1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/Hashing.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 #include <string> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 //===--------------------------------------------------------------------===// 48 // Miscellaneous Helper Methods 49 //===--------------------------------------------------------------------===// 50 51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 52 unsigned addressSpace = 53 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 54 55 llvm::PointerType *destType = Int8PtrTy; 56 if (addressSpace) 57 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 58 59 if (value->getType() == destType) return value; 60 return Builder.CreateBitCast(value, destType); 61 } 62 63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 64 /// block. 65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 66 CharUnits Align, 67 const Twine &Name, 68 llvm::Value *ArraySize) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getAsAlign()); 71 return Address(Alloca, Align); 72 } 73 74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 75 /// block. The alloca is casted to default address space if necessary. 76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 77 const Twine &Name, 78 llvm::Value *ArraySize, 79 Address *AllocaAddr) { 80 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 81 if (AllocaAddr) 82 *AllocaAddr = Alloca; 83 llvm::Value *V = Alloca.getPointer(); 84 // Alloca always returns a pointer in alloca address space, which may 85 // be different from the type defined by the language. For example, 86 // in C++ the auto variables are in the default address space. Therefore 87 // cast alloca to the default address space when necessary. 88 if (getASTAllocaAddressSpace() != LangAS::Default) { 89 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 90 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 91 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 92 // otherwise alloca is inserted at the current insertion point of the 93 // builder. 94 if (!ArraySize) 95 Builder.SetInsertPoint(AllocaInsertPt); 96 V = getTargetHooks().performAddrSpaceCast( 97 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 98 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 99 } 100 101 return Address(V, Align); 102 } 103 104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 106 /// insertion point of the builder. 107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 108 const Twine &Name, 109 llvm::Value *ArraySize) { 110 if (ArraySize) 111 return Builder.CreateAlloca(Ty, ArraySize, Name); 112 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 113 ArraySize, Name, AllocaInsertPt); 114 } 115 116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 117 /// default alignment of the corresponding LLVM type, which is *not* 118 /// guaranteed to be related in any way to the expected alignment of 119 /// an AST type that might have been lowered to Ty. 120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 121 const Twine &Name) { 122 CharUnits Align = 123 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 124 return CreateTempAlloca(Ty, Align, Name); 125 } 126 127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 128 assert(isa<llvm::AllocaInst>(Var.getPointer())); 129 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 130 Store->setAlignment(Var.getAlignment().getAsAlign()); 131 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 132 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 133 } 134 135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 136 CharUnits Align = getContext().getTypeAlignInChars(Ty); 137 return CreateTempAlloca(ConvertType(Ty), Align, Name); 138 } 139 140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 141 Address *Alloca) { 142 // FIXME: Should we prefer the preferred type alignment here? 143 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 144 } 145 146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 147 const Twine &Name, Address *Alloca) { 148 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 149 /*ArraySize=*/nullptr, Alloca); 150 } 151 152 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 153 const Twine &Name) { 154 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 155 } 156 157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 158 const Twine &Name) { 159 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 160 Name); 161 } 162 163 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 164 /// expression and compare the result against zero, returning an Int1Ty value. 165 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 166 PGO.setCurrentStmt(E); 167 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 168 llvm::Value *MemPtr = EmitScalarExpr(E); 169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 170 } 171 172 QualType BoolTy = getContext().BoolTy; 173 SourceLocation Loc = E->getExprLoc(); 174 if (!E->getType()->isAnyComplexType()) 175 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 176 177 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 178 Loc); 179 } 180 181 /// EmitIgnoredExpr - Emit code to compute the specified expression, 182 /// ignoring the result. 183 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 184 if (E->isRValue()) 185 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 186 187 // Just emit it as an l-value and drop the result. 188 EmitLValue(E); 189 } 190 191 /// EmitAnyExpr - Emit code to compute the specified expression which 192 /// can have any type. The result is returned as an RValue struct. 193 /// If this is an aggregate expression, AggSlot indicates where the 194 /// result should be returned. 195 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 196 AggValueSlot aggSlot, 197 bool ignoreResult) { 198 switch (getEvaluationKind(E->getType())) { 199 case TEK_Scalar: 200 return RValue::get(EmitScalarExpr(E, ignoreResult)); 201 case TEK_Complex: 202 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 203 case TEK_Aggregate: 204 if (!ignoreResult && aggSlot.isIgnored()) 205 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 206 EmitAggExpr(E, aggSlot); 207 return aggSlot.asRValue(); 208 } 209 llvm_unreachable("bad evaluation kind"); 210 } 211 212 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 213 /// always be accessible even if no aggregate location is provided. 214 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 215 AggValueSlot AggSlot = AggValueSlot::ignored(); 216 217 if (hasAggregateEvaluationKind(E->getType())) 218 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 219 return EmitAnyExpr(E, AggSlot); 220 } 221 222 /// EmitAnyExprToMem - Evaluate an expression into a given memory 223 /// location. 224 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 225 Address Location, 226 Qualifiers Quals, 227 bool IsInit) { 228 // FIXME: This function should take an LValue as an argument. 229 switch (getEvaluationKind(E->getType())) { 230 case TEK_Complex: 231 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 232 /*isInit*/ false); 233 return; 234 235 case TEK_Aggregate: { 236 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 237 AggValueSlot::IsDestructed_t(IsInit), 238 AggValueSlot::DoesNotNeedGCBarriers, 239 AggValueSlot::IsAliased_t(!IsInit), 240 AggValueSlot::MayOverlap)); 241 return; 242 } 243 244 case TEK_Scalar: { 245 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 246 LValue LV = MakeAddrLValue(Location, E->getType()); 247 EmitStoreThroughLValue(RV, LV); 248 return; 249 } 250 } 251 llvm_unreachable("bad evaluation kind"); 252 } 253 254 static void 255 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 256 const Expr *E, Address ReferenceTemporary) { 257 // Objective-C++ ARC: 258 // If we are binding a reference to a temporary that has ownership, we 259 // need to perform retain/release operations on the temporary. 260 // 261 // FIXME: This should be looking at E, not M. 262 if (auto Lifetime = M->getType().getObjCLifetime()) { 263 switch (Lifetime) { 264 case Qualifiers::OCL_None: 265 case Qualifiers::OCL_ExplicitNone: 266 // Carry on to normal cleanup handling. 267 break; 268 269 case Qualifiers::OCL_Autoreleasing: 270 // Nothing to do; cleaned up by an autorelease pool. 271 return; 272 273 case Qualifiers::OCL_Strong: 274 case Qualifiers::OCL_Weak: 275 switch (StorageDuration Duration = M->getStorageDuration()) { 276 case SD_Static: 277 // Note: we intentionally do not register a cleanup to release 278 // the object on program termination. 279 return; 280 281 case SD_Thread: 282 // FIXME: We should probably register a cleanup in this case. 283 return; 284 285 case SD_Automatic: 286 case SD_FullExpression: 287 CodeGenFunction::Destroyer *Destroy; 288 CleanupKind CleanupKind; 289 if (Lifetime == Qualifiers::OCL_Strong) { 290 const ValueDecl *VD = M->getExtendingDecl(); 291 bool Precise = 292 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 293 CleanupKind = CGF.getARCCleanupKind(); 294 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 295 : &CodeGenFunction::destroyARCStrongImprecise; 296 } else { 297 // __weak objects always get EH cleanups; otherwise, exceptions 298 // could cause really nasty crashes instead of mere leaks. 299 CleanupKind = NormalAndEHCleanup; 300 Destroy = &CodeGenFunction::destroyARCWeak; 301 } 302 if (Duration == SD_FullExpression) 303 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 304 M->getType(), *Destroy, 305 CleanupKind & EHCleanup); 306 else 307 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 308 M->getType(), 309 *Destroy, CleanupKind & EHCleanup); 310 return; 311 312 case SD_Dynamic: 313 llvm_unreachable("temporary cannot have dynamic storage duration"); 314 } 315 llvm_unreachable("unknown storage duration"); 316 } 317 } 318 319 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 320 if (const RecordType *RT = 321 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 322 // Get the destructor for the reference temporary. 323 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 324 if (!ClassDecl->hasTrivialDestructor()) 325 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 326 } 327 328 if (!ReferenceTemporaryDtor) 329 return; 330 331 // Call the destructor for the temporary. 332 switch (M->getStorageDuration()) { 333 case SD_Static: 334 case SD_Thread: { 335 llvm::FunctionCallee CleanupFn; 336 llvm::Constant *CleanupArg; 337 if (E->getType()->isArrayType()) { 338 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 339 ReferenceTemporary, E->getType(), 340 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 341 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 342 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 343 } else { 344 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 345 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 346 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 347 } 348 CGF.CGM.getCXXABI().registerGlobalDtor( 349 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 350 break; 351 } 352 353 case SD_FullExpression: 354 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 355 CodeGenFunction::destroyCXXObject, 356 CGF.getLangOpts().Exceptions); 357 break; 358 359 case SD_Automatic: 360 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 361 ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Dynamic: 367 llvm_unreachable("temporary cannot have dynamic storage duration"); 368 } 369 } 370 371 static Address createReferenceTemporary(CodeGenFunction &CGF, 372 const MaterializeTemporaryExpr *M, 373 const Expr *Inner, 374 Address *Alloca = nullptr) { 375 auto &TCG = CGF.getTargetHooks(); 376 switch (M->getStorageDuration()) { 377 case SD_FullExpression: 378 case SD_Automatic: { 379 // If we have a constant temporary array or record try to promote it into a 380 // constant global under the same rules a normal constant would've been 381 // promoted. This is easier on the optimizer and generally emits fewer 382 // instructions. 383 QualType Ty = Inner->getType(); 384 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 385 (Ty->isArrayType() || Ty->isRecordType()) && 386 CGF.CGM.isTypeConstant(Ty, true)) 387 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 388 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 389 auto AS = AddrSpace.getValue(); 390 auto *GV = new llvm::GlobalVariable( 391 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 392 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 393 llvm::GlobalValue::NotThreadLocal, 394 CGF.getContext().getTargetAddressSpace(AS)); 395 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 396 GV->setAlignment(alignment.getAsAlign()); 397 llvm::Constant *C = GV; 398 if (AS != LangAS::Default) 399 C = TCG.performAddrSpaceCast( 400 CGF.CGM, GV, AS, LangAS::Default, 401 GV->getValueType()->getPointerTo( 402 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 403 // FIXME: Should we put the new global into a COMDAT? 404 return Address(C, alignment); 405 } 406 } 407 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 408 } 409 case SD_Thread: 410 case SD_Static: 411 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 412 413 case SD_Dynamic: 414 llvm_unreachable("temporary can't have dynamic storage duration"); 415 } 416 llvm_unreachable("unknown storage duration"); 417 } 418 419 /// Helper method to check if the underlying ABI is AAPCS 420 static bool isAAPCS(const TargetInfo &TargetInfo) { 421 return TargetInfo.getABI().startswith("aapcs"); 422 } 423 424 LValue CodeGenFunction:: 425 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 426 const Expr *E = M->getSubExpr(); 427 428 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 429 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 430 "Reference should never be pseudo-strong!"); 431 432 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 433 // as that will cause the lifetime adjustment to be lost for ARC 434 auto ownership = M->getType().getObjCLifetime(); 435 if (ownership != Qualifiers::OCL_None && 436 ownership != Qualifiers::OCL_ExplicitNone) { 437 Address Object = createReferenceTemporary(*this, M, E); 438 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 439 Object = Address(llvm::ConstantExpr::getBitCast(Var, 440 ConvertTypeForMem(E->getType()) 441 ->getPointerTo(Object.getAddressSpace())), 442 Object.getAlignment()); 443 444 // createReferenceTemporary will promote the temporary to a global with a 445 // constant initializer if it can. It can only do this to a value of 446 // ARC-manageable type if the value is global and therefore "immune" to 447 // ref-counting operations. Therefore we have no need to emit either a 448 // dynamic initialization or a cleanup and we can just return the address 449 // of the temporary. 450 if (Var->hasInitializer()) 451 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 452 453 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 454 } 455 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 456 AlignmentSource::Decl); 457 458 switch (getEvaluationKind(E->getType())) { 459 default: llvm_unreachable("expected scalar or aggregate expression"); 460 case TEK_Scalar: 461 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 462 break; 463 case TEK_Aggregate: { 464 EmitAggExpr(E, AggValueSlot::forAddr(Object, 465 E->getType().getQualifiers(), 466 AggValueSlot::IsDestructed, 467 AggValueSlot::DoesNotNeedGCBarriers, 468 AggValueSlot::IsNotAliased, 469 AggValueSlot::DoesNotOverlap)); 470 break; 471 } 472 } 473 474 pushTemporaryCleanup(*this, M, E, Object); 475 return RefTempDst; 476 } 477 478 SmallVector<const Expr *, 2> CommaLHSs; 479 SmallVector<SubobjectAdjustment, 2> Adjustments; 480 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 481 482 for (const auto &Ignored : CommaLHSs) 483 EmitIgnoredExpr(Ignored); 484 485 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 486 if (opaque->getType()->isRecordType()) { 487 assert(Adjustments.empty()); 488 return EmitOpaqueValueLValue(opaque); 489 } 490 } 491 492 // Create and initialize the reference temporary. 493 Address Alloca = Address::invalid(); 494 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 495 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 496 Object.getPointer()->stripPointerCasts())) { 497 Object = Address(llvm::ConstantExpr::getBitCast( 498 cast<llvm::Constant>(Object.getPointer()), 499 ConvertTypeForMem(E->getType())->getPointerTo()), 500 Object.getAlignment()); 501 // If the temporary is a global and has a constant initializer or is a 502 // constant temporary that we promoted to a global, we may have already 503 // initialized it. 504 if (!Var->hasInitializer()) { 505 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 506 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 507 } 508 } else { 509 switch (M->getStorageDuration()) { 510 case SD_Automatic: 511 if (auto *Size = EmitLifetimeStart( 512 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 513 Alloca.getPointer())) { 514 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 515 Alloca, Size); 516 } 517 break; 518 519 case SD_FullExpression: { 520 if (!ShouldEmitLifetimeMarkers) 521 break; 522 523 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 524 // marker. Instead, start the lifetime of a conditional temporary earlier 525 // so that it's unconditional. Don't do this with sanitizers which need 526 // more precise lifetime marks. 527 ConditionalEvaluation *OldConditional = nullptr; 528 CGBuilderTy::InsertPoint OldIP; 529 if (isInConditionalBranch() && !E->getType().isDestructedType() && 530 !SanOpts.has(SanitizerKind::HWAddress) && 531 !SanOpts.has(SanitizerKind::Memory) && 532 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 533 OldConditional = OutermostConditional; 534 OutermostConditional = nullptr; 535 536 OldIP = Builder.saveIP(); 537 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 538 Builder.restoreIP(CGBuilderTy::InsertPoint( 539 Block, llvm::BasicBlock::iterator(Block->back()))); 540 } 541 542 if (auto *Size = EmitLifetimeStart( 543 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 544 Alloca.getPointer())) { 545 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 546 Size); 547 } 548 549 if (OldConditional) { 550 OutermostConditional = OldConditional; 551 Builder.restoreIP(OldIP); 552 } 553 break; 554 } 555 556 default: 557 break; 558 } 559 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 560 } 561 pushTemporaryCleanup(*this, M, E, Object); 562 563 // Perform derived-to-base casts and/or field accesses, to get from the 564 // temporary object we created (and, potentially, for which we extended 565 // the lifetime) to the subobject we're binding the reference to. 566 for (unsigned I = Adjustments.size(); I != 0; --I) { 567 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 568 switch (Adjustment.Kind) { 569 case SubobjectAdjustment::DerivedToBaseAdjustment: 570 Object = 571 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 572 Adjustment.DerivedToBase.BasePath->path_begin(), 573 Adjustment.DerivedToBase.BasePath->path_end(), 574 /*NullCheckValue=*/ false, E->getExprLoc()); 575 break; 576 577 case SubobjectAdjustment::FieldAdjustment: { 578 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 579 LV = EmitLValueForField(LV, Adjustment.Field); 580 assert(LV.isSimple() && 581 "materialized temporary field is not a simple lvalue"); 582 Object = LV.getAddress(*this); 583 break; 584 } 585 586 case SubobjectAdjustment::MemberPointerAdjustment: { 587 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 588 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 589 Adjustment.Ptr.MPT); 590 break; 591 } 592 } 593 } 594 595 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 596 } 597 598 RValue 599 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 600 // Emit the expression as an lvalue. 601 LValue LV = EmitLValue(E); 602 assert(LV.isSimple()); 603 llvm::Value *Value = LV.getPointer(*this); 604 605 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 606 // C++11 [dcl.ref]p5 (as amended by core issue 453): 607 // If a glvalue to which a reference is directly bound designates neither 608 // an existing object or function of an appropriate type nor a region of 609 // storage of suitable size and alignment to contain an object of the 610 // reference's type, the behavior is undefined. 611 QualType Ty = E->getType(); 612 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 613 } 614 615 return RValue::get(Value); 616 } 617 618 619 /// getAccessedFieldNo - Given an encoded value and a result number, return the 620 /// input field number being accessed. 621 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 622 const llvm::Constant *Elts) { 623 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 624 ->getZExtValue(); 625 } 626 627 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 628 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 629 llvm::Value *High) { 630 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 631 llvm::Value *K47 = Builder.getInt64(47); 632 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 633 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 634 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 635 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 636 return Builder.CreateMul(B1, KMul); 637 } 638 639 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 640 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 641 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 642 } 643 644 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 645 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 646 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 647 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 648 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 649 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 650 } 651 652 bool CodeGenFunction::sanitizePerformTypeCheck() const { 653 return SanOpts.has(SanitizerKind::Null) | 654 SanOpts.has(SanitizerKind::Alignment) | 655 SanOpts.has(SanitizerKind::ObjectSize) | 656 SanOpts.has(SanitizerKind::Vptr); 657 } 658 659 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 660 llvm::Value *Ptr, QualType Ty, 661 CharUnits Alignment, 662 SanitizerSet SkippedChecks, 663 llvm::Value *ArraySize) { 664 if (!sanitizePerformTypeCheck()) 665 return; 666 667 // Don't check pointers outside the default address space. The null check 668 // isn't correct, the object-size check isn't supported by LLVM, and we can't 669 // communicate the addresses to the runtime handler for the vptr check. 670 if (Ptr->getType()->getPointerAddressSpace()) 671 return; 672 673 // Don't check pointers to volatile data. The behavior here is implementation- 674 // defined. 675 if (Ty.isVolatileQualified()) 676 return; 677 678 SanitizerScope SanScope(this); 679 680 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 681 llvm::BasicBlock *Done = nullptr; 682 683 // Quickly determine whether we have a pointer to an alloca. It's possible 684 // to skip null checks, and some alignment checks, for these pointers. This 685 // can reduce compile-time significantly. 686 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 687 688 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 689 llvm::Value *IsNonNull = nullptr; 690 bool IsGuaranteedNonNull = 691 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 692 bool AllowNullPointers = isNullPointerAllowed(TCK); 693 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 694 !IsGuaranteedNonNull) { 695 // The glvalue must not be an empty glvalue. 696 IsNonNull = Builder.CreateIsNotNull(Ptr); 697 698 // The IR builder can constant-fold the null check if the pointer points to 699 // a constant. 