(E));
791   case Expr::CompoundLiteralExprClass:
792     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
793   case Expr::ConditionalOperatorClass:
794     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
795   case Expr::BinaryConditionalOperatorClass:
796     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
797   case Expr::ChooseExprClass:
798     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
799   case Expr::OpaqueValueExprClass:
800     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
801   case Expr::SubstNonTypeTemplateParmExprClass:
802     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
803   case Expr::ImplicitCastExprClass:
804   case Expr::CStyleCastExprClass:
805   case Expr::CXXFunctionalCastExprClass:
806   case Expr::CXXStaticCastExprClass:
807   case Expr::CXXDynamicCastExprClass:
808   case Expr::CXXReinterpretCastExprClass:
809   case Expr::CXXConstCastExprClass:
810   case Expr::ObjCBridgedCastExprClass:
811     return EmitCastLValue(cast<CastExpr>(E));
812 
813   case Expr::MaterializeTemporaryExprClass:
814     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
815   }
816 }
817 
818 /// Given an object of the given canonical type, can we safely copy a
819 /// value out of it based on its initializer?
820 static bool isConstantEmittableObjectType(QualType type) {
821   assert(type.isCanonical());
822   assert(!type->isReferenceType());
823 
824   // Must be const-qualified but non-volatile.
825   Qualifiers qs = type.getLocalQualifiers();
826   if (!qs.hasConst() || qs.hasVolatile()) return false;
827 
828   // Otherwise, all object types satisfy this except C++ classes with
829   // mutable subobjects or non-trivial copy/destroy behavior.
830   if (const RecordType *RT = dyn_cast<RecordType>(type))
831     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
832       if (RD->hasMutableFields() || !RD->isTrivial())
833         return false;
834 
835   return true;
836 }
837 
838 /// Can we constant-emit a load of a reference to a variable of the
839 /// given type?  This is different from predicates like
840 /// Decl::isUsableInConstantExpressions because we do want it to apply
841 /// in situations that don't necessarily satisfy the language's rules
842 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
843 /// to do this with const float variables even if those variables
844 /// aren't marked 'constexpr'.
845 enum ConstantEmissionKind {
846   CEK_None,
847   CEK_AsReferenceOnly,
848   CEK_AsValueOrReference,
849   CEK_AsValueOnly
850 };
851 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
852   type = type.getCanonicalType();
853   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
854     if (isConstantEmittableObjectType(ref->getPointeeType()))
855       return CEK_AsValueOrReference;
856     return CEK_AsReferenceOnly;
857   }
858   if (isConstantEmittableObjectType(type))
859     return CEK_AsValueOnly;
860   return CEK_None;
861 }
862 
863 /// Try to emit a reference to the given value without producing it as
864 /// an l-value.  This is actually more than an optimization: we can't
865 /// produce an l-value for variables that we never actually captured
866 /// in a block or lambda, which means const int variables or constexpr
867 /// literals or similar.
868 CodeGenFunction::ConstantEmission
869 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
870   ValueDecl *value = refExpr->getDecl();
871 
872   // The value needs to be an enum constant or a constant variable.
873   ConstantEmissionKind CEK;
874   if (isa<ParmVarDecl>(value)) {
875     CEK = CEK_None;
876   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
877     CEK = checkVarTypeForConstantEmission(var->getType());
878   } else if (isa<EnumConstantDecl>(value)) {
879     CEK = CEK_AsValueOnly;
880   } else {
881     CEK = CEK_None;
882   }
883   if (CEK == CEK_None) return ConstantEmission();
884 
885   Expr::EvalResult result;
886   bool resultIsReference;
887   QualType resultType;
888 
889   // It's best to evaluate all the way as an r-value if that's permitted.
890   if (CEK != CEK_AsReferenceOnly &&
891       refExpr->EvaluateAsRValue(result, getContext())) {
892     resultIsReference = false;
893     resultType = refExpr->getType();
894 
895   // Otherwise, try to evaluate as an l-value.
896   } else if (CEK != CEK_AsValueOnly &&
897              refExpr->EvaluateAsLValue(result, getContext())) {
898     resultIsReference = true;
899     resultType = value->getType();
900 
901   // Failure.
902   } else {
903     return ConstantEmission();
904   }
905 
906   // In any case, if the initializer has side-effects, abandon ship.
907   if (result.HasSideEffects)
908     return ConstantEmission();
909 
910   // Emit as a constant.
911   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
912 
913   // Make sure we emit a debug reference to the global variable.
914   // This should probably fire even for
915   if (isa<VarDecl>(value)) {
916     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
917       EmitDeclRefExprDbgValue(refExpr, C);
918   } else {
919     assert(isa<EnumConstantDecl>(value));
920     EmitDeclRefExprDbgValue(refExpr, C);
921   }
922 
923   // If we emitted a reference constant, we need to dereference that.
924   if (resultIsReference)
925     return ConstantEmission::forReference(C);
926 
927   return ConstantEmission::forValue(C);
928 }
929 
930 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
931   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
932                           lvalue.getAlignment().getQuantity(),
933                           lvalue.getType(), lvalue.getTBAAInfo());
934 }
935 
936 static bool hasBooleanRepresentation(QualType Ty) {
937   if (Ty->isBooleanType())
938     return true;
939 
940   if (const EnumType *ET = Ty->getAs<EnumType>())
941     return ET->getDecl()->getIntegerType()->isBooleanType();
942 
943   if (const AtomicType *AT = Ty->getAs<AtomicType>())
944     return hasBooleanRepresentation(AT->getValueType());
945 
946   return false;
947 }
948 
949 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
950                             llvm::APInt &Min, llvm::APInt &End,
951                             bool StrictEnums) {
952   const EnumType *ET = Ty->getAs<EnumType>();
953   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
954                                 ET && !ET->getDecl()->isFixed();
955   bool IsBool = hasBooleanRepresentation(Ty);
956   if (!IsBool && !IsRegularCPlusPlusEnum)
957     return false;
958 
959   if (IsBool) {
960     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
961     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
962   } else {
963     const EnumDecl *ED = ET->getDecl();
964     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
965     unsigned Bitwidth = LTy->getScalarSizeInBits();
966     unsigned NumNegativeBits = ED->getNumNegativeBits();
967     unsigned NumPositiveBits = ED->getNumPositiveBits();
968 
969     if (NumNegativeBits) {
970       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
971       assert(NumBits <= Bitwidth);
972       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
973       Min = -End;
974     } else {
975       assert(NumPositiveBits <= Bitwidth);
976       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
977       Min = llvm::APInt(Bitwidth, 0);
978     }
979   }
980   return true;
981 }
982 
983 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
984   llvm::APInt Min, End;
985   if (!getRangeForType(*this, Ty, Min, End,
986                        CGM.getCodeGenOpts().StrictEnums))
987     return 0;
988 
989   llvm::MDBuilder MDHelper(getLLVMContext());
990   return MDHelper.createRange(Min, End);
991 }
992 
993 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
994                                               unsigned Alignment, QualType Ty,
995                                               llvm::MDNode *TBAAInfo) {
996 
997   // For better performance, handle vector loads differently.
998   if (Ty->isVectorType()) {
999     llvm::Value *V;
1000     const llvm::Type *EltTy =
1001     cast<llvm::PointerType>(Addr->getType())->getElementType();
1002 
1003     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1004 
1005     // Handle vectors of size 3, like size 4 for better performance.
1006     if (VTy->getNumElements() == 3) {
1007 
1008       // Bitcast to vec4 type.
1009       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1010                                                          4);
1011       llvm::PointerType *ptVec4Ty =
1012       llvm::PointerType::get(vec4Ty,
1013                              (cast<llvm::PointerType>(
1014                                       Addr->getType()))->getAddressSpace());
1015       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1016                                                 "castToVec4");
1017       // Now load value.
1018       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1019 
1020       // Shuffle vector to get vec3.
1021       llvm::Constant *Mask[] = {
1022         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1023         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1024         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1025       };
1026 
1027       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1028       V = Builder.CreateShuffleVector(LoadVal,
1029                                       llvm::UndefValue::get(vec4Ty),
1030                                       MaskV, "extractVec");
1031       return EmitFromMemory(V, Ty);
1032     }
1033   }
1034 
1035   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1036   if (Volatile)
1037     Load->setVolatile(true);
1038   if (Alignment)
1039     Load->setAlignment(Alignment);
1040   if (TBAAInfo)
1041     CGM.DecorateInstruction(Load, TBAAInfo);
1042   // If this is an atomic type, all normal reads must be atomic
1043   if (Ty->isAtomicType())
1044     Load->setAtomic(llvm::SequentiallyConsistent);
1045 
1046   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1047       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1048     llvm::APInt Min, End;
1049     if (getRangeForType(*this, Ty, Min, End, true)) {
1050       --End;
1051       llvm::Value *Check;
1052       if (!Min)
1053         Check = Builder.CreateICmpULE(
1054           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1055       else {
1056         llvm::Value *Upper = Builder.CreateICmpSLE(
1057           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1058         llvm::Value *Lower = Builder.CreateICmpSGE(
1059           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1060         Check = Builder.CreateAnd(Upper, Lower);
1061       }
1062       // FIXME: Provide a SourceLocation.
1063       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1064                 EmitCheckValue(Load), CRK_Recoverable);
1065     }
1066   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1067     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1068       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1069 
1070   return EmitFromMemory(Load, Ty);
1071 }
1072 
1073 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1074   // Bool has a different representation in memory than in registers.
1075   if (hasBooleanRepresentation(Ty)) {
1076     // This should really always be an i1, but sometimes it's already
1077     // an i8, and it's awkward to track those cases down.
1078     if (Value->getType()->isIntegerTy(1))
1079       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1080     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1081            "wrong value rep of bool");
1082   }
1083 
1084   return Value;
1085 }
1086 
1087 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1088   // Bool has a different representation in memory than in registers.
1089   if (hasBooleanRepresentation(Ty)) {
1090     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1091            "wrong value rep of bool");
1092     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1093   }
1094 
1095   return Value;
1096 }
1097 
1098 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1099                                         bool Volatile, unsigned Alignment,
1100                                         QualType Ty,
1101                                         llvm::MDNode *TBAAInfo,
1102                                         bool isInit) {
1103 
1104   // Handle vectors differently to get better performance.
1105   if (Ty->isVectorType()) {
1106     llvm::Type *SrcTy = Value->getType();
1107     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1108     // Handle vec3 special.
1109     if (VecTy->getNumElements() == 3) {
1110       llvm::LLVMContext &VMContext = getLLVMContext();
1111 
1112       // Our source is a vec3, do a shuffle vector to make it a vec4.
1113       SmallVector<llvm::Constant*, 4> Mask;
1114       Mask.push_back(llvm::ConstantInt::get(
1115                                             llvm::Type::getInt32Ty(VMContext),
1116                                             0));
1117       Mask.push_back(llvm::ConstantInt::get(
1118                                             llvm::Type::getInt32Ty(VMContext),
1119                                             1));
1120       Mask.push_back(llvm::ConstantInt::get(
1121                                             llvm::Type::getInt32Ty(VMContext),
1122                                             2));
1123       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1124 
1125       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1126       Value = Builder.CreateShuffleVector(Value,
1127                                           llvm::UndefValue::get(VecTy),
1128                                           MaskV, "extractVec");
1129       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1130     }
1131     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1132     if (DstPtr->getElementType() != SrcTy) {
1133       llvm::Type *MemTy =
1134       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1135       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1136     }
1137   }
1138 
1139   Value = EmitToMemory(Value, Ty);
1140 
1141   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1142   if (Alignment)
1143     Store->setAlignment(Alignment);
1144   if (TBAAInfo)
1145     CGM.DecorateInstruction(Store, TBAAInfo);
1146   if (!isInit && Ty->isAtomicType())
1147     Store->setAtomic(llvm::SequentiallyConsistent);
1148 }
1149 
1150 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1151     bool isInit) {
1152   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1153                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1154                     lvalue.getTBAAInfo(), isInit);
1155 }
1156 
1157 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1158 /// method emits the address of the lvalue, then loads the result as an rvalue,
1159 /// returning the rvalue.