700 IsGuaranteedNonNull = IsNonNull == True; 701 702 // Skip the null check if the pointer is known to be non-null. 703 if (!IsGuaranteedNonNull) { 704 if (AllowNullPointers) { 705 // When performing pointer casts, it's OK if the value is null. 706 // Skip the remaining checks in that case. 707 Done = createBasicBlock("null"); 708 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 709 Builder.CreateCondBr(IsNonNull, Rest, Done); 710 EmitBlock(Rest); 711 } else { 712 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 713 } 714 } 715 } 716 717 if (SanOpts.has(SanitizerKind::ObjectSize) && 718 !SkippedChecks.has(SanitizerKind::ObjectSize) && 719 !Ty->isIncompleteType()) { 720 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 721 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 722 if (ArraySize) 723 Size = Builder.CreateMul(Size, ArraySize); 724 725 // Degenerate case: new X[0] does not need an objectsize check. 726 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 727 if (!ConstantSize || !ConstantSize->isNullValue()) { 728 // The glvalue must refer to a large enough storage region. 729 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 730 // to check this. 731 // FIXME: Get object address space 732 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 733 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 734 llvm::Value *Min = Builder.getFalse(); 735 llvm::Value *NullIsUnknown = Builder.getFalse(); 736 llvm::Value *Dynamic = Builder.getFalse(); 737 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 738 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 739 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 740 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 741 } 742 } 743 744 uint64_t AlignVal = 0; 745 llvm::Value *PtrAsInt = nullptr; 746 747 if (SanOpts.has(SanitizerKind::Alignment) && 748 !SkippedChecks.has(SanitizerKind::Alignment)) { 749 AlignVal = Alignment.getQuantity(); 750 if (!Ty->isIncompleteType() && !AlignVal) 751 AlignVal = 752 getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true) 753 .getQuantity(); 754 755 // The glvalue must be suitably aligned. 756 if (AlignVal > 1 && 757 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 758 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 759 llvm::Value *Align = Builder.CreateAnd( 760 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 761 llvm::Value *Aligned = 762 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 763 if (Aligned != True) 764 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 765 } 766 } 767 768 if (Checks.size() > 0) { 769 // Make sure we're not losing information. Alignment needs to be a power of 770 // 2 771 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 772 llvm::Constant *StaticData[] = { 773 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 774 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 775 llvm::ConstantInt::get(Int8Ty, TCK)}; 776 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 777 PtrAsInt ? PtrAsInt : Ptr); 778 } 779 780 // If possible, check that the vptr indicates that there is a subobject of 781 // type Ty at offset zero within this object. 782 // 783 // C++11 [basic.life]p5,6: 784 // [For storage which does not refer to an object within its lifetime] 785 // The program has undefined behavior if: 786 // -- the [pointer or glvalue] is used to access a non-static data member 787 // or call a non-static member function 788 if (SanOpts.has(SanitizerKind::Vptr) && 789 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 790 // Ensure that the pointer is non-null before loading it. If there is no 791 // compile-time guarantee, reuse the run-time null check or emit a new one. 792 if (!IsGuaranteedNonNull) { 793 if (!IsNonNull) 794 IsNonNull = Builder.CreateIsNotNull(Ptr); 795 if (!Done) 796 Done = createBasicBlock("vptr.null"); 797 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 798 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 799 EmitBlock(VptrNotNull); 800 } 801 802 // Compute a hash of the mangled name of the type. 803 // 804 // FIXME: This is not guaranteed to be deterministic! Move to a 805 // fingerprinting mechanism once LLVM provides one. For the time 806 // being the implementation happens to be deterministic. 807 SmallString<64> MangledName; 808 llvm::raw_svector_ostream Out(MangledName); 809 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 810 Out); 811 812 // Blacklist based on the mangled type. 813 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 814 SanitizerKind::Vptr, Out.str())) { 815 llvm::hash_code TypeHash = hash_value(Out.str()); 816 817 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 818 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 819 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 820 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 821 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 822 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 823 824 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 825 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 826 827 // Look the hash up in our cache. 828 const int CacheSize = 128; 829 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 830 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 831 "__ubsan_vptr_type_cache"); 832 llvm::Value *Slot = Builder.CreateAnd(Hash, 833 llvm::ConstantInt::get(IntPtrTy, 834 CacheSize-1)); 835 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 836 llvm::Value *CacheVal = 837 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 838 getPointerAlign()); 839 840 // If the hash isn't in the cache, call a runtime handler to perform the 841 // hard work of checking whether the vptr is for an object of the right 842 // type. This will either fill in the cache and return, or produce a 843 // diagnostic. 844 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 845 llvm::Constant *StaticData[] = { 846 EmitCheckSourceLocation(Loc), 847 EmitCheckTypeDescriptor(Ty), 848 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 849 llvm::ConstantInt::get(Int8Ty, TCK) 850 }; 851 llvm::Value *DynamicData[] = { Ptr, Hash }; 852 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 853 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 854 DynamicData); 855 } 856 } 857 858 if (Done) { 859 Builder.CreateBr(Done); 860 EmitBlock(Done); 861 } 862 } 863 864 /// Determine whether this expression refers to a flexible array member in a 865 /// struct. We disable array bounds checks for such members. 866 static bool isFlexibleArrayMemberExpr(const Expr *E) { 867 // For compatibility with existing code, we treat arrays of length 0 or 868 // 1 as flexible array members. 869 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 870 // the two mechanisms. 871 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 872 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 873 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 874 // was produced by macro expansion. 875 if (CAT->getSize().ugt(1)) 876 return false; 877 } else if (!isa<IncompleteArrayType>(AT)) 878 return false; 879 880 E = E->IgnoreParens(); 881 882 // A flexible array member must be the last member in the class. 883 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 884 // FIXME: If the base type of the member expr is not FD->getParent(), 885 // this should not be treated as a flexible array member access. 886 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 887 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 888 // member, only a T[0] or T[] member gets that treatment. 889 if (FD->getParent()->isUnion()) 890 return true; 891 RecordDecl::field_iterator FI( 892 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 893 return ++FI == FD->getParent()->field_end(); 894 } 895 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 896 return IRE->getDecl()->getNextIvar() == nullptr; 897 } 898 899 return false; 900 } 901 902 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 903 QualType EltTy) { 904 ASTContext &C = getContext(); 905 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 906 if (!EltSize) 907 return nullptr; 908 909 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 910 if (!ArrayDeclRef) 911 return nullptr; 912 913 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 914 if (!ParamDecl) 915 return nullptr; 916 917 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 918 if (!POSAttr) 919 return nullptr; 920 921 // Don't load the size if it's a lower bound. 922 int POSType = POSAttr->getType(); 923 if (POSType != 0 && POSType != 1) 924 return nullptr; 925 926 // Find the implicit size parameter. 927 auto PassedSizeIt = SizeArguments.find(ParamDecl); 928 if (PassedSizeIt == SizeArguments.end()) 929 return nullptr; 930 931 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 932 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 933 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 934 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 935 C.getSizeType(), E->getExprLoc()); 936 llvm::Value *SizeOfElement = 937 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 938 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 939 } 940 941 /// If Base is known to point to the start of an array, return the length of 942 /// that array. Return 0 if the length cannot be determined. 943 static llvm::Value *getArrayIndexingBound( 944 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 945 // For the vector indexing extension, the bound is the number of elements. 946 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 947 IndexedType = Base->getType(); 948 return CGF.Builder.getInt32(VT->getNumElements()); 949 } 950 951 Base = Base->IgnoreParens(); 952 953 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 954 if (CE->getCastKind() == CK_ArrayToPointerDecay && 955 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 956 IndexedType = CE->getSubExpr()->getType(); 957 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 958 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 959 return CGF.Builder.getInt(CAT->getSize()); 960 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 961 return CGF.getVLASize(VAT).NumElts; 962 // Ignore pass_object_size here. It's not applicable on decayed pointers. 963 } 964 } 965 966 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 967 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 968 IndexedType = Base->getType(); 969 return POS; 970 } 971 972 return nullptr; 973 } 974 975 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 976 llvm::Value *Index, QualType IndexType, 977 bool Accessed) { 978 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 979 "should not be called unless adding bounds checks"); 980 SanitizerScope SanScope(this); 981 982 QualType IndexedType; 983 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 984 if (!Bound) 985 return; 986 987 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 988 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 989 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 990 991 llvm::Constant *StaticData[] = { 992 EmitCheckSourceLocation(E->getExprLoc()), 993 EmitCheckTypeDescriptor(IndexedType), 994 EmitCheckTypeDescriptor(IndexType) 995 }; 996 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 997 : Builder.CreateICmpULE(IndexVal, BoundVal); 998 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 999 SanitizerHandler::OutOfBounds, StaticData, Index); 1000 } 1001 1002 1003 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1004 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1005 bool isInc, bool isPre) { 1006 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1007 1008 llvm::Value *NextVal; 1009 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1010 uint64_t AmountVal = isInc ? 1 : -1; 1011 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1012 1013 // Add the inc/dec to the real part. 1014 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1015 } else { 1016 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1017 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1018 if (!isInc) 1019 FVal.changeSign(); 1020 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1021 1022 // Add the inc/dec to the real part. 1023 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1024 } 1025 1026 ComplexPairTy IncVal(NextVal, InVal.second); 1027 1028 // Store the updated result through the lvalue. 1029 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1030 if (getLangOpts().OpenMP) 1031 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1032 E->getSubExpr()); 1033 1034 // If this is a postinc, return the value read from memory, otherwise use the 1035 // updated value. 1036 return isPre ? IncVal : InVal; 1037 } 1038 1039 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1040 CodeGenFunction *CGF) { 1041 // Bind VLAs in the cast type. 1042 if (CGF && E->getType()->isVariablyModifiedType()) 1043 CGF->EmitVariablyModifiedType(E->getType()); 1044 1045 if (CGDebugInfo *DI = getModuleDebugInfo()) 1046 DI->EmitExplicitCastType(E->getType()); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // LValue Expression Emission 1051 //===----------------------------------------------------------------------===// 1052 1053 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1054 /// derive a more accurate bound on the alignment of the pointer. 1055 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1056 LValueBaseInfo *BaseInfo, 1057 TBAAAccessInfo *TBAAInfo) { 1058 // We allow this with ObjC object pointers because of fragile ABIs. 1059 assert(E->getType()->isPointerType() || 1060 E->getType()->isObjCObjectPointerType()); 1061 E = E->IgnoreParens(); 1062 1063 // Casts: 1064 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1065 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1066 CGM.EmitExplicitCastExprType(ECE, this); 1067 1068 switch (CE->getCastKind()) { 1069 // Non-converting casts (but not C's implicit conversion from void*). 1070 case CK_BitCast: 1071 case CK_NoOp: 1072 case CK_AddressSpaceConversion: 1073 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1074 if (PtrTy->getPointeeType()->isVoidType()) 1075 break; 1076 1077 LValueBaseInfo InnerBaseInfo; 1078 TBAAAccessInfo InnerTBAAInfo; 1079 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1080 &InnerBaseInfo, 1081 &InnerTBAAInfo); 1082 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1083 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1084 1085 if (isa<ExplicitCastExpr>(CE)) { 1086 LValueBaseInfo TargetTypeBaseInfo; 1087 TBAAAccessInfo TargetTypeTBAAInfo; 1088 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1089 &TargetTypeBaseInfo, 1090 &TargetTypeTBAAInfo); 1091 if (TBAAInfo) 1092 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1093 TargetTypeTBAAInfo); 1094 // If the source l-value is opaque, honor the alignment of the 1095 // casted-to type. 1096 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1097 if (BaseInfo) 1098 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1099 Addr = Address(Addr.getPointer(), Align); 1100 } 1101 } 1102 1103 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1104 CE->getCastKind() == CK_BitCast) { 1105 if (auto PT = E->getType()->getAs<PointerType>()) 1106 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1107 /*MayBeNull=*/true, 1108 CodeGenFunction::CFITCK_UnrelatedCast, 1109 CE->getBeginLoc()); 1110 } 1111 return CE->getCastKind() != CK_AddressSpaceConversion 1112 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1113 : Builder.CreateAddrSpaceCast(Addr, 1114 ConvertType(E->getType())); 1115 } 1116 break; 1117 1118 // Array-to-pointer decay. 1119 case CK_ArrayToPointerDecay: 1120 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1121 1122 // Derived-to-base conversions. 1123 case CK_UncheckedDerivedToBase: 1124 case CK_DerivedToBase: { 1125 // TODO: Support accesses to members of base classes in TBAA. For now, we 1126 // conservatively pretend that the complete object is of the base class 1127 // type. 1128 if (TBAAInfo) 1129 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1130 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1131 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1132 return GetAddressOfBaseClass(Addr, Derived, 1133 CE->path_begin(), CE->path_end(), 1134 ShouldNullCheckClassCastValue(CE), 1135 CE->getExprLoc()); 1136 } 1137 1138 // TODO: Is there any reason to treat base-to-derived conversions 1139 // specially? 1140 default: 1141 break; 1142 } 1143 } 1144 1145 // Unary &. 1146 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1147 if (UO->getOpcode() == UO_AddrOf) { 1148 LValue LV = EmitLValue(UO->getSubExpr()); 1149 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1150 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1151 return LV.getAddress(*this); 1152 } 1153 } 1154 1155 // TODO: conditional operators, comma. 1156 1157 // Otherwise, use the alignment of the type. 1158 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1159 TBAAInfo); 1160 return Address(EmitScalarExpr(E), Align); 1161 } 1162 1163 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1164 if (Ty->isVoidType()) 1165 return RValue::get(nullptr); 1166 1167 switch (getEvaluationKind(Ty)) { 1168 case TEK_Complex: { 1169 llvm::Type *EltTy = 1170 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1171 llvm::Value *U = llvm::UndefValue::get(EltTy); 1172 return RValue::getComplex(std::make_pair(U, U)); 1173 } 1174 1175 // If this is a use of an undefined aggregate type, the aggregate must have an 1176 // identifiable address. Just because the contents of the value are undefined 1177 // doesn't mean that the address can't be taken and compared. 1178 case TEK_Aggregate: { 1179 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1180 return RValue::getAggregate(DestPtr); 1181 } 1182 1183 case TEK_Scalar: 1184 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1185 } 1186 llvm_unreachable("bad evaluation kind"); 1187 } 1188 1189 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1190 const char *Name) { 1191 ErrorUnsupported(E, Name); 1192 return GetUndefRValue(E->getType()); 1193 } 1194 1195 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1196 const char *Name) { 1197 ErrorUnsupported(E, Name); 1198 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1199 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1200 E->getType()); 1201 } 1202 1203 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1204 const Expr *Base = Obj; 1205 while (!isa<CXXThisExpr>(Base)) { 1206 // The result of a dynamic_cast can be null. 1207 if (isa<CXXDynamicCastExpr>(Base)) 1208 return false; 1209 1210 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1211 Base = CE->getSubExpr(); 1212 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1213 Base = PE->getSubExpr(); 1214 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1215 if (UO->getOpcode() == UO_Extension) 1216 Base = UO->getSubExpr(); 1217 else 1218 return false; 1219 } else { 1220 return false; 1221 } 1222 } 1223 return true; 1224 } 1225 1226 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1227 LValue LV; 1228 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1229 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1230 else 1231 LV = EmitLValue(E); 1232 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1233 SanitizerSet SkippedChecks; 1234 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1235 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1236 if (IsBaseCXXThis) 1237 SkippedChecks.set(SanitizerKind::Alignment, true); 1238 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1239 SkippedChecks.set(SanitizerKind::Null, true); 1240 } 1241 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1242 LV.getAlignment(), SkippedChecks); 1243 } 1244 return LV; 1245 } 1246 1247 /// EmitLValue - Emit code to compute a designator that specifies the location 1248 /// of the expression. 1249 /// 1250 /// This can return one of two things: a simple address or a bitfield reference. 1251 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1252 /// an LLVM pointer type. 1253 /// 1254 /// If this returns a bitfield reference, nothing about the pointee type of the 1255 /// LLVM value is known: For example, it may not be a pointer to an integer. 1256 /// 1257 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1258 /// this method guarantees that the returned pointer type will point to an LLVM 1259 /// type of the same size of the lvalue's type. If the lvalue has a variable 1260 /// length type, this is not possible. 1261 /// 1262 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1263 ApplyDebugLocation DL(*this, E); 1264 switch (E->getStmtClass()) { 1265 default: return EmitUnsupportedLValue(E, "l-value expression"); 1266 1267 case Expr::ObjCPropertyRefExprClass: 1268 llvm_unreachable("cannot emit a property reference directly"); 1269 1270 case Expr::ObjCSelectorExprClass: 1271 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1272 case Expr::ObjCIsaExprClass: 1273 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1274 case Expr::BinaryOperatorClass: 1275 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1276 case Expr::CompoundAssignOperatorClass: { 1277 QualType Ty = E->getType(); 1278 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1279 Ty = AT->getValueType(); 1280 if (!Ty->isAnyComplexType()) 1281 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1282 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1283 } 1284 case Expr::CallExprClass: 1285 case Expr::CXXMemberCallExprClass: 1286 case Expr::CXXOperatorCallExprClass: 1287 case Expr::UserDefinedLiteralClass: 1288 return EmitCallExprLValue(cast<CallExpr>(E)); 1289 case Expr::CXXRewrittenBinaryOperatorClass: 1290 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1291 case Expr::VAArgExprClass: 1292 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1293 case Expr::DeclRefExprClass: 1294 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1295 case Expr::ConstantExprClass: 1296 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1297 case Expr::ParenExprClass: 1298 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1299 case Expr::GenericSelectionExprClass: 1300 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1301 case Expr::PredefinedExprClass: 1302 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1303 case Expr::StringLiteralClass: 1304 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1305 case Expr::ObjCEncodeExprClass: 1306 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1307 case Expr::PseudoObjectExprClass: 1308 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1309 case Expr::InitListExprClass: 1310 return EmitInitListLValue(cast<InitListExpr>(E)); 1311 case Expr::CXXTemporaryObjectExprClass: 1312 case Expr::CXXConstructExprClass: 1313 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1314 case Expr::CXXBindTemporaryExprClass: 1315 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1316 case Expr::CXXUuidofExprClass: 1317 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1318 case Expr::LambdaExprClass: 1319 return EmitAggExprToLValue(E); 1320 1321 case Expr::ExprWithCleanupsClass: { 1322 const auto *cleanups = cast<ExprWithCleanups>(E); 1323 enterFullExpression(cleanups); 1324 RunCleanupsScope Scope(*this); 1325 LValue LV = EmitLValue(cleanups->getSubExpr()); 1326 if (LV.isSimple()) { 1327 // Defend against branches out of gnu statement expressions surrounded by 1328 // cleanups. 1329 llvm::Value *V = LV.getPointer(*this); 1330 Scope.ForceCleanup({&V}); 1331 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1332 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1333 } 1334 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1335 // bitfield lvalue or some other non-simple lvalue? 1336 return LV; 1337 } 1338 1339 case Expr::CXXDefaultArgExprClass: { 1340 auto *DAE = cast<CXXDefaultArgExpr>(E); 1341 CXXDefaultArgExprScope Scope(*this, DAE); 1342 return EmitLValue(DAE->getExpr()); 1343 } 1344 case Expr::CXXDefaultInitExprClass: { 1345 auto *DIE = cast<CXXDefaultInitExpr>(E); 1346 CXXDefaultInitExprScope Scope(*this, DIE); 1347 return EmitLValue(DIE->getExpr()); 1348 } 1349 case Expr::CXXTypeidExprClass: 1350 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1351 1352 case Expr::ObjCMessageExprClass: 1353 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1354 case Expr::ObjCIvarRefExprClass: 1355 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1356 case Expr::StmtExprClass: 1357 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1358 case Expr::UnaryOperatorClass: 1359 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1360 case Expr::ArraySubscriptExprClass: 1361 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1362 case Expr::OMPArraySectionExprClass: 1363 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1364 case Expr::ExtVectorElementExprClass: 1365 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1366 case Expr::MemberExprClass: 1367 return EmitMemberExpr(cast<MemberExpr>(E)); 1368 case Expr::CompoundLiteralExprClass: 1369 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1370 case Expr::ConditionalOperatorClass: 1371 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1372 case Expr::BinaryConditionalOperatorClass: 1373 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1374 case Expr::ChooseExprClass: 1375 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1376 case Expr::OpaqueValueExprClass: 1377 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1378 case Expr::SubstNonTypeTemplateParmExprClass: 1379 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1380 case Expr::ImplicitCastExprClass: 1381 case Expr::CStyleCastExprClass: 1382 case Expr::CXXFunctionalCastExprClass: 1383 case Expr::CXXStaticCastExprClass: 1384 case Expr::CXXDynamicCastExprClass: 1385 case Expr::CXXReinterpretCastExprClass: 1386 case Expr::CXXConstCastExprClass: 1387 case Expr::ObjCBridgedCastExprClass: 1388 return EmitCastLValue(cast<CastExpr>(E)); 1389 1390 case Expr::MaterializeTemporaryExprClass: 1391 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1392 1393 case Expr::CoawaitExprClass: 1394 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1395 case Expr::CoyieldExprClass: 1396 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1397 } 1398 } 1399 1400 /// Given an object of the given canonical type, can we safely copy a 1401 /// value out of it based on its initializer? 1402 static bool isConstantEmittableObjectType(QualType type) { 1403 assert(type.isCanonical()); 1404 assert(!type->isReferenceType()); 1405 1406 // Must be const-qualified but non-volatile. 1407 Qualifiers qs = type.getLocalQualifiers(); 1408 if (!qs.hasConst() || qs.hasVolatile()) return false; 1409 1410 // Otherwise, all object types satisfy this except C++ classes with 1411 // mutable subobjects or non-trivial copy/destroy behavior. 1412 if (const auto *RT = dyn_cast<RecordType>(type)) 1413 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1414 if (RD->hasMutableFields() || !RD->isTrivial()) 1415 return false; 1416 1417 return true; 1418 } 1419 1420 /// Can we constant-emit a load of a reference to a variable of the 1421 /// given type? This is different from predicates like 1422 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1423 /// in situations that don't necessarily satisfy the language's rules 1424 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1425 /// to do this with const float variables even if those variables 1426 /// aren't marked 'constexpr'. 1427 enum ConstantEmissionKind { 1428 CEK_None, 1429 CEK_AsReferenceOnly, 1430 CEK_AsValueOrReference, 1431 CEK_AsValueOnly 1432 }; 1433 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1434 type = type.getCanonicalType(); 1435 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1436 if (isConstantEmittableObjectType(ref->getPointeeType())) 1437 return CEK_AsValueOrReference; 1438 return CEK_AsReferenceOnly; 1439 } 1440 if (isConstantEmittableObjectType(type)) 1441 return CEK_AsValueOnly; 1442 return CEK_None; 1443 } 1444 1445 /// Try to emit a reference to the given value without producing it as 1446 /// an l-value. This is just an optimization, but it avoids us needing 1447 /// to emit global copies of variables if they're named without triggering 1448 /// a formal use in a context where we can't emit a direct reference to them, 1449 /// for instance if a block or lambda or a member of a local class uses a 1450 /// const int variable or constexpr variable from an enclosing function. 1451 CodeGenFunction::ConstantEmission 1452 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1453 ValueDecl *value = refExpr->getDecl(); 1454 1455 // The value needs to be an enum constant or a constant variable. 1456 ConstantEmissionKind CEK; 1457 if (isa<ParmVarDecl>(value)) { 1458 CEK = CEK_None; 1459 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1460 CEK = checkVarTypeForConstantEmission(var->getType()); 1461 } else if (isa<EnumConstantDecl>(value)) { 1462 CEK = CEK_AsValueOnly; 1463 } else { 1464 CEK = CEK_None; 1465 } 1466 if (CEK == CEK_None) return ConstantEmission(); 1467 1468 Expr::EvalResult result; 1469 bool resultIsReference; 1470 QualType resultType; 1471 1472 // It's best to evaluate all the way as an r-value if that's permitted. 1473 if (CEK != CEK_AsReferenceOnly && 1474 refExpr->EvaluateAsRValue(result, getContext())) { 1475 resultIsReference = false; 1476 resultType = refExpr->getType(); 1477 1478 // Otherwise, try to evaluate as an l-value. 1479 } else if (CEK != CEK_AsValueOnly && 1480 refExpr->EvaluateAsLValue(result, getContext())) { 1481 resultIsReference = true; 1482 resultType = value->getType(); 1483 1484 // Failure. 1485 } else { 1486 return ConstantEmission(); 1487 } 1488 1489 // In any case, if the initializer has side-effects, abandon ship. 1490 if (result.HasSideEffects) 1491 return ConstantEmission(); 1492 1493 // Emit as a constant. 1494 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1495 result.Val, resultType); 1496 1497 // Make sure we emit a debug reference to the global variable. 1498 // This should probably fire even for 1499 if (isa<VarDecl>(value)) { 1500 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1501 EmitDeclRefExprDbgValue(refExpr, result.Val); 1502 } else { 1503 assert(isa<EnumConstantDecl>(value)); 1504 EmitDeclRefExprDbgValue(refExpr, result.Val); 1505 } 1506 1507 // If we emitted a reference constant, we need to dereference that. 1508 if (resultIsReference) 1509 return ConstantEmission::forReference(C); 1510 1511 return ConstantEmission::forValue(C); 1512 } 1513 1514 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1515 const MemberExpr *ME) { 1516 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1517 // Try to emit static variable member expressions as DREs. 1518 return DeclRefExpr::Create( 1519 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1520 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1521 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1522 } 1523 return nullptr; 1524 } 1525 1526 CodeGenFunction::ConstantEmission 1527 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1528 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1529 return tryEmitAsConstant(DRE); 1530 return ConstantEmission(); 1531 } 1532 1533 llvm::Value *CodeGenFunction::emitScalarConstant( 1534 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1535 assert(Constant && "not a constant"); 1536 if (Constant.isReference()) 1537 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1538 E->getExprLoc()) 1539 .getScalarVal(); 1540 return Constant.getValue(); 1541 } 1542 1543 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1544 SourceLocation Loc) { 1545 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1546 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1547 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1548 } 1549 1550 static bool hasBooleanRepresentation(QualType Ty) { 1551 if (Ty->isBooleanType()) 1552 return true; 1553 1554 if (const EnumType *ET = Ty->getAs<EnumType>()) 1555 return ET->getDecl()->getIntegerType()->isBooleanType(); 1556 1557 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1558 return hasBooleanRepresentation(AT->getValueType()); 1559 1560 return false; 1561 } 1562 1563 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1564 llvm::APInt &Min, llvm::APInt &End, 1565 bool StrictEnums, bool IsBool) { 1566 const EnumType *ET = Ty->getAs<EnumType>(); 1567 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1568 ET && !ET->getDecl()->isFixed(); 1569 if (!IsBool && !IsRegularCPlusPlusEnum) 1570 return false; 1571 1572 if (IsBool) { 1573 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1574 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1575 } else { 1576 const EnumDecl *ED = ET->getDecl(); 1577 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1578 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1579 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1580 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1581 1582 if (NumNegativeBits) { 1583 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1584 assert(NumBits <= Bitwidth); 1585 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1586 Min = -End; 1587 } else { 1588 assert(NumPositiveBits <= Bitwidth); 1589 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1590 Min = llvm::APInt(Bitwidth, 0); 1591 } 1592 } 1593 return true; 1594 } 1595 1596 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1597 llvm::APInt Min, End; 1598 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1599 hasBooleanRepresentation(Ty))) 1600 return nullptr; 1601 1602 llvm::MDBuilder MDHelper(getLLVMContext()); 1603 return MDHelper.createRange(Min, End); 1604 } 1605 1606 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1607 SourceLocation Loc) { 1608 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1609 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1610 if (!HasBoolCheck && !HasEnumCheck) 1611 return false; 1612 1613 bool IsBool = hasBooleanRepresentation(Ty) || 1614 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1615 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1616 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1617 if (!NeedsBoolCheck && !NeedsEnumCheck) 1618 return false; 1619 1620 // Single-bit booleans don't need to be checked. Special-case this to avoid 1621 // a bit width mismatch when handling bitfield values. This is handled by 1622 // EmitFromMemory for the non-bitfield case. 1623 if (IsBool && 1624 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1625 return false; 1626 1627 llvm::APInt Min, End; 1628 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1629 return true; 1630 1631 auto &Ctx = getLLVMContext(); 1632 SanitizerScope SanScope(this); 1633 llvm::Value *Check; 1634 --End; 1635 if (!Min) { 1636 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1637 } else { 1638 llvm::Value *Upper = 1639 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1640 llvm::Value *Lower = 1641 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1642 Check = Builder.CreateAnd(Upper, Lower); 1643 } 1644 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1645 EmitCheckTypeDescriptor(Ty)}; 1646 SanitizerMask Kind = 1647 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1648 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1649 StaticArgs, EmitCheckValue(Value)); 1650 return true; 1651 } 1652 1653 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1654 QualType Ty, 1655 SourceLocation Loc, 1656 LValueBaseInfo BaseInfo, 1657 TBAAAccessInfo TBAAInfo, 1658 bool isNontemporal) { 1659 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1660 // For better performance, handle vector loads differently. 1661 if (Ty->isVectorType()) { 1662 const llvm::Type *EltTy = Addr.getElementType(); 1663 1664 const auto *VTy = cast<llvm::VectorType>(EltTy); 1665 1666 // Handle vectors of size 3 like size 4 for better performance. 1667 if (VTy->getNumElements() == 3) { 1668 1669 // Bitcast to vec4 type. 1670 llvm::VectorType *vec4Ty = 1671 llvm::VectorType::get(VTy->getElementType(), 4); 1672 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1673 // Now load value. 1674 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1675 1676 // Shuffle vector to get vec3. 1677 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1678 ArrayRef<int>{0, 1, 2}, "extractVec"); 1679 return EmitFromMemory(V, Ty); 1680 } 1681 } 1682 } 1683 1684 // Atomic operations have to be done on integral types. 1685 LValue AtomicLValue = 1686 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1687 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1688 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1689 } 1690 1691 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1692 if (isNontemporal) { 1693 llvm::MDNode *Node = llvm::MDNode::get( 1694 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1695 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1696 } 1697 1698 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1699 1700 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1701 // In order to prevent the optimizer from throwing away the check, don't 1702 // attach range metadata to the load. 1703 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1704 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1705 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1706 1707 return EmitFromMemory(Load, Ty); 1708 } 1709 1710 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1711 // Bool has a different representation in memory than in registers. 1712 if (hasBooleanRepresentation(Ty)) { 1713 // This should really always be an i1, but sometimes it's already 1714 // an i8, and it's awkward to track those cases down. 1715 if (Value->getType()->isIntegerTy(1)) 1716 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1717 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1718 "wrong value rep of bool"); 1719 } 1720 1721 return Value; 1722 } 1723 1724 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1725 // Bool has a different representation in memory than in registers. 1726 if (hasBooleanRepresentation(Ty)) { 1727 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1728 "wrong value rep of bool"); 1729 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1730 } 1731 1732 return Value; 1733 } 1734 1735 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1736 bool Volatile, QualType Ty, 1737 LValueBaseInfo BaseInfo, 1738 TBAAAccessInfo TBAAInfo, 1739 bool isInit, bool isNontemporal) { 1740 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1741 // Handle vectors differently to get better performance. 1742 if (Ty->isVectorType()) { 1743 llvm::Type *SrcTy = Value->getType(); 1744 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1745 // Handle vec3 special. 1746 if (VecTy && VecTy->getNumElements() == 3) { 1747 // Our source is a vec3, do a shuffle vector to make it a vec4. 1748 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1749 Builder.getInt32(2), 1750 llvm::UndefValue::get(Builder.getInt32Ty())}; 1751 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1752 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1753 MaskV, "extractVec"); 1754 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1755 } 1756 if (Addr.getElementType() != SrcTy) { 1757 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1758 } 1759 } 1760 } 1761 1762 Value = EmitToMemory(Value, Ty); 1763 1764 LValue AtomicLValue = 1765 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1766 if (Ty->isAtomicType() || 1767 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1768 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1769 return; 1770 } 1771 1772 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1773 if (isNontemporal) { 1774 llvm::MDNode *Node = 1775 llvm::MDNode::get(Store->getContext(), 1776 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1777 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1778 } 1779 1780 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1781 } 1782 1783 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1784 bool isInit) { 1785 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1786 lvalue.getType(), lvalue.getBaseInfo(), 1787 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1788 } 1789 1790 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1791 /// method emits the address of the lvalue, then loads the result as an rvalue, 1792 /// returning the rvalue. 1793 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1794 if (LV.isObjCWeak()) { 1795 // load of a __weak object. 1796 Address AddrWeakObj = LV.getAddress(*this); 1797 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1798 AddrWeakObj)); 1799 } 1800 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1801 // In MRC mode, we do a load+autorelease. 1802 if (!getLangOpts().ObjCAutoRefCount) { 1803 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1804 } 1805 1806 // In ARC mode, we load retained and then consume the value. 1807 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1808 Object = EmitObjCConsumeObject(LV.getType(), Object); 1809 return RValue::get(Object); 1810 } 1811 1812 if (LV.isSimple()) { 1813 assert(!LV.getType()->isFunctionType()); 1814 1815 // Everything needs a load. 1816 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1817 } 1818 1819 if (LV.isVectorElt()) { 1820 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1821 LV.isVolatileQualified()); 1822 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1823 "vecext")); 1824 } 1825 1826 // If this is a reference to a subset of the elements of a vector, either 1827 // shuffle the input or extract/insert them as appropriate. 1828 if (LV.isExtVectorElt()) 1829 return EmitLoadOfExtVectorElementLValue(LV); 1830 1831 // Global Register variables always invoke intrinsics 1832 if (LV.isGlobalReg()) 1833 return EmitLoadOfGlobalRegLValue(LV); 1834 1835 assert(LV.isBitField() && "Unknown LValue type!"); 1836 return EmitLoadOfBitfieldLValue(LV, Loc); 1837 } 1838 1839 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1840 SourceLocation Loc) { 1841 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1842 1843 // Get the output type. 1844 llvm::Type *ResLTy = ConvertType(LV.getType()); 1845 1846 Address Ptr = LV.getBitFieldAddress(); 1847 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1848 1849 if (Info.IsSigned) { 1850 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1851 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1852 if (HighBits) 1853 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1854 if (Info.Offset + HighBits) 1855 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1856 } else { 1857 if (Info.Offset) 1858 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1859 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1860 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1861 Info.Size), 1862 "bf.clear"); 1863 } 1864 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1865 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1866 return RValue::get(Val); 1867 } 1868 1869 // If this is a reference to a subset of the elements of a vector, create an 1870 // appropriate shufflevector. 1871 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1872 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1873 LV.isVolatileQualified()); 1874 1875 const llvm::Constant *Elts = LV.getExtVectorElts(); 1876 1877 // If the result of the expression is a non-vector type, we must be extracting 1878 // a single element. Just codegen as an extractelement. 1879 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1880 if (!ExprVT) { 1881 unsigned InIdx = getAccessedFieldNo(0, Elts); 1882 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1883 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1884 } 1885 1886 // Always use shuffle vector to try to retain the original program structure 1887 unsigned NumResultElts = ExprVT->getNumElements(); 1888 1889 SmallVector<llvm::Constant*, 4> Mask; 1890 for (unsigned i = 0; i != NumResultElts; ++i) 1891 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1892 1893 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1894 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1895 MaskV); 1896 return RValue::get(Vec); 1897 } 1898 1899 /// Generates lvalue for partial ext_vector access. 1900 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1901 Address VectorAddress = LV.getExtVectorAddress(); 1902 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1903 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1904 1905 Address CastToPointerElement = 1906 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1907 "conv.ptr.element"); 1908 1909 const llvm::Constant *Elts = LV.getExtVectorElts(); 1910 unsigned ix = getAccessedFieldNo(0, Elts); 1911 1912 Address VectorBasePtrPlusIx = 1913 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1914 "vector.elt"); 1915 1916 return VectorBasePtrPlusIx; 1917 } 1918 1919 /// Load of global gamed gegisters are always calls to intrinsics. 1920 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1921 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1922 "Bad type for register variable"); 1923 llvm::MDNode *RegName = cast<llvm::MDNode>( 1924 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1925 1926 // We accept integer and pointer types only 1927 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1928 llvm::Type *Ty = OrigTy; 1929 if (OrigTy->isPointerTy()) 1930 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1931 llvm::Type *Types[] = { Ty }; 1932 1933 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1934 llvm::Value *Call = Builder.CreateCall( 1935 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1936 if (OrigTy->isPointerTy()) 1937 Call = Builder.CreateIntToPtr(Call, OrigTy); 1938 return RValue::get(Call); 1939 } 1940 1941 1942 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1943 /// lvalue, where both are guaranteed to the have the same type, and that type 1944 /// is 'Ty'. 1945 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1946 bool isInit) { 1947 if (!Dst.isSimple()) { 1948 if (Dst.isVectorElt()) { 1949 // Read/modify/write the vector, inserting the new element. 1950 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1951 Dst.isVolatileQualified()); 1952 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1953 Dst.getVectorIdx(), "vecins"); 1954 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1955 Dst.isVolatileQualified()); 1956 return; 1957 } 1958 1959 // If this is an update of extended vector elements, insert them as 1960 // appropriate. 1961 if (Dst.isExtVectorElt()) 1962 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1963 1964 if (Dst.isGlobalReg()) 1965 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1966 1967 assert(Dst.isBitField() && "Unknown LValue type"); 1968 return EmitStoreThroughBitfieldLValue(Src, Dst); 1969 } 1970 1971 // There's special magic for assigning into an ARC-qualified l-value. 1972 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1973 switch (Lifetime) { 1974 case Qualifiers::OCL_None: 1975 llvm_unreachable("present but none"); 1976 1977 case Qualifiers::OCL_ExplicitNone: 1978 // nothing special 1979 break; 1980 1981 case Qualifiers::OCL_Strong: 1982 if (isInit) { 1983 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1984 break; 1985 } 1986 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1987 return; 1988 1989 case Qualifiers::OCL_Weak: 1990 if (isInit) 1991 // Initialize and then skip the primitive store. 1992 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1993 else 1994 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1995 /*ignore*/ true); 1996 return; 1997 1998 case Qualifiers::OCL_Autoreleasing: 1999 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2000 Src.getScalarVal())); 2001 // fall into the normal path 2002 break; 2003 } 2004 } 2005 2006 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2007 // load of a __weak object. 2008 Address LvalueDst = Dst.getAddress(*this); 2009 llvm::Value *src = Src.getScalarVal(); 2010 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2011 return; 2012 } 2013 2014 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2015 // load of a __strong object. 