1160 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1161   if (LV.isObjCWeak()) {
1162     // load of a __weak object.
1163     llvm::Value *AddrWeakObj = LV.getAddress();
1164     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1165                                                              AddrWeakObj));
1166   }
1167   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1168     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1169     Object = EmitObjCConsumeObject(LV.getType(), Object);
1170     return RValue::get(Object);
1171   }
1172 
1173   if (LV.isSimple()) {
1174     assert(!LV.getType()->isFunctionType());
1175 
1176     // Everything needs a load.
1177     return RValue::get(EmitLoadOfScalar(LV));
1178   }
1179 
1180   if (LV.isVectorElt()) {
1181     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1182                                               LV.isVolatileQualified());
1183     Load->setAlignment(LV.getAlignment().getQuantity());
1184     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1185                                                     "vecext"));
1186   }
1187 
1188   // If this is a reference to a subset of the elements of a vector, either
1189   // shuffle the input or extract/insert them as appropriate.
1190   if (LV.isExtVectorElt())
1191     return EmitLoadOfExtVectorElementLValue(LV);
1192 
1193   assert(LV.isBitField() && "Unknown LValue type!");
1194   return EmitLoadOfBitfieldLValue(LV);
1195 }
1196 
1197 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1198   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1199 
1200   // Get the output type.
1201   llvm::Type *ResLTy = ConvertType(LV.getType());
1202 
1203   llvm::Value *Ptr = LV.getBitFieldAddr();
1204   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1205                                         "bf.load");
1206   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1207 
1208   if (Info.IsSigned) {
1209     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1210     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1211     if (HighBits)
1212       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1213     if (Info.Offset + HighBits)
1214       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1215   } else {
1216     if (Info.Offset)
1217       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1218     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1219       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1220                                                               Info.Size),
1221                               "bf.clear");
1222   }
1223   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1224 
1225   return RValue::get(Val);
1226 }
1227 
1228 // If this is a reference to a subset of the elements of a vector, create an
1229 // appropriate shufflevector.
1230 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1231   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1232                                             LV.isVolatileQualified());
1233   Load->setAlignment(LV.getAlignment().getQuantity());
1234   llvm::Value *Vec = Load;
1235 
1236   const llvm::Constant *Elts = LV.getExtVectorElts();
1237 
1238   // If the result of the expression is a non-vector type, we must be extracting
1239   // a single element.  Just codegen as an extractelement.
1240   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1241   if (!ExprVT) {
1242     unsigned InIdx = getAccessedFieldNo(0, Elts);
1243     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1244     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1245   }
1246 
1247   // Always use shuffle vector to try to retain the original program structure
1248   unsigned NumResultElts = ExprVT->getNumElements();
1249 
1250   SmallVector<llvm::Constant*, 4> Mask;
1251   for (unsigned i = 0; i != NumResultElts; ++i)
1252     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1253 
1254   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1255   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1256                                     MaskV);
1257   return RValue::get(Vec);
1258 }
1259 
1260 
1261 
1262 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1263 /// lvalue, where both are guaranteed to the have the same type, and that type
1264 /// is 'Ty'.
1265 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1266   if (!Dst.isSimple()) {
1267     if (Dst.isVectorElt()) {
1268       // Read/modify/write the vector, inserting the new element.
1269       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1270                                                 Dst.isVolatileQualified());
1271       Load->setAlignment(Dst.getAlignment().getQuantity());
1272       llvm::Value *Vec = Load;
1273       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1274                                         Dst.getVectorIdx(), "vecins");
1275       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1276                                                    Dst.isVolatileQualified());
1277       Store->setAlignment(Dst.getAlignment().getQuantity());
1278       return;
1279     }
1280 
1281     // If this is an update of extended vector elements, insert them as
1282     // appropriate.
1283     if (Dst.isExtVectorElt())
1284       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1285 
1286     assert(Dst.isBitField() && "Unknown LValue type");
1287     return EmitStoreThroughBitfieldLValue(Src, Dst);
1288   }
1289 
1290   // There's special magic for assigning into an ARC-qualified l-value.
1291   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1292     switch (Lifetime) {
1293     case Qualifiers::OCL_None:
1294       llvm_unreachable("present but none");
1295 
1296     case Qualifiers::OCL_ExplicitNone:
1297       // nothing special
1298       break;
1299 
1300     case Qualifiers::OCL_Strong:
1301       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1302       return;
1303 
1304     case Qualifiers::OCL_Weak:
1305       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1306       return;
1307 
1308     case Qualifiers::OCL_Autoreleasing:
1309       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1310                                                      Src.getScalarVal()));
1311       // fall into the normal path
1312       break;
1313     }
1314   }
1315 
1316   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1317     // load of a __weak object.
1318     llvm::Value *LvalueDst = Dst.getAddress();
1319     llvm::Value *src = Src.getScalarVal();
1320      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1321     return;
1322   }
1323 
1324   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1325     // load of a __strong object.
1326     llvm::Value *LvalueDst = Dst.getAddress();
1327     llvm::Value *src = Src.getScalarVal();
1328     if (Dst.isObjCIvar()) {
1329       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1330       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1331       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1332       llvm::Value *dst = RHS;
1333       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1334       llvm::Value *LHS =
1335         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1336       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1337       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1338                                               BytesBetween);
1339     } else if (Dst.isGlobalObjCRef()) {
1340       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1341                                                 Dst.isThreadLocalRef());
1342     }
1343     else
1344       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1345     return;
1346   }
1347 
1348   assert(Src.isScalar() && "Can't emit an agg store with this method");
1349   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1350 }
1351 
1352 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1353                                                      llvm::Value **Result) {
1354   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1355   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1356   llvm::Value *Ptr = Dst.getBitFieldAddr();
1357 
1358   // Get the source value, truncated to the width of the bit-field.
1359   llvm::Value *SrcVal = Src.getScalarVal();
1360 
1361   // Cast the source to the storage type and shift it into place.
1362   SrcVal = Builder.CreateIntCast(SrcVal,
1363                                  Ptr->getType()->getPointerElementType(),
1364                                  /*IsSigned=*/false);
1365   llvm::Value *MaskedVal = SrcVal;
1366 
1367   // See if there are other bits in the bitfield's storage we'll need to load
1368   // and mask together with source before storing.
1369   if (Info.StorageSize != Info.Size) {
1370     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1371     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1372                                           "bf.load");
1373     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1374 
1375     // Mask the source value as needed.
1376     if (!hasBooleanRepresentation(Dst.getType()))
1377       SrcVal = Builder.CreateAnd(SrcVal,
1378                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1379                                                             Info.Size),
1380                                  "bf.value");
1381     MaskedVal = SrcVal;
1382     if (Info.Offset)
1383       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1384 
1385     // Mask out the original value.
1386     Val = Builder.CreateAnd(Val,
1387                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1388                                                      Info.Offset,
1389                                                      Info.Offset + Info.Size),
1390                             "bf.clear");
1391 
1392     // Or together the unchanged values and the source value.
1393     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1394   } else {
1395     assert(Info.Offset == 0);
1396   }
1397 
1398   // Write the new value back out.
1399   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1400                                                Dst.isVolatileQualified());
1401   Store->setAlignment(Info.StorageAlignment);
1402 
1403   // Return the new value of the bit-field, if requested.
1404   if (Result) {
1405     llvm::Value *ResultVal = MaskedVal;
1406 
1407     // Sign extend the value if needed.
1408     if (Info.IsSigned) {
1409       assert(Info.Size <= Info.StorageSize);
1410       unsigned HighBits = Info.StorageSize - Info.Size;
1411       if (HighBits) {
1412         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1413         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1414       }
1415     }
1416 
1417     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1418                                       "bf.result.cast");
1419     *Result = EmitFromMemory(ResultVal, Dst.getType());
1420   }
1421 }
1422 
1423 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1424                                                                LValue Dst) {
1425   // This access turns into a read/modify/write of the vector.  Load the input
1426   // value now.
1427   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1428                                             Dst.isVolatileQualified());
1429   Load->setAlignment(Dst.getAlignment().getQuantity());
1430   llvm::Value *Vec = Load;
1431   const llvm::Constant *Elts = Dst.getExtVectorElts();
1432 
1433   llvm::Value *SrcVal = Src.getScalarVal();
1434 
1435   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1436     unsigned NumSrcElts = VTy->getNumElements();
1437     unsigned NumDstElts =
1438        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1439     if (NumDstElts == NumSrcElts) {
1440       // Use shuffle vector is the src and destination are the same number of
1441       // elements and restore the vector mask since it is on the side it will be
1442       // stored.
1443       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1444       for (unsigned i = 0; i != NumSrcElts; ++i)
1445         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1446 
1447       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1448       Vec = Builder.CreateShuffleVector(SrcVal,
1449                                         llvm::UndefValue::get(Vec->getType()),
1450                                         MaskV);
1451     } else if (NumDstElts > NumSrcElts) {
1452       // Extended the source vector to the same length and then shuffle it
1453       // into the destination.
1454       // FIXME: since we're shuffling with undef, can we just use the indices
1455       //        into that?  This could be simpler.
1456       SmallVector<llvm::Constant*, 4> ExtMask;
1457       for (unsigned i = 0; i != NumSrcElts; ++i)
1458         ExtMask.push_back(Builder.getInt32(i));
1459       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1460       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1461       llvm::Value *ExtSrcVal =
1462         Builder.CreateShuffleVector(SrcVal,
1463                                     llvm::UndefValue::get(SrcVal->getType()),
1464                                     ExtMaskV);
1465       // build identity
1466       SmallVector<llvm::Constant*, 4> Mask;
1467       for (unsigned i = 0; i != NumDstElts; ++i)
1468         Mask.push_back(Builder.getInt32(i));
1469 
1470       // modify when what gets shuffled in
1471       for (unsigned i = 0; i != NumSrcElts; ++i)
1472         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1473       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1474       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1475     } else {
1476       // We should never shorten the vector
1477       llvm_unreachable("unexpected shorten vector length");
1478     }
1479   } else {
1480     // If the Src is a scalar (not a vector) it must be updating one element.
1481     unsigned InIdx = getAccessedFieldNo(0, Elts);
1482     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1483     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1484   }
1485 
1486   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1487                                                Dst.isVolatileQualified());
1488   Store->setAlignment(Dst.getAlignment().getQuantity());
1489 }
1490 
1491 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1492 // generating write-barries API. It is currently a global, ivar,
1493 // or neither.
1494 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1495                                  LValue &LV,
1496                                  bool IsMemberAccess=false) {
1497   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1498     return;
1499 
1500   if (isa<ObjCIvarRefExpr>(E)) {
1501     QualType ExpTy = E->getType();
1502     if (IsMemberAccess && ExpTy->isPointerType()) {
1503       // If ivar is a structure pointer, assigning to field of
1504       // this struct follows gcc's behavior and makes it a non-ivar
1505       // writer-barrier conservatively.