2016 Address LvalueDst = Dst.getAddress(*this); 2017 llvm::Value *src = Src.getScalarVal(); 2018 if (Dst.isObjCIvar()) { 2019 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2020 llvm::Type *ResultType = IntPtrTy; 2021 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2022 llvm::Value *RHS = dst.getPointer(); 2023 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2024 llvm::Value *LHS = 2025 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2026 "sub.ptr.lhs.cast"); 2027 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2028 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2029 BytesBetween); 2030 } else if (Dst.isGlobalObjCRef()) { 2031 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2032 Dst.isThreadLocalRef()); 2033 } 2034 else 2035 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2036 return; 2037 } 2038 2039 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2040 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2041 } 2042 2043 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2044 llvm::Value **Result) { 2045 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2046 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2047 Address Ptr = Dst.getBitFieldAddress(); 2048 2049 // Get the source value, truncated to the width of the bit-field. 2050 llvm::Value *SrcVal = Src.getScalarVal(); 2051 2052 // Cast the source to the storage type and shift it into place. 2053 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2054 /*isSigned=*/false); 2055 llvm::Value *MaskedVal = SrcVal; 2056 2057 // See if there are other bits in the bitfield's storage we'll need to load 2058 // and mask together with source before storing. 2059 if (Info.StorageSize != Info.Size) { 2060 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2061 llvm::Value *Val = 2062 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2063 2064 // Mask the source value as needed. 2065 if (!hasBooleanRepresentation(Dst.getType())) 2066 SrcVal = Builder.CreateAnd(SrcVal, 2067 llvm::APInt::getLowBitsSet(Info.StorageSize, 2068 Info.Size), 2069 "bf.value"); 2070 MaskedVal = SrcVal; 2071 if (Info.Offset) 2072 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2073 2074 // Mask out the original value. 2075 Val = Builder.CreateAnd(Val, 2076 ~llvm::APInt::getBitsSet(Info.StorageSize, 2077 Info.Offset, 2078 Info.Offset + Info.Size), 2079 "bf.clear"); 2080 2081 // Or together the unchanged values and the source value. 2082 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2083 } else { 2084 assert(Info.Offset == 0); 2085 // According to the AACPS: 2086 // When a volatile bit-field is written, and its container does not overlap 2087 // with any non-bit-field member, its container must be read exactly once and 2088 // written exactly once using the access width appropriate to the type of the 2089 // container. The two accesses are not atomic. 2090 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2091 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2092 Builder.CreateLoad(Ptr, true, "bf.load"); 2093 } 2094 2095 // Write the new value back out. 2096 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2097 2098 // Return the new value of the bit-field, if requested. 2099 if (Result) { 2100 llvm::Value *ResultVal = MaskedVal; 2101 2102 // Sign extend the value if needed. 2103 if (Info.IsSigned) { 2104 assert(Info.Size <= Info.StorageSize); 2105 unsigned HighBits = Info.StorageSize - Info.Size; 2106 if (HighBits) { 2107 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2108 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2109 } 2110 } 2111 2112 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2113 "bf.result.cast"); 2114 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2115 } 2116 } 2117 2118 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2119 LValue Dst) { 2120 // This access turns into a read/modify/write of the vector. Load the input 2121 // value now. 2122 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2123 Dst.isVolatileQualified()); 2124 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2125 2126 llvm::Value *SrcVal = Src.getScalarVal(); 2127 2128 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2129 unsigned NumSrcElts = VTy->getNumElements(); 2130 unsigned NumDstElts = 2131 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 2132 if (NumDstElts == NumSrcElts) { 2133 // Use shuffle vector is the src and destination are the same number of 2134 // elements and restore the vector mask since it is on the side it will be 2135 // stored. 2136 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2137 for (unsigned i = 0; i != NumSrcElts; ++i) 2138 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2139 2140 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2141 Vec = Builder.CreateShuffleVector(SrcVal, 2142 llvm::UndefValue::get(Vec->getType()), 2143 MaskV); 2144 } else if (NumDstElts > NumSrcElts) { 2145 // Extended the source vector to the same length and then shuffle it 2146 // into the destination. 2147 // FIXME: since we're shuffling with undef, can we just use the indices 2148 // into that? This could be simpler. 2149 SmallVector<llvm::Constant*, 4> ExtMask; 2150 for (unsigned i = 0; i != NumSrcElts; ++i) 2151 ExtMask.push_back(Builder.getInt32(i)); 2152 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2153 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2154 llvm::Value *ExtSrcVal = 2155 Builder.CreateShuffleVector(SrcVal, 2156 llvm::UndefValue::get(SrcVal->getType()), 2157 ExtMaskV); 2158 // build identity 2159 SmallVector<llvm::Constant*, 4> Mask; 2160 for (unsigned i = 0; i != NumDstElts; ++i) 2161 Mask.push_back(Builder.getInt32(i)); 2162 2163 // When the vector size is odd and .odd or .hi is used, the last element 2164 // of the Elts constant array will be one past the size of the vector. 2165 // Ignore the last element here, if it is greater than the mask size. 2166 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2167 NumSrcElts--; 2168 2169 // modify when what gets shuffled in 2170 for (unsigned i = 0; i != NumSrcElts; ++i) 2171 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2172 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2173 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2174 } else { 2175 // We should never shorten the vector 2176 llvm_unreachable("unexpected shorten vector length"); 2177 } 2178 } else { 2179 // If the Src is a scalar (not a vector) it must be updating one element. 2180 unsigned InIdx = getAccessedFieldNo(0, Elts); 2181 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2182 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2183 } 2184 2185 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2186 Dst.isVolatileQualified()); 2187 } 2188 2189 /// Store of global named registers are always calls to intrinsics. 2190 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2191 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2192 "Bad type for register variable"); 2193 llvm::MDNode *RegName = cast<llvm::MDNode>( 2194 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2195 assert(RegName && "Register LValue is not metadata"); 2196 2197 // We accept integer and pointer types only 2198 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2199 llvm::Type *Ty = OrigTy; 2200 if (OrigTy->isPointerTy()) 2201 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2202 llvm::Type *Types[] = { Ty }; 2203 2204 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2205 llvm::Value *Value = Src.getScalarVal(); 2206 if (OrigTy->isPointerTy()) 2207 Value = Builder.CreatePtrToInt(Value, Ty); 2208 Builder.CreateCall( 2209 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2210 } 2211 2212 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2213 // generating write-barries API. It is currently a global, ivar, 2214 // or neither. 2215 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2216 LValue &LV, 2217 bool IsMemberAccess=false) { 2218 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2219 return; 2220 2221 if (isa<ObjCIvarRefExpr>(E)) { 2222 QualType ExpTy = E->getType(); 2223 if (IsMemberAccess && ExpTy->isPointerType()) { 2224 // If ivar is a structure pointer, assigning to field of 2225 // this struct follows gcc's behavior and makes it a non-ivar 2226 // writer-barrier conservatively. 2227 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2228 if (ExpTy->isRecordType()) { 2229 LV.setObjCIvar(false); 2230 return; 2231 } 2232 } 2233 LV.setObjCIvar(true); 2234 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2235 LV.setBaseIvarExp(Exp->getBase()); 2236 LV.setObjCArray(E->getType()->isArrayType()); 2237 return; 2238 } 2239 2240 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2241 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2242 if (VD->hasGlobalStorage()) { 2243 LV.setGlobalObjCRef(true); 2244 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2245 } 2246 } 2247 LV.setObjCArray(E->getType()->isArrayType()); 2248 return; 2249 } 2250 2251 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2252 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2253 return; 2254 } 2255 2256 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2257 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2258 if (LV.isObjCIvar()) { 2259 // If cast is to a structure pointer, follow gcc's behavior and make it 2260 // a non-ivar write-barrier. 2261 QualType ExpTy = E->getType(); 2262 if (ExpTy->isPointerType()) 2263 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2264 if (ExpTy->isRecordType()) 2265 LV.setObjCIvar(false); 2266 } 2267 return; 2268 } 2269 2270 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2271 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2272 return; 2273 } 2274 2275 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2276 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2277 return; 2278 } 2279 2280 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2281 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2282 return; 2283 } 2284 2285 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2286 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2287 return; 2288 } 2289 2290 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2291 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2292 if (LV.isObjCIvar() && !LV.isObjCArray()) 2293 // Using array syntax to assigning to what an ivar points to is not 2294 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2295 LV.setObjCIvar(false); 2296 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2297 // Using array syntax to assigning to what global points to is not 2298 // same as assigning to the global itself. {id *G;} G[i] = 0; 2299 LV.setGlobalObjCRef(false); 2300 return; 2301 } 2302 2303 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2304 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2305 // We don't know if member is an 'ivar', but this flag is looked at 2306 // only in the context of LV.isObjCIvar(). 2307 LV.setObjCArray(E->getType()->isArrayType()); 2308 return; 2309 } 2310 } 2311 2312 static llvm::Value * 2313 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2314 llvm::Value *V, llvm::Type *IRType, 2315 StringRef Name = StringRef()) { 2316 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2317 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2318 } 2319 2320 static LValue EmitThreadPrivateVarDeclLValue( 2321 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2322 llvm::Type *RealVarTy, SourceLocation Loc) { 2323 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2324 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2325 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2326 } 2327 2328 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2329 const VarDecl *VD, QualType T) { 2330 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2331 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2332 // Return an invalid address if variable is MT_To and unified 2333 // memory is not enabled. For all other cases: MT_Link and 2334 // MT_To with unified memory, return a valid address. 2335 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2336 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2337 return Address::invalid(); 2338 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2339 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2340 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2341 "Expected link clause OR to clause with unified memory enabled."); 2342 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2343 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2344 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2345 } 2346 2347 Address 2348 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2349 LValueBaseInfo *PointeeBaseInfo, 2350 TBAAAccessInfo *PointeeTBAAInfo) { 2351 llvm::LoadInst *Load = 2352 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2353 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2354 2355 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2356 PointeeBaseInfo, PointeeTBAAInfo, 2357 /* forPointeeType= */ true); 2358 return Address(Load, Align); 2359 } 2360 2361 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2362 LValueBaseInfo PointeeBaseInfo; 2363 TBAAAccessInfo PointeeTBAAInfo; 2364 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2365 &PointeeTBAAInfo); 2366 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2367 PointeeBaseInfo, PointeeTBAAInfo); 2368 } 2369 2370 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2371 const PointerType *PtrTy, 2372 LValueBaseInfo *BaseInfo, 2373 TBAAAccessInfo *TBAAInfo) { 2374 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2375 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2376 BaseInfo, TBAAInfo, 2377 /*forPointeeType=*/true)); 2378 } 2379 2380 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2381 const PointerType *PtrTy) { 2382 LValueBaseInfo BaseInfo; 2383 TBAAAccessInfo TBAAInfo; 2384 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2385 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2386 } 2387 2388 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2389 const Expr *E, const VarDecl *VD) { 2390 QualType T = E->getType(); 2391 2392 // If it's thread_local, emit a call to its wrapper function instead. 2393 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2394 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2395 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2396 // Check if the variable is marked as declare target with link clause in 2397 // device codegen. 2398 if (CGF.getLangOpts().OpenMPIsDevice) { 2399 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2400 if (Addr.isValid()) 2401 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2402 } 2403 2404 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2405 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2406 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2407 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2408 Address Addr(V, Alignment); 2409 // Emit reference to the private copy of the variable if it is an OpenMP 2410 // threadprivate variable. 2411 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2412 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2413 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2414 E->getExprLoc()); 2415 } 2416 LValue LV = VD->getType()->isReferenceType() ? 2417 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2418 AlignmentSource::Decl) : 2419 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2420 setObjCGCLValueClass(CGF.getContext(), E, LV); 2421 return LV; 2422 } 2423 2424 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2425 GlobalDecl GD) { 2426 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2427 if (FD->hasAttr<WeakRefAttr>()) { 2428 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2429 return aliasee.getPointer(); 2430 } 2431 2432 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2433 if (!FD->hasPrototype()) { 2434 if (const FunctionProtoType *Proto = 2435 FD->getType()->getAs<FunctionProtoType>()) { 2436 // Ugly case: for a K&R-style definition, the type of the definition 2437 // isn't the same as the type of a use. Correct for this with a 2438 // bitcast. 2439 QualType NoProtoType = 2440 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2441 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2442 V = llvm::ConstantExpr::getBitCast(V, 2443 CGM.getTypes().ConvertType(NoProtoType)); 2444 } 2445 } 2446 return V; 2447 } 2448 2449 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2450 GlobalDecl GD) { 2451 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2452 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2453 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2454 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2455 AlignmentSource::Decl); 2456 } 2457 2458 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2459 llvm::Value *ThisValue) { 2460 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2461 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2462 return CGF.EmitLValueForField(LV, FD); 2463 } 2464 2465 /// Named Registers are named metadata pointing to the register name 2466 /// which will be read from/written to as an argument to the intrinsic 2467 /// @llvm.read/write_register. 2468 /// So far, only the name is being passed down, but other options such as 2469 /// register type, allocation type or even optimization options could be 2470 /// passed down via the metadata node. 2471 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2472 SmallString<64> Name("llvm.named.register."); 2473 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2474 assert(Asm->getLabel().size() < 64-Name.size() && 2475 "Register name too big"); 2476 Name.append(Asm->getLabel()); 2477 llvm::NamedMDNode *M = 2478 CGM.getModule().getOrInsertNamedMetadata(Name); 2479 if (M->getNumOperands() == 0) { 2480 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2481 Asm->getLabel()); 2482 llvm::Metadata *Ops[] = {Str}; 2483 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2484 } 2485 2486 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2487 2488 llvm::Value *Ptr = 2489 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2490 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2491 } 2492 2493 /// Determine whether we can emit a reference to \p VD from the current 2494 /// context, despite not necessarily having seen an odr-use of the variable in 2495 /// this context. 2496 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2497 const DeclRefExpr *E, 2498 const VarDecl *VD, 2499 bool IsConstant) { 2500 // For a variable declared in an enclosing scope, do not emit a spurious 2501 // reference even if we have a capture, as that will emit an unwarranted 2502 // reference to our capture state, and will likely generate worse code than 2503 // emitting a local copy. 2504 if (E->refersToEnclosingVariableOrCapture()) 2505 return false; 2506 2507 // For a local declaration declared in this function, we can always reference 2508 // it even if we don't have an odr-use. 2509 if (VD->hasLocalStorage()) { 2510 return VD->getDeclContext() == 2511 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2512 } 2513 2514 // For a global declaration, we can emit a reference to it if we know 2515 // for sure that we are able to emit a definition of it. 2516 VD = VD->getDefinition(CGF.getContext()); 2517 if (!VD) 2518 return false; 2519 2520 // Don't emit a spurious reference if it might be to a variable that only 2521 // exists on a different device / target. 2522 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2523 // cross-target reference. 2524 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2525 CGF.getLangOpts().OpenCL) { 2526 return false; 2527 } 2528 2529 // We can emit a spurious reference only if the linkage implies that we'll 2530 // be emitting a non-interposable symbol that will be retained until link 2531 // time. 2532 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2533 case llvm::GlobalValue::ExternalLinkage: 2534 case llvm::GlobalValue::LinkOnceODRLinkage: 2535 case llvm::GlobalValue::WeakODRLinkage: 2536 case llvm::GlobalValue::InternalLinkage: 2537 case llvm::GlobalValue::PrivateLinkage: 2538 return true; 2539 default: 2540 return false; 2541 } 2542 } 2543 2544 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2545 const NamedDecl *ND = E->getDecl(); 2546 QualType T = E->getType(); 2547 2548 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2549 "should not emit an unevaluated operand"); 2550 2551 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2552 // Global Named registers access via intrinsics only 2553 if (VD->getStorageClass() == SC_Register && 2554 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2555 return EmitGlobalNamedRegister(VD, CGM); 2556 2557 // If this DeclRefExpr does not constitute an odr-use of the variable, 2558 // we're not permitted to emit a reference to it in general, and it might 2559 // not be captured if capture would be necessary for a use. Emit the 2560 // constant value directly instead. 2561 if (E->isNonOdrUse() == NOUR_Constant && 2562 (VD->getType()->isReferenceType() || 2563 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2564 VD->getAnyInitializer(VD); 2565 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2566 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2567 assert(Val && "failed to emit constant expression"); 2568 2569 Address Addr = Address::invalid(); 2570 if (!VD->getType()->isReferenceType()) { 2571 // Spill the constant value to a global. 2572 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2573 getContext().getDeclAlign(VD)); 2574 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2575 auto *PTy = llvm::PointerType::get( 2576 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2577 if (PTy != Addr.getType()) 2578 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2579 } else { 2580 // Should we be using the alignment of the constant pointer we emitted? 2581 CharUnits Alignment = 2582 getNaturalTypeAlignment(E->getType(), 2583 /* BaseInfo= */ nullptr, 2584 /* TBAAInfo= */ nullptr, 2585 /* forPointeeType= */ true); 2586 Addr = Address(Val, Alignment); 2587 } 2588 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2589 } 2590 2591 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2592 2593 // Check for captured variables. 2594 if (E->refersToEnclosingVariableOrCapture()) { 2595 VD = VD->getCanonicalDecl(); 2596 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2597 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2598 if (CapturedStmtInfo) { 2599 auto I = LocalDeclMap.find(VD); 2600 if (I != LocalDeclMap.end()) { 2601 LValue CapLVal; 2602 if (VD->getType()->isReferenceType()) 2603 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2604 AlignmentSource::Decl); 2605 else 2606 CapLVal = MakeAddrLValue(I->second, T); 2607 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2608 // in simd context. 2609 if (getLangOpts().OpenMP && 2610 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2611 CapLVal.setNontemporal(/*Value=*/true); 2612 return CapLVal; 2613 } 2614 LValue CapLVal = 2615 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2616 CapturedStmtInfo->getContextValue()); 2617 CapLVal = MakeAddrLValue( 2618 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2619 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2620 CapLVal.getTBAAInfo()); 2621 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2622 // in simd context. 2623 if (getLangOpts().OpenMP && 2624 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2625 CapLVal.setNontemporal(/*Value=*/true); 2626 return CapLVal; 2627 } 2628 2629 assert(isa<BlockDecl>(CurCodeDecl)); 2630 Address addr = GetAddrOfBlockDecl(VD); 2631 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2632 } 2633 } 2634 2635 // FIXME: We should be able to assert this for FunctionDecls as well! 2636 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2637 // those with a valid source location. 2638 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2639 !E->getLocation().isValid()) && 2640 "Should not use decl without marking it used!"); 2641 2642 if (ND->hasAttr<WeakRefAttr>()) { 2643 const auto *VD = cast<ValueDecl>(ND); 2644 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2645 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2646 } 2647 2648 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2649 // Check if this is a global variable. 2650 if (VD->hasLinkage() || VD->isStaticDataMember()) 2651 return EmitGlobalVarDeclLValue(*this, E, VD); 2652 2653 Address addr = Address::invalid(); 2654 2655 // The variable should generally be present in the local decl map. 2656 auto iter = LocalDeclMap.find(VD); 2657 if (iter != LocalDeclMap.end()) { 2658 addr = iter->second; 2659 2660 // Otherwise, it might be static local we haven't emitted yet for 2661 // some reason; most likely, because it's in an outer function. 2662 } else if (VD->isStaticLocal()) { 2663 addr = Address(CGM.getOrCreateStaticVarDecl( 2664 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2665 getContext().getDeclAlign(VD)); 2666 2667 // No other cases for now. 2668 } else { 2669 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2670 } 2671 2672 2673 // Check for OpenMP threadprivate variables. 2674 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2675 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2676 return EmitThreadPrivateVarDeclLValue( 2677 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2678 E->getExprLoc()); 2679 } 2680 2681 // Drill into block byref variables. 2682 bool isBlockByref = VD->isEscapingByref(); 2683 if (isBlockByref) { 2684 addr = emitBlockByrefAddress(addr, VD); 2685 } 2686 2687 // Drill into reference types. 2688 LValue LV = VD->getType()->isReferenceType() ? 2689 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2690 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2691 2692 bool isLocalStorage = VD->hasLocalStorage(); 2693 2694 bool NonGCable = isLocalStorage && 2695 !VD->getType()->isReferenceType() && 2696 !isBlockByref; 2697 if (NonGCable) { 2698 LV.getQuals().removeObjCGCAttr(); 2699 LV.setNonGC(true); 2700 } 2701 2702 bool isImpreciseLifetime = 2703 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2704 if (isImpreciseLifetime) 2705 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2706 setObjCGCLValueClass(getContext(), E, LV); 2707 return LV; 2708 } 2709 2710 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2711 return EmitFunctionDeclLValue(*this, E, FD); 2712 2713 // FIXME: While we're emitting a binding from an enclosing scope, all other 2714 // DeclRefExprs we see should be implicitly treated as if they also refer to 2715 // an enclosing scope. 2716 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2717 return EmitLValue(BD->getBinding()); 2718 2719 llvm_unreachable("Unhandled DeclRefExpr"); 2720 } 2721 2722 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2723 // __extension__ doesn't affect lvalue-ness. 2724 if (E->getOpcode() == UO_Extension) 2725 return EmitLValue(E->getSubExpr()); 2726 2727 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2728 switch (E->getOpcode()) { 2729 default: llvm_unreachable("Unknown unary operator lvalue!"); 2730 case UO_Deref: { 2731 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2732 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2733 2734 LValueBaseInfo BaseInfo; 2735 TBAAAccessInfo TBAAInfo; 2736 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2737 &TBAAInfo); 2738 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2739 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2740 2741 // We should not generate __weak write barrier on indirect reference 2742 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2743 // But, we continue to generate __strong write barrier on indirect write 2744 // into a pointer to object. 2745 if (getLangOpts().ObjC && 2746 getLangOpts().getGC() != LangOptions::NonGC && 2747 LV.isObjCWeak()) 2748 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2749 return LV; 2750 } 2751 case UO_Real: 2752 case UO_Imag: { 2753 LValue LV = EmitLValue(E->getSubExpr()); 2754 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2755 2756 // __real is valid on scalars. This is a faster way of testing that. 2757 // __imag can only produce an rvalue on scalars. 2758 if (E->getOpcode() == UO_Real && 2759 !LV.getAddress(*this).getElementType()->isStructTy()) { 2760 assert(E->getSubExpr()->getType()->isArithmeticType()); 2761 return LV; 2762 } 2763 2764 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2765 2766 Address Component = 2767 (E->getOpcode() == UO_Real 2768 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2769 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2770 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2771 CGM.getTBAAInfoForSubobject(LV, T)); 2772 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2773 return ElemLV; 2774 } 2775 case UO_PreInc: 2776 case UO_PreDec: { 2777 LValue LV = EmitLValue(E->getSubExpr()); 2778 bool isInc = E->getOpcode() == UO_PreInc; 2779 2780 if (E->getType()->isAnyComplexType()) 2781 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2782 else 2783 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2784 return LV; 2785 } 2786 } 2787 } 2788 2789 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2790 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2791 E->getType(), AlignmentSource::Decl); 2792 } 2793 2794 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2795 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2796 E->getType(), AlignmentSource::Decl); 2797 } 2798 2799 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2800 auto SL = E->getFunctionName(); 2801 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2802 StringRef FnName = CurFn->getName(); 2803 if (FnName.startswith("\01")) 2804 FnName = FnName.substr(1); 2805 StringRef NameItems[] = { 2806 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2807 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2808 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2809 std::string Name = std::string(SL->getString()); 2810 if (!Name.empty()) { 2811 unsigned Discriminator = 2812 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2813 if (Discriminator) 2814 Name += "_" + Twine(Discriminator + 1).str(); 2815 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2816 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2817 } else { 2818 auto C = 2819 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2820 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2821 } 2822 } 2823 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2824 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2825 } 2826 2827 /// Emit a type description suitable for use by a runtime sanitizer library. The 2828 /// format of a type descriptor is 2829 /// 2830 /// \code 2831 /// { i16 TypeKind, i16 TypeInfo } 2832 /// \endcode 2833 /// 2834 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2835 /// integer, 1 for a floating point value, and -1 for anything else. 2836 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2837 // Only emit each type's descriptor once. 2838 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2839 return C; 2840 2841 uint16_t TypeKind = -1; 2842 uint16_t TypeInfo = 0; 2843 2844 if (T->isIntegerType()) { 2845 TypeKind = 0; 2846 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2847 (T->isSignedIntegerType() ? 1 : 0); 2848 } else if (T->isFloatingType()) { 2849 TypeKind = 1; 2850 TypeInfo = getContext().getTypeSize(T); 2851 } 2852 2853 // Format the type name as if for a diagnostic, including quotes and 2854 // optionally an 'aka'. 2855 SmallString<32> Buffer; 2856 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2857 (intptr_t)T.getAsOpaquePtr(), 2858 StringRef(), StringRef(), None, Buffer, 2859 None); 2860 2861 llvm::Constant *Components[] = { 2862 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2863 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2864 }; 2865 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2866 2867 auto *GV = new llvm::GlobalVariable( 2868 CGM.getModule(), Descriptor->getType(), 2869 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2870 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2871 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2872 2873 // Remember the descriptor for this type. 2874 CGM.setTypeDescriptorInMap(T, GV); 2875 2876 return GV; 2877 } 2878 2879 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2880 llvm::Type *TargetTy = IntPtrTy; 2881 2882 if (V->getType() == TargetTy) 2883 return V; 2884 2885 // Floating-point types which fit into intptr_t are bitcast to integers 2886 // and then passed directly (after zero-extension, if necessary). 2887 if (V->getType()->isFloatingPointTy()) { 2888 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2889 if (Bits <= TargetTy->getIntegerBitWidth()) 2890 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2891 Bits)); 2892 } 2893 2894 // Integers which fit in intptr_t are zero-extended and passed directly. 2895 if (V->getType()->isIntegerTy() && 2896 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2897 return Builder.CreateZExt(V, TargetTy); 2898 2899 // Pointers are passed directly, everything else is passed by address. 2900 if (!V->getType()->isPointerTy()) { 2901 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2902 Builder.CreateStore(V, Ptr); 2903 V = Ptr.getPointer(); 2904 } 2905 return Builder.CreatePtrToInt(V, TargetTy); 2906 } 2907 2908 /// Emit a representation of a SourceLocation for passing to a handler 2909 /// in a sanitizer runtime library. The format for this data is: 2910 /// \code 2911 /// struct SourceLocation { 2912 /// const char *Filename; 2913 /// int32_t Line, Column; 2914 /// }; 2915 /// \endcode 2916 /// For an invalid SourceLocation, the Filename pointer is null. 2917 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2918 llvm::Constant *Filename; 2919 int Line, Column; 2920 2921 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2922 if (PLoc.isValid()) { 2923 StringRef FilenameString = PLoc.getFilename(); 2924 2925 int PathComponentsToStrip = 2926 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2927 if (PathComponentsToStrip < 0) { 2928 assert(PathComponentsToStrip != INT_MIN); 2929 int PathComponentsToKeep = -PathComponentsToStrip; 2930 auto I = llvm::sys::path::rbegin(FilenameString); 2931 auto E = llvm::sys::path::rend(FilenameString); 2932 while (I != E && --PathComponentsToKeep) 2933 ++I; 2934 2935 FilenameString = FilenameString.substr(I - E); 2936 } else if (PathComponentsToStrip > 0) { 2937 auto I = llvm::sys::path::begin(FilenameString); 2938 auto E = llvm::sys::path::end(FilenameString); 2939 while (I != E && PathComponentsToStrip--) 2940 ++I; 2941 2942 if (I != E) 2943 FilenameString = 2944 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2945 else 2946 FilenameString = llvm::sys::path::filename(FilenameString); 2947 } 2948 2949 auto FilenameGV = 2950 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 2951 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2952 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2953 Filename = FilenameGV.getPointer(); 2954 Line = PLoc.getLine(); 2955 Column = PLoc.getColumn(); 2956 } else { 2957 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2958 Line = Column = 0; 2959 } 2960 2961 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2962 Builder.getInt32(Column)}; 2963 2964 return llvm::ConstantStruct::getAnon(Data); 2965 } 2966 2967 namespace { 2968 /// Specify under what conditions this check can be recovered 2969 enum class CheckRecoverableKind { 2970 /// Always terminate program execution if this check fails. 2971 Unrecoverable, 2972 /// Check supports recovering, runtime has both fatal (noreturn) and 2973 /// non-fatal handlers for this check. 2974 Recoverable, 2975 /// Runtime conditionally aborts, always need to support recovery. 2976 AlwaysRecoverable 2977 }; 2978 } 2979 2980 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2981 assert(Kind.countPopulation() == 1); 2982 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2983 return CheckRecoverableKind::AlwaysRecoverable; 2984 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2985 return CheckRecoverableKind::Unrecoverable; 2986 else 2987 return CheckRecoverableKind::Recoverable; 2988 } 2989 2990 namespace { 2991 struct SanitizerHandlerInfo { 2992 char const *const Name; 2993 unsigned Version; 2994 }; 2995 } 2996 2997 const SanitizerHandlerInfo SanitizerHandlers[] = { 2998 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2999 LIST_SANITIZER_CHECKS 3000 #undef SANITIZER_CHECK 3001 }; 3002 3003 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3004 llvm::FunctionType *FnType, 3005 ArrayRef<llvm::Value *> FnArgs, 3006 SanitizerHandler CheckHandler, 3007 CheckRecoverableKind RecoverKind, bool IsFatal, 3008 llvm::BasicBlock *ContBB) { 3009 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3010 Optional<ApplyDebugLocation> DL; 3011 if (!CGF.Builder.getCurrentDebugLocation()) { 3012 // Ensure that the call has at least an artificial debug location. 3013 DL.emplace(CGF, SourceLocation()); 3014 } 3015 bool NeedsAbortSuffix = 3016 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3017 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3018 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3019 const StringRef CheckName = CheckInfo.Name; 3020 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3021 if (CheckInfo.Version && !MinimalRuntime) 3022 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3023 if (MinimalRuntime) 3024 FnName += "_minimal"; 3025 if (NeedsAbortSuffix) 3026 FnName += "_abort"; 3027 bool MayReturn = 3028 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3029 3030 llvm::AttrBuilder B; 3031 if (!MayReturn) { 3032 B.addAttribute(llvm::Attribute::NoReturn) 3033 .addAttribute(llvm::Attribute::NoUnwind); 3034 } 3035 B.addAttribute(llvm::Attribute::UWTable); 3036 3037 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3038 FnType, FnName, 3039 llvm::AttributeList::get(CGF.getLLVMContext(), 3040 llvm::AttributeList::FunctionIndex, B), 3041 /*Local=*/true); 3042 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3043 if (!MayReturn) { 3044 HandlerCall->setDoesNotReturn(); 3045 CGF.Builder.CreateUnreachable(); 3046 } else { 3047 CGF.Builder.CreateBr(ContBB); 3048 } 3049 } 3050 3051 void CodeGenFunction::EmitCheck( 3052 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3053 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3054 ArrayRef<llvm::Value *> DynamicArgs) { 3055 assert(IsSanitizerScope); 3056 assert(Checked.size() > 0); 3057 assert(CheckHandler >= 0 && 3058 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3059 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3060 3061 llvm::Value *FatalCond = nullptr; 3062 llvm::Value *RecoverableCond = nullptr; 3063 llvm::Value *TrapCond = nullptr; 3064 for (int i = 0, n = Checked.size(); i < n; ++i) { 3065 llvm::Value *Check = Checked[i].first; 3066 // -fsanitize-trap= overrides -fsanitize-recover=. 3067 llvm::Value *&Cond = 3068 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3069 ? TrapCond 3070 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3071 ? RecoverableCond 3072 : FatalCond; 3073 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3074 } 3075 3076 if (TrapCond) 3077 EmitTrapCheck(TrapCond); 3078 if (!FatalCond && !RecoverableCond) 3079 return; 3080 3081 llvm::Value *JointCond; 3082 if (FatalCond && RecoverableCond) 3083 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3084 else 3085 JointCond = FatalCond ? FatalCond : RecoverableCond; 3086 assert(JointCond); 3087 3088 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3089 assert(SanOpts.has(Checked[0].second)); 3090 #ifndef NDEBUG 3091 for (int i = 1, n = Checked.size(); i < n; ++i) { 3092 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3093 "All recoverable kinds in a single check must be same!"); 3094 assert(SanOpts.has(Checked[i].second)); 3095 } 3096 #endif 3097 3098 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3099 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3100 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3101 // Give hint that we very much don't expect to execute the handler 3102 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3103 llvm::MDBuilder MDHelper(getLLVMContext()); 3104 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3105 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3106 EmitBlock(Handlers); 3107 3108 // Handler functions take an i8* pointing to the (handler-specific) static 3109 // information block, followed by a sequence of intptr_t arguments 3110 // representing operand values. 3111 SmallVector<llvm::Value *, 4> Args; 3112 SmallVector<llvm::Type *, 4> ArgTypes; 3113 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3114 Args.reserve(DynamicArgs.size() + 1); 3115 ArgTypes.reserve(DynamicArgs.size() + 1); 3116 3117 // Emit handler arguments and create handler function type. 3118 if (!StaticArgs.empty()) { 3119 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3120 auto *InfoPtr = 3121 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3122 llvm::GlobalVariable::PrivateLinkage, Info); 3123 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3124 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3125 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3126 ArgTypes.push_back(Int8PtrTy); 3127 } 3128 3129 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3130 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3131 ArgTypes.push_back(IntPtrTy); 3132 } 3133 } 3134 3135 llvm::FunctionType *FnType = 3136 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3137 3138 if (!FatalCond || !RecoverableCond) { 3139 // Simple case: we need to generate a single handler call, either 3140 // fatal, or non-fatal. 3141 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3142 (FatalCond != nullptr), Cont); 3143 } else { 3144 // Emit two handler calls: first one for set of unrecoverable checks, 3145 // another one for recoverable. 3146 llvm::BasicBlock *NonFatalHandlerBB = 3147 createBasicBlock("non_fatal." + CheckName); 3148 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3149 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3150 EmitBlock(FatalHandlerBB); 3151 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3152 NonFatalHandlerBB); 3153 EmitBlock(NonFatalHandlerBB); 3154 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3155 Cont); 3156 } 3157 3158 EmitBlock(Cont); 3159 } 3160 3161 void CodeGenFunction::EmitCfiSlowPathCheck( 3162 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3163 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3164 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3165 3166 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3167 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3168 3169 llvm::MDBuilder MDHelper(getLLVMContext()); 3170 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3171 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3172 3173 EmitBlock(CheckBB); 3174 3175 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3176 3177 llvm::CallInst *CheckCall; 3178 llvm::FunctionCallee SlowPathFn; 3179 if (WithDiag) { 3180 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3181 auto *InfoPtr = 3182 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3183 llvm::GlobalVariable::PrivateLinkage, Info); 3184 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3185 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3186 3187 SlowPathFn = CGM.getModule().getOrInsertFunction( 3188 "__cfi_slowpath_diag", 3189 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3190 false)); 3191 CheckCall = Builder.CreateCall( 3192 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3193 } else { 3194 SlowPathFn = CGM.getModule().getOrInsertFunction( 3195 "__cfi_slowpath", 3196 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3197 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3198 } 3199 3200 CGM.setDSOLocal( 3201 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3202 CheckCall->setDoesNotThrow(); 3203 3204 EmitBlock(Cont); 3205 } 3206 3207 // Emit a stub for __cfi_check function so that the linker knows about this 3208 // symbol in LTO mode. 3209 void CodeGenFunction::EmitCfiCheckStub() { 3210 llvm::Module *M = &CGM.getModule(); 3211 auto &Ctx = M->getContext(); 3212 llvm::Function *F = llvm::Function::Create( 3213 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3214 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3215 CGM.setDSOLocal(F); 3216 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3217 // FIXME: consider emitting an intrinsic call like 3218 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3219 // which can be lowered in CrossDSOCFI pass to the actual contents of 3220 // __cfi_check. This would allow inlining of __cfi_check calls. 3221 llvm::CallInst::Create( 3222 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3223 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3224 } 3225 3226 // This function is basically a switch over the CFI failure kind, which is 3227 // extracted from CFICheckFailData (1st function argument). Each case is either 3228 // llvm.trap or a call to one of the two runtime handlers, based on 3229 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3230 // failure kind) traps, but this should really never happen. CFICheckFailData 3231 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3232 // check kind; in this case __cfi_check_fail traps as well. 3233 void CodeGenFunction::EmitCfiCheckFail() { 3234 SanitizerScope SanScope(this); 3235 FunctionArgList Args; 3236 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3237 ImplicitParamDecl::Other); 3238 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3239 ImplicitParamDecl::Other); 3240 Args.push_back(&ArgData); 3241 Args.push_back(&ArgAddr); 3242 3243 const CGFunctionInfo &FI = 3244 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3245 3246 llvm::Function *F = llvm::Function::Create( 3247 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3248 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3249 3250 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3251 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3252 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3253 3254 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3255 SourceLocation()); 3256 3257 // This function should not be affected by blacklist. This function does 3258 // not have a source location, but "src:*" would still apply. Revert any 3259 // changes to SanOpts made in StartFunction. 3260 SanOpts = CGM.getLangOpts().Sanitize; 3261 3262 llvm::Value *Data = 3263 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3264 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3265 llvm::Value *Addr = 3266 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3267 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3268 3269 // Data == nullptr means the calling module has trap behaviour for this check. 