1506       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1507       if (ExpTy->isRecordType()) {
1508         LV.setObjCIvar(false);
1509         return;
1510       }
1511     }
1512     LV.setObjCIvar(true);
1513     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1514     LV.setBaseIvarExp(Exp->getBase());
1515     LV.setObjCArray(E->getType()->isArrayType());
1516     return;
1517   }
1518 
1519   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1520     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1521       if (VD->hasGlobalStorage()) {
1522         LV.setGlobalObjCRef(true);
1523         LV.setThreadLocalRef(VD->isThreadSpecified());
1524       }
1525     }
1526     LV.setObjCArray(E->getType()->isArrayType());
1527     return;
1528   }
1529 
1530   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1531     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1532     return;
1533   }
1534 
1535   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1536     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1537     if (LV.isObjCIvar()) {
1538       // If cast is to a structure pointer, follow gcc's behavior and make it
1539       // a non-ivar write-barrier.
1540       QualType ExpTy = E->getType();
1541       if (ExpTy->isPointerType())
1542         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1543       if (ExpTy->isRecordType())
1544         LV.setObjCIvar(false);
1545     }
1546     return;
1547   }
1548 
1549   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1550     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1551     return;
1552   }
1553 
1554   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1555     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1556     return;
1557   }
1558 
1559   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1560     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1561     return;
1562   }
1563 
1564   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1565     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1566     return;
1567   }
1568 
1569   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1570     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1571     if (LV.isObjCIvar() && !LV.isObjCArray())
1572       // Using array syntax to assigning to what an ivar points to is not
1573       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1574       LV.setObjCIvar(false);
1575     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1576       // Using array syntax to assigning to what global points to is not
1577       // same as assigning to the global itself. {id *G;} G[i] = 0;
1578       LV.setGlobalObjCRef(false);
1579     return;
1580   }
1581 
1582   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1583     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1584     // We don't know if member is an 'ivar', but this flag is looked at
1585     // only in the context of LV.isObjCIvar().
1586     LV.setObjCArray(E->getType()->isArrayType());
1587     return;
1588   }
1589 }
1590 
1591 static llvm::Value *
1592 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1593                                 llvm::Value *V, llvm::Type *IRType,
1594                                 StringRef Name = StringRef()) {
1595   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1596   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1597 }
1598 
1599 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1600                                       const Expr *E, const VarDecl *VD) {
1601   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1602   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1603   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1604   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1605   QualType T = E->getType();
1606   LValue LV;
1607   if (VD->getType()->isReferenceType()) {
1608     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1609     LI->setAlignment(Alignment.getQuantity());
1610     V = LI;
1611     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1612   } else {
1613     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1614   }
1615   setObjCGCLValueClass(CGF.getContext(), E, LV);
1616   return LV;
1617 }
1618 
1619 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1620                                      const Expr *E, const FunctionDecl *FD) {
1621   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1622   if (!FD->hasPrototype()) {
1623     if (const FunctionProtoType *Proto =
1624             FD->getType()->getAs<FunctionProtoType>()) {
1625       // Ugly case: for a K&R-style definition, the type of the definition
1626       // isn't the same as the type of a use.  Correct for this with a
1627       // bitcast.
1628       QualType NoProtoType =
1629           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1630       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1631       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1632     }
1633   }
1634   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1635   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1636 }
1637 
1638 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1639   const NamedDecl *ND = E->getDecl();
1640   CharUnits Alignment = getContext().getDeclAlign(ND);
1641   QualType T = E->getType();
1642 
1643   // A DeclRefExpr for a reference initialized by a constant expression can
1644   // appear without being odr-used. Directly emit the constant initializer.
1645   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1646     const Expr *Init = VD->getAnyInitializer(VD);
1647     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1648         VD->isUsableInConstantExpressions(getContext()) &&
1649         VD->checkInitIsICE()) {
1650       llvm::Constant *Val =
1651         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1652       assert(Val && "failed to emit reference constant expression");
1653       // FIXME: Eventually we will want to emit vector element references.
1654       return MakeAddrLValue(Val, T, Alignment);
1655     }
1656   }
1657 
1658   // FIXME: We should be able to assert this for FunctionDecls as well!
1659   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1660   // those with a valid source location.
1661   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1662           !E->getLocation().isValid()) &&
1663          "Should not use decl without marking it used!");
1664 
1665   if (ND->hasAttr<WeakRefAttr>()) {
1666     const ValueDecl *VD = cast<ValueDecl>(ND);
1667     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1668     return MakeAddrLValue(Aliasee, T, Alignment);
1669   }
1670 
1671   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1672     // Check if this is a global variable.
1673     if (VD->hasLinkage() || VD->isStaticDataMember())
1674       return EmitGlobalVarDeclLValue(*this, E, VD);
1675 
1676     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1677 
1678     bool NonGCable = VD->hasLocalStorage() &&
1679                      !VD->getType()->isReferenceType() &&
1680                      !isBlockVariable;
1681 
1682     llvm::Value *V = LocalDeclMap.lookup(VD);
1683     if (!V && VD->isStaticLocal())
1684       V = CGM.getStaticLocalDeclAddress(VD);
1685 
1686     // Use special handling for lambdas.
1687     if (!V) {
1688       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1689         QualType LambdaTagType = getContext().getTagDeclType(FD->getParent());
1690         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
1691                                                      LambdaTagType);
1692         return EmitLValueForField(LambdaLV, FD);
1693       }
1694 
1695       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1696       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1697                             T, Alignment);
1698     }
1699 
1700     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1701 
1702     if (isBlockVariable)
1703       V = BuildBlockByrefAddress(V, VD);
1704 
1705     LValue LV;
1706     if (VD->getType()->isReferenceType()) {
1707       llvm::LoadInst *LI = Builder.CreateLoad(V);
1708       LI->setAlignment(Alignment.getQuantity());
1709       V = LI;
1710       LV = MakeNaturalAlignAddrLValue(V, T);
1711     } else {
1712       LV = MakeAddrLValue(V, T, Alignment);
1713     }
1714 
1715     if (NonGCable) {
1716       LV.getQuals().removeObjCGCAttr();
1717       LV.setNonGC(true);
1718     }
1719     setObjCGCLValueClass(getContext(), E, LV);
1720     return LV;
1721   }
1722 
1723   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1724     return EmitFunctionDeclLValue(*this, E, fn);
1725 
1726   llvm_unreachable("Unhandled DeclRefExpr");
1727 }
1728 
1729 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1730   // __extension__ doesn't affect lvalue-ness.
1731   if (E->getOpcode() == UO_Extension)
1732     return EmitLValue(E->getSubExpr());
1733 
1734   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1735   switch (E->getOpcode()) {
1736   default: llvm_unreachable("Unknown unary operator lvalue!");
1737   case UO_Deref: {
1738     QualType T = E->getSubExpr()->getType()->getPointeeType();
1739     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1740 
1741     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1742     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1743 
1744     // We should not generate __weak write barrier on indirect reference
1745     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1746     // But, we continue to generate __strong write barrier on indirect write
1747     // into a pointer to object.
1748     if (getLangOpts().ObjC1 &&
1749         getLangOpts().getGC() != LangOptions::NonGC &&
1750         LV.isObjCWeak())
1751       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1752     return LV;
1753   }
1754   case UO_Real:
1755   case UO_Imag: {
1756     LValue LV = EmitLValue(E->getSubExpr());
1757     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1758     llvm::Value *Addr = LV.getAddress();
1759 
1760     // __real is valid on scalars.  This is a faster way of testing that.
1761     // __imag can only produce an rvalue on scalars.
1762     if (E->getOpcode() == UO_Real &&
1763         !cast<llvm::PointerType>(Addr->getType())
1764            ->getElementType()->isStructTy()) {
1765       assert(E->getSubExpr()->getType()->isArithmeticType());
1766       return LV;
1767     }
1768 
1769     assert(E->getSubExpr()->getType()->isAnyComplexType());
1770 
1771     unsigned Idx = E->getOpcode() == UO_Imag;
1772     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1773                                                   Idx, "idx"),
1774                           ExprTy);
1775   }
1776   case UO_PreInc:
1777   case UO_PreDec: {
1778     LValue LV = EmitLValue(E->getSubExpr());
1779     bool isInc = E->getOpcode() == UO_PreInc;
1780 
1781     if (E->getType()->isAnyComplexType())
1782       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1783     else
1784       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1785     return LV;
1786   }
1787   }
1788 }
1789 
1790 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1791   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1792                         E->getType());
1793 }
1794 
1795 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1796   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1797                         E->getType());
1798 }
1799 
1800 static llvm::Constant*
1801 GetAddrOfConstantWideString(StringRef Str,
1802                             const char *GlobalName,
1803                             ASTContext &Context,
1804                             QualType Ty, SourceLocation Loc,
1805                             CodeGenModule &CGM) {
1806 
1807   StringLiteral *SL = StringLiteral::Create(Context,
1808                                             Str,
1809                                             StringLiteral::Wide,
1810                                             /*Pascal = */false,
1811                                             Ty, Loc);
1812   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1813   llvm::GlobalVariable *GV =
1814     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1815                              !CGM.getLangOpts().WritableStrings,
1816                              llvm::GlobalValue::PrivateLinkage,
1817                              C, GlobalName);
1818   const unsigned WideAlignment =
1819     Context.getTypeAlignInChars(Ty).getQuantity();
1820   GV->setAlignment(WideAlignment);
1821   return GV;
1822 }
1823 
1824 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1825                                     SmallString<32>& Target) {
1826   Target.resize(CharByteWidth * (Source.size() + 1));
1827   char *ResultPtr = &Target[0];
1828   const UTF8 *ErrorPtr;
1829   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1830   (void)success;
1831   assert(success);
1832   Target.resize(ResultPtr - &Target[0]);
1833 }
1834 
1835 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1836   switch (E->getIdentType()) {
1837   default:
1838     return EmitUnsupportedLValue(E, "predefined expression");
1839 
1840   case PredefinedExpr::Func:
1841   case PredefinedExpr::Function:
1842   case PredefinedExpr::LFunction:
1843   case PredefinedExpr::PrettyFunction: {
1844     unsigned IdentType = E->getIdentType();
1845     std::string GlobalVarName;
1846 
1847     switch (IdentType) {
1848     default: llvm_unreachable("Invalid type");
1849     case PredefinedExpr::Func:
1850       GlobalVarName = "__func__.";
1851       break;
1852     case PredefinedExpr::Function:
1853       GlobalVarName = "__FUNCTION__.";
1854       break;
1855     case PredefinedExpr::LFunction:
1856       GlobalVarName = "L__FUNCTION__.";
1857       break;
1858     case PredefinedExpr::PrettyFunction:
1859       GlobalVarName = "__PRETTY_FUNCTION__.";
1860       break;
1861     }
1862 
1863     StringRef FnName = CurFn->getName();
1864     if (FnName.startswith("\01"))
1865       FnName = FnName.substr(1);
1866     GlobalVarName += FnName;
1867 
1868     const Decl *CurDecl = CurCodeDecl;
1869     if (CurDecl == 0)
1870       CurDecl = getContext().getTranslationUnitDecl();
1871 
1872     std::string FunctionName =
1873         (isa<BlockDecl>(CurDecl)
1874          ? FnName.str()
1875          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
1876                                        CurDecl));
1877 
1878     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1879     llvm::Constant *C;
1880     if (ElemType->isWideCharType()) {
1881       SmallString<32> RawChars;
1882       ConvertUTF8ToWideString(
1883           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1884           FunctionName, RawChars);
1885       C = GetAddrOfConstantWideString(RawChars,
1886                                       GlobalVarName.c_str(),
1887                                       getContext(),
1888                                       E->getType(),
1889                                       E->getLocation(),
1890                                       CGM);
1891     } else {
1892       C = CGM.GetAddrOfConstantCString(FunctionName,
1893                                        GlobalVarName.c_str(),
1894                                        1);
1895     }
1896     return MakeAddrLValue(C, E->getType());
1897   }
1898   }
1899 }
1900 
1901 /// Emit a type description suitable for use by a runtime sanitizer library. The
1902 /// format of a type descriptor is
1903 ///
1904 /// \code
1905 ///   { i16 TypeKind, i16 TypeInfo }
1906 /// \endcode
1907 ///
1908 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
1909 /// integer, 1 for a floating point value, and -1 for anything else.
1910 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
1911   // FIXME: Only emit each type's descriptor once.
1912   uint16_t TypeKind = -1;
1913   uint16_t TypeInfo = 0;
1914 
1915   if (T->isIntegerType()) {
1916     TypeKind = 0;
1917     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
1918                (T->isSignedIntegerType() ? 1 : 0);
1919   } else if (T->isFloatingType()) {
1920     TypeKind = 1;
1921     TypeInfo = getContext().getTypeSize(T);
1922   }
1923 
1924   // Format the type name as if for a diagnostic, including quotes and
1925   // optionally an 'aka'.
1926   SmallString<32> Buffer;
1927   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
1928                                     (intptr_t)T.getAsOpaquePtr(),
1929                                     0, 0, 0, 0, 0, 0, Buffer,
1930                                     ArrayRef<intptr_t>());
1931 
1932   llvm::Constant *Components[] = {
1933     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
1934     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
1935   };
1936   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
1937 
1938   llvm::GlobalVariable *GV =
1939     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
1940                              /*isConstant=*/true,
1941                              llvm::GlobalVariable::PrivateLinkage,
1942                              Descriptor);
1943   GV->setUnnamedAddr(true);
1944   return GV;
1945 }
1946 
1947 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
1948   llvm::Type *TargetTy = IntPtrTy;
1949 
1950   // Integers which fit in intptr_t are zero-extended and passed directly.
1951   if (V->getType()->isIntegerTy() &&
1952       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
1953     return Builder.CreateZExt(V, TargetTy);
1954 
1955   // Pointers are passed directly, everything else is passed by address.
1956   if (!V->getType()->isPointerTy()) {
1957     llvm::Value *Ptr = Builder.CreateAlloca(V->getType());
1958     Builder.CreateStore(V, Ptr);
1959     V = Ptr;
1960   }
1961   return Builder.CreatePtrToInt(V, TargetTy);
1962 }
1963 
1964 /// \brief Emit a representation of a SourceLocation for passing to a handler
1965 /// in a sanitizer runtime library. The format for this data is:
1966 /// \code
1967 ///   struct SourceLocation {
1968 ///     const char *Filename;
1969 ///     int32_t Line, Column;
1970 ///   };
1971 /// \endcode
1972 /// For an invalid SourceLocation, the Filename pointer is null.
1973 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
1974   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
1975 
1976   llvm::Constant *Data[] = {
1977     // FIXME: Only emit each file name once.
1978     PLoc.isValid() ? cast<llvm::Constant>(
1979                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
1980                    : llvm::Constant::getNullValue(Int8PtrTy),
1981     Builder.getInt32(PLoc.getLine()),
1982     Builder.getInt32(PLoc.getColumn())
1983   };
1984 
1985   return llvm::ConstantStruct::getAnon(Data);
1986 }
1987 
1988 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
1989                                 ArrayRef<llvm::Constant *> StaticArgs,
1990                                 ArrayRef<llvm::Value *> DynamicArgs,
1991                                 CheckRecoverableKind RecoverKind) {
1992   assert(SanOpts != &SanitizerOptions::Disabled);
1993 
1994   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
1995     assert (RecoverKind != CRK_AlwaysRecoverable &&
1996             "Runtime call required for AlwaysRecoverable kind!");
1997     return EmitTrapCheck(Checked);
1998   }
1999 
2000   llvm::BasicBlock *Cont = createBasicBlock("cont");
2001 
2002   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2003 
2004   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2005 
2006   // Give hint that we very much don't expect to execute the handler
2007   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2008   llvm::MDBuilder MDHelper(getLLVMContext());
2009   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2010   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2011 
2012   EmitBlock(Handler);
2013 
2014   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2015   llvm::GlobalValue *InfoPtr =
2016       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2017                                llvm::GlobalVariable::PrivateLinkage, Info);
2018   InfoPtr->setUnnamedAddr(true);
2019 
2020   SmallVector<llvm::Value *, 4> Args;
2021   SmallVector<llvm::Type *, 4> ArgTypes;
2022   Args.reserve(DynamicArgs.size() + 1);
2023   ArgTypes.reserve(DynamicArgs.size() + 1);
2024 
2025   // Handler functions take an i8* pointing to the (handler-specific) static
2026   // information block, followed by a sequence of intptr_t arguments
2027   // representing operand values.
2028   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2029   ArgTypes.push_back(Int8PtrTy);
2030   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2031     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2032     ArgTypes.push_back(IntPtrTy);
2033   }
2034 
2035   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2036                  ((RecoverKind == CRK_Recoverable) &&
2037                    CGM.getCodeGenOpts().SanitizeRecover);
2038 
2039   llvm::FunctionType *FnType =
2040     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2041   llvm::AttrBuilder B;
2042   if (!Recover) {
2043     B.addAttribute(llvm::Attribute::NoReturn)
2044      .addAttribute(llvm::Attribute::NoUnwind);
2045   }
2046   B.addAttribute(llvm::Attribute::UWTable);
2047 
2048   // Checks that have two variants use a suffix to differentiate them
2049   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2050                            !CGM.getCodeGenOpts().SanitizeRecover;
2051   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2052                               (NeedsAbortSuffix? "_abort" : "")).str();
2053   llvm::Value *Fn =
2054     CGM.CreateRuntimeFunction(FnType, FunctionName,
2055                               llvm::AttributeSet::get(getLLVMContext(),
2056                                               llvm::AttributeSet::FunctionIndex,
2057                                                       B));
2058   llvm::CallInst *HandlerCall = Builder.CreateCall(Fn, Args);
2059   if (Recover) {
2060     Builder.CreateBr(Cont);
2061   } else {
2062     HandlerCall->setDoesNotReturn();
2063     HandlerCall->setDoesNotThrow();
2064     Builder.CreateUnreachable();
2065   }
2066 
2067   EmitBlock(Cont);
2068 }
2069 
2070 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2071   llvm::BasicBlock *Cont = createBasicBlock("cont");
2072 
2073   // If we're optimizing, collapse all calls to trap down to just one per
2074   // function to save on code size.
2075   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2076     TrapBB = createBasicBlock("trap");
2077     Builder.CreateCondBr(Checked, Cont, TrapBB);
2078     EmitBlock(TrapBB);
2079     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2080     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2081     TrapCall->setDoesNotReturn();
2082     TrapCall->setDoesNotThrow();
2083     Builder.CreateUnreachable();
2084   } else {
2085     Builder.CreateCondBr(Checked, Cont, TrapBB);
2086   }
2087 
2088   EmitBlock(Cont);
2089 }
2090 
2091 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2092 /// array to pointer, return the array subexpression.
2093 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2094   // If this isn't just an array->pointer decay, bail out.
2095   const CastExpr *CE = dyn_cast<CastExpr>(E);
2096   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2097     return 0;
2098 
2099   // If this is a decay from variable width array, bail out.
2100   const Expr *SubExpr = CE->getSubExpr();
2101   if (SubExpr->getType()->isVariableArrayType())
2102     return 0;
2103 
2104   return SubExpr;
2105 }
2106 
2107 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2108   // The index must always be an integer, which is not an aggregate.  Emit it.
2109   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2110   QualType IdxTy  = E->getIdx()->getType();
2111   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2112 
2113   // If the base is a vector type, then we are forming a vector element lvalue
2114   // with this subscript.
2115   if (E->getBase()->getType()->isVectorType()) {
2116     // Emit the vector as an lvalue to get its address.
2117     LValue LHS = EmitLValue(E->getBase());
2118     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2119     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2120     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2121                                  E->getBase()->getType(), LHS.getAlignment());
2122   }
2123 
2124   // Extend or truncate the index type to 32 or 64-bits.
2125   if (Idx->getType() != IntPtrTy)
2126     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2127 
2128   // We know that the pointer points to a type of the correct size, unless the
2129   // size is a VLA or Objective-C interface.
2130   llvm::Value *Address = 0;
2131   CharUnits ArrayAlignment;
2132   if (const VariableArrayType *vla =
2133         getContext().getAsVariableArrayType(E->getType())) {
2134     // The base must be a pointer, which is not an aggregate.  Emit
2135     // it.  It needs to be emitted first in case it's what captures
2136     // the VLA bounds.
2137     Address = EmitScalarExpr(E->getBase());
2138 
2139     // The element count here is the total number of non-VLA elements.
2140     llvm::Value *numElements = getVLASize(vla).first;
2141 
2142     // Effectively, the multiply by the VLA size is part of the GEP.
2143     // GEP indexes are signed, and scaling an index isn't permitted to
2144     // signed-overflow, so we use the same semantics for our explicit
2145     // multiply.  We suppress this if overflow is not undefined behavior.
2146     if (getLangOpts().isSignedOverflowDefined()) {
2147       Idx = Builder.CreateMul(Idx, numElements);
2148       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2149     } else {
2150       Idx = Builder.CreateNSWMul(Idx, numElements);
2151       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2152     }
2153   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2154     // Indexing over an interface, as in "NSString *P; P[4];"
2155     llvm::Value *InterfaceSize =
2156       llvm::ConstantInt::get(Idx->getType(),
2157           getContext().getTypeSizeInChars(OIT).getQuantity());
2158 
2159     Idx = Builder.CreateMul(Idx, InterfaceSize);
2160 
2161     // The base must be a pointer, which is not an aggregate.  Emit it.
2162     llvm::Value *Base = EmitScalarExpr(E->getBase());
2163     Address = EmitCastToVoidPtr(Base);
2164     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2165     Address = Builder.CreateBitCast(Address, Base->getType());
2166   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2167     // If this is A[i] where A is an array, the frontend will have decayed the
2168     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2169     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2170     // "gep x, i" here.  Emit one "gep A, 0, i".
2171     assert(Array->getType()->isArrayType() &&
2172            "Array to pointer decay must have array source type!");
2173     LValue ArrayLV = EmitLValue(Array);
2174     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2175     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2176     llvm::Value *Args[] = { Zero, Idx };
2177 
2178     // Propagate the alignment from the array itself to the result.
2179     ArrayAlignment = ArrayLV.getAlignment();
2180 
2181     if (getLangOpts().isSignedOverflowDefined())
2182       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2183     else
2184       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2185   } else {
2186     // The base must be a pointer, which is not an aggregate.  Emit it.
2187     llvm::Value *Base = EmitScalarExpr(E->getBase());
2188     if (getLangOpts().isSignedOverflowDefined())
2189       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2190     else
2191       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2192   }
2193 
2194   QualType T = E->getBase()->getType()->getPointeeType();
2195   assert(!T.isNull() &&
2196          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2197 
2198 
2199   // Limit the alignment to that of the result type.
2200   LValue LV;
2201   if (!ArrayAlignment.isZero()) {
2202     CharUnits Align = getContext().getTypeAlignInChars(T);
2203     ArrayAlignment = std::min(Align, ArrayAlignment);
2204     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2205   } else {
2206     LV = MakeNaturalAlignAddrLValue(Address, T);
2207   }
2208 
2209   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2210 
2211   if (getLangOpts().ObjC1 &&
2212       getLangOpts().getGC() != LangOptions::NonGC) {
2213     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2214     setObjCGCLValueClass(getContext(), E, LV);
2215   }
2216   return LV;
2217 }
2218 
2219 static
2220 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2221                                        SmallVector<unsigned, 4> &Elts) {
2222   SmallVector<llvm::Constant*, 4> CElts;
2223   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2224     CElts.push_back(Builder.getInt32(Elts[i]));
2225 
2226   return llvm::ConstantVector::get(CElts);
2227 }
2228 
2229 LValue CodeGenFunction::
2230 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2231   // Emit the base vector as an l-value.