3270 llvm::Value *DataIsNotNullPtr = 3271 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3272 EmitTrapCheck(DataIsNotNullPtr); 3273 3274 llvm::StructType *SourceLocationTy = 3275 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3276 llvm::StructType *CfiCheckFailDataTy = 3277 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3278 3279 llvm::Value *V = Builder.CreateConstGEP2_32( 3280 CfiCheckFailDataTy, 3281 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3282 0); 3283 Address CheckKindAddr(V, getIntAlign()); 3284 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3285 3286 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3287 CGM.getLLVMContext(), 3288 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3289 llvm::Value *ValidVtable = Builder.CreateZExt( 3290 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3291 {Addr, AllVtables}), 3292 IntPtrTy); 3293 3294 const std::pair<int, SanitizerMask> CheckKinds[] = { 3295 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3296 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3297 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3298 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3299 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3300 3301 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3302 for (auto CheckKindMaskPair : CheckKinds) { 3303 int Kind = CheckKindMaskPair.first; 3304 SanitizerMask Mask = CheckKindMaskPair.second; 3305 llvm::Value *Cond = 3306 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3307 if (CGM.getLangOpts().Sanitize.has(Mask)) 3308 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3309 {Data, Addr, ValidVtable}); 3310 else 3311 EmitTrapCheck(Cond); 3312 } 3313 3314 FinishFunction(); 3315 // The only reference to this function will be created during LTO link. 3316 // Make sure it survives until then. 3317 CGM.addUsedGlobal(F); 3318 } 3319 3320 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3321 if (SanOpts.has(SanitizerKind::Unreachable)) { 3322 SanitizerScope SanScope(this); 3323 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3324 SanitizerKind::Unreachable), 3325 SanitizerHandler::BuiltinUnreachable, 3326 EmitCheckSourceLocation(Loc), None); 3327 } 3328 Builder.CreateUnreachable(); 3329 } 3330 3331 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3332 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3333 3334 // If we're optimizing, collapse all calls to trap down to just one per 3335 // function to save on code size. 3336 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3337 TrapBB = createBasicBlock("trap"); 3338 Builder.CreateCondBr(Checked, Cont, TrapBB); 3339 EmitBlock(TrapBB); 3340 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3341 TrapCall->setDoesNotReturn(); 3342 TrapCall->setDoesNotThrow(); 3343 Builder.CreateUnreachable(); 3344 } else { 3345 Builder.CreateCondBr(Checked, Cont, TrapBB); 3346 } 3347 3348 EmitBlock(Cont); 3349 } 3350 3351 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3352 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3353 3354 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3355 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3356 CGM.getCodeGenOpts().TrapFuncName); 3357 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3358 } 3359 3360 return TrapCall; 3361 } 3362 3363 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3364 LValueBaseInfo *BaseInfo, 3365 TBAAAccessInfo *TBAAInfo) { 3366 assert(E->getType()->isArrayType() && 3367 "Array to pointer decay must have array source type!"); 3368 3369 // Expressions of array type can't be bitfields or vector elements. 3370 LValue LV = EmitLValue(E); 3371 Address Addr = LV.getAddress(*this); 3372 3373 // If the array type was an incomplete type, we need to make sure 3374 // the decay ends up being the right type. 3375 llvm::Type *NewTy = ConvertType(E->getType()); 3376 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3377 3378 // Note that VLA pointers are always decayed, so we don't need to do 3379 // anything here. 3380 if (!E->getType()->isVariableArrayType()) { 3381 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3382 "Expected pointer to array"); 3383 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3384 } 3385 3386 // The result of this decay conversion points to an array element within the 3387 // base lvalue. However, since TBAA currently does not support representing 3388 // accesses to elements of member arrays, we conservatively represent accesses 3389 // to the pointee object as if it had no any base lvalue specified. 3390 // TODO: Support TBAA for member arrays. 3391 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3392 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3393 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3394 3395 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3396 } 3397 3398 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3399 /// array to pointer, return the array subexpression. 3400 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3401 // If this isn't just an array->pointer decay, bail out. 3402 const auto *CE = dyn_cast<CastExpr>(E); 3403 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3404 return nullptr; 3405 3406 // If this is a decay from variable width array, bail out. 3407 const Expr *SubExpr = CE->getSubExpr(); 3408 if (SubExpr->getType()->isVariableArrayType()) 3409 return nullptr; 3410 3411 return SubExpr; 3412 } 3413 3414 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3415 llvm::Value *ptr, 3416 ArrayRef<llvm::Value*> indices, 3417 bool inbounds, 3418 bool signedIndices, 3419 SourceLocation loc, 3420 const llvm::Twine &name = "arrayidx") { 3421 if (inbounds) { 3422 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3423 CodeGenFunction::NotSubtraction, loc, 3424 name); 3425 } else { 3426 return CGF.Builder.CreateGEP(ptr, indices, name); 3427 } 3428 } 3429 3430 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3431 llvm::Value *idx, 3432 CharUnits eltSize) { 3433 // If we have a constant index, we can use the exact offset of the 3434 // element we're accessing. 3435 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3436 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3437 return arrayAlign.alignmentAtOffset(offset); 3438 3439 // Otherwise, use the worst-case alignment for any element. 3440 } else { 3441 return arrayAlign.alignmentOfArrayElement(eltSize); 3442 } 3443 } 3444 3445 static QualType getFixedSizeElementType(const ASTContext &ctx, 3446 const VariableArrayType *vla) { 3447 QualType eltType; 3448 do { 3449 eltType = vla->getElementType(); 3450 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3451 return eltType; 3452 } 3453 3454 /// Given an array base, check whether its member access belongs to a record 3455 /// with preserve_access_index attribute or not. 3456 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3457 if (!ArrayBase || !CGF.getDebugInfo()) 3458 return false; 3459 3460 // Only support base as either a MemberExpr or DeclRefExpr. 3461 // DeclRefExpr to cover cases like: 3462 // struct s { int a; int b[10]; }; 3463 // struct s *p; 3464 // p[1].a 3465 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3466 // p->b[5] is a MemberExpr example. 3467 const Expr *E = ArrayBase->IgnoreImpCasts(); 3468 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3469 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3470 3471 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3472 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3473 if (!VarDef) 3474 return false; 3475 3476 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3477 if (!PtrT) 3478 return false; 3479 3480 const auto *PointeeT = PtrT->getPointeeType() 3481 ->getUnqualifiedDesugaredType(); 3482 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3483 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3484 return false; 3485 } 3486 3487 return false; 3488 } 3489 3490 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3491 ArrayRef<llvm::Value *> indices, 3492 QualType eltType, bool inbounds, 3493 bool signedIndices, SourceLocation loc, 3494 QualType *arrayType = nullptr, 3495 const Expr *Base = nullptr, 3496 const llvm::Twine &name = "arrayidx") { 3497 // All the indices except that last must be zero. 3498 #ifndef NDEBUG 3499 for (auto idx : indices.drop_back()) 3500 assert(isa<llvm::ConstantInt>(idx) && 3501 cast<llvm::ConstantInt>(idx)->isZero()); 3502 #endif 3503 3504 // Determine the element size of the statically-sized base. This is 3505 // the thing that the indices are expressed in terms of. 3506 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3507 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3508 } 3509 3510 // We can use that to compute the best alignment of the element. 3511 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3512 CharUnits eltAlign = 3513 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3514 3515 llvm::Value *eltPtr; 3516 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3517 if (!LastIndex || 3518 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3519 eltPtr = emitArraySubscriptGEP( 3520 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3521 loc, name); 3522 } else { 3523 // Remember the original array subscript for bpf target 3524 unsigned idx = LastIndex->getZExtValue(); 3525 llvm::DIType *DbgInfo = nullptr; 3526 if (arrayType) 3527 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3528 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3529 addr.getPointer(), 3530 indices.size() - 1, 3531 idx, DbgInfo); 3532 } 3533 3534 return Address(eltPtr, eltAlign); 3535 } 3536 3537 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3538 bool Accessed) { 3539 // The index must always be an integer, which is not an aggregate. Emit it 3540 // in lexical order (this complexity is, sadly, required by C++17). 3541 llvm::Value *IdxPre = 3542 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3543 bool SignedIndices = false; 3544 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3545 auto *Idx = IdxPre; 3546 if (E->getLHS() != E->getIdx()) { 3547 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3548 Idx = EmitScalarExpr(E->getIdx()); 3549 } 3550 3551 QualType IdxTy = E->getIdx()->getType(); 3552 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3553 SignedIndices |= IdxSigned; 3554 3555 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3556 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3557 3558 // Extend or truncate the index type to 32 or 64-bits. 3559 if (Promote && Idx->getType() != IntPtrTy) 3560 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3561 3562 return Idx; 3563 }; 3564 IdxPre = nullptr; 3565 3566 // If the base is a vector type, then we are forming a vector element lvalue 3567 // with this subscript. 3568 if (E->getBase()->getType()->isVectorType() && 3569 !isa<ExtVectorElementExpr>(E->getBase())) { 3570 // Emit the vector as an lvalue to get its address. 3571 LValue LHS = EmitLValue(E->getBase()); 3572 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3573 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3574 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3575 E->getBase()->getType(), LHS.getBaseInfo(), 3576 TBAAAccessInfo()); 3577 } 3578 3579 // All the other cases basically behave like simple offsetting. 3580 3581 // Handle the extvector case we ignored above. 3582 if (isa<ExtVectorElementExpr>(E->getBase())) { 3583 LValue LV = EmitLValue(E->getBase()); 3584 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3585 Address Addr = EmitExtVectorElementLValue(LV); 3586 3587 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3588 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3589 SignedIndices, E->getExprLoc()); 3590 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3591 CGM.getTBAAInfoForSubobject(LV, EltType)); 3592 } 3593 3594 LValueBaseInfo EltBaseInfo; 3595 TBAAAccessInfo EltTBAAInfo; 3596 Address Addr = Address::invalid(); 3597 if (const VariableArrayType *vla = 3598 getContext().getAsVariableArrayType(E->getType())) { 3599 // The base must be a pointer, which is not an aggregate. Emit 3600 // it. It needs to be emitted first in case it's what captures 3601 // the VLA bounds. 3602 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3603 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3604 3605 // The element count here is the total number of non-VLA elements. 3606 llvm::Value *numElements = getVLASize(vla).NumElts; 3607 3608 // Effectively, the multiply by the VLA size is part of the GEP. 3609 // GEP indexes are signed, and scaling an index isn't permitted to 3610 // signed-overflow, so we use the same semantics for our explicit 3611 // multiply. We suppress this if overflow is not undefined behavior. 3612 if (getLangOpts().isSignedOverflowDefined()) { 3613 Idx = Builder.CreateMul(Idx, numElements); 3614 } else { 3615 Idx = Builder.CreateNSWMul(Idx, numElements); 3616 } 3617 3618 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3619 !getLangOpts().isSignedOverflowDefined(), 3620 SignedIndices, E->getExprLoc()); 3621 3622 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3623 // Indexing over an interface, as in "NSString *P; P[4];" 3624 3625 // Emit the base pointer. 3626 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3627 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3628 3629 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3630 llvm::Value *InterfaceSizeVal = 3631 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3632 3633 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3634 3635 // We don't necessarily build correct LLVM struct types for ObjC 3636 // interfaces, so we can't rely on GEP to do this scaling 3637 // correctly, so we need to cast to i8*. FIXME: is this actually 3638 // true? A lot of other things in the fragile ABI would break... 3639 llvm::Type *OrigBaseTy = Addr.getType(); 3640 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3641 3642 // Do the GEP. 3643 CharUnits EltAlign = 3644 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3645 llvm::Value *EltPtr = 3646 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3647 SignedIndices, E->getExprLoc()); 3648 Addr = Address(EltPtr, EltAlign); 3649 3650 // Cast back. 3651 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3652 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3653 // If this is A[i] where A is an array, the frontend will have decayed the 3654 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3655 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3656 // "gep x, i" here. Emit one "gep A, 0, i". 3657 assert(Array->getType()->isArrayType() && 3658 "Array to pointer decay must have array source type!"); 3659 LValue ArrayLV; 3660 // For simple multidimensional array indexing, set the 'accessed' flag for 3661 // better bounds-checking of the base expression. 3662 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3663 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3664 else 3665 ArrayLV = EmitLValue(Array); 3666 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3667 3668 // Propagate the alignment from the array itself to the result. 3669 QualType arrayType = Array->getType(); 3670 Addr = emitArraySubscriptGEP( 3671 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3672 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3673 E->getExprLoc(), &arrayType, E->getBase()); 3674 EltBaseInfo = ArrayLV.getBaseInfo(); 3675 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3676 } else { 3677 // The base must be a pointer; emit it with an estimate of its alignment. 3678 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3679 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3680 QualType ptrType = E->getBase()->getType(); 3681 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3682 !getLangOpts().isSignedOverflowDefined(), 3683 SignedIndices, E->getExprLoc(), &ptrType, 3684 E->getBase()); 3685 } 3686 3687 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3688 3689 if (getLangOpts().ObjC && 3690 getLangOpts().getGC() != LangOptions::NonGC) { 3691 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3692 setObjCGCLValueClass(getContext(), E, LV); 3693 } 3694 return LV; 3695 } 3696 3697 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3698 LValueBaseInfo &BaseInfo, 3699 TBAAAccessInfo &TBAAInfo, 3700 QualType BaseTy, QualType ElTy, 3701 bool IsLowerBound) { 3702 LValue BaseLVal; 3703 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3704 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3705 if (BaseTy->isArrayType()) { 3706 Address Addr = BaseLVal.getAddress(CGF); 3707 BaseInfo = BaseLVal.getBaseInfo(); 3708 3709 // If the array type was an incomplete type, we need to make sure 3710 // the decay ends up being the right type. 3711 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3712 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3713 3714 // Note that VLA pointers are always decayed, so we don't need to do 3715 // anything here. 3716 if (!BaseTy->isVariableArrayType()) { 3717 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3718 "Expected pointer to array"); 3719 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3720 } 3721 3722 return CGF.Builder.CreateElementBitCast(Addr, 3723 CGF.ConvertTypeForMem(ElTy)); 3724 } 3725 LValueBaseInfo TypeBaseInfo; 3726 TBAAAccessInfo TypeTBAAInfo; 3727 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3728 &TypeTBAAInfo); 3729 BaseInfo.mergeForCast(TypeBaseInfo); 3730 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3731 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3732 } 3733 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3734 } 3735 3736 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3737 bool IsLowerBound) { 3738 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3739 QualType ResultExprTy; 3740 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3741 ResultExprTy = AT->getElementType(); 3742 else 3743 ResultExprTy = BaseTy->getPointeeType(); 3744 llvm::Value *Idx = nullptr; 3745 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3746 // Requesting lower bound or upper bound, but without provided length and 3747 // without ':' symbol for the default length -> length = 1. 3748 // Idx = LowerBound ?: 0; 3749 if (auto *LowerBound = E->getLowerBound()) { 3750 Idx = Builder.CreateIntCast( 3751 EmitScalarExpr(LowerBound), IntPtrTy, 3752 LowerBound->getType()->hasSignedIntegerRepresentation()); 3753 } else 3754 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3755 } else { 3756 // Try to emit length or lower bound as constant. If this is possible, 1 3757 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3758 // IR (LB + Len) - 1. 3759 auto &C = CGM.getContext(); 3760 auto *Length = E->getLength(); 3761 llvm::APSInt ConstLength; 3762 if (Length) { 3763 // Idx = LowerBound + Length - 1; 3764 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3765 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3766 Length = nullptr; 3767 } 3768 auto *LowerBound = E->getLowerBound(); 3769 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3770 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3771 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3772 LowerBound = nullptr; 3773 } 3774 if (!Length) 3775 --ConstLength; 3776 else if (!LowerBound) 3777 --ConstLowerBound; 3778 3779 if (Length || LowerBound) { 3780 auto *LowerBoundVal = 3781 LowerBound 3782 ? Builder.CreateIntCast( 3783 EmitScalarExpr(LowerBound), IntPtrTy, 3784 LowerBound->getType()->hasSignedIntegerRepresentation()) 3785 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3786 auto *LengthVal = 3787 Length 3788 ? Builder.CreateIntCast( 3789 EmitScalarExpr(Length), IntPtrTy, 3790 Length->getType()->hasSignedIntegerRepresentation()) 3791 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3792 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3793 /*HasNUW=*/false, 3794 !getLangOpts().isSignedOverflowDefined()); 3795 if (Length && LowerBound) { 3796 Idx = Builder.CreateSub( 3797 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3798 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3799 } 3800 } else 3801 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3802 } else { 3803 // Idx = ArraySize - 1; 3804 QualType ArrayTy = BaseTy->isPointerType() 3805 ? E->getBase()->IgnoreParenImpCasts()->getType() 3806 : BaseTy; 3807 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3808 Length = VAT->getSizeExpr(); 3809 if (Length->isIntegerConstantExpr(ConstLength, C)) 3810 Length = nullptr; 3811 } else { 3812 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3813 ConstLength = CAT->getSize(); 3814 } 3815 if (Length) { 3816 auto *LengthVal = Builder.CreateIntCast( 3817 EmitScalarExpr(Length), IntPtrTy, 3818 Length->getType()->hasSignedIntegerRepresentation()); 3819 Idx = Builder.CreateSub( 3820 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3821 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3822 } else { 3823 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3824 --ConstLength; 3825 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3826 } 3827 } 3828 } 3829 assert(Idx); 3830 3831 Address EltPtr = Address::invalid(); 3832 LValueBaseInfo BaseInfo; 3833 TBAAAccessInfo TBAAInfo; 3834 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3835 // The base must be a pointer, which is not an aggregate. Emit 3836 // it. It needs to be emitted first in case it's what captures 3837 // the VLA bounds. 3838 Address Base = 3839 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3840 BaseTy, VLA->getElementType(), IsLowerBound); 3841 // The element count here is the total number of non-VLA elements. 3842 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3843 3844 // Effectively, the multiply by the VLA size is part of the GEP. 3845 // GEP indexes are signed, and scaling an index isn't permitted to 3846 // signed-overflow, so we use the same semantics for our explicit 3847 // multiply. We suppress this if overflow is not undefined behavior. 3848 if (getLangOpts().isSignedOverflowDefined()) 3849 Idx = Builder.CreateMul(Idx, NumElements); 3850 else 3851 Idx = Builder.CreateNSWMul(Idx, NumElements); 3852 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3853 !getLangOpts().isSignedOverflowDefined(), 3854 /*signedIndices=*/false, E->getExprLoc()); 3855 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3856 // If this is A[i] where A is an array, the frontend will have decayed the 3857 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3858 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3859 // "gep x, i" here. Emit one "gep A, 0, i". 3860 assert(Array->getType()->isArrayType() && 3861 "Array to pointer decay must have array source type!"); 3862 LValue ArrayLV; 3863 // For simple multidimensional array indexing, set the 'accessed' flag for 3864 // better bounds-checking of the base expression. 3865 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3866 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3867 else 3868 ArrayLV = EmitLValue(Array); 3869 3870 // Propagate the alignment from the array itself to the result. 3871 EltPtr = emitArraySubscriptGEP( 3872 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3873 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3874 /*signedIndices=*/false, E->getExprLoc()); 3875 BaseInfo = ArrayLV.getBaseInfo(); 3876 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3877 } else { 3878 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3879 TBAAInfo, BaseTy, ResultExprTy, 3880 IsLowerBound); 3881 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3882 !getLangOpts().isSignedOverflowDefined(), 3883 /*signedIndices=*/false, E->getExprLoc()); 3884 } 3885 3886 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3887 } 3888 3889 LValue CodeGenFunction:: 3890 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3891 // Emit the base vector as an l-value. 3892 LValue Base; 3893 3894 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3895 if (E->isArrow()) { 3896 // If it is a pointer to a vector, emit the address and form an lvalue with 3897 // it. 3898 LValueBaseInfo BaseInfo; 3899 TBAAAccessInfo TBAAInfo; 3900 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3901 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3902 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3903 Base.getQuals().removeObjCGCAttr(); 3904 } else if (E->getBase()->isGLValue()) { 3905 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3906 // emit the base as an lvalue. 