2232   LValue Base;
2233 
2234   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2235   if (E->isArrow()) {
2236     // If it is a pointer to a vector, emit the address and form an lvalue with
2237     // it.
2238     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2239     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2240     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2241     Base.getQuals().removeObjCGCAttr();
2242   } else if (E->getBase()->isGLValue()) {
2243     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2244     // emit the base as an lvalue.
2245     assert(E->getBase()->getType()->isVectorType());
2246     Base = EmitLValue(E->getBase());
2247   } else {
2248     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2249     assert(E->getBase()->getType()->isVectorType() &&
2250            "Result must be a vector");
2251     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2252 
2253     // Store the vector to memory (because LValue wants an address).
2254     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2255     Builder.CreateStore(Vec, VecMem);
2256     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2257   }
2258 
2259   QualType type =
2260     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2261 
2262   // Encode the element access list into a vector of unsigned indices.
2263   SmallVector<unsigned, 4> Indices;
2264   E->getEncodedElementAccess(Indices);
2265 
2266   if (Base.isSimple()) {
2267     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2268     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2269                                     Base.getAlignment());
2270   }
2271   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2272 
2273   llvm::Constant *BaseElts = Base.getExtVectorElts();
2274   SmallVector<llvm::Constant *, 4> CElts;
2275 
2276   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2277     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2278   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2279   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2280                                   Base.getAlignment());
2281 }
2282 
2283 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2284   Expr *BaseExpr = E->getBase();
2285 
2286   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2287   LValue BaseLV;
2288   if (E->isArrow()) {
2289     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2290     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2291     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2292     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2293   } else
2294     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2295 
2296   NamedDecl *ND = E->getMemberDecl();
2297   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2298     LValue LV = EmitLValueForField(BaseLV, Field);
2299     setObjCGCLValueClass(getContext(), E, LV);
2300     return LV;
2301   }
2302 
2303   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2304     return EmitGlobalVarDeclLValue(*this, E, VD);
2305 
2306   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2307     return EmitFunctionDeclLValue(*this, E, FD);
2308 
2309   llvm_unreachable("Unhandled member declaration!");
2310 }
2311 
2312 LValue CodeGenFunction::EmitLValueForField(LValue base,
2313                                            const FieldDecl *field) {
2314   if (field->isBitField()) {
2315     const CGRecordLayout &RL =
2316       CGM.getTypes().getCGRecordLayout(field->getParent());
2317     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2318     llvm::Value *Addr = base.getAddress();
2319     unsigned Idx = RL.getLLVMFieldNo(field);
2320     if (Idx != 0)
2321       // For structs, we GEP to the field that the record layout suggests.
2322       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2323     // Get the access type.
2324     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2325       getLLVMContext(), Info.StorageSize,
2326       CGM.getContext().getTargetAddressSpace(base.getType()));
2327     if (Addr->getType() != PtrTy)
2328       Addr = Builder.CreateBitCast(Addr, PtrTy);
2329 
2330     QualType fieldType =
2331       field->getType().withCVRQualifiers(base.getVRQualifiers());
2332     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2333   }
2334 
2335   const RecordDecl *rec = field->getParent();
2336   QualType type = field->getType();
2337   CharUnits alignment = getContext().getDeclAlign(field);
2338 
2339   // FIXME: It should be impossible to have an LValue without alignment for a
2340   // complete type.
2341   if (!base.getAlignment().isZero())
2342     alignment = std::min(alignment, base.getAlignment());
2343 
2344   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2345 
2346   llvm::Value *addr = base.getAddress();
2347   unsigned cvr = base.getVRQualifiers();
2348   if (rec->isUnion()) {
2349     // For unions, there is no pointer adjustment.
2350     assert(!type->isReferenceType() && "union has reference member");
2351   } else {
2352     // For structs, we GEP to the field that the record layout suggests.
2353     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2354     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2355 
2356     // If this is a reference field, load the reference right now.
2357     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2358       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2359       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2360       load->setAlignment(alignment.getQuantity());
2361 
2362       if (CGM.shouldUseTBAA()) {
2363         llvm::MDNode *tbaa;
2364         if (mayAlias)
2365           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2366         else
2367           tbaa = CGM.getTBAAInfo(type);
2368         CGM.DecorateInstruction(load, tbaa);
2369       }
2370 
2371       addr = load;
2372       mayAlias = false;
2373       type = refType->getPointeeType();
2374       if (type->isIncompleteType())
2375         alignment = CharUnits();
2376       else
2377         alignment = getContext().getTypeAlignInChars(type);
2378       cvr = 0; // qualifiers don't recursively apply to referencee
2379     }
2380   }
2381 
2382   // Make sure that the address is pointing to the right type.  This is critical
2383   // for both unions and structs.  A union needs a bitcast, a struct element
2384   // will need a bitcast if the LLVM type laid out doesn't match the desired
2385   // type.
2386   addr = EmitBitCastOfLValueToProperType(*this, addr,
2387                                          CGM.getTypes().ConvertTypeForMem(type),
2388                                          field->getName());
2389 
2390   if (field->hasAttr<AnnotateAttr>())
2391     addr = EmitFieldAnnotations(field, addr);
2392 
2393   LValue LV = MakeAddrLValue(addr, type, alignment);
2394   LV.getQuals().addCVRQualifiers(cvr);
2395 
2396   // __weak attribute on a field is ignored.
2397   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2398     LV.getQuals().removeObjCGCAttr();
2399 
2400   // Fields of may_alias structs act like 'char' for TBAA purposes.
2401   // FIXME: this should get propagated down through anonymous structs
2402   // and unions.
2403   if (mayAlias && LV.getTBAAInfo())
2404     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2405 
2406   return LV;
2407 }
2408 
2409 LValue
2410 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2411                                                   const FieldDecl *Field) {
2412   QualType FieldType = Field->getType();
2413 
2414   if (!FieldType->isReferenceType())
2415     return EmitLValueForField(Base, Field);
2416 
2417   const CGRecordLayout &RL =
2418     CGM.getTypes().getCGRecordLayout(Field->getParent());
2419   unsigned idx = RL.getLLVMFieldNo(Field);
2420   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2421   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2422 
2423   // Make sure that the address is pointing to the right type.  This is critical
2424   // for both unions and structs.  A union needs a bitcast, a struct element
2425   // will need a bitcast if the LLVM type laid out doesn't match the desired
2426   // type.
2427   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2428   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2429 
2430   CharUnits Alignment = getContext().getDeclAlign(Field);
2431 
2432   // FIXME: It should be impossible to have an LValue without alignment for a
2433   // complete type.
2434   if (!Base.getAlignment().isZero())
2435     Alignment = std::min(Alignment, Base.getAlignment());
2436 
2437   return MakeAddrLValue(V, FieldType, Alignment);
2438 }
2439 
2440 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2441   if (E->isFileScope()) {
2442     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2443     return MakeAddrLValue(GlobalPtr, E->getType());
2444   }
2445   if (E->getType()->isVariablyModifiedType())
2446     // make sure to emit the VLA size.
2447     EmitVariablyModifiedType(E->getType());
2448 
2449   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2450   const Expr *InitExpr = E->getInitializer();
2451   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2452 
2453   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2454                    /*Init*/ true);
2455 
2456   return Result;
2457 }
2458 
2459 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2460   if (!E->isGLValue())
2461     // Initializing an aggregate temporary in C++11: T{...}.
2462     return EmitAggExprToLValue(E);
2463 
2464   // An lvalue initializer list must be initializing a reference.
2465   assert(E->getNumInits() == 1 && "reference init with multiple values");
2466   return EmitLValue(E->getInit(0));
2467 }
2468 
2469 LValue CodeGenFunction::
2470 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2471   if (!expr->isGLValue()) {
2472     // ?: here should be an aggregate.
2473     assert((hasAggregateLLVMType(expr->getType()) &&
2474             !expr->getType()->isAnyComplexType()) &&
2475            "Unexpected conditional operator!");
2476     return EmitAggExprToLValue(expr);
2477   }
2478 
2479   OpaqueValueMapping binding(*this, expr);
2480 
2481   const Expr *condExpr = expr->getCond();
2482   bool CondExprBool;
2483   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2484     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2485     if (!CondExprBool) std::swap(live, dead);
2486 
2487     if (!ContainsLabel(dead))
2488       return EmitLValue(live);
2489   }
2490 
2491   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2492   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2493   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2494 
2495   ConditionalEvaluation eval(*this);
2496   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2497 
2498   // Any temporaries created here are conditional.
2499   EmitBlock(lhsBlock);
2500   eval.begin(*this);
2501   LValue lhs = EmitLValue(expr->getTrueExpr());
2502   eval.end(*this);
2503 
2504   if (!lhs.isSimple())
2505     return EmitUnsupportedLValue(expr, "conditional operator");
2506 
2507   lhsBlock = Builder.GetInsertBlock();
2508   Builder.CreateBr(contBlock);
2509 
2510   // Any temporaries created here are conditional.
2511   EmitBlock(rhsBlock);
2512   eval.begin(*this);
2513   LValue rhs = EmitLValue(expr->getFalseExpr());
2514   eval.end(*this);
2515   if (!rhs.isSimple())
2516     return EmitUnsupportedLValue(expr, "conditional operator");
2517   rhsBlock = Builder.GetInsertBlock();
2518 
2519   EmitBlock(contBlock);
2520 
2521   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2522                                          "cond-lvalue");
2523   phi->addIncoming(lhs.getAddress(), lhsBlock);
2524   phi->addIncoming(rhs.getAddress(), rhsBlock);
2525   return MakeAddrLValue(phi, expr->getType());
2526 }
2527 
2528 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2529 /// type. If the cast is to a reference, we can have the usual lvalue result,
2530 /// otherwise if a cast is needed by the code generator in an lvalue context,
2531 /// then it must mean that we need the address of an aggregate in order to
2532 /// access one of its members.  This can happen for all the reasons that casts
2533 /// are permitted with aggregate result, including noop aggregate casts, and
2534 /// cast from scalar to union.
2535 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2536   switch (E->getCastKind()) {
2537   case CK_ToVoid:
2538     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2539 
2540   case CK_Dependent:
2541     llvm_unreachable("dependent cast kind in IR gen!");
2542 
2543   case CK_BuiltinFnToFnPtr:
2544     llvm_unreachable("builtin functions are handled elsewhere");
2545 
2546   // These two casts are currently treated as no-ops, although they could
2547   // potentially be real operations depending on the target's ABI.
2548   case CK_NonAtomicToAtomic:
2549   case CK_AtomicToNonAtomic:
2550 
2551   case CK_NoOp:
2552   case CK_LValueToRValue:
2553     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2554         || E->getType()->isRecordType())
2555       return EmitLValue(E->getSubExpr());
2556     // Fall through to synthesize a temporary.
2557 
2558   case CK_BitCast:
2559   case CK_ArrayToPointerDecay:
2560   case CK_FunctionToPointerDecay:
2561   case CK_NullToMemberPointer:
2562   case CK_NullToPointer:
2563   case CK_IntegralToPointer:
2564   case CK_PointerToIntegral:
2565   case CK_PointerToBoolean:
2566   case CK_VectorSplat:
2567   case CK_IntegralCast:
2568   case CK_IntegralToBoolean:
2569   case CK_IntegralToFloating:
2570   case CK_FloatingToIntegral:
2571   case CK_FloatingToBoolean:
2572   case CK_FloatingCast:
2573   case CK_FloatingRealToComplex:
2574   case CK_FloatingComplexToReal:
2575   case CK_FloatingComplexToBoolean:
2576   case CK_FloatingComplexCast:
2577   case CK_FloatingComplexToIntegralComplex:
2578   case CK_IntegralRealToComplex:
2579   case CK_IntegralComplexToReal:
2580   case CK_IntegralComplexToBoolean:
2581   case CK_IntegralComplexCast:
2582   case CK_IntegralComplexToFloatingComplex:
2583   case CK_DerivedToBaseMemberPointer:
2584   case CK_BaseToDerivedMemberPointer:
2585   case CK_MemberPointerToBoolean:
2586   case CK_ReinterpretMemberPointer:
2587   case CK_AnyPointerToBlockPointerCast:
2588   case CK_ARCProduceObject:
2589   case CK_ARCConsumeObject:
2590   case CK_ARCReclaimReturnedObject:
2591   case CK_ARCExtendBlockObject:
2592   case CK_CopyAndAutoreleaseBlockObject: {
2593     // These casts only produce lvalues when we're binding a reference to a
2594     // temporary realized from a (converted) pure rvalue. Emit the expression
2595     // as a value, copy it into a temporary, and return an lvalue referring to
2596     // that temporary.
2597     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2598     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2599     return MakeAddrLValue(V, E->getType());
2600   }
2601 
2602   case CK_Dynamic: {
2603     LValue LV = EmitLValue(E->getSubExpr());
2604     llvm::Value *V = LV.getAddress();
2605     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2606     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2607   }
2608 
2609   case CK_ConstructorConversion:
2610   case CK_UserDefinedConversion:
2611   case CK_CPointerToObjCPointerCast:
2612   case CK_BlockPointerToObjCPointerCast:
2613     return EmitLValue(E->getSubExpr());
2614 
2615   case CK_UncheckedDerivedToBase:
2616   case CK_DerivedToBase: {
2617     const RecordType *DerivedClassTy =
2618       E->getSubExpr()->getType()->getAs<RecordType>();
2619     CXXRecordDecl *DerivedClassDecl =
2620       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2621 
2622     LValue LV = EmitLValue(E->getSubExpr());
2623     llvm::Value *This = LV.getAddress();
2624 
2625     // Perform the derived-to-base conversion
2626     llvm::Value *Base =
2627       GetAddressOfBaseClass(This, DerivedClassDecl,
2628                             E->path_begin(), E->path_end(),
2629                             /*NullCheckValue=*/false);
2630 
2631     return MakeAddrLValue(Base, E->getType());
2632   }
2633   case CK_ToUnion:
2634     return EmitAggExprToLValue(E);
2635   case CK_BaseToDerived: {
2636     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2637     CXXRecordDecl *DerivedClassDecl =
2638       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2639 
2640     LValue LV = EmitLValue(E->getSubExpr());
2641 
2642     // Perform the base-to-derived conversion
2643     llvm::Value *Derived =
2644       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2645                                E->path_begin(), E->path_end(),
2646                                /*NullCheckValue=*/false);
2647 
2648     return MakeAddrLValue(Derived, E->getType());
2649   }
2650   case CK_LValueBitCast: {
2651     // This must be a reinterpret_cast (or c-style equivalent).
2652     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2653 
2654     LValue LV = EmitLValue(E->getSubExpr());
2655     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2656                                            ConvertType(CE->getTypeAsWritten()));
2657     return MakeAddrLValue(V, E->getType());
2658   }
2659   case CK_ObjCObjectLValueCast: {
2660     LValue LV = EmitLValue(E->getSubExpr());
2661     QualType ToType = getContext().getLValueReferenceType(E->getType());
2662     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2663                                            ConvertType(ToType));
2664     return MakeAddrLValue(V, E->getType());
2665   }
2666   case CK_ZeroToOCLEvent:
2667     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2668   }
2669 
2670   llvm_unreachable("Unhandled lvalue cast kind?");
2671 }
2672 
2673 LValue CodeGenFunction::EmitNullInitializationLValue(
2674                                               const CXXScalarValueInitExpr *E) {
2675   QualType Ty = E->getType();
2676   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2677   EmitNullInitialization(LV.getAddress(), Ty);
2678   return LV;
2679 }
2680 
2681 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2682   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2683   return getOpaqueLValueMapping(e);
2684 }
2685 
2686 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2687                                            const MaterializeTemporaryExpr *E) {
2688   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2689   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2690 }
2691 
2692 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2693                                            const FieldDecl *FD) {
2694   QualType FT = FD->getType();
2695   LValue FieldLV = EmitLValueForField(LV, FD);
2696   if (FT->isAnyComplexType())
2697     return RValue::getComplex(
2698         LoadComplexFromAddr(FieldLV.getAddress(),
2699                             FieldLV.isVolatileQualified()));
2700   else if (CodeGenFunction::hasAggregateLLVMType(FT))
2701     return FieldLV.asAggregateRValue();
2702 
2703   return EmitLoadOfLValue(FieldLV);
2704 }
2705 
2706 //===--------------------------------------------------------------------===//
2707 //                             Expression Emission
2708 //===--------------------------------------------------------------------===//
2709 
2710 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2711                                      ReturnValueSlot ReturnValue) {
2712   if (CGDebugInfo *DI = getDebugInfo())
2713     DI->EmitLocation(Builder, E->getLocStart());
2714 
2715   // Builtins never have block type.
2716   if (E->getCallee()->getType()->isBlockPointerType())
2717     return EmitBlockCallExpr(E, ReturnValue);
2718 
2719   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2720     return EmitCXXMemberCallExpr(CE, ReturnValue);
2721 
2722   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2723     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2724 
2725   const Decl *TargetDecl = E->getCalleeDecl();
2726   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2727     if (unsigned builtinID = FD->getBuiltinID())
2728       return EmitBuiltinExpr(FD, builtinID, E);
2729   }
2730 
2731   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2732     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2733       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2734 
2735   if (const CXXPseudoDestructorExpr *PseudoDtor
2736           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2737     QualType DestroyedType = PseudoDtor->getDestroyedType();
2738     if (getLangOpts().ObjCAutoRefCount &&
2739         DestroyedType->isObjCLifetimeType() &&
2740         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2741          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2742       // Automatic Reference Counting:
2743       //   If the pseudo-expression names a retainable object with weak or
2744       //   strong lifetime, the object shall be released.
2745       Expr *BaseExpr = PseudoDtor->getBase();
2746       llvm::Value *BaseValue = NULL;
2747       Qualifiers BaseQuals;
2748 
2749       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2750       if (PseudoDtor->isArrow()) {
2751         BaseValue = EmitScalarExpr(BaseExpr);
2752         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2753         BaseQuals = PTy->getPointeeType().getQualifiers();
2754       } else {
2755         LValue BaseLV = EmitLValue(BaseExpr);
2756         BaseValue = BaseLV.getAddress();
2757         QualType BaseTy = BaseExpr->getType();
2758         BaseQuals = BaseTy.getQualifiers();
2759       }
2760 
2761       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2762       case Qualifiers::OCL_None:
2763       case Qualifiers::OCL_ExplicitNone:
2764       case Qualifiers::OCL_Autoreleasing:
2765         break;
2766 
2767       case Qualifiers::OCL_Strong:
2768         EmitARCRelease(Builder.CreateLoad(BaseValue,
2769                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2770                        /*precise*/ true);
2771         break;
2772 
2773       case Qualifiers::OCL_Weak:
2774         EmitARCDestroyWeak(BaseValue);
2775         break;
2776       }
2777     } else {
2778       // C++ [expr.pseudo]p1:
2779       //   The result shall only be used as the operand for the function call
2780       //   operator (), and the result of such a call has type void. The only
2781       //   effect is the evaluation of the postfix-expression before the dot or
2782       //   arrow.
2783       EmitScalarExpr(E->getCallee());
2784     }
2785 
2786     return RValue::get(0);
2787   }
2788 
2789   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2790   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2791                   E->arg_begin(), E->arg_end(), TargetDecl);
2792 }
2793 
2794 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2795   // Comma expressions just emit their LHS then their RHS as an l-value.
2796   if (E->getOpcode() == BO_Comma) {
2797     EmitIgnoredExpr(E->getLHS());
2798     EnsureInsertPoint();
2799     return EmitLValue(E->getRHS());
2800   }
2801 
2802   if (E->getOpcode() == BO_PtrMemD ||
2803       E->getOpcode() == BO_PtrMemI)
2804     return EmitPointerToDataMemberBinaryExpr(E);
2805 
2806   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2807 
2808   // Note that in all of these cases, __block variables need the RHS
2809   // evaluated first just in case the variable gets moved by the RHS.
2810 
2811   if (!hasAggregateLLVMType(E->getType())) {
2812     switch (E->getLHS()->getType().getObjCLifetime()) {
2813     case Qualifiers::OCL_Strong:
2814       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2815 
2816     case Qualifiers::OCL_Autoreleasing:
2817       return EmitARCStoreAutoreleasing(E).first;
2818 
2819     // No reason to do any of these differently.
2820     case Qualifiers::OCL_None:
2821     case Qualifiers::OCL_ExplicitNone:
2822     case Qualifiers::OCL_Weak:
2823       break;
2824     }
2825 
2826     RValue RV = EmitAnyExpr(E->getRHS());
2827     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2828     EmitStoreThroughLValue(RV, LV);
2829     return LV;
2830   }
2831 
2832   if (E->getType()->isAnyComplexType())
2833     return EmitComplexAssignmentLValue(E);
2834 
2835   return EmitAggExprToLValue(E);
2836 }
2837 
2838 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2839   RValue RV = EmitCallExpr(E);
2840 
2841   if (!RV.isScalar())
2842     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2843 
2844   assert(E->getCallReturnType()->isReferenceType() &&
2845          "Can't have a scalar return unless the return type is a "
2846          "reference type!");
2847 
2848   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2849 }
2850 
2851 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2852   // FIXME: This shouldn't require another copy.
2853   return EmitAggExprToLValue(E);
2854 }
2855 
2856 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2857   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2858          && "binding l-value to type which needs a temporary");
2859   AggValueSlot Slot = CreateAggTemp(E->getType());
2860   EmitCXXConstructExpr(E, Slot);
2861   return MakeAddrLValue(Slot.getAddr(), E->getType());
2862 }
2863 
2864 LValue
2865 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2866   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2867 }
2868 
2869 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
2870   return CGM.GetAddrOfUuidDescriptor(E);
2871 }
2872 
2873 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
2874   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
2875 }
2876 
2877 LValue
2878 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2879   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2880   Slot.setExternallyDestructed();
2881   EmitAggExpr(E->getSubExpr(), Slot);
2882   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2883   return MakeAddrLValue(Slot.getAddr(), E->getType());
2884 }
2885 
2886 LValue
2887 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2888   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2889   EmitLambdaExpr(E, Slot);
2890   return MakeAddrLValue(Slot.getAddr(), E->getType());
2891 }
2892 
2893 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2894   RValue RV = EmitObjCMessageExpr(E);
2895 
2896   if (!RV.isScalar())
2897     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2898 
2899   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2900          "Can't have a scalar return unless the return type is a "
2901          "reference type!");
2902 
2903   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2904 }
2905 
2906 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2907   llvm::Value *V =
2908     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2909   return MakeAddrLValue(V, E->getType());
2910 }
2911 
2912 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2913                                              const ObjCIvarDecl *Ivar) {
2914   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2915 }
2916 
2917 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2918                                           llvm::Value *BaseValue,
2919                                           const ObjCIvarDecl *Ivar,
2920                                           unsigned CVRQualifiers) {
2921   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2922                                                    Ivar, CVRQualifiers);
2923 }
2924 
2925 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2926   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2927   llvm::Value *BaseValue = 0;
2928   const Expr *BaseExpr = E->getBase();
2929   Qualifiers BaseQuals;
2930   QualType ObjectTy;
2931   if (E->isArrow()) {
2932     BaseValue = EmitScalarExpr(BaseExpr);
2933     ObjectTy = BaseExpr->getType()->getPointeeType();
2934     BaseQuals = ObjectTy.getQualifiers();
2935   } else {
2936     LValue BaseLV = EmitLValue(BaseExpr);
2937     // FIXME: this isn't right for bitfields.