3907 assert(E->getBase()->getType()->isVectorType()); 3908 Base = EmitLValue(E->getBase()); 3909 } else { 3910 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3911 assert(E->getBase()->getType()->isVectorType() && 3912 "Result must be a vector"); 3913 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3914 3915 // Store the vector to memory (because LValue wants an address). 3916 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3917 Builder.CreateStore(Vec, VecMem); 3918 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3919 AlignmentSource::Decl); 3920 } 3921 3922 QualType type = 3923 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3924 3925 // Encode the element access list into a vector of unsigned indices. 3926 SmallVector<uint32_t, 4> Indices; 3927 E->getEncodedElementAccess(Indices); 3928 3929 if (Base.isSimple()) { 3930 llvm::Constant *CV = 3931 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3932 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3933 Base.getBaseInfo(), TBAAAccessInfo()); 3934 } 3935 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3936 3937 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3938 SmallVector<llvm::Constant *, 4> CElts; 3939 3940 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3941 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3942 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3943 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3944 Base.getBaseInfo(), TBAAAccessInfo()); 3945 } 3946 3947 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3948 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3949 EmitIgnoredExpr(E->getBase()); 3950 return EmitDeclRefLValue(DRE); 3951 } 3952 3953 Expr *BaseExpr = E->getBase(); 3954 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3955 LValue BaseLV; 3956 if (E->isArrow()) { 3957 LValueBaseInfo BaseInfo; 3958 TBAAAccessInfo TBAAInfo; 3959 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3960 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3961 SanitizerSet SkippedChecks; 3962 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3963 if (IsBaseCXXThis) 3964 SkippedChecks.set(SanitizerKind::Alignment, true); 3965 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3966 SkippedChecks.set(SanitizerKind::Null, true); 3967 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3968 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3969 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3970 } else 3971 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3972 3973 NamedDecl *ND = E->getMemberDecl(); 3974 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3975 LValue LV = EmitLValueForField(BaseLV, Field); 3976 setObjCGCLValueClass(getContext(), E, LV); 3977 if (getLangOpts().OpenMP) { 3978 // If the member was explicitly marked as nontemporal, mark it as 3979 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3980 // to children as nontemporal too. 3981 if ((IsWrappedCXXThis(BaseExpr) && 3982 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3983 BaseLV.isNontemporal()) 3984 LV.setNontemporal(/*Value=*/true); 3985 } 3986 return LV; 3987 } 3988 3989 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3990 return EmitFunctionDeclLValue(*this, E, FD); 3991 3992 llvm_unreachable("Unhandled member declaration!"); 3993 } 3994 3995 /// Given that we are currently emitting a lambda, emit an l-value for 3996 /// one of its members. 3997 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3998 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3999 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4000 QualType LambdaTagType = 4001 getContext().getTagDeclType(Field->getParent()); 4002 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4003 return EmitLValueForField(LambdaLV, Field); 4004 } 4005 4006 /// Get the field index in the debug info. The debug info structure/union 4007 /// will ignore the unnamed bitfields. 4008 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4009 unsigned FieldIndex) { 4010 unsigned I = 0, Skipped = 0; 4011 4012 for (auto F : Rec->getDefinition()->fields()) { 4013 if (I == FieldIndex) 4014 break; 4015 if (F->isUnnamedBitfield()) 4016 Skipped++; 4017 I++; 4018 } 4019 4020 return FieldIndex - Skipped; 4021 } 4022 4023 /// Get the address of a zero-sized field within a record. The resulting 4024 /// address doesn't necessarily have the right type. 4025 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4026 const FieldDecl *Field) { 4027 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4028 CGF.getContext().getFieldOffset(Field)); 4029 if (Offset.isZero()) 4030 return Base; 4031 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4032 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4033 } 4034 4035 /// Drill down to the storage of a field without walking into 4036 /// reference types. 4037 /// 4038 /// The resulting address doesn't necessarily have the right type. 4039 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4040 const FieldDecl *field) { 4041 if (field->isZeroSize(CGF.getContext())) 4042 return emitAddrOfZeroSizeField(CGF, base, field); 4043 4044 const RecordDecl *rec = field->getParent(); 4045 4046 unsigned idx = 4047 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4048 4049 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4050 } 4051 4052 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4053 Address addr, const FieldDecl *field) { 4054 const RecordDecl *rec = field->getParent(); 4055 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4056 base.getType(), rec->getLocation()); 4057 4058 unsigned idx = 4059 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4060 4061 return CGF.Builder.CreatePreserveStructAccessIndex( 4062 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4063 } 4064 4065 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4066 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4067 if (!RD) 4068 return false; 4069 4070 if (RD->isDynamicClass()) 4071 return true; 4072 4073 for (const auto &Base : RD->bases()) 4074 if (hasAnyVptr(Base.getType(), Context)) 4075 return true; 4076 4077 for (const FieldDecl *Field : RD->fields()) 4078 if (hasAnyVptr(Field->getType(), Context)) 4079 return true; 4080 4081 return false; 4082 } 4083 4084 LValue CodeGenFunction::EmitLValueForField(LValue base, 4085 const FieldDecl *field) { 4086 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4087 4088 if (field->isBitField()) { 4089 const CGRecordLayout &RL = 4090 CGM.getTypes().getCGRecordLayout(field->getParent()); 4091 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4092 Address Addr = base.getAddress(*this); 4093 unsigned Idx = RL.getLLVMFieldNo(field); 4094 const RecordDecl *rec = field->getParent(); 4095 if (!IsInPreservedAIRegion && 4096 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4097 if (Idx != 0) 4098 // For structs, we GEP to the field that the record layout suggests. 4099 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4100 } else { 4101 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4102 getContext().getRecordType(rec), rec->getLocation()); 4103 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4104 getDebugInfoFIndex(rec, field->getFieldIndex()), 4105 DbgInfo); 4106 } 4107 4108 // Get the access type. 4109 llvm::Type *FieldIntTy = 4110 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4111 if (Addr.getElementType() != FieldIntTy) 4112 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4113 4114 QualType fieldType = 4115 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4116 // TODO: Support TBAA for bit fields. 4117 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4118 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4119 TBAAAccessInfo()); 4120 } 4121 4122 // Fields of may-alias structures are may-alias themselves. 4123 // FIXME: this should get propagated down through anonymous structs 4124 // and unions. 4125 QualType FieldType = field->getType(); 4126 const RecordDecl *rec = field->getParent(); 4127 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4128 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4129 TBAAAccessInfo FieldTBAAInfo; 4130 if (base.getTBAAInfo().isMayAlias() || 4131 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4132 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4133 } else if (rec->isUnion()) { 4134 // TODO: Support TBAA for unions. 4135 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4136 } else { 4137 // If no base type been assigned for the base access, then try to generate 4138 // one for this base lvalue. 4139 FieldTBAAInfo = base.getTBAAInfo(); 4140 if (!FieldTBAAInfo.BaseType) { 4141 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4142 assert(!FieldTBAAInfo.Offset && 4143 "Nonzero offset for an access with no base type!"); 4144 } 4145 4146 // Adjust offset to be relative to the base type. 4147 const ASTRecordLayout &Layout = 4148 getContext().getASTRecordLayout(field->getParent()); 4149 unsigned CharWidth = getContext().getCharWidth(); 4150 if (FieldTBAAInfo.BaseType) 4151 FieldTBAAInfo.Offset += 4152 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4153 4154 // Update the final access type and size. 4155 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4156 FieldTBAAInfo.Size = 4157 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4158 } 4159 4160 Address addr = base.getAddress(*this); 4161 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4162 if (CGM.getCodeGenOpts().StrictVTablePointers && 4163 ClassDef->isDynamicClass()) { 4164 // Getting to any field of dynamic object requires stripping dynamic 4165 // information provided by invariant.group. This is because accessing 4166 // fields may leak the real address of dynamic object, which could result 4167 // in miscompilation when leaked pointer would be compared. 4168 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4169 addr = Address(stripped, addr.getAlignment()); 4170 } 4171 } 4172 4173 unsigned RecordCVR = base.getVRQualifiers(); 4174 if (rec->isUnion()) { 4175 // For unions, there is no pointer adjustment. 4176 if (CGM.getCodeGenOpts().StrictVTablePointers && 4177 hasAnyVptr(FieldType, getContext())) 4178 // Because unions can easily skip invariant.barriers, we need to add 4179 // a barrier every time CXXRecord field with vptr is referenced. 4180 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4181 addr.getAlignment()); 4182 4183 if (IsInPreservedAIRegion || 4184 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4185 // Remember the original union field index 4186 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4187 rec->getLocation()); 4188 addr = Address( 4189 Builder.CreatePreserveUnionAccessIndex( 4190 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4191 addr.getAlignment()); 4192 } 4193 4194 if (FieldType->isReferenceType()) 4195 addr = Builder.CreateElementBitCast( 4196 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4197 } else { 4198 if (!IsInPreservedAIRegion && 4199 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4200 // For structs, we GEP to the field that the record layout suggests. 4201 addr = emitAddrOfFieldStorage(*this, addr, field); 4202 else 4203 // Remember the original struct field index 4204 addr = emitPreserveStructAccess(*this, base, addr, field); 4205 } 4206 4207 // If this is a reference field, load the reference right now. 4208 if (FieldType->isReferenceType()) { 4209 LValue RefLVal = 4210 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4211 if (RecordCVR & Qualifiers::Volatile) 4212 RefLVal.getQuals().addVolatile(); 4213 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4214 4215 // Qualifiers on the struct don't apply to the referencee. 4216 RecordCVR = 0; 4217 FieldType = FieldType->getPointeeType(); 4218 } 4219 4220 // Make sure that the address is pointing to the right type. This is critical 4221 // for both unions and structs. A union needs a bitcast, a struct element 4222 // will need a bitcast if the LLVM type laid out doesn't match the desired 4223 // type. 4224 addr = Builder.CreateElementBitCast( 4225 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4226 4227 if (field->hasAttr<AnnotateAttr>()) 4228 addr = EmitFieldAnnotations(field, addr); 4229 4230 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4231 LV.getQuals().addCVRQualifiers(RecordCVR); 4232 4233 // __weak attribute on a field is ignored. 4234 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4235 LV.getQuals().removeObjCGCAttr(); 4236 4237 return LV; 4238 } 4239 4240 LValue 4241 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4242 const FieldDecl *Field) { 4243 QualType FieldType = Field->getType(); 4244 4245 if (!FieldType->isReferenceType()) 4246 return EmitLValueForField(Base, Field); 4247 4248 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4249 4250 // Make sure that the address is pointing to the right type. 4251 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4252 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4253 4254 // TODO: Generate TBAA information that describes this access as a structure 4255 // member access and not just an access to an object of the field's type. This 4256 // should be similar to what we do in EmitLValueForField(). 4257 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4258 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4259 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4260 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4261 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4262 } 4263 4264 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4265 if (E->isFileScope()) { 4266 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4267 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4268 } 4269 if (E->getType()->isVariablyModifiedType()) 4270 // make sure to emit the VLA size. 4271 EmitVariablyModifiedType(E->getType()); 4272 4273 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4274 const Expr *InitExpr = E->getInitializer(); 4275 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4276 4277 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4278 /*Init*/ true); 4279 4280 // Block-scope compound literals are destroyed at the end of the enclosing 4281 // scope in C. 4282 if (!getLangOpts().CPlusPlus) 4283 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4284 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4285 E->getType(), getDestroyer(DtorKind), 4286 DtorKind & EHCleanup); 4287 4288 return Result; 4289 } 4290 4291 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4292 if (!E->isGLValue()) 4293 // Initializing an aggregate temporary in C++11: T{...}. 4294 return EmitAggExprToLValue(E); 4295 4296 // An lvalue initializer list must be initializing a reference. 4297 assert(E->isTransparent() && "non-transparent glvalue init list"); 4298 return EmitLValue(E->getInit(0)); 4299 } 4300 4301 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4302 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4303 /// LValue is returned and the current block has been terminated. 4304 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4305 const Expr *Operand) { 4306 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4307 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4308 return None; 4309 } 4310 4311 return CGF.EmitLValue(Operand); 4312 } 4313 4314 LValue CodeGenFunction:: 4315 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4316 if (!expr->isGLValue()) { 4317 // ?: here should be an aggregate. 4318 assert(hasAggregateEvaluationKind(expr->getType()) && 4319 "Unexpected conditional operator!"); 4320 return EmitAggExprToLValue(expr); 4321 } 4322 4323 OpaqueValueMapping binding(*this, expr); 4324 4325 const Expr *condExpr = expr->getCond(); 4326 bool CondExprBool; 4327 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4328 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4329 if (!CondExprBool) std::swap(live, dead); 4330 4331 if (!ContainsLabel(dead)) { 4332 // If the true case is live, we need to track its region. 4333 if (CondExprBool) 4334 incrementProfileCounter(expr); 4335 // If a throw expression we emit it and return an undefined lvalue 4336 // because it can't be used. 4337 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4338 EmitCXXThrowExpr(ThrowExpr); 4339 llvm::Type *Ty = 4340 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4341 return MakeAddrLValue( 4342 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4343 dead->getType()); 4344 } 4345 return EmitLValue(live); 4346 } 4347 } 4348 4349 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4350 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4351 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4352 4353 ConditionalEvaluation eval(*this); 4354 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4355 4356 // Any temporaries created here are conditional. 4357 EmitBlock(lhsBlock); 4358 incrementProfileCounter(expr); 4359 eval.begin(*this); 4360 Optional<LValue> lhs = 4361 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4362 eval.end(*this); 4363 4364 if (lhs && !lhs->isSimple()) 4365 return EmitUnsupportedLValue(expr, "conditional operator"); 4366 4367 lhsBlock = Builder.GetInsertBlock(); 4368 if (lhs) 4369 Builder.CreateBr(contBlock); 4370 4371 // Any temporaries created here are conditional. 4372 EmitBlock(rhsBlock); 4373 eval.begin(*this); 4374 Optional<LValue> rhs = 4375 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4376 eval.end(*this); 4377 if (rhs && !rhs->isSimple()) 4378 return EmitUnsupportedLValue(expr, "conditional operator"); 4379 rhsBlock = Builder.GetInsertBlock(); 4380 4381 EmitBlock(contBlock); 4382 4383 if (lhs && rhs) { 4384 llvm::PHINode *phi = 4385 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4386 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4387 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4388 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4389 AlignmentSource alignSource = 4390 std::max(lhs->getBaseInfo().getAlignmentSource(), 4391 rhs->getBaseInfo().getAlignmentSource()); 4392 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4393 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4394 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4395 TBAAInfo); 4396 } else { 4397 assert((lhs || rhs) && 4398 "both operands of glvalue conditional are throw-expressions?"); 4399 return lhs ? *lhs : *rhs; 4400 } 4401 } 4402 4403 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4404 /// type. If the cast is to a reference, we can have the usual lvalue result, 4405 /// otherwise if a cast is needed by the code generator in an lvalue context, 4406 /// then it must mean that we need the address of an aggregate in order to 4407 /// access one of its members. This can happen for all the reasons that casts 4408 /// are permitted with aggregate result, including noop aggregate casts, and 4409 /// cast from scalar to union. 4410 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4411 switch (E->getCastKind()) { 4412 case CK_ToVoid: 4413 case CK_BitCast: 4414 case CK_LValueToRValueBitCast: 4415 case CK_ArrayToPointerDecay: 4416 case CK_FunctionToPointerDecay: 4417 case CK_NullToMemberPointer: 4418 case CK_NullToPointer: 4419 case CK_IntegralToPointer: 4420 case CK_PointerToIntegral: 4421 case CK_PointerToBoolean: 4422 case CK_VectorSplat: 4423 case CK_IntegralCast: 4424 case CK_BooleanToSignedIntegral: 4425 case CK_IntegralToBoolean: 4426 case CK_IntegralToFloating: 4427 case CK_FloatingToIntegral: 4428 case CK_FloatingToBoolean: 4429 case CK_FloatingCast: 4430 case CK_FloatingRealToComplex: 4431 case CK_FloatingComplexToReal: 4432 case CK_FloatingComplexToBoolean: 4433 case CK_FloatingComplexCast: 4434 case CK_FloatingComplexToIntegralComplex: 4435 case CK_IntegralRealToComplex: 4436 case CK_IntegralComplexToReal: 4437 case CK_IntegralComplexToBoolean: 4438 case CK_IntegralComplexCast: 4439 case CK_IntegralComplexToFloatingComplex: 4440 case CK_DerivedToBaseMemberPointer: 4441 case CK_BaseToDerivedMemberPointer: 4442 case CK_MemberPointerToBoolean: 4443 case CK_ReinterpretMemberPointer: 4444 case CK_AnyPointerToBlockPointerCast: 4445 case CK_ARCProduceObject: 4446 case CK_ARCConsumeObject: 4447 case CK_ARCReclaimReturnedObject: 4448 case CK_ARCExtendBlockObject: 4449 case CK_CopyAndAutoreleaseBlockObject: 4450 case CK_IntToOCLSampler: 4451 case CK_FixedPointCast: 4452 case CK_FixedPointToBoolean: 4453 case CK_FixedPointToIntegral: 4454 case CK_IntegralToFixedPoint: 4455 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4456 4457 case CK_Dependent: 4458 llvm_unreachable("dependent cast kind in IR gen!"); 4459 4460 case CK_BuiltinFnToFnPtr: 4461 llvm_unreachable("builtin functions are handled elsewhere"); 4462 4463 // These are never l-values; just use the aggregate emission code. 4464 case CK_NonAtomicToAtomic: 4465 case CK_AtomicToNonAtomic: 4466 return EmitAggExprToLValue(E); 4467 4468 case CK_Dynamic: { 4469 LValue LV = EmitLValue(E->getSubExpr()); 4470 Address V = LV.getAddress(*this); 4471 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4472 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4473 } 4474 4475 case CK_ConstructorConversion: 4476 case CK_UserDefinedConversion: 4477 case CK_CPointerToObjCPointerCast: 4478 case CK_BlockPointerToObjCPointerCast: 4479 case CK_NoOp: 4480 case CK_LValueToRValue: 4481 return EmitLValue(E->getSubExpr()); 4482 4483 case CK_UncheckedDerivedToBase: 4484 case CK_DerivedToBase: { 4485 const auto *DerivedClassTy = 4486 E->getSubExpr()->getType()->castAs<RecordType>(); 4487 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4488 4489 LValue LV = EmitLValue(E->getSubExpr()); 4490 Address This = LV.getAddress(*this); 4491 4492 // Perform the derived-to-base conversion 4493 Address Base = GetAddressOfBaseClass( 4494 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4495 /*NullCheckValue=*/false, E->getExprLoc()); 4496 4497 // TODO: Support accesses to members of base classes in TBAA. For now, we 4498 // conservatively pretend that the complete object is of the base class 4499 // type. 4500 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4501 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4502 } 4503 case CK_ToUnion: 4504 return EmitAggExprToLValue(E); 4505 case CK_BaseToDerived: { 4506 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4507 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4508 4509 LValue LV = EmitLValue(E->getSubExpr()); 4510 4511 // Perform the base-to-derived conversion 4512 Address Derived = GetAddressOfDerivedClass( 4513 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4514 /*NullCheckValue=*/false); 4515 4516 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4517 // performed and the object is not of the derived type. 4518 if (sanitizePerformTypeCheck()) 4519 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4520 Derived.getPointer(), E->getType()); 4521 4522 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4523 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4524 /*MayBeNull=*/false, CFITCK_DerivedCast, 4525 E->getBeginLoc()); 4526 4527 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4528 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4529 } 4530 case CK_LValueBitCast: { 4531 // This must be a reinterpret_cast (or c-style equivalent). 