2938     BaseValue = BaseLV.getAddress();
2939     ObjectTy = BaseExpr->getType();
2940     BaseQuals = ObjectTy.getQualifiers();
2941   }
2942 
2943   LValue LV =
2944     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2945                       BaseQuals.getCVRQualifiers());
2946   setObjCGCLValueClass(getContext(), E, LV);
2947   return LV;
2948 }
2949 
2950 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2951   // Can only get l-value for message expression returning aggregate type
2952   RValue RV = EmitAnyExprToTemp(E);
2953   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2954 }
2955 
2956 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2957                                  ReturnValueSlot ReturnValue,
2958                                  CallExpr::const_arg_iterator ArgBeg,
2959                                  CallExpr::const_arg_iterator ArgEnd,
2960                                  const Decl *TargetDecl) {
2961   // Get the actual function type. The callee type will always be a pointer to
2962   // function type or a block pointer type.
2963   assert(CalleeType->isFunctionPointerType() &&
2964          "Call must have function pointer type!");
2965 
2966   CalleeType = getContext().getCanonicalType(CalleeType);
2967 
2968   const FunctionType *FnType
2969     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2970 
2971   CallArgList Args;
2972   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2973 
2974   const CGFunctionInfo &FnInfo =
2975     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
2976 
2977   // C99 6.5.2.2p6:
2978   //   If the expression that denotes the called function has a type
2979   //   that does not include a prototype, [the default argument
2980   //   promotions are performed]. If the number of arguments does not
2981   //   equal the number of parameters, the behavior is undefined. If
2982   //   the function is defined with a type that includes a prototype,
2983   //   and either the prototype ends with an ellipsis (, ...) or the
2984   //   types of the arguments after promotion are not compatible with
2985   //   the types of the parameters, the behavior is undefined. If the
2986   //   function is defined with a type that does not include a
2987   //   prototype, and the types of the arguments after promotion are
2988   //   not compatible with those of the parameters after promotion,
2989   //   the behavior is undefined [except in some trivial cases].
2990   // That is, in the general case, we should assume that a call
2991   // through an unprototyped function type works like a *non-variadic*
2992   // call.  The way we make this work is to cast to the exact type
2993   // of the promoted arguments.
2994   if (isa<FunctionNoProtoType>(FnType)) {
2995     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2996     CalleeTy = CalleeTy->getPointerTo();
2997     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2998   }
2999 
3000   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3001 }
3002 
3003 LValue CodeGenFunction::
3004 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3005   llvm::Value *BaseV;
3006   if (E->getOpcode() == BO_PtrMemI)
3007     BaseV = EmitScalarExpr(E->getLHS());
3008   else
3009     BaseV = EmitLValue(E->getLHS()).getAddress();
3010 
3011   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3012 
3013   const MemberPointerType *MPT
3014     = E->getRHS()->getType()->getAs<MemberPointerType>();
3015 
3016   llvm::Value *AddV =
3017     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3018 
3019   return MakeAddrLValue(AddV, MPT->getPointeeType());
3020 }
3021 
3022 static void
3023 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
3024              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
3025              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
3026   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
3027   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
3028 
3029   switch (E->getOp()) {
3030   case AtomicExpr::AO__c11_atomic_init:
3031     llvm_unreachable("Already handled!");
3032 
3033   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3034   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3035   case AtomicExpr::AO__atomic_compare_exchange:
3036   case AtomicExpr::AO__atomic_compare_exchange_n: {
3037     // Note that cmpxchg only supports specifying one ordering and
3038     // doesn't support weak cmpxchg, at least at the moment.
3039     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3040     LoadVal1->setAlignment(Align);
3041     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
3042     LoadVal2->setAlignment(Align);
3043     llvm::AtomicCmpXchgInst *CXI =
3044         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
3045     CXI->setVolatile(E->isVolatile());
3046     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
3047     StoreVal1->setAlignment(Align);
3048     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
3049     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
3050     return;
3051   }
3052 
3053   case AtomicExpr::AO__c11_atomic_load:
3054   case AtomicExpr::AO__atomic_load_n:
3055   case AtomicExpr::AO__atomic_load: {
3056     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
3057     Load->setAtomic(Order);
3058     Load->setAlignment(Size);
3059     Load->setVolatile(E->isVolatile());
3060     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
3061     StoreDest->setAlignment(Align);
3062     return;
3063   }
3064 
3065   case AtomicExpr::AO__c11_atomic_store:
3066   case AtomicExpr::AO__atomic_store:
3067   case AtomicExpr::AO__atomic_store_n: {
3068     assert(!Dest && "Store does not return a value");
3069     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3070     LoadVal1->setAlignment(Align);
3071     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
3072     Store->setAtomic(Order);
3073     Store->setAlignment(Size);
3074     Store->setVolatile(E->isVolatile());
3075     return;
3076   }
3077 
3078   case AtomicExpr::AO__c11_atomic_exchange:
3079   case AtomicExpr::AO__atomic_exchange_n:
3080   case AtomicExpr::AO__atomic_exchange:
3081     Op = llvm::AtomicRMWInst::Xchg;
3082     break;
3083 
3084   case AtomicExpr::AO__atomic_add_fetch:
3085     PostOp = llvm::Instruction::Add;
3086     // Fall through.
3087   case AtomicExpr::AO__c11_atomic_fetch_add:
3088   case AtomicExpr::AO__atomic_fetch_add:
3089     Op = llvm::AtomicRMWInst::Add;
3090     break;
3091 
3092   case AtomicExpr::AO__atomic_sub_fetch:
3093     PostOp = llvm::Instruction::Sub;
3094     // Fall through.
3095   case AtomicExpr::AO__c11_atomic_fetch_sub:
3096   case AtomicExpr::AO__atomic_fetch_sub:
3097     Op = llvm::AtomicRMWInst::Sub;
3098     break;
3099 
3100   case AtomicExpr::AO__atomic_and_fetch:
3101     PostOp = llvm::Instruction::And;
3102     // Fall through.
3103   case AtomicExpr::AO__c11_atomic_fetch_and:
3104   case AtomicExpr::AO__atomic_fetch_and:
3105     Op = llvm::AtomicRMWInst::And;
3106     break;
3107 
3108   case AtomicExpr::AO__atomic_or_fetch:
3109     PostOp = llvm::Instruction::Or;
3110     // Fall through.
3111   case AtomicExpr::AO__c11_atomic_fetch_or:
3112   case AtomicExpr::AO__atomic_fetch_or:
3113     Op = llvm::AtomicRMWInst::Or;
3114     break;
3115 
3116   case AtomicExpr::AO__atomic_xor_fetch:
3117     PostOp = llvm::Instruction::Xor;
3118     // Fall through.
3119   case AtomicExpr::AO__c11_atomic_fetch_xor:
3120   case AtomicExpr::AO__atomic_fetch_xor:
3121     Op = llvm::AtomicRMWInst::Xor;
3122     break;
3123 
3124   case AtomicExpr::AO__atomic_nand_fetch:
3125     PostOp = llvm::Instruction::And;
3126     // Fall through.
3127   case AtomicExpr::AO__atomic_fetch_nand:
3128     Op = llvm::AtomicRMWInst::Nand;
3129     break;
3130   }
3131 
3132   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
3133   LoadVal1->setAlignment(Align);
3134   llvm::AtomicRMWInst *RMWI =
3135       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
3136   RMWI->setVolatile(E->isVolatile());
3137 
3138   // For __atomic_*_fetch operations, perform the operation again to
3139   // determine the value which was written.
3140   llvm::Value *Result = RMWI;
3141   if (PostOp)
3142     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
3143   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
3144     Result = CGF.Builder.CreateNot(Result);
3145   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
3146   StoreDest->setAlignment(Align);
3147 }
3148 
3149 // This function emits any expression (scalar, complex, or aggregate)
3150 // into a temporary alloca.
3151 static llvm::Value *
3152 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
3153   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
3154   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
3155                        /*Init*/ true);
3156   return DeclPtr;
3157 }
3158 
3159 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
3160                                   llvm::Value *Dest) {
3161   if (Ty->isAnyComplexType())
3162     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
3163   if (CGF.hasAggregateLLVMType(Ty))
3164     return RValue::getAggregate(Dest);
3165   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
3166 }
3167 
3168 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
3169   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
3170   QualType MemTy = AtomicTy;
3171   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
3172     MemTy = AT->getValueType();
3173   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
3174   uint64_t Size = sizeChars.getQuantity();
3175   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
3176   unsigned Align = alignChars.getQuantity();
3177   unsigned MaxInlineWidthInBits =
3178     getContext().getTargetInfo().getMaxAtomicInlineWidth();
3179   bool UseLibcall = (Size != Align ||
3180                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
3181 
3182   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
3183   Ptr = EmitScalarExpr(E->getPtr());
3184 
3185   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
3186     assert(!Dest && "Init does not return a value");
3187     if (!hasAggregateLLVMType(E->getVal1()->getType())) {
3188       QualType PointeeType
3189         = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType();
3190       EmitScalarInit(EmitScalarExpr(E->getVal1()),
3191                      LValue::MakeAddr(Ptr, PointeeType, alignChars,
3192                                       getContext()));
3193     } else if (E->getType()->isAnyComplexType()) {
3194       EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile());
3195     } else {
3196       AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars,
3197                                         AtomicTy.getQualifiers(),
3198                                         AggValueSlot::IsNotDestructed,
3199                                         AggValueSlot::DoesNotNeedGCBarriers,
3200                                         AggValueSlot::IsNotAliased);
3201       EmitAggExpr(E->getVal1(), Slot);
3202     }
3203     return RValue::get(0);
3204   }
3205 
3206   Order = EmitScalarExpr(E->getOrder());
3207 
3208   switch (E->getOp()) {
3209   case AtomicExpr::AO__c11_atomic_init:
3210     llvm_unreachable("Already handled!");
3211 
3212   case AtomicExpr::AO__c11_atomic_load:
3213   case AtomicExpr::AO__atomic_load_n:
3214     break;
3215 
3216   case AtomicExpr::AO__atomic_load:
3217     Dest = EmitScalarExpr(E->getVal1());
3218     break;
3219 
3220   case AtomicExpr::AO__atomic_store:
3221     Val1 = EmitScalarExpr(E->getVal1());
3222     break;
3223 
3224   case AtomicExpr::AO__atomic_exchange:
3225     Val1 = EmitScalarExpr(E->getVal1());
3226     Dest = EmitScalarExpr(E->getVal2());
3227     break;
3228 
3229   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3230   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3231   case AtomicExpr::AO__atomic_compare_exchange_n:
3232   case AtomicExpr::AO__atomic_compare_exchange:
3233     Val1 = EmitScalarExpr(E->getVal1());
3234     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
3235       Val2 = EmitScalarExpr(E->getVal2());
3236     else
3237       Val2 = EmitValToTemp(*this, E->getVal2());
3238     OrderFail = EmitScalarExpr(E->getOrderFail());
3239     // Evaluate and discard the 'weak' argument.
3240     if (E->getNumSubExprs() == 6)
3241       EmitScalarExpr(E->getWeak());
3242     break;
3243 
3244   case AtomicExpr::AO__c11_atomic_fetch_add:
3245   case AtomicExpr::AO__c11_atomic_fetch_sub:
3246     if (MemTy->isPointerType()) {
3247       // For pointer arithmetic, we're required to do a bit of math:
3248       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
3249       // ... but only for the C11 builtins. The GNU builtins expect the
3250       // user to multiply by sizeof(T).
3251       QualType Val1Ty = E->getVal1()->getType();
3252       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
3253       CharUnits PointeeIncAmt =
3254           getContext().getTypeSizeInChars(MemTy->getPointeeType());
3255       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
3256       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
3257       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
3258       break;
3259     }
3260     // Fall through.
3261   case AtomicExpr::AO__atomic_fetch_add:
3262   case AtomicExpr::AO__atomic_fetch_sub:
3263   case AtomicExpr::AO__atomic_add_fetch:
3264   case AtomicExpr::AO__atomic_sub_fetch:
3265   case AtomicExpr::AO__c11_atomic_store:
3266   case AtomicExpr::AO__c11_atomic_exchange:
3267   case AtomicExpr::AO__atomic_store_n:
3268   case AtomicExpr::AO__atomic_exchange_n:
3269   case AtomicExpr::AO__c11_atomic_fetch_and:
3270   case AtomicExpr::AO__c11_atomic_fetch_or:
3271   case AtomicExpr::AO__c11_atomic_fetch_xor:
3272   case AtomicExpr::AO__atomic_fetch_and:
3273   case AtomicExpr::AO__atomic_fetch_or:
3274   case AtomicExpr::AO__atomic_fetch_xor:
3275   case AtomicExpr::AO__atomic_fetch_nand:
3276   case AtomicExpr::AO__atomic_and_fetch:
3277   case AtomicExpr::AO__atomic_or_fetch:
3278   case AtomicExpr::AO__atomic_xor_fetch:
3279   case AtomicExpr::AO__atomic_nand_fetch:
3280     Val1 = EmitValToTemp(*this, E->getVal1());
3281     break;
3282   }
3283 
3284   if (!E->getType()->isVoidType() && !Dest)
3285     Dest = CreateMemTemp(E->getType(), ".atomicdst");
3286 
3287   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
3288   if (UseLibcall) {
3289 
3290     SmallVector<QualType, 5> Params;
3291     CallArgList Args;
3292     // Size is always the first parameter
3293     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
3294              getContext().getSizeType());
3295     // Atomic address is always the second parameter
3296     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
3297              getContext().VoidPtrTy);
3298 
3299     const char* LibCallName;
3300     QualType RetTy = getContext().VoidTy;
3301     switch (E->getOp()) {
3302     // There is only one libcall for compare an exchange, because there is no
3303     // optimisation benefit possible from a libcall version of a weak compare
3304     // and exchange.
3305     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
3306     //                                void *desired, int success, int failure)
3307     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3308     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3309     case AtomicExpr::AO__atomic_compare_exchange:
3310     case AtomicExpr::AO__atomic_compare_exchange_n:
3311       LibCallName = "__atomic_compare_exchange";
3312       RetTy = getContext().BoolTy;
3313       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3314                getContext().VoidPtrTy);
3315       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
3316                getContext().VoidPtrTy);
3317       Args.add(RValue::get(Order),
3318                getContext().IntTy);
3319       Order = OrderFail;
3320       break;
3321     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
3322     //                        int order)
3323     case AtomicExpr::AO__c11_atomic_exchange:
3324     case AtomicExpr::AO__atomic_exchange_n:
3325     case AtomicExpr::AO__atomic_exchange:
3326       LibCallName = "__atomic_exchange";
3327       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3328                getContext().VoidPtrTy);
3329       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3330                getContext().VoidPtrTy);
3331       break;
3332     // void __atomic_store(size_t size, void *mem, void *val, int order)
3333     case AtomicExpr::AO__c11_atomic_store:
3334     case AtomicExpr::AO__atomic_store:
3335     case AtomicExpr::AO__atomic_store_n:
3336       LibCallName = "__atomic_store";
3337       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
3338                getContext().VoidPtrTy);
3339       break;
3340     // void __atomic_load(size_t size, void *mem, void *return, int order)
3341     case AtomicExpr::AO__c11_atomic_load:
3342     case AtomicExpr::AO__atomic_load:
3343     case AtomicExpr::AO__atomic_load_n:
3344       LibCallName = "__atomic_load";
3345       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
3346                getContext().VoidPtrTy);
3347       break;
3348 #if 0
3349     // These are only defined for 1-16 byte integers.  It is not clear what
3350     // their semantics would be on anything else...
3351     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
3352     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
3353     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
3354     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
3355     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
3356 #endif
3357     default: return EmitUnsupportedRValue(E, "atomic library call");
3358     }
3359     // order is always the last parameter
3360     Args.add(RValue::get(Order),
3361              getContext().IntTy);
3362 
3363     const CGFunctionInfo &FuncInfo =
3364         CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
3365             FunctionType::ExtInfo(), RequiredArgs::All);
3366     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3367     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3368     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
3369     if (E->isCmpXChg())
3370       return Res;
3371     if (E->getType()->isVoidType())
3372       return RValue::get(0);
3373     return ConvertTempToRValue(*this, E->getType(), Dest);
3374   }
3375 
3376   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
3377                  E->getOp() == AtomicExpr::AO__atomic_store ||
3378                  E->getOp() == AtomicExpr::AO__atomic_store_n;
3379   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
3380                 E->getOp() == AtomicExpr::AO__atomic_load ||
3381                 E->getOp() == AtomicExpr::AO__atomic_load_n;
3382 
3383   llvm::Type *IPtrTy =
3384       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
3385   llvm::Value *OrigDest = Dest;
3386   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
3387   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
3388   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
3389   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
3390 
3391   if (isa<llvm::ConstantInt>(Order)) {
3392     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3393     switch (ord) {
3394     case 0:  // memory_order_relaxed
3395       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3396                    llvm::Monotonic);
3397       break;
3398     case 1:  // memory_order_consume
3399     case 2:  // memory_order_acquire
3400       if (IsStore)
3401         break; // Avoid crashing on code with undefined behavior
3402       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3403                    llvm::Acquire);
3404       break;
3405     case 3:  // memory_order_release
3406       if (IsLoad)
3407         break; // Avoid crashing on code with undefined behavior
3408       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3409                    llvm::Release);
3410       break;
3411     case 4:  // memory_order_acq_rel
3412       if (IsLoad || IsStore)
3413         break; // Avoid crashing on code with undefined behavior
3414       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3415                    llvm::AcquireRelease);
3416       break;
3417     case 5:  // memory_order_seq_cst
3418       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3419                    llvm::SequentiallyConsistent);
3420       break;
3421     default: // invalid order
3422       // We should not ever get here normally, but it's hard to
3423       // enforce that in general.
3424       break;
3425     }
3426     if (E->getType()->isVoidType())
3427       return RValue::get(0);
3428     return ConvertTempToRValue(*this, E->getType(), OrigDest);
3429   }
3430 
3431   // Long case, when Order isn't obviously constant.
3432 
3433   // Create all the relevant BB's
3434   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
3435                    *AcqRelBB = 0, *SeqCstBB = 0;
3436   MonotonicBB = createBasicBlock("monotonic", CurFn);
3437   if (!IsStore)
3438     AcquireBB = createBasicBlock("acquire", CurFn);
3439   if (!IsLoad)
3440     ReleaseBB = createBasicBlock("release", CurFn);
3441   if (!IsLoad && !IsStore)
3442     AcqRelBB = createBasicBlock("acqrel", CurFn);
3443   SeqCstBB = createBasicBlock("seqcst", CurFn);
3444   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3445 
3446   // Create the switch for the split
3447   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
3448   // doesn't matter unless someone is crazy enough to use something that
3449   // doesn't fold to a constant for the ordering.
3450   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3451   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
3452 
3453   // Emit all the different atomics
3454   Builder.SetInsertPoint(MonotonicBB);
3455   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3456                llvm::Monotonic);
3457   Builder.CreateBr(ContBB);
3458   if (!IsStore) {
3459     Builder.SetInsertPoint(AcquireBB);
3460     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3461                  llvm::Acquire);
3462     Builder.CreateBr(ContBB);
3463     SI->addCase(Builder.getInt32(1), AcquireBB);
3464     SI->addCase(Builder.getInt32(2), AcquireBB);
3465   }
3466   if (!IsLoad) {
3467     Builder.SetInsertPoint(ReleaseBB);
3468     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3469                  llvm::Release);
3470     Builder.CreateBr(ContBB);
3471     SI->addCase(Builder.getInt32(3), ReleaseBB);
3472   }
3473   if (!IsLoad && !IsStore) {
3474     Builder.SetInsertPoint(AcqRelBB);
3475     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3476                  llvm::AcquireRelease);
3477     Builder.CreateBr(ContBB);
3478     SI->addCase(Builder.getInt32(4), AcqRelBB);
3479   }
3480   Builder.SetInsertPoint(SeqCstBB);
3481   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
3482                llvm::SequentiallyConsistent);
3483   Builder.CreateBr(ContBB);
3484   SI->addCase(Builder.getInt32(5), SeqCstBB);
3485 
3486   // Cleanup and return
3487   Builder.SetInsertPoint(ContBB);
3488   if (E->getType()->isVoidType())
3489     return RValue::get(0);
3490   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3491 }
3492 
3493 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3494   assert(Val->getType()->isFPOrFPVectorTy());
3495   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3496     return;
3497 
3498   llvm::MDBuilder MDHelper(getLLVMContext());
3499   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3500 
3501   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3502 }
3503 
3504 namespace {
3505   struct LValueOrRValue {
3506     LValue LV;
3507     RValue RV;
3508   };
3509 }
3510 
3511 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3512                                            const PseudoObjectExpr *E,
3513                                            bool forLValue,
3514                                            AggValueSlot slot) {
3515   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3516 
3517   // Find the result expression, if any.
3518   const Expr *resultExpr = E->getResultExpr();
3519   LValueOrRValue result;
3520 
3521   for (PseudoObjectExpr::const_semantics_iterator
3522          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3523     const Expr *semantic = *i;
3524 
3525     // If this semantic expression is an opaque value, bind it
3526     // to the result of its source expression.
3527     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3528 
3529       // If this is the result expression, we may need to evaluate
3530       // directly into the slot.
3531       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3532       OVMA opaqueData;
3533       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3534           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3535           !ov->getType()->isAnyComplexType()) {
3536         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3537 
3538         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3539         opaqueData = OVMA::bind(CGF, ov, LV);
3540         result.RV = slot.asRValue();
3541 
3542       // Otherwise, emit as normal.
3543       } else {
3544         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3545 
3546         // If this is the result, also evaluate the result now.
3547         if (ov == resultExpr) {
3548           if (forLValue)
3549             result.LV = CGF.EmitLValue(ov);
3550           else
3551             result.RV = CGF.EmitAnyExpr(ov, slot);
3552         }
3553       }
3554 
3555       opaques.push_back(opaqueData);
3556 
3557     // Otherwise, if the expression is the result, evaluate it
3558     // and remember the result.
3559     } else if (semantic == resultExpr) {
3560       if (forLValue)
3561         result.LV = CGF.EmitLValue(semantic);
3562       else
3563         result.RV = CGF.EmitAnyExpr(semantic, slot);
3564 
3565     // Otherwise, evaluate the expression in an ignored context.
3566     } else {
3567       CGF.EmitIgnoredExpr(semantic);
3568     }
3569   }
3570 
3571   // Unbind all the opaques now.
3572   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3573     opaques[i].unbind(CGF);
3574 
3575   return result;
3576 }
3577 
3578 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3579                                                AggValueSlot slot) {
3580   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3581 }
3582 
3583 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3584   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3585 }
3586