4532 const auto *CE = cast<ExplicitCastExpr>(E); 4533 4534 CGM.EmitExplicitCastExprType(CE, this); 4535 LValue LV = EmitLValue(E->getSubExpr()); 4536 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4537 ConvertType(CE->getTypeAsWritten())); 4538 4539 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4540 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4541 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4542 E->getBeginLoc()); 4543 4544 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4545 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4546 } 4547 case CK_AddressSpaceConversion: { 4548 LValue LV = EmitLValue(E->getSubExpr()); 4549 QualType DestTy = getContext().getPointerType(E->getType()); 4550 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4551 *this, LV.getPointer(*this), 4552 E->getSubExpr()->getType().getAddressSpace(), 4553 E->getType().getAddressSpace(), ConvertType(DestTy)); 4554 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4555 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4556 } 4557 case CK_ObjCObjectLValueCast: { 4558 LValue LV = EmitLValue(E->getSubExpr()); 4559 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4560 ConvertType(E->getType())); 4561 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4562 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4563 } 4564 case CK_ZeroToOCLOpaqueType: 4565 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4566 } 4567 4568 llvm_unreachable("Unhandled lvalue cast kind?"); 4569 } 4570 4571 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4572 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4573 return getOrCreateOpaqueLValueMapping(e); 4574 } 4575 4576 LValue 4577 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4578 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4579 4580 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4581 it = OpaqueLValues.find(e); 4582 4583 if (it != OpaqueLValues.end()) 4584 return it->second; 4585 4586 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4587 return EmitLValue(e->getSourceExpr()); 4588 } 4589 4590 RValue 4591 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4592 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4593 4594 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4595 it = OpaqueRValues.find(e); 4596 4597 if (it != OpaqueRValues.end()) 4598 return it->second; 4599 4600 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4601 return EmitAnyExpr(e->getSourceExpr()); 4602 } 4603 4604 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4605 const FieldDecl *FD, 4606 SourceLocation Loc) { 4607 QualType FT = FD->getType(); 4608 LValue FieldLV = EmitLValueForField(LV, FD); 4609 switch (getEvaluationKind(FT)) { 4610 case TEK_Complex: 4611 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4612 case TEK_Aggregate: 4613 return FieldLV.asAggregateRValue(*this); 4614 case TEK_Scalar: 4615 // This routine is used to load fields one-by-one to perform a copy, so 4616 // don't load reference fields. 4617 if (FD->getType()->isReferenceType()) 4618 return RValue::get(FieldLV.getPointer(*this)); 4619 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4620 // primitive load. 4621 if (FieldLV.isBitField()) 4622 return EmitLoadOfLValue(FieldLV, Loc); 4623 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4624 } 4625 llvm_unreachable("bad evaluation kind"); 4626 } 4627 4628 //===--------------------------------------------------------------------===// 4629 // Expression Emission 4630 //===--------------------------------------------------------------------===// 4631 4632 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4633 ReturnValueSlot ReturnValue) { 4634 // Builtins never have block type. 4635 if (E->getCallee()->getType()->isBlockPointerType()) 4636 return EmitBlockCallExpr(E, ReturnValue); 4637 4638 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4639 return EmitCXXMemberCallExpr(CE, ReturnValue); 4640 4641 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4642 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4643 4644 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4645 if (const CXXMethodDecl *MD = 4646 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4647 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4648 4649 CGCallee callee = EmitCallee(E->getCallee()); 4650 4651 if (callee.isBuiltin()) { 4652 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4653 E, ReturnValue); 4654 } 4655 4656 if (callee.isPseudoDestructor()) { 4657 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4658 } 4659 4660 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4661 } 4662 4663 /// Emit a CallExpr without considering whether it might be a subclass. 4664 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4665 ReturnValueSlot ReturnValue) { 4666 CGCallee Callee = EmitCallee(E->getCallee()); 4667 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4668 } 4669 4670 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4671 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4672 4673 if (auto builtinID = FD->getBuiltinID()) { 4674 // Replaceable builtin provide their own implementation of a builtin. Unless 4675 // we are in the builtin implementation itself, don't call the actual 4676 // builtin. If we are in the builtin implementation, avoid trivial infinite 4677 // recursion. 4678 if (!FD->isInlineBuiltinDeclaration() || 4679 CGF.CurFn->getName() == FD->getName()) 4680 return CGCallee::forBuiltin(builtinID, FD); 4681 } 4682 4683 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4684 return CGCallee::forDirect(calleePtr, GD); 4685 } 4686 4687 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4688 E = E->IgnoreParens(); 4689 4690 // Look through function-to-pointer decay. 4691 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4692 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4693 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4694 return EmitCallee(ICE->getSubExpr()); 4695 } 4696 4697 // Resolve direct calls. 4698 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4699 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4700 return EmitDirectCallee(*this, FD); 4701 } 4702 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4703 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4704 EmitIgnoredExpr(ME->getBase()); 4705 return EmitDirectCallee(*this, FD); 4706 } 4707 4708 // Look through template substitutions. 4709 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4710 return EmitCallee(NTTP->getReplacement()); 4711 4712 // Treat pseudo-destructor calls differently. 4713 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4714 return CGCallee::forPseudoDestructor(PDE); 4715 } 4716 4717 // Otherwise, we have an indirect reference. 4718 llvm::Value *calleePtr; 4719 QualType functionType; 4720 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4721 calleePtr = EmitScalarExpr(E); 4722 functionType = ptrType->getPointeeType(); 4723 } else { 4724 functionType = E->getType(); 4725 calleePtr = EmitLValue(E).getPointer(*this); 4726 } 4727 assert(functionType->isFunctionType()); 4728 4729 GlobalDecl GD; 4730 if (const auto *VD = 4731 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4732 GD = GlobalDecl(VD); 4733 4734 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4735 CGCallee callee(calleeInfo, calleePtr); 4736 return callee; 4737 } 4738 4739 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4740 // Comma expressions just emit their LHS then their RHS as an l-value. 4741 if (E->getOpcode() == BO_Comma) { 4742 EmitIgnoredExpr(E->getLHS()); 4743 EnsureInsertPoint(); 4744 return EmitLValue(E->getRHS()); 4745 } 4746 4747 if (E->getOpcode() == BO_PtrMemD || 4748 E->getOpcode() == BO_PtrMemI) 4749 return EmitPointerToDataMemberBinaryExpr(E); 4750 4751 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4752 4753 // Note that in all of these cases, __block variables need the RHS 4754 // evaluated first just in case the variable gets moved by the RHS. 4755 4756 switch (getEvaluationKind(E->getType())) { 4757 case TEK_Scalar: { 4758 switch (E->getLHS()->getType().getObjCLifetime()) { 4759 case Qualifiers::OCL_Strong: 4760 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4761 4762 case Qualifiers::OCL_Autoreleasing: 4763 return EmitARCStoreAutoreleasing(E).first; 4764 4765 // No reason to do any of these differently. 4766 case Qualifiers::OCL_None: 4767 case Qualifiers::OCL_ExplicitNone: 4768 case Qualifiers::OCL_Weak: 4769 break; 4770 } 4771 4772 RValue RV = EmitAnyExpr(E->getRHS()); 4773 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4774 if (RV.isScalar()) 4775 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4776 EmitStoreThroughLValue(RV, LV); 4777 if (getLangOpts().OpenMP) 4778 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4779 E->getLHS()); 4780 return LV; 4781 } 4782 4783 case TEK_Complex: 4784 return EmitComplexAssignmentLValue(E); 4785 4786 case TEK_Aggregate: 4787 return EmitAggExprToLValue(E); 4788 } 4789 llvm_unreachable("bad evaluation kind"); 4790 } 4791 4792 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4793 RValue RV = EmitCallExpr(E); 4794 4795 if (!RV.isScalar()) 4796 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4797 AlignmentSource::Decl); 4798 4799 assert(E->getCallReturnType(getContext())->isReferenceType() && 4800 "Can't have a scalar return unless the return type is a " 4801 "reference type!"); 4802 4803 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4804 } 4805 4806 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4807 // FIXME: This shouldn't require another copy. 4808 return EmitAggExprToLValue(E); 4809 } 4810 4811 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4812 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4813 && "binding l-value to type which needs a temporary"); 4814 AggValueSlot Slot = CreateAggTemp(E->getType()); 4815 EmitCXXConstructExpr(E, Slot); 4816 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4817 } 4818 4819 LValue 4820 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4821 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4822 } 4823 4824 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4825 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4826 ConvertType(E->getType())); 4827 } 4828 4829 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4830 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4831 AlignmentSource::Decl); 4832 } 4833 4834 LValue 4835 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4836 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4837 Slot.setExternallyDestructed(); 4838 EmitAggExpr(E->getSubExpr(), Slot); 4839 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4840 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4841 } 4842 4843 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4844 RValue RV = EmitObjCMessageExpr(E); 4845 4846 if (!RV.isScalar()) 4847 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4848 AlignmentSource::Decl); 4849 4850 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4851 "Can't have a scalar return unless the return type is a " 4852 "reference type!"); 4853 4854 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4855 } 4856 4857 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4858 Address V = 4859 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4860 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4861 } 4862 4863 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4864 const ObjCIvarDecl *Ivar) { 4865 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4866 } 4867 4868 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4869 llvm::Value *BaseValue, 4870 const ObjCIvarDecl *Ivar, 4871 unsigned CVRQualifiers) { 4872 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4873 Ivar, CVRQualifiers); 4874 } 4875 4876 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4877 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4878 llvm::Value *BaseValue = nullptr; 4879 const Expr *BaseExpr = E->getBase(); 4880 Qualifiers BaseQuals; 4881 QualType ObjectTy; 4882 if (E->isArrow()) { 4883 BaseValue = EmitScalarExpr(BaseExpr); 4884 ObjectTy = BaseExpr->getType()->getPointeeType(); 4885 BaseQuals = ObjectTy.getQualifiers(); 4886 } else { 4887 LValue BaseLV = EmitLValue(BaseExpr); 4888 BaseValue = BaseLV.getPointer(*this); 4889 ObjectTy = BaseExpr->getType(); 4890 BaseQuals = ObjectTy.getQualifiers(); 4891 } 4892 4893 LValue LV = 4894 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4895 BaseQuals.getCVRQualifiers()); 4896 setObjCGCLValueClass(getContext(), E, LV); 4897 return LV; 4898 } 4899 4900 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4901 // Can only get l-value for message expression returning aggregate type 4902 RValue RV = EmitAnyExprToTemp(E); 4903 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4904 AlignmentSource::Decl); 4905 } 4906 4907 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4908 const CallExpr *E, ReturnValueSlot ReturnValue, 4909 llvm::Value *Chain) { 4910 // Get the actual function type. The callee type will always be a pointer to 4911 // function type or a block pointer type. 4912 assert(CalleeType->isFunctionPointerType() && 4913 "Call must have function pointer type!"); 4914 4915 const Decl *TargetDecl = 4916 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4917 4918 CalleeType = getContext().getCanonicalType(CalleeType); 4919 4920 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4921 4922 CGCallee Callee = OrigCallee; 4923 4924 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4925 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4926 if (llvm::Constant *PrefixSig = 4927 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4928 SanitizerScope SanScope(this); 4929 // Remove any (C++17) exception specifications, to allow calling e.g. a 4930 // noexcept function through a non-noexcept pointer. 4931 auto ProtoTy = 4932 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4933 llvm::Constant *FTRTTIConst = 4934 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4935 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4936 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4937 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4938 4939 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4940 4941 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4942 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4943 llvm::Value *CalleeSigPtr = 4944 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4945 llvm::Value *CalleeSig = 4946 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4947 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4948 4949 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4950 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4951 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4952 4953 EmitBlock(TypeCheck); 4954 llvm::Value *CalleeRTTIPtr = 4955 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4956 llvm::Value *CalleeRTTIEncoded = 4957 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4958 llvm::Value *CalleeRTTI = 4959 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4960 llvm::Value *CalleeRTTIMatch = 4961 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4962 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4963 EmitCheckTypeDescriptor(CalleeType)}; 4964 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4965 SanitizerHandler::FunctionTypeMismatch, StaticData, 4966 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4967 4968 Builder.CreateBr(Cont); 4969 EmitBlock(Cont); 4970 } 4971 } 4972 4973 const auto *FnType = cast<FunctionType>(PointeeType); 4974 4975 // If we are checking indirect calls and this call is indirect, check that the 4976 // function pointer is a member of the bit set for the function type. 4977 if (SanOpts.has(SanitizerKind::CFIICall) && 4978 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4979 SanitizerScope SanScope(this); 4980 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4981 4982 llvm::Metadata *MD; 4983 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4984 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4985 else 4986 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4987 4988 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4989 4990 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4991 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4992 llvm::Value *TypeTest = Builder.CreateCall( 4993 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4994 4995 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4996 llvm::Constant *StaticData[] = { 4997 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4998 EmitCheckSourceLocation(E->getBeginLoc()), 4999 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5000 }; 5001 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5002 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5003 CastedCallee, StaticData); 5004 } else { 5005 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5006 SanitizerHandler::CFICheckFail, StaticData, 5007 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5008 } 5009 } 5010 5011 CallArgList Args; 5012 if (Chain) 5013 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5014 CGM.getContext().VoidPtrTy); 5015 5016 // C++17 requires that we evaluate arguments to a call using assignment syntax 5017 // right-to-left, and that we evaluate arguments to certain other operators 5018 // left-to-right. Note that we allow this to override the order dictated by 5019 // the calling convention on the MS ABI, which means that parameter 5020 // destruction order is not necessarily reverse construction order. 5021 // FIXME: Revisit this based on C++ committee response to unimplementability. 5022 EvaluationOrder Order = EvaluationOrder::Default; 5023 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5024 if (OCE->isAssignmentOp()) 5025 Order = EvaluationOrder::ForceRightToLeft; 5026 else { 5027 switch (OCE->getOperator()) { 5028 case OO_LessLess: 5029 case OO_GreaterGreater: 5030 case OO_AmpAmp: 5031 case OO_PipePipe: 5032 case OO_Comma: 5033 case OO_ArrowStar: 5034 Order = EvaluationOrder::ForceLeftToRight; 5035 break; 5036 default: 5037 break; 5038 } 5039 } 5040 } 5041 5042 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5043 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5044 5045 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5046 Args, FnType, /*ChainCall=*/Chain); 5047 5048 // C99 6.5.2.2p6: 5049 // If the expression that denotes the called function has a type 5050 // that does not include a prototype, [the default argument 5051 // promotions are performed]. If the number of arguments does not 5052 // equal the number of parameters, the behavior is undefined. If 5053 // the function is defined with a type that includes a prototype, 5054 // and either the prototype ends with an ellipsis (, ...) or the 5055 // types of the arguments after promotion are not compatible with 5056 // the types of the parameters, the behavior is undefined. If the 5057 // function is defined with a type that does not include a 5058 // prototype, and the types of the arguments after promotion are 5059 // not compatible with those of the parameters after promotion, 5060 // the behavior is undefined [except in some trivial cases]. 5061 // That is, in the general case, we should assume that a call 5062 // through an unprototyped function type works like a *non-variadic* 5063 // call. The way we make this work is to cast to the exact type 5064 // of the promoted arguments. 5065 // 5066 // Chain calls use this same code path to add the invisible chain parameter 5067 // to the function type. 5068 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5069 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5070 CalleeTy = CalleeTy->getPointerTo(); 5071 5072 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5073 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5074 Callee.setFunctionPointer(CalleePtr); 5075 } 5076 5077 llvm::CallBase *CallOrInvoke = nullptr; 5078 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5079 E->getExprLoc()); 5080 5081 // Generate function declaration DISuprogram in order to be used 5082 // in debug info about call sites. 5083 if (CGDebugInfo *DI = getDebugInfo()) { 5084 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5085 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5086 CalleeDecl); 5087 } 5088 5089 return Call; 5090 } 5091 5092 LValue CodeGenFunction:: 5093 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5094 Address BaseAddr = Address::invalid(); 5095 if (E->getOpcode() == BO_PtrMemI) { 5096 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5097 } else { 5098 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5099 } 5100 5101 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5102 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5103 5104 LValueBaseInfo BaseInfo; 5105 TBAAAccessInfo TBAAInfo; 5106 Address MemberAddr = 5107 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5108 &TBAAInfo); 5109 5110 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5111 } 5112 5113 /// Given the address of a temporary variable, produce an r-value of 5114 /// its type. 5115 RValue CodeGenFunction::convertTempToRValue(Address addr, 5116 QualType type, 5117 SourceLocation loc) { 5118 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5119 switch (getEvaluationKind(type)) { 5120 case TEK_Complex: 5121 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5122 case TEK_Aggregate: 5123 return lvalue.asAggregateRValue(*this); 5124 case TEK_Scalar: 5125 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5126 } 5127 llvm_unreachable("bad evaluation kind"); 5128 } 5129 5130 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5131 assert(Val->getType()->isFPOrFPVectorTy()); 5132 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5133 return; 5134 5135 llvm::MDBuilder MDHelper(getLLVMContext()); 5136 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5137 5138 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5139 } 5140 5141 namespace { 5142 struct LValueOrRValue { 5143 LValue LV; 5144 RValue RV; 5145 }; 5146 } 5147 5148 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5149 const PseudoObjectExpr *E, 5150 bool forLValue, 5151 AggValueSlot slot) { 5152 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5153 5154 // Find the result expression, if any. 5155 const Expr *resultExpr = E->getResultExpr(); 5156 LValueOrRValue result; 5157 5158 for (PseudoObjectExpr::const_semantics_iterator 5159 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5160 const Expr *semantic = *i; 5161 5162 // If this semantic expression is an opaque value, bind it 5163 // to the result of its source expression. 5164 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5165 // Skip unique OVEs. 5166 if (ov->isUnique()) { 5167 assert(ov != resultExpr && 5168 "A unique OVE cannot be used as the result expression"); 5169 continue; 5170 } 5171 5172 // If this is the result expression, we may need to evaluate 5173 // directly into the slot. 5174 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5175 OVMA opaqueData; 5176 if (ov == resultExpr && ov->isRValue() && !forLValue && 5177 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5178 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5179 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5180 AlignmentSource::Decl); 5181 opaqueData = OVMA::bind(CGF, ov, LV); 5182 result.RV = slot.asRValue(); 5183 5184 // Otherwise, emit as normal. 5185 } else { 5186 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5187 5188 // If this is the result, also evaluate the result now. 5189 if (ov == resultExpr) { 5190 if (forLValue) 5191 result.LV = CGF.EmitLValue(ov); 5192 else 5193 result.RV = CGF.EmitAnyExpr(ov, slot); 5194 } 5195 } 5196 5197 opaques.push_back(opaqueData); 5198 5199 // Otherwise, if the expression is the result, evaluate it 5200 // and remember the result. 5201 } else if (semantic == resultExpr) { 5202 if (forLValue) 5203 result.LV = CGF.EmitLValue(semantic); 5204 else 5205 result.RV = CGF.EmitAnyExpr(semantic, slot); 5206 5207 // Otherwise, evaluate the expression in an ignored context. 5208 } else { 5209 CGF.EmitIgnoredExpr(semantic); 5210 } 5211 } 5212 5213 // Unbind all the opaques now. 5214 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5215 opaques[i].unbind(CGF); 5216 5217 return result; 5218 } 5219 5220 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5221 AggValueSlot slot) { 5222 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5223 } 5224 5225 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5226 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5227